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ABSTRACT

Recently, diffusion models have emerged as powerful deep generative models,
showcasing cutting-edge performance across various applications such as image
generation, solving inverse problems, and text-to-image synthesis. These mod-
els generate new data (e.g., images) by transforming random noise inputs through
a reverse diffusion process. In this work, we uncover a distinct and prevalent
phenomenon within diffusion models in contrast to most other generative mod-
els, which we refer to as “consistent model reproducibility”. To elaborate, our
extensive experiments have consistently shown that when starting with the same
initial noise input and sampling with a deterministic solver, diffusion models tend
to produce nearly identical output content. This consistency holds true regardless
of the choices of model architectures and training procedures. Additionally, our
research has unveiled that this exceptional model reproducibility manifests in two
distinct training regimes: (i) “memorization regime,” characterized by a signifi-
cantly overparameterized model which attains reproducibility mainly by memo-
rizing the training data; (ii) “generalization regime,” in which the model is trained
on an extensive dataset, and its reproducibility emerges with the model’s general-
ization capabilities. Our analysis provides theoretical justification for the model
reproducibility in “memorization regime”. Moreover, our research reveals that
this valuable property generalizes to many variants of diffusion models, including
conditional diffusion models, diffusion models for solving inverse problems, and
fine-tuned diffusion models. A deeper understanding of this phenomenon has the
potential to yield more interpretable and controllable data generative processes
based on diffusion models.

1 INTRODUCTION

Recently, diffusion models have emerged as a powerful new family of deep generative models with
remarkable performance in many applications, including image generation (Ho et al., 2020; Song
et al., 2020b; Rombach et al., 2022a) , image-to-image translation (Su et al., 2022; Saharia et al.,
2022; Zhao et al., 2022), text-to-image synthesis (Rombach et al., 2022a; Ramesh et al., 2021;
Nichol et al., 2021), and solving inverse problem solving (Chung et al., 2022b; Song et al., 2022;
Chung et al., 2022a; Song et al., 2023a). These models learn an unknown data distribution generated
from the Gaussian noise distribution through a process that imitates the non-equilibrium thermody-
namic diffusion process (Ho et al., 2020; Song et al., 2020b). In the forward diffusion process, the
noise is continuously injected into training samples; while in the reverse diffusion process, a model
is learned to remove the noise from noisy samples parametrized by a noise-predictor neural network.
Then guided by the trained model, new samples (e.g., images) from the target data distribution can
be generated by transforming random noise instances through step-by-step denoising following the
reverse diffusion process. Despite the remarkable data generation capabilities demonstrated by dif-
fusion models, the fundamental mechanisms driving their performance are largely under-explored.

In this work, to better understand diffusion models, we study the following fundamental question:

Q1: Starting from the same noise input, how are the generated data samples from various
diffusion models related to each other?
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Figure 1: Unconditional diffusion model samples visualization in generalization regime. We utilized de-
noising diffusion probabilistic models (DDPM) (Ho et al., 2020; Song et al., 2020a), consistency model (CT)
(Song et al., 2023b), U-ViT (Bao et al., 2023) trained on CIFAR-10 (Krizhevsky et al., 2009) dataset released
by the author. Samples in the corresponding row and column are generated from the same initial noise with a
deterministic ODE sampler. Discussion of the generalization regime is in Figure 2b.

A deeper understanding of this question has the potential to yield more interpretable and controlled
data generative processes of using the diffusion models in many application disciplines (Zhang et al.,
2023; Epstein et al., 2023). For example, in the text-driven image generation, insights into this ques-
tion could help to guide the content generation (e.g., adversial attacking (Zou et al., 2023), robust
defending (Zhu et al., 2023), copyright protection (Somepalli et al., 2023b;a)) using the same text
embedding but varying noise inputs. In solving inverse problems, an answer to this question will
guide us to select the input noise for reducing the uncertainty and variance in our signal reconstruc-
tion (Jalal et al., 2021; Chung & Ye, 2022; Luo et al., 2023a). Theoretically, understanding the
question will shed light on how the mapping function is learned and constructed between the noise
and data distributions, which is crucial for understanding the generation process through the distri-
bution transformation or identifiable encoding (Roeder et al., 2021; Khemakhem et al., 2020a;b).

In this work, we provide an in-depth study of the question and uncover an intriguing and prevalent
phenomenon within the diffusion model that sets it apart from most other generative models. We
term this phenomenon as “consistent model reproducibility”. More precisely, as illustrated in Fig-
ure 1, when different diffusion models are trained on the same dataset and generate new samples
through a deterministic ODE sampler from the same noises, we find that all diffusion models gen-
erate nearly identical images, which is irrespective of network architectures, training and sampling
procedures, and perturbation kernels.

The consistent model reproducibility we identified for diffusion models is similar to the notion of
unique identifiable encoding for deep latent-variable models, which is the property that the learned
input-embedding is reproducible towards an identifiable mapping, regardless of different weight
initialization or optimization procedures (Roeder et al., 2021). The property for deep latent-variable
models was proved by Hyvarinen & Morioka (2016; 2017); Hyvarinen et al. (2019) on the analysis
of Independent Component Analysis (ICA). Recently, Khemakhem et al. (2020a) demonstrated the
identifiability of Variational Autoencoder (VAE) based on conditionally factorial priors distribution
over the latent variables, and Roeder et al. (2021) proved a linear identifiability on representation
learning. In comparison, the consistent model reproducibility of diffusion models studied in this
work implies that we are learning a unique encoding between the noise space and the image space.

More interestingly, as illustrated in Figure 2, we find that the consistent model reproducibility of dif-
fusion models emerges in two distinct regimes: (i) "memorization regime” where the model has large
capacity of memorizing the training data but no ability to generate new samples, and (i) ’generaliza-
tion regime” where the model regain the consistent model reproducibility and can also produce new
data. In this work, we provide theoretical justification for the memorization regime. Moreover, the
simultaneous occurrence of reproducibility and generalizability in the model generalization regime
presents an interesting open question that is worth of future study.

Finally, we show that the consistent model reproducibility could be generalized to many other vari-
ants of diffusion model settings: conditional diffusion models, diffusion models for solving inverse
problem, and fine-tuning diffusion models. Regarding conditional diffusion models, the model re-
producibility is not only evident among different conditional diffusion models, but also it manifests
in a structured way when comparing conditional models to their unconditional counterparts. Con-
cerning solving inverse problem by using diffusion models as generative priors, we observe that the



Under review as a conference paper at ICLR 2024

(a) Reproducibilty (b) Generalizability

Figure 2: “Memorization” and “Generalization” regimes for unconditional diffusion models. We utilize
DDPMv4 and train them on the CIFAR-10 dataset, adjusting both the model’s size and the size of the training
dataset. In terms of model size, we experiment with UNet-64, UNet-128, and UNet-256, where, for instance,
UNet-64 indicates a UNet structure with an embedding dimension of 64. As for the dataset size, we select
images from the CIFAR dataset, ranging from 2° to 2!°. Under each dataset size, different models are trained
from the same subset of images. The figure on the left displays the reproducibility score as we compare various
models across different dataset sizes, while the figure on the right illustrates the generalizability score of the
models as the dataset size changes.

model reproducibility is confined within models using the same type of network architectures (e.g.,
either U-Net based or transformer-based architecture). Finally, in the context of fine-tuning diffu-
sion models, we show partial fine-tuning of pretrained models reduces reproducibility but improves
generalizability in “memorization regime” when compared to training from scratch.

Summary of Contributions. In summary, we briefly highlight our contributions below:

* Model reproducibility of unconditional diffusion models (Section 2). We provide a systematic
study of the of the unconditional diffusion model, regardless of the choices of network architec-
tures, perturbation kernels, training and sampling settings.

* Two regimes of model reproducibility (Section 3). We find a strong correlation between model’s
reproducibility and generalizability. We provide a theoretical study for the memorization regime.

* Model reproducibility of variants of diffusion models (Section 4). We reveal the reproducibility
in more various diffusion model settings, including conditional diffusion models, diffusion models
for inverse problem solving, and fine-tuning diffusion models.

Finally, we conclude and discuss the implications of our results in Section 5.
2 STUDY FOR UNCONDITIONAL DIFFUSION MODELS

For unconditional diffusion models, new samples (e.g., images) are generated by transforming ran-
domly sampled noise instances through a reverse diffusion process guided by the trained model (Ho
et al., 2020; Song et al., 2020b). If we start from the same noise input and use a deterministic ODE
sampler, we observe that

C2: Diffusion models consistently generate nearly identical contents, irrespective of
network architectures, training and sampling procedures, and perturbation kernels.

This seems to be obvious by examining the visualized samples generated by different diffusion
models in Figure 1 — starting from the same noise input, different diffusion models (i.e., DDPM (Ho
et al., 2020), Consistency Training (CT) (Song et al., 2023b), and U-ViT (Bao et al., 2023)) generate
nearly identical samples with very similar low-level color structures. More recent seminal (Song
et al., 2020b) has observed a similar phenomenon (see also subsequent works (Song et al., 2023b;
Karras et al., 2022)), but the study in Song et al. (2020b) remains preliminary.

2.1 EVALUATION SETUP OF MODEL REPRODUCIBILITY

While the findings in Figure 1 are intriguing, the basic visualization alone is not sufficient to fully
justify our claim. For a more comprehensive study, we first introduce quantitative measures for
model reproducibility and basic experimental setup.

3
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Figure 3: Similarity among different unconditional diffusion model settings in generalization regime.
We visualize the quantitative results based upon seven different unconditional diffusion models (DDPMv4,
DDPMv6 (Ho et al., 2020; Song et al., 2020a), Multistagevl (Anonymous), EDMv1 (Karras et al., 2022),
UVIT (Bao et al., 2023), CT (Song et al., 2023b), Progressivev1 (Salimans & Ho, 2022)) based upon repro-
ducibility score (left) and MAE score (right) (defined in Section 2.1). About more detailed settings and a more
comprehensive compare could be found in Appendix B.

Quantitative Measures of Model Reproducibility. To study this phenomenon more quantita-
tively, we introduce the reproducibility (RP) score to measure the similarity of image pair generated
from two different diffusion models starting from the same noise drawn i.i.d. from the standard
Gaussian distribution. Specifically, we define

RP Score := P (Msgscp(@1, z2) > 0.6),

represents the probability of a generated sample pair (1, x2) from two different diffusion models
to have self-supervised copy detection (SSCD) similarity Mgscp larger than 0.6 (Pizzi et al., 2022;
Somepalli et al., 2023b) (Mgsscp > 0.6 exhibits strong visual similarities). We sampled 10K noise
to estimate the probability. The SSCD similarity is first introduced in Pizzi et al. (2022) to measure
the replication between image pair (1, €2 ), which is defined as the following:

_ SSCD(z;) - SSCD(2)
Msseo(®1:22) = 1 e (1, - 1SSCD (s 2

where SSCD(-) represents a neural descriptor for copy detection.

In addition, we also use the mean-absolute-error (MAE) score to measure the reproducibility,
MAE Score := P (MAE(x;,x2) < 15.0) , similar setting with the RP score. MAE(-) is the op-
erator that measures the mean absolute different of image pairs in pixel value space ([0, 255]). The
quantitative results for selected diffusion model architectures are shown in Figure 3.

Experimental Setup for Evaluation. In this work, we conduct a comprehensive study of model
reproducibility based upon different network architectures, model perturbation kernels, and train-
ing and sampling processes: (a) Network architectures. We evaluate for both UNet (Ronneberger
et al., 2015) based architecture: DDPM (Ho et al., 2020), DDPM++ (Song et al., 2020b), Multistage
(Anonymous), EDM (Karras et al., 2022), Consistency Training (CT) and Distillation (CD) (Song
et al., 2023b); Transformer (Vaswani et al., 2017) based architecture: DiT (Peebles & Xie, 2022)
and U-ViT (Bao et al., 2023). (b) Training Process. We also considered discrete (Ho et al., 2020)
or continuous (Song et al., 2020b) settings, estimating noise € or original image x, training from
scratch or distillation (Salimans & Ho, 2022; Song et al., 2023b) for the diffusion model. (c) Sam-
pling Process. For sampling, we only used the deterministic sampler,' such as DPM-Solver (Lu
et al., 2022), Heun-Solver (Karras et al., 2022), DDIM (Song et al., 2020a) etc. (d) Perturbation
Kernels. For noise perturbation stochastic differential equations, we use Variance Preserving (VP)
(Ho et al., 2020), Variance Exploding (VE), sub Variance Preserving (sub-VP) (Song et al., 2020b).
All the models are trained with the CIFAR-10 dataset (Krizhevsky et al., 2009) until convergence.’

"We use deterministic sampler instead of stochastic sampler, because randomness introduced by stochastic
samplers will break the model reproducibility.
’Here, convergence means achieving the lowest Fréchet inception distance (FID) Heusel et al. (2017).
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Figure 4: Unqgiue Encoding from Noise Hyperplane to Image Manifold in generalization regime. The
diagram illustrates the process of mapping from a noise hyperplane to the image manifold. We employ three
distinct models: DDPMv6, EDMv1, and Multistagev1. Initially, we select three different initial noises from
Gaussion and generate corresponding samples, denoted by a triangle, square, and circle in the first three images
on the left. The hyperplane is defined based on these chosen noises. Image generations, starting from uniformly
selected initial noise within this hyperplane, are classified as identical to either the triangle, square, or circle
image, determined by the maximum SSCD similarity with them. Each initial noise is colored according to its
generation’s corresponding class (as indicated on the right; for instance, the noise’s generation identical to the
triangle image is represented by the black-white color bar), along with the SSCD similarity to the identical
image.

2.2 MODEL REPRODUCIBILITY OF UNCONDITIONAL DIFFUSION MODELS

Quantitative Studies of Model Reproducibility. Based upon the setup in Section 2.1, we provide
a quantitative study by comparing the similarity metrics of samples generated based upon different
network architectures, model perturbation kernels, and training process. In Figure 3, we visualize
the similarity matrix for seven different popular diffusion models, where each element of the matrix
measures pairwise similarities of two different diffusion models based upon reproducibility score
(left) and MAE score (right). More comprehensive studies are shown in Appendix B. As we can
see, there is a very consistent model reproducible phenomenon for comparing any two models. For
even the most dissimilar models, (i.e., CT and UViT), the RP and MAE scores are notably high at
0.7 and 0.64, respectively. Specifically, we draw the following conclusions:
* Model reproducibility is consistent among different network architectures. When compared to
DDPMv4, Multistagevl, EDMv1, and UViT, this phenomenon remains consistent regardless of
the specific architecture employed.

* Model reproducibility is consistent among different training procedures. When we compare CT
(consistency loss) and EDMv1 (diffusion model loss), even when using different loss functions,
they ultimately converge to a similar noise-to-image mapping. Notably, EDMv1 employs a distinct
loss by estimating the clear image « whereas other methods estimate the noise €. Additionally,
comparing DDPMv1 and Progressivevl reveals that both training from scratch and distillation
approaches lead to the same results.

* Model reproducibility is consistent among different sampling procedures. DDPMv4 utilizes DPM-
solver, EDMvI1 employs a 2nd order heun-solver, and CT utilizes consistency sampling, yet they
all exhibit reproducibility.

* Model reproducibility is consistent among different perturbation kernels. When compared to
DDPMv4, DDPMv6, and EDMv1, the reproducibility remains unaffected by the choice of pertur-
bation method (VP, sub-VP, and VE, respectively).

Studies of the Unqiue Encoding from Noise Hyperplane to Image Manifold. The model repro-
ducibility of diffusion models implies that we are learning a unique decoding f : £ — Z from the
gaussian noise space £ to the image manifold Z. Specifically, we find that

* Similar unique encoding maps across different network architectures. We further confirm the
model reproducibility by visualizing the mapping f from a 2D noise hyperplane H C & to the
image manifold Z, inspired by Somepalli et al. (2022). The visualization in Figure 4 shows that
different mappings of different network architectures share very similar structures.

* Local Lipschitzness of the unique encoding from noise to image space. Furthermore, our visualiza-
tion suggests that the unique encoding f is locally Lipschitz, where || f(€1)— f(€2)|| < L||€1 —e€3]|
for any €1, €3 € B(e,d) N E with some Lipschitz constant L. Here B(e, §) denotes a ball centered
at a Gaussian noise € with radius §. In other words, noises €1, €5 € & close in distance would
generate similar reproducible images in Z via diffusion models.
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Specifically, the visualization in Figure 4 is created as follows. First, we pick three initial noises
(€1, €2, €3) in the noise space £ and used different diffusion model architectures to generate clear
images (1, T2, x3) in the image manifold Z, so that the images {x;}7_; belong to three different
classes. Second, we create a 2D noise hyperplane with
ela,f)=a-(ea—€1)+ 5 (e3—€1)+ €1

Within the region («, 5) € [—0.1,1.1] x [-0.1,1, 1], we uniformly sample 100 points along each
axis and generate images x («, ) for each sample € («, 8) using different diffusion model archi-
tectures (i.e., DDPMv6, EDMv1, Multistagevl). For each point («, 3), it is considered as iden-
tical to image x; for i = argmax¢ 5 53 [Msscp(xk, T (@, 8))], and we visualize the value of
Mssep (i, x (o, B)). As we observe from Figure 4, the visualization shares very similar structures

across different network architectures. Second, for each plot, closeby noises create images with very
high similarities. These observations support our above claims.

Comparison with Other Types of Generative Models. We end this section by highlighting that
only diffusion models appear to consistently exhibit model reproducibility. This property is seem-
ingly absent in other generative models with one exception as noted in Khemakhem et al. (2020a) *.
Details reproducibility analysis of Generative Adversarial Network (GAN) Goodfellow et al. (2014)
and Variational Autoencoder (VAE) Kingma & Welling (2013) based approaches are in Appendix C.

3 CORRELATION BETWEEN REPRODUCIBILITY & GENERALIZABILITY

More interestingly, both of our empirical and theoretical studies in this section demonstrate that

C3: The consistent model reproducibility of diffusion models manifests in two distinct
training regimes, both strongly correlated with the model’s generalizability.

Here, the model’s generalizability means the model’s ability to generate new samples that is different
from samples in the training dataset. Specifically, we measure the generalizability by introducing
the generalization (GL) score := 1 — P (maxie[N] [Msscp(z, y:)] > 0.6) represents one minus
the probability of maximum Mggcp is larger than 0.6, between the generated sample x from one
diffusion model and all samples y; from training dataset {yz}i\[=1 of N-samples . We sampled 10K
initial noise to estimate the probability.

Two Regimes of Model Reproducibility. Now, we formally introduce the two regimes of model
reproducibility for diffusion models in the following. Both of them exhibit a strong correlation with
the model’s ability to generalize.

* “Memorization regime” characterizes a scenario where the trained model has large model capac-
ity than the size of training data. In this regime, starting from the same noise the model possesses
the ability to reproduce the same results, as illustrated in the left region of Figure 2a with small
training data size. However, the generated samples are often replications of the samples in the
training data, and the model lacks the full capacity to generate new samples; see the left region
of Figure 2b. Therefore, we call this regime the “memorization regime” as the generated samples
are only replication of training data. In this regime, we can rigorously characterize the optimal
denoiser as shown in Theorem 1, and in Figure 5 we empirically demonstrated that the diffusion
models converge to the theoretical solutions when the model is highly overparameterized. How-
ever, given no generalizability, training diffusion models in this regime holds limited practical
interest.

* “Generalization regime” emerges when the diffusion model is trained on large dataset and
doesn’t have full capacity to memorize the whole dataset. Remarkably, as shown in the right
region of Figure 2a, the diffusion model regains the reproducibility as the ratio between dataset
size and model capacity increases. Simultaneously, the model possess the ability to generate new
samples, as illustrated in the right region of Figure 2b; this generalization phenomenon is also
observed in Yoon et al. (2023). As such, we call this regime the “generalization regime” because
the stage of generalization is in coincidence with the stage of model reproducibility. This is the
regime in which diffusion models are commonly trained and employed in practice, and the co-
existence of model reproducibility and generalizability is an intriguing phenomenon to be further
understood theoretically.

3Khemakhem et al. (2020a) demonstrates that VAE is uniquely identifiable encoding given a factorized prior
distribution over the latent variables.
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A Theoretical Study of the Memorization Regime. For the rest of this section, we provide a
theoretical study of the memorization regime, and we leave the study of generalization regime for
future work. Specifically, we characterize the optimal denoiser of the diffusion model and show that
it results in a unique identifiable encoding under proper assumptions.

Theorem 1. Suppose we train a diffusion model denoiser function eg(x,t) with parameter 0 on a
training dataset {yi}f-v:l of N-samples, by minimizing the training loss

meinﬁ(e@; t) = Emodiaza(w)EwNPt(w|m0) [||e — eo(, t)H2]’ (D

where we assume that data x follows a mixture delta distribution pyaa(x) = + Zfi1 o(x —y,),

and the perturbation kernel p,(x;|xo) = N (x¢; 80, s7021) with perturbation parameters s, .
Then we can show that the optimal denoiser €y (x;t) = argmin,, L(eg;t) is

N

RPN Sica N (s seyi, sior)yi

eo(@it) = — |@— 5 =] - @)
5t0t Y oica N(x; s1yi, s707d)

Moreover, suppose a trained diffusion model could converge to the optimal denoiser €}(x;t) and
we use a deterministic ODE sampler to generate images using €g(x;t), then f : € — I, which is
determined by the € (x;t) and the ODE sampler, is an invertiable mapping and the inverse mapping
f~Yis a unique identifiable encoding.

The proof for Theorem 1 can be found in the
Appendix D, building upon previous findings
from Karras et al. (2022); Yi et al. (2023).
It is worth noting that the optimal denoiser
€5(x;t) in (2) is deterministic for a given train-
ing dataset {y,}i\[:1 and for specific perturba-
tion parameters sy,o0;. Moreover, Yi et al.
(2023) demonstrates optimal denoiser lacks
generalizability, as all the samples generated
from ep(a;t) are confined within the training
dataset. Furthermore, we verified our theory Figure 5: Experiment verification of the theory. We
experimentally by comparing the reproducibil-  employ DDPMv4 and conduct training on the CIFAR-
ity score between the the theoretical genera- 10 dataset. During this process, we make modifications
tions in Theorem 1 and that of a trained network to both the model’s capacity and the size of the training
in practice. This can be illustrated by the left dataset, maintaining the same configuration as depicted
region of Figure 5, the trained networks have a in Figu're.Z.. The figure presented he?e ill}lstrates the re-
very high similarity compared with the theoret- produc1b111Fy score l?etwqen eqch dlffusmn.model and
ical solution on small training dataset, and the the theoretlcally unique identifiable encoding as out-
S . S lined in Theorem 1.
similarity decreases when the size of training
data increases. As such, we conclude that the
diffusion model could converge to the theoretical solution when the model capacity is large enough.

4 STUDY BEYOND UNCONDITIONAL DIFFUSION MODELS

Furthermore, in this section, we explore how model reproducibility can be generalized to variations
of the diffusion models, showcasing that:

C4: Model reproducibility holds more generally across conditional diffusion models,
diffusion models for inverse problems, the fine-tuning of diffusion models.

Model Reproducibility in Conditional Diffusion Models. Conditional diffusion, introduced by
Ho & Salimans (2022); Dhariwal & Nichol (2021), gained its popularity in many applications such
as text-to-image generation (Rombach et al., 2022a; Ramesh et al., 2021; Nichol et al., 2021) with
superior performance, through the fusion of rich class embeddings with the denoiser function. In-
terestingly, we find that:

Model reproducibility of conditional models is evident and linked with unconditional counterparts.

7
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Figure 6: Model reproducibility for conditional diffusion model in the generalization regime. In this
study, we employ conditional diffusion models, specifically U-Net-based (EDM-cond, MultistageEDM-cond)
and transformer based (UViT-cond), which we train on the CIFAR-10 dataset using class labels as conditions.
Additionally, we select unconditional diffusion models, namely Progressivevl, DDPMv4, and EDMv2, as
introduced in Section 2. Figure (a) showcases sample generations from both unconditional and conditional
diffusion models (with the “plane” serving as the condition for the latter). Notably, samples within the same
row and column originate from the same initial noise. The reproducibility scores between the conditional
diffusion models are presented in (b), and between unconditional and conditional diffusion models in (c).

Specifically, our experiments in Figure 6 demonstrate that (i) model reproducibility exists among
different conditional diffusion models, and (i) model reproducibility is present between conditional
and unconditional diffusion models only if the type (or class) of content generated by the uncondi-
tional models matches that of the conditional models. More results can be found in Appendix E.

To support our claims, we introduce the conditional reproducibility score between different con-
ditional diffusion models by RP.,nq Score := P (Msgscp(x$,x5) > 0.6 | ¢ € C), where the pair
(z§,x5) are generated by two conditional models from the same initial noise and conditioned on
the class ¢ € C. Additionally, the between reproducibility score of conditional and unconditional
diffusion models is defined as RPpctyeen Score := P (max_ . [Msscp (1, 5)] > 0.6), for an un-
conditional generation x; and conditional generation x§ starting from the same noise. First, when
conditioned on the same class and initial noise, results in Figure 6 (a) (b) highlight the similarity
of samples generated from different condition diffusion models (i.e., EDM-cond, UViT-cond, and
MultistageEDM-cond), supporting Claim (i). Second, the high RPpc¢yeen Score in Figure 6 (c) pro-
vides strong evidence for reproducibility between conditional and unconditional diffusion models,
supporting Claim (ii). This can also be observed visually by examining the unconditional genera-
tion using Progressivev] in Figure 6 (a), where images highlighted in the green square share high
similarity with conditional counterparts highlighted in the purple square .

Model Reproducibility in Solving Inverse Problems. Recently, diffusion models have also
demonstrated remarkable results on solving a broad spectrum of inverse problems (Song et al.,
2023a; Chung et al., 2022a; Song et al., 2021; Chung et al., 2022b),* including but not limited to im-
age super-resolution, de-blurring, and inpainting. Motivated by these promising results, we illustrate
based upon solving the image inpainting problem using a modified deterministic variant of diffusion
posterior sampling (DPS) (Chung et al., 2022a), showcasing that for solving inverse problem using
diffusion models:

Model reproducibility largely holds only within the same type of network architectures.

Our claim is supported by the experimental results in Figure 7. Specifically, Figure 7 (a) virtual-
izes the samples generated from different diffusion models, and Figure 7 (b) presents the similarity
matrix of model reproducibility between different models, i.e., U-Net based (DDPMv1, DDPMv2,
DDPMv3, DDPMv4, Multistagevl) and Transformer based (DiT, U-ViT) architectures. We note
a strong degree of model reproducibility among architectures of the same type (such as U-Net or
Transformer), but the model reproducibility score exhibits a notable decrease when comparing any
U-Net model to any Transformer-based model.

Model Reproducibility in Fine-tuning Diffusion Models. Few-shot image fine-tuning for diffu-
sion models, as discussed in (Ruiz et al., 2023; Gal et al., 2022; Moon et al., 2022; Han et al., 2023),
showcases remarkable generalizability. This is often achieved by fine-tuning a small portion of the

“Here, the problem is often to reconstruct an unknown signal w from the measurements z of the form
z = A(u) + n, where A denotes some (given) sensing operator and 7 is the noise.
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Figure 7: Model reproducibility for solving inverse problems in the generalization regime. In this inves-
tigation, we employ various unconditional diffusion models, as introduced in Section 2, which were initially
trained on the CIFAR-10 dataset. Our approach involves utilizing a modified deterministic variant of diffusion
posterior sampling (DPS), as detailed in Appendix F. Specifically, we focus on the task of image inpainting.
Figure (a) presents both the observation z, unknown signal u, and generations from different diffusion models.
Notably, samples within the same row and column originate from the same initial noise. The reproducibility
scores for different diffusion models under the DPS algorithm are quantitatively analyzed in (b).

Figure 8: Model reproducibility for diffusion model finetuing. In this experiment, we employ DDPMv4.
Two distinct training strategies are investigated: “from scratch,” denoting direct training on a subset of the
CIFAR-10 dataset, and “partial fine-tuning,” which involves pretraining on the entire CIFAR-100 dataset
Krizhevsky et al. (2009) followed by fine-tuning only the attention layers of the model on a subset of the
CIFAR-10 dataset. The dataset sizes for CIFAR-10 range from 2° to 2'°. Importantly, both “from scratch”
and partial fine-tuning” are trained using the same subset of images for each dataset size. Under different
dataset sieze, Figure (a) illustrates the reproducibility score between these two strategies and (b) presents the
generalization score for them.

parameters of a large-scale pre-trained (text-to-image) diffusion model. In this final study, we delve
into the impacts of partial model fine-tuning on both model reproducibility and generalizability, by
extending our analysis in Section 3. We show that:

Partial fine-tuning reduces reproducibility but improves generalizability in “memorization regime”.

Our claim is supported our results in Figure 8, comparing model fine-tuning and training from
scratch of with varying size of the training data, where both models have the same number of pa-
rameters. In comparison to training from scratch that we studied in Figure 2b, fine-tuning specific
components of pre-trained diffusion models, particularly the attention layer in the U-Net architec-
ture, yields lower model reproducibility score but higher generalization score in the memorization
regime. However, in the generalization regime, partial model fine-tuning has a minor impact on
both reproducibility and generalization in the diffusion model. Our result reconfirms the improved
generalizability of fine-tuning diffusion models on limited data, but shows a surprising tradeoff in
terms of model reproducibility that is worth of further investigations.

5 CONCLUSION

In this work, we conducted an in-depth study of an important but largely overlooked phenomenon in
diffusion models, for which we term it as “consistent model reproducibility”. This study raises nu-
merous compelling questions that is worth of further exploration. One such question is the tangible
practical benefits of model reproducibility in diffusion models compared to other types of generative
models. Moreover, the strong connection between model reproducibility and generalizability opens
an enticing theoretical question for further study.
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Reproducibility Statement

To illustrate the intriguing phenomenon of consistent model reproducibility, there is no requirement
to provide any code or model for validation. The only thing provided is the initial random noise
we used for the 8 x8 image grid. By selecting one diffusion mode list in the paper (you could also
explore other diffusion models not listed in the paper), you can access their released model online.
The only prerequisite is that the training dataset should be CIFAR-10. By following this approach,
you could regenerate the samples for unconditional in Figure 1,16 and for conditional in Figure 20,
21. The details of the experiment for the unconditional model are in B, for the conditional diffusion
model are in E, for theoretical verification are in D, for diffusion models on inverse problems solving
are in F and for fine-tuning diffusion models are in G.

REFERENCES
Anonymous. Multistage diffusion model. Unpublished manuscript.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pp. 214-223. PMLR, 2017.

Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth
words: A vit backbone for diffusion models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 22669-22679, 2023.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Hyungjin Chung and Jong Chul Ye. Score-based diffusion models for accelerated mri. Medical
Image Analysis, 80:102479, 2022.

Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion
posterior sampling for general noisy inverse problems. arXiv preprint arXiv:2209.14687, 2022a.

Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models
for inverse problems using manifold constraints. Advances in Neural Information Processing
Systems, 35:25683-25696, 2022b.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrodinger
bridge with applications to score-based generative modeling. Advances in Neural Information
Processing Systems, 34:17695-17709, 2021.

Mauricio Delbracio and Peyman Milanfar. Inversion by direct iteration: An alternative to denoising
diffusion for image restoration. arXiv preprint arXiv:2303.11435, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Ieee, 2009.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780-8794, 2021.

Dave Epstein, Allan Jabri, Ben Poole, Alexei A Efros, and Aleksander Holynski. Diffusion self-
guidance for controllable image generation. arXiv preprint arXiv:2306.00986, 2023.

Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel
Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual
inversion. arXiv preprint arXiv:2208.01618, 2022.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

10



Under review as a conference paper at ICLR 2024

Ligong Han, Yinxiao Li, Han Zhang, Peyman Milanfar, Dimitris Metaxas, and Feng Yang. Svdiff:
Compact parameter space for diffusion fine-tuning. arXiv preprint arXiv:2303.11305, 2023.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Aapo Hyvarinen and Hiroshi Morioka. Unsupervised feature extraction by time-contrastive learning
and nonlinear ica. Advances in neural information processing systems, 29, 2016.

Aapo Hyvarinen and Hiroshi Morioka. Nonlinear ica of temporally dependent stationary sources.
In Artificial Intelligence and Statistics, pp. 460—469. PMLR, 2017.

Aapo Hyvarinen, Hiroaki Sasaki, and Richard Turner. Nonlinear ica using auxiliary variables and
generalized contrastive learning. In The 22nd International Conference on Artificial Intelligence
and Statistics, pp. 859-868. PMLR, 2019.

Ajil Jalal, Marius Arvinte, Giannis Daras, Eric Price, Alexandros G Dimakis, and Jon Tamir. Robust
compressed sensing mri with deep generative priors. Advances in Neural Information Processing
Systems, 34:14938-14954, 2021.

Zahra Kadkhodaie, Florentin Guth, Eero P Simoncelli, and Stéphane Mallat. Generalization

in diffusion models arises from geometry-adaptive harmonic representation. arXiv preprint
arXiv:2310.02557, 2023.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems, 35:26565-26577,
2022.

Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and Aapo Hyvarinen. Variational autoen-
coders and nonlinear ica: A unifying framework. In International Conference on Artificial Intel-
ligence and Statistics, pp. 2207-2217. PMLR, 2020a.

Ilyes Khemakhem, Ricardo Monti, Diederik Kingma, and Aapo Hyvarinen. Ice-beem: Identifiable
conditional energy-based deep models based on nonlinear ica. Advances in Neural Information
Processing Systems, 33:12768-12778, 2020b.

Valentin Khrulkov, Gleb Ryzhakov, Andrei Chertkov, and Ivan Oseledets. Understanding ddpm
latent codes through optimal transport. arXiv preprint arXiv:2202.07477, 2022.

Diederik P Kingma and Max Welling.  Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Guan-Horng Liu, Arash Vahdat, De-An Huang, Evangelos A Theodorou, Weili Nie, and Anima
Anandkumar. I2sb: Image-to-image schr\odinger bridge. arXiv preprint arXiv:2302.05872, 2023.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775-5787, 2022.

Guanxiong Luo, Moritz Blumenthal, Martin Heide, and Martin Uecker. Bayesian mri reconstruction
with joint uncertainty estimation using diffusion models. Magnetic Resonance in Medicine, 90
(1):295-311, 2023a.

11



Under review as a conference paper at ICLR 2024

Ziwei Luo, Fredrik K Gustafsson, Zheng Zhao, Jens Sjolund, and Thomas B Schon. Image restora-
tion with mean-reverting stochastic differential equations. arXiv preprint arXiv:2301.11699,
2023b.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Taehong Moon, Moonseok Choi, Gayoung Lee, Jung-Woo Ha, and Juho Lee. Fine-tuning diffusion
models with limited data. In NeurIPS 2022 Workshop on Score-Based Methods, 2022. URL
https://openreview.net/forum?id=0J6afk9DgrR.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

William Peebles and Saining Xie. Scalable diffusion models with transformers. arXiv preprint
arXiv:2212.09748, 2022.

Ed Pizzi, Sreya Dutta Roy, Sugosh Nagavara Ravindra, Priya Goyal, and Matthijs Douze. A self-
supervised descriptor for image copy detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 14532-14542, 2022.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on Machine
Learning, pp. 8821-8831. PMLR, 2021.

Geoffrey Roeder, Luke Metz, and Durk Kingma. On linear identifiability of learned representations.
In International Conference on Machine Learning, pp. 9030-9039. PMLR, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684—10695, 2022a.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. stable-
diffusion. https://github.com/CompVis/stable-diffusion, 2022b.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical Image Computing and Computer-Assisted Intervention—
MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceed-
ings, Part Il 18, pp. 234-241. Springer, 2015.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22500—
22510, 2023.

Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David
Fleet, and Mohammad Norouzi. Palette: Image-to-image diffusion models. In ACM SIGGRAPH
2022 Conference Proceedings, pp. 1-10, 2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
open large-scale dataset for training next generation image-text models. Advances in Neural
Information Processing Systems, 35:25278-25294, 2022.

Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion schr\” odinger
bridge matching. arXiv preprint arXiv:2303.16852, 2023.

Ken Shoemake. Animating rotation with quaternion curves. In Proceedings of the 12th annual
conference on Computer graphics and interactive techniques, pp. 245-254, 1985.

12


https://openreview.net/forum?id=0J6afk9DqrR
https://github.com/CompVis/stable-diffusion

Under review as a conference paper at ICLR 2024

Gowthami Somepalli, Liam Fowl, Arpit Bansal, Ping Yeh-Chiang, Yehuda Dar, Richard Baraniuk,
Micah Goldblum, and Tom Goldstein. Can neural nets learn the same model twice? investigating
reproducibility and double descent from the decision boundary perspective. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13699-13708, 2022.

Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Diffusion
art or digital forgery? investigating data replication in diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6048-6058, 2023a.

Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Under-
standing and mitigating copying in diffusion models. arXiv preprint arXiv:2305.20086, 2023b.

Bowen Song, Soo Min Kwon, Zecheng Zhang, Xinyu Hu, Qing Qu, and Liyue Shen. Solv-
ing inverse problems with latent diffusion models via hard data consistency. arXiv preprint
arXiv:2307.08123, 2023a.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Jiaming Song, Arash Vahdat, Morteza Mardani, and Jan Kautz. Pseudoinverse-guided diffusion
models for inverse problems. In International Conference on Learning Representations, 2022.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Yang Song, Liyue Shen, Lei Xing, and Stefano Ermon. Solving inverse problems in medical imaging
with score-based generative models. arXiv preprint arXiv:2111.08005, 2021.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023b.

Xuan Su, Jiaming Song, Chenlin Meng, and Stefano Ermon. Dual diffusion implicit bridges for
image-to-image translation. arXiv preprint arXiv:2203.08382, 2022.

Jakub Tomczak and Max Welling. Vae with a vampprior. In International Conference on Artificial
Intelligence and Statistics, pp. 1214—-1223. PMLR, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Mingyang Yi, Jiacheng Sun, and Zhenguo Li. On the generalization of diffusion model. arXiv
preprint arXiv:2305.14712, 2023.

TaeHo Yoon, Joo Young Choi, Sehyun Kwon, and Ernest K Ryu. Diffusion probabilistic models
generalize when they fail to memorize. In ICML 2023 Workshop on Structured Probabilistic
Inference {\ &} Generative Modeling, 2023.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models, 2023.

Min Zhao, Fan Bao, Chongxuan Li, and Jun Zhu. Egsde: Unpaired image-to-image translation
via energy-guided stochastic differential equations. Advances in Neural Information Processing
Systems, 35:3609-3623, 2022.

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen Wang, Hao Chen, Yidong Wang, Linyi Yang, Wei
Ye, Neil Zhengiang Gong, Yue Zhang, et al. Promptbench: Towards evaluating the robustness of
large language models on adversarial prompts. arXiv preprint arXiv:2306.04528, 2023.

Andy Zou, Zifan Wang, J Zico Kolter, and Matt Fredrikson. Universal and transferable adversarial
attacks on aligned language models. arXiv preprint arXiv:2307.15043, 2023.

13



Under review as a conference paper at ICLR 2024

Appendix
A Extra Experiments 14
A.1 Experiments on ImageNet dataset . . . . . . ... ... ... ... ........ 14
A.2 Text-to-Image diffusionmodel . . . . .. ... ... ... ... ... ... 14
A.3 Manifold Reproducibility Across Unconditional Diffusion Models . . . . . . . .. 16
A.4 Reproducibility with respect to number of function evaluation (NFE) . . . . . . .. 16
A.5 Training Loss in Memorization and Generalization Regimes . . . . . . ... ... 16
B Unconditional Diffusion Model 18
C Compare GAN & VAE 19
D Theoretical Analysis 20
E Conditional Diffusion Model 24
F Diffusion Model for Solving Inverse Problem 26
G Fine-tuning Diffusion Model 30

We include more comprehensive experiment settings, quantitative results, and detailed discussion
of the unconditional diffusion model in Appendix B, theoretical analysis on ”memorization regime”
in Appendix D, conditional diffusion model in Appendix E, diffusion model for solving inverse
problems in Appendix F, fine-tuning diffusion model in Appendix G. Quantitative analysis of other
generative models is in Appendix C. Proof for Theorem 1 could also be found in Appendix D.

A EXTRA EXPERIMENTS

A.1 EXPERIMENTS ON IMAGENET DATASET

In addition to exploring the CIFAR-10 dataset, our study extends to evaluate the reproducibility of
conditional diffusion models on the ImageNet dataset (Deng et al., 2009). Specifically, we focus on
two models: EDM Karras et al. (2022) and ADM (Dhariwal & Nichol, 2021). For this experiment,
we generate 10k initial noise paired with random class labels. The reproducibility score calculation
remains largely consistent with the methodology outlined in Section 4. However, we adjusted the
threshold for SSCD similarity from 0.6 to 0.4. This modification accounts for the increased com-
plexity in resolution and semantics of the ImageNet dataset and aligns with the threshold used in the
original study by (Somepalli et al., 2023b).

Our findings, depicted in Figure 9c, indicate that approximately 81% of the generated images from
these two models exhibit an SSCD similarity exceeding the 0.4 threshold. Furthermore, as illustrated
in Figures 9a and 9b, there is a notable visual similarity between the generations from both models.

A.2 TEXT-TO-IMAGE DIFFUSION MODEL

Our study also explores the reproducibility of the text-to-image diffusion model, Stable Diffusion
Rombach et al. (2022a), trained on the LAION-5B dataset Schuhmann et al. (2022). We utilize the
series of pre-trained Stable Diffusion models (versions v1-1 to v1-4) released by Rombach et al.
(2022b). These models exhibit key differences:
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(a) ADM visualization (b) EDM visualization (c) Reproducibility score
Figure 9: Reproducibility of conditional diffusion model generations on ImageNet dataset.

(a) Reproducibility score for same initial noise (b) Reproducibility score for different initial noise

(c) Visualization of stable diffusion.
Figure 10: Reproducibility of Stable Diffusion.

e Versions v1-1, v1-2, and v1-3 each are trained on different subsets of the LAION-5B
dataset.

e Versions v1-3 and v1-4 share the same training subset from LAION-5B.

e Version v1-2 is resumed from v1-1, while v1-3 and v1-4 are resumed from v1-2.
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Further details on their training settings are available at Rombach et al. (2022b).

For reproducibility assessment, we use the prompt ”a photograph of an astronaut riding a horse”
along with 1,000 randomly generated initial noises. The reproducibility score is determined the
same as the one in Section A.1. To isolate the impact of the guiding prompt on reproducibility, we
also evaluate the reproducibility score with the same prompt but different initial noises.

The results, shown in Figure 10a, reveal the highest reproducibility score between v1-3 and v1-4
(0.63), likely due to their same training datasets. Lesser but noticeable reproducibility scores (be-
low 0.21) are observed among v1-1, v1-2, and v1-3, which might be attributable to their sequential
training and overlapping datasets. This finding aligns with Kadkhodaie et al. (2023), suggesting that
training on exclusive subsets of the same dataset can yield reproducible results in diffusion models.
A notable observation in Figure 10c is the presence of flip generations between v1-3 and v1-4, po-
tentially a result of data augmentation introducing randomness. We hypothesize that excluding data
augmentation could further increase the reproducibility score between v1-3 and v1-4. Furthermore,
when varying the initial noise but with the same prompt, the reproducibility scores approach zero,
as evidenced in Figure 10b, indicating only the same prompt but different initial noise will not have
reproducibility.

A.3 MANIFOLD REPRODUCIBILITY ACROSS UNCONDITIONAL DIFFUSION MODELS

This section delves into manifold reproducibility across various unconditional diffusion models,
complementing the visualizations in Figure 4. We employ spherical linear interpolation (slerp)
Shoemake (1985); Song et al. (2020a) to maintain approximate uniform probability distribution
across all interpolation points. The process begins by selecting two initial noise vectors, (e(o)7 e ),
from the noise space £. These vectors are then processed through two distinct diffusion model
architectures, resulting in pairs of clear images: (mgo), acgl)) from the first model and (acgo), asgl))
from the second.

The manifold reproducibility score for these two models is defined as follows:

RPmanifold Score := P (MSSCD(IE%Q),IB%Q)) > 0.6 | « € [0, 1])

(@)

where x; (1))

are generated from spherical linear interpolation based on (:BEO), T
2@ sin((.l —a)b) 20 sin(af) e
! sin(6) ! 0 !
T
o) )

1]

, 1€4{1,2}

6 = arccos

Figure 11 showcases the manifold reproducibility scores for models such as ddpmv6, EDMv1, and
Multistagev1. It’s important to distinguish between the RP Score discussed in Section 2.1 and the
RP,aniforaScore. While the former assesses global reproducibility on a sparser initial noise spec-
trum, the latter focuses on local reproducibility.

A.4 REPRODUCIBILITY WITH RESPECT TO NUMBER OF FUNCTION EVALUATION (NFE)

This subsection investigates how the Number of Function Evaluations (NFE) influences model re-
producibility, utilizing the EDMv1 model (VP SDE and Heun-Solver). Our findings are visually
presented in Figure 12, where the NFE for the ODE sampler ranges from 9 to 159. Notably, while
a lower NFE tends to degrade the generation quality, our observations reveal that the content of the
generated images remains remarkably consistent across varying NFE levels.

A.5 TRAINING LOSS IN MEMORIZATION AND GENERALIZATION REGIMES

This subsection focuses on evaluating the training loss of diffusion models, as defined by Equation 1
in Theorem 1. We analyze models with varying capacities (U-Net 64, 128, 256) trained on datasets
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Figure 11: Manifold reproducibility score.

(a) NFE 9 (b) NFE 15 (c) NFE 19

(d) NFE 35 (e) NFE 79 (f) NFE 159
Figure 12: Reproducibility with respect to number of function evaluation (NFE)

of different sizes, with results illustrated in Figure 13. Notably, comparing Figure 13 with Figure 5,
a lower training loss indicates a closer alignment of the trained diffusion models with the optimal
denoiser. This correlation supports our theorem that the optimal denoiser is the denoiser that mini-
mizes the training loss. This further indicates that in the memorization region, with a limited dataset
and sufficient model capacity, the diffusion model effectively fits the training objective, (with a low
training loss), and converges towards the optimal denoiser, so reproducibility in this stage is well
studied. Conversely, in scenarios where data samples are plentiful but the model capacity is inad-
equate, the model struggles to fit the training data, leading to increased training loss and deviation
from the optimal denoiser. However, it’s noteworthy that in this latter scenario, despite the less-
than-perfect fit, the model begins to demonstrate generalization capabilities while still maintaining
reproducibility.
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Figure 13: Training loss for memorization and generalization regimes.
B UNCONDITIONAL DIFFUSION MODEL

Expanded experiment setting More detailed settings of the diffusion model we selected are listed
in Table 1. With the exception of DiT and UViT, where we implemented and trained them ourselves,
all selected diffusion model architectures utilize the author-released models.

Architectural Relationships For DDPMv1, DDPMv2, and DDPMv7, we adopt the DDPM ar-
chitecture initially proposed by Ho et al. (2020), but we implement it using the codebase provided
by Song et al. (2020b). DDPMv3 and DDPMvS8, on the other hand, employ DDPM++, an en-
hanced version of DDPM introduced by Song et al. (2020b). DDPM++ incorporates BigGAN-style
upsampling and downsampling techniques, following the work of Brock et al. (2018). DDPMv4,
DDPMyv35, and DDPMv6 adopt DDPM++(deep), which shares similarities with DDPM++ but boasts
a greater number of network parameters. Moving to Multistagev1, Multistagev2, and Multistagev3,
these models derive from the Multistage architecture, a variant of the U-Net architecture found in
DDPM++(deep). For EDMv1, EDMv2, CT, and CD, the EDM architecture is identical to DDPM++,
but they differ in their training parameterizations compared to other DDPM++-based architectures.
Finally, UViT and DiT are transformer-based architectures.

Distillation Relationships CD, Progressivev1, Progressivev2, and Progressivev3 are all diffusion
models trained using distillation techniques. CD employs EDM as its teacher model, while Progres-
sivevl, Progressivev2, and Progressivev3 share DDPMv3 as their teacher model. It’s worth noting
that these models employ a progressive distillation strategy, with slight variations in their respective
teacher models, as elaborated in Salimans & Ho (2022).

Initial Noise Consistency However, it is important to note a nuanced difference related to the
noise perturbation kernels. Specifically, for VP and subVP noise perturbation kernels, we define the
noise space as & = N (0, I), whereas the VE noise perturbation kernel introduces a distinct noise
space with & = N'(0, 02, - I), where oynay is predefined. So during the experiment, we sample 10K
initial noise €yp, subvp ~ N (0, I) for the sample generation of diffusion models with VP and subVP
noise perturbation kernel. For diffusion models with VE noise perturbation kernel, the initial noise

is scaled as €ye = TmaxEvp, subvp-

Additionally, it’s worth mentioning that for all 8x8 image grids shown in the Figure 1, 16, 18, 19,
20, 21, 23, 24, 26 no matter for the unconditional diffusion model, conditional diffusion model,
diffusion model for the inverse problem, or fine-tuning diffusion model, we consistently employ the
same 8x8 initial noise configuration. The same setting applies to 10k initial noises for reproducibility
score. This specific design is for more consistent results between different variants of diffusion
models (e.g., we could clearly find the relationship between the unconditional diffusion model and
conditional diffusion model by comparing Figure 16 and Figure 20, 21).

Further discussion In Figure 16, we provide additional visualizations, offering a more compre-
hensive perspective on our findings. For a deeper understanding of our results, we present extensive
quantitative data in Figure 15 and Figure 14. Building upon the conclusions drawn in Section 2,
we delve into the consistency of model reproducibility across discrete and continuous timestep set-
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Table 1: Comprehensive unconditional reproducibility experiment settings

Name Architecture SDE Sampler Continuous  Distillation
DDPMv1 DDPM VP DPM-Solver v X
DDPMv2 DDPM VP DPM-Solver X X
DDPMv3 DDPM++ VP DPM-Solver v X
DDPMv4 DDPM-++(deep) VP DPM-Solver v X
DDPMv5 DDPM-++(deep) VP ODE v X
DDPMv6 DDPM-++(deep) sub-VP  ODE v X
DDPMv7 DDPM sub-VP  ODE v X
DDPMv8 DDPM++ sub-VP  ODE v X
Multistagevl  Multistage (3 stages) VP DPM-Solver v X
Multistagev2 ~ Multistage (4 stages) VP DPM-Solver v X
Multistagev3  Multistage (5 stages) VP DPM-Solver v X
EDMv1 EDM VP Heun-Solver v X
EDMyv2 EDM VE Heun-Solver v X
UViT UViT VP DPM-Solver v X
DiT DiT VP DPM-Solver v X
CD EDM VE 1-step v v
CT EDM VE 1-step v X
Progressivevl DDPM++ VP DDIM (1-step) v v
Progressivev2 DDPM++ VP DDIM (16-step) v v
Progressivevd DDPM++ VP DDIM (64-step) v v

tings. To illustrate, we compare DDPMv1 and DDPMv2, demonstrating that model reproducibility
remains steadfast across these variations.Moreover, it’s worth noting that while all reproducibility
scores surpass a threshold of 0.6, signifying robust model reproducibility, some scores do exhibit
variations. As highlighted in Figure 14, we observe that similar architectures yield higher repro-
ducibility scores (e.g., DDPMv1-8), models distilled from analogous teacher models exhibit en-
hanced reproducibility (e.g., Progressivev1-3), and models differing solely in their ODE samplers
also display elevated reproducibility scores (e.g., DDPMv4, DDPMv5).We hypothesize that the dis-
parities in reproducibility scores are primarily attributed to biases in parameter estimation. These
biases may arise from factors such as differences in architecture, optimization strategies, and other
variables affecting model training.

C COMPARE GAN & VAE

To further investigate this observation within the realm of diffusion models, we extend our assess-
ment to model similarity in Generative Adversarial Networks (GANs) Goodfellow et al. (2014) and
Variational Autoencoders (VAEs) Kingma & Welling (2013). We gauge this similarity through the
application of a reproducibility score. In our evaluation of GAN-based methods, we contrast two
prominent variants: Wasserstein GAN (WGAN) Arjovsky et al. (2017) and Spectral Normalization
GAN (SNGAN) Miyato et al. (2018). We conduct this analysis using the CIFAR-10 dataset. Si-
multaneously, within the realm of VAE-based approaches, we consider both the standard VAE and
the Variational Autoencoding Mutual Information Bottleneck (VAMP) model Tomczak & Welling
(2018). Our evaluation focuses on the MNIST dataset introduced by Deng LeCun et al. (1998). It’s
important to note that each model utilized in this analysis was provided by its respective author, and
the reproducibility score calculation follows a similar methodology to that applied in the diffusion
model experiments. Of particular significance is the fact that the latent space for VAE-based meth-
ods is learned through the encoder, and this encoder architecture varies among different models. In
this context, our approach involves sampling initial noise from the latent space of one model and em-
ploying it for the generation of another. The similarity matrices, presented in Figure 17, collectively
indicate a notable absence of reproducibility in both GAN and VAE methods.
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Figure 14: Comprehensive reproducibility score among different unconditional diffusion model settings.

D THEORETICAL ANALYSIS

This section mainly focus on the proof of Theorem 1 in Section 3. The proof is mainly built upon
recent works in Karras et al. (2022).

Proof. As the background, let p;(z:|zo) = N (x¢; 8,0, s7071) be the perturbation kernel of dif-
fusion model, which is a continuous process gradually adding noise from original image x( to x;
along the timestep ¢ € [0, 1]. Both s; = s(t), 0r = o(t) here are simplified as scalar functions of ¢
to control the perturbation kernel. It has been shown that this perturbation kernel is equivalent to a
stochastic differential equation de = f(t)xdt + ¢(¢t)dw;, where f(t), g(t) are a scalar function of
t. The relations of f(t), g(t) and s;, oy are:

s = exp( i F(€)d¢), and oy = / 92(§)d§ 3)

o $%(§)

Given a dataset {yz}f\il with N images, we model the original dataset distribution pga, as multi-

Dirac distribution, pgaa () = Zivzl 0(x — y;), the distribution of perturbed image x at random
timestep ¢ could be calculated as:
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Figure 15: Comprehensive MAE score among different unconditional diffusion model settings.

pe(x) = /dpt(m|mo)Pdata($o)dﬂ?o 4)
R
= /dpdam(mo)j\f(m sixo, sco2T)dag 5)
R
N
= /Rd N Z(S N (z; 520, s707T)dxg (6)
1
= L5 [ aw - (s, iz, @
i=1 YR
L
=+ DN (@i sy, sioiT) (8)
i=1

Let us consider the noise prediction loss used generally across various diffusion model works:

L(eo;t) = Eanp, z)[\e —eo(,1)|[’] ©)
/ Z/\/ (x; 5195, s702T)||€ — eg(x, t)||*de (10)
Rd =1

where € ~ N(0,1) is defined follow the perturbation kernel p;(z|zo) = N (x; s,xq, s7071):

T — S+Y;
m:styi+8tate:>e:7tyl (11)
St0¢
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(a) DDPMv1 (b) DDPMv2 (c) DDPMv3
(d) DDPMvV5 (e) DDPMV6 (f) DDPMV7
(g) DDPMV8 (h) EDMvI (i) EDMv2
() DiT (k) CD (1) Progressivev1
(m) Progressivev2 (n) Progressivev3

Figure 16: Comprehensive samples visulization for unconditional diffusion model
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Figure 17: Quantitative results for GANS and VAEs.

And €g is a ”denoiser” network for learning the noise e.

So plugging Eq. 11 into 10, we could reparameterization the loss as:

N
1 T — SY;
L(eo;t) :/ = D N(@i sy, stotD)leo(@,t) - L7512 gy (12)
Rg

St0
i—1 tot

—L(coi,t)

Eq. 12 means we could minimize L(€eg;t) by minimizing L(€g; x,t) for each . And to find the

99k

optimal denoiser” €, that minimize the L(eg; x, t) for every given x, ¢:

€p(x;t) = arg ming, (z.1) L(€o; x, 1) (13)

This is a convex optimization problem; the solution could be solved by setting the gradient of
L(eg;x,t) wrteg(x;t) to zero:

Vég(m;t) [‘C(e@vwﬂt)] =0 (14)
1 N 9 9 T — 5tYi 9
= Vg3 20 N (@ssuys, siofD)leo(w, 1) - =7 =0 (s)
i=1
1 Y T — S5ty
2 _2p\[* — 5tY;
NS sy sto ey (@i t) — P — g 16
7 2N (o sestoPDfep(as ) = = (16)
N 2.2
1 ; 5 79 I [
:ez(w’t) — [SU _ tZITVl N(a:?‘sty St Zt 2)y (17)
510t Zi:1 N (x; s1yi, sio?l)

It is obvious that the optimal denoiser €j(; t) is a function only depend on the perturbation kernel
N

parameter s;, 0; and the dataset {y; };_;.

Given the assumption that the denoiser €9 could converge to the optimal denoiser €j(x; t) we use a

deterministic ODE sampler to generate images, then mapping f : £ — Z, from gaussion noise space

& to image space Z is an invertible mapping and the inverse mapping f ! is a unique identifiable
encoding.

The mapping f is only determined by the € (x; ¢) and the ODE sampler. Take the probability flow
ODE sampler Song et al. (2020a) as an example, the ODE is given as:

g9°(t)
2St0't

dCCt
dt

= ft)z + €g(wi;t) (18)
The mapping f given the optimal denoiser €j could be determined as:
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dx, g2(t)
— = f(t A ct)dt
” ft)z: + 25to—t€9(wt’ )
fiEmT=4 ., 1 S N (s seys, sioiD)y; (19)
eg(xit) = —[z— st N 2 2
510t Ei:1 N (x; s1yi, sio?l)

Ti—gEL, xy—1 €E,1:10

The mapping f is invertible and the inverse mapping f~! is defined as:

dx 92(t)
— = f(t 5 (g t)dt
dt f( )wt + 2St0—t 69($t7 )
FLTe e = a@ﬂszhfﬁzLNuwa%mw (20)
O si0y YN N (@ sy, s20P)

Ti—g €L, xy—1 €E,t: 01

For the mapping f~! a clear image x;—o would generate a deterministic embedding noise x;—.
If ignoring the discretization error from the ODE sampler, the reverse mapping f could numeri-
cally also start from x;—; to generate the specific image x;—y Su et al. (2022). So the encoding is
unique. All the above processes could be expressed by the optimal denoiser and ODE solver, which
is identifiable. In conclusion, the mapping f of the diffusion model is uniquely identifiable encoding
theoretically. O

Extended Experiment Setting Similar to what is illustrated in Figure 5, we employ the theoretical
generation process, facilitated by the inverse mapping f~!. To expedite the sampling speed, we
leverage the DPM-Solver Lu et al. (2022).For a more comprehensive view of our results, we present
additional visualizations in Figure 18 and Figure 19. In these experiments, we train UNet models
with varying numbers of channels on subsets of the CIFAR-10 dataset, each comprising different
training samples. Our standard batch size for all experiments is set at 128, and we continue training
until the generated samples reach visual convergence, characterized by minimal changes in both
appearance and semantic information.

E CONDITIONAL DIFFUSION MODEL

Extended Experiment setting To investigate the reproducibility of the conditional diffusion model,
we opted for three distinct architectures: the conditional EDM Karras et al. (2022), conditional mul-
tistage EDM Anonymous, and conditional U-ViT Bao et al. (2023). Our training data consisted of
the CIFAR-10 dataset, with the class labels serving as conditions. It’s worth noting that the primary
distinction between EDM and multistage EDM lies in the architecture of the score function. Con-
versely, the contrast between EDM and conditional U-ViT extends beyond architectural differences
to encompass conditional embeddings. Specifically, EDM transforms class labels into one-hot vec-
tors, subjects them to a single-layer Multilayer Perceptron (MLP), and integrates the output with
timestep embeddings. In contrast, U-ViT handles class labels by embedding them through a train-
able lookup table, concatenating them with other inputs, including timestep information and noisy
image patches represented as tokens. For all three architectures, we pursued training until con-
vergence was achieved, marked by the lowest FID. The DPM-Solver was employed for sampling
purposes. To generate samples, we employed the same 10K initial noise distribution as utilized in
the unconditional setting (refer to Section 2.1). For each such initial noise instance, we generated
10 images, guided by 10 distinct classes, resulting in a total of 100K images.

Discussion The observed reproducibility between the unconditional diffusion model and the condi-
tional diffusion model presents an intriguing phenomenon. It appears that the conditional diffusion
model learns a mapping function, denoted as f.c¢c : £ — Z.cc¢, which maps from the same noise
space & to each individual image manifold Z.c¢ corresponding to each class c. In contrast, the map-
ping of the unconditional diffusion model, denoted as f : £ — Z, maps the noise space to a broader
image manifold Z C |J..o Ze. A theoretical analysis of this unique reproducibility relationship
holds the promise of providing valuable insights.
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Figure 18: Visualization between theoretical and experimental results.

Currently, our research is exclusively focused on the conditional diffusion model. It raises the ques-
tion of how the reproducibility phenomenon manifests in the context of the text-to-image diffusion
model (Rombach et al., 2022a; Ramesh et al., 2021; Nichol et al., 2021), where the conditioning
factor is not confined to finite classes but instead involves complex text embeddings.

As illustrated in Figure 20 and Figure 21, our previous comparisons were made with the same initial
noise and class conditions. However, when comparing the same model with identical initial noise but
different class conditions, we uncovered intriguing findings. For instance, the first row and column
images in Figure 20 (i) and (1) exhibited remarkable similarity in low-level structural attributes, such
as color, despite differing in semantics. This observation is consistent with findings in Figure 26,
where we explored generation using diffusion models trained on mutually exclusive CIFAR-100
and CIFAR-10 datasets. These findings bear a striking resemblance to the conclusions drawn in
Khrulkov et al. (2022), which also demonstrated a similar phenomenon in a simplified scenario,
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Figure 19: Visualization between theoretical and experimental results.

where Z follows a Gaussian distribution. To gain a deeper understanding of reproducibility and the
phenomena mentioned in this paragraph, leveraging optimal transport methods (e.g., Schrédinger
bridge (Shi et al., 2023; De Bortoli et al., 2021; Luo et al., 2023b; Delbracio & Milanfar, 2023; Liu
et al., 2023)) holds significant potential.

F DIFFUSION MODEL FOR SOLVING INVERSE PROBLEM

To explore the reproducibility of diffusion models in solving inverse problems, we adopted the Dif-
fusion Posterior Sampling (DPS) strategy proposed by Chung et al. Chung et al. (2022a). Our
adaptation involved a slight modification of their algorithm, specifically by eliminating all sources
of stochasticity within it. Additionally, we employed the DPM-Solver for Diffusion Posterior Sam-

pling.
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(a) EDM Class0

(d) EDM Classl

(g) EDM Class2

(j) EDM Class3

(m) EDM Class4

(b) Multistage EDM ClassO

(e) Multistage EDM Class1

(h) Multistage EDM Class2

(k) Multistage EDM Class3

(n) Multistage EDM Class4

(c) U-VIiT Class0O

(f) U-VIiT Class1

(i) U-ViT Class2

(1) U-ViT Class3

(0) U-VIiT Class4

Figure 20: Visualization of conditional diffusion model generations (class 0 - 4).
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(a) EDM Class5 (b) Multistage EDM Class5 (¢) U-VIiT Class5
(d) EDM Class6 (e) Multistage EDM Class6 (f) U-VIiT Class6
(g) EDM Class7 (h) Multistage EDM Class7 (i) U-ViT Class7
(j) EDM Class8 (k) Multistage EDM Class8 (1) U-ViT Class8
(m) EDM Class9 (n) Multistage EDM Class9 (0) U-ViT Class9

Figure 21: Visualization of conditional diffusion model generations (class 5 - 9).

Extended Experiment setting To explore the reproducibility of diffusion models in solving inverse
problems, we adopted the Diffusion Posterior Sampling (DPS) strategy proposed by Chung et al.
Chung et al. (2022a). Our adaptation involved a slight modification of their algorithm, specifically
by eliminating all sources of stochasticity within it. Additionally, we employed the DPM-Solver for
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Diffusion Posterior Sampling: Algorithm 1, with Ngps = 34 posterior samping steps, 33 iterations
for 3rd order DPM-Solver, 1 for 1st order DPM-Solver, thus 100 function evaluations. We also set
all; = 1.

For the task involving image inpainting on the CIFAR-10 dataset, we applied two square masks to
the center of the images. One mask measured 16 by 16 pixels, covering 25% of the image area, and
the other measured 25 by 25 pixels, covering 61% of the image area. We denoted these as “easy
inpainting” and “hard inpainting” tasks. In Figure 7 and Figure 22, we utilized the “easy inpainting”
scenario with a specific observation z as illustrated in the figure. In Figure 25, we considered both
the “easy inpainting” and “hard inpainting” tasks. We also employed 10K distinct initial noise and
their corresponding 10K distinct observations z to calculate the reproducibility score, as presented
in Figure 25. Additional visualizations for Figure 7 and Figure 22 are provided in Figure 23 and
Figure 24.

Algorithm 1 Determinsitic DPS with DPM-Solver.

. N
Require: Ny, u,f(t).9(t), s¢, o1, {&i 1y
1: T Nyps ™~ N(O, I)
2: for i = Ny to g do

Ty = L (:cl - gQ(i)Ge (ﬂfz’ai)>

S04

3
4 x)_; < Dpm-Solver(x;, )

50 x4 @y — &V, |[u— A(2o) 13
6: end for

7: return X,

Discussion Reproducibility is a highly desirable property when employing diffusion models to ad-
dress inverse problems, particularly in contexts such as medical imaging where it ensures the reli-
ability of generated results. As observed in Figure 22, the reproducibility scores vary for different
observations z, and the decrease in reproducibility differs across various architecture categories. For
instance, when considering observation zi, the reproducibility scores across different architecture
categories remain above 0.5, whereas for z3, they fall below 0.3. Since the choice of observation z
also significantly impacts reproducibility, we conducted a complementary experiment presented in
Figure 25. In this experiment, for each initial noise instance, we employed a different observation z.
From the results, it is evident that reproducibility decreases between different categories of diffusion
models. Furthermore, reproducibility diminishes as the inpainting task becomes more challenging,
with “hard inpainting” being more demanding than “easy inpainting.”

Here is an intuitive hypothesis of the decreasing reproducibility:

The update step of Diffusion Posterior Sampling (DPS), is constrained by the data consistency
through the following equation:

xi1 T — &V, |lu— A(20) |3 2n

A 1 9%(4) .
Where g = — | ©; — €g (x;,1) |, we could show that:
f(Z) Si0;

EValls — A0 I = 22 E (4 (0) - 2 @
_ 0A(20) 0o .
= o3, o, (A(zg) — 2) (23)
L 0AG) (| 90) Deo@ii)\ o)
~70G) oz (1 500 O ><A( 0)—-2) @49

This analysis highlights that the unconditional diffusion model is reproducible as long as the function
€g is reproducible. However, for the diffusion model used in inverse problems to be reproducible,
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both the function eg (¢, t) and its first-order derivative with respect to x; must be reproducible. In
other words, the denoiser should exhibit reproducibility not only in its results but also in its gradi-
ents. Combining the findings in Figure 25, we can infer that for similar architectures, reproducibility

663 (ﬂit, t)

also extends to the gradient space , which may not hold true for dissimilar architectures.

t
Ensuring reproducibility in the gradient space should thus be a significant focus for achieving repro-
ducibility in diffusion models for solving inverse problems.

Additionally, it’s worth noting that the data x; passed into the denoiser €g (¢, t) is always out-of-
distribution (OOD) data, especially in tasks like image inpainting. Consequently, the reproducibility
of OOD data z; is also crucial for achieving reproducibility in diffusion models for solving inverse
problems.

G FINE-TUNING DIFFUSION MODEL

Extended Experiment setting In our investigation of reproducibility during fine-tuning, we first
trained an unconditional diffusion model using EDM Karras et al. (2022) on the CIFAR-100 dataset
Krizhevsky et al. (2009). All the fine-tuned models discussed in this section were pre-trained on
this model. Subsequently, we examined the impact of dataset size by conducting fine-tuning on the
EDM using varying numbers of CIFAR-10 images: 64, 1024, 4096, 16384, and 50000, respectively.
Building upon the findings in Moon et al. (2022), which indicate that fine-tuning the attention blocks
is less susceptible to overfitting, we opted to target all attention layers for fine-tuning in our experi-
ments. For comparison purposes, we also trained a diffusion model from scratch on the CIFAR-10
dataset, using the same subset of images. All models were trained for the same number of training
iterations and were ensured to reach convergence, as evidenced by achieving a low Fréchet Inception
Distance (FID) and maintaining consistent mappings from generated samples. The training utilized
a batch size of 128 and did not involve any data augmentation.

Extended Results Additional generations produced by both the “from scratch” diffusion models and
the fine-tuned diffusion models are presented in Figure 26, encompassing various training dataset
sizes. A notable observation arises when comparing the fine-tuned diffusion model’s generation
using 4096 and 50000 data samples. Even with this limited dataset, the fine-tuned diffusion model
demonstrates a remarkable ability to approximate the target distribution. This suggests that the fixed
portion of the diffusion model, containing information from the pre-trained CIFAR-100 dataset,
aids the model in converging to the target distribution with less training data. In contrast, when
attempting to train the diffusion model from scratch on CIFAR-10, even with 16384 data samples, it
fails to converge to the target distribution. Additionally, despite the distinct nature of CIFAR-100 and
CIFAR-10, their generations from the same initial noise exhibit striking similarities (Figure 26). This
similarity might be a contributing factor explaining how the pre-trained CIFAR-100 diffusion model
assists in fine-tuning the diffusion model to converge onto the CIFAR-10 manifold with reduced
training data.
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(a) observation z

(b) observation z»

(c) observation z3
Figure 22: Visualization of inverse problem solving with different observations
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Figure 23: More visualization results for Figure 7 and Figure 22

Figure 24: More visualization results for Figure 7 and Figure 22
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Figure 25: Extended experiments on image impainting for reproducibility score.
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Figure 26: More visualization of finetuning diffusion models
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