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Abstract

A recent line of empirical studies has demonstrated that SGD might exhibit a
heavy-tailed behavior in practical settings, and the heaviness of the tails might
correlate with the overall performance. In this paper, we investigate the emergence
of such heavy tails. Previous works on this problem only considered, up to our
knowledge, online (also called single-pass) SGD, in which the emergence of heavy
tails in theoretical findings is contingent upon access to an infinite amount of data.
Hence, the underlying mechanism generating the reported heavy-tailed behavior
in practical settings, where the amount of training data is finite, is still not well-
understood. Our contribution aims to fill this gap. In particular, we show that the
stationary distribution of offline (also called multi-pass) SGD exhibits ‘approximate’
power-law tails and the approximation error is controlled by how fast the empirical
distribution of the training data converges to the true underlying data distribution
in the Wasserstein metric. Our main takeaway is that, as the number of data points
increases, offline SGD will behave increasingly ‘power-law-like’. To achieve this
result, we first prove nonasymptotic Wasserstein convergence bounds for offline
SGD to online SGD as the number of data points increases, which can be interesting
on their own. Finally, we illustrate our theory on various experiments conducted
on synthetic data and neural networks.

1 Introduction

Many machine learning problems can be cast as the following population risk minimization problem:

minimize x 7→ F (x) := E[f(x, Z)] , Z ∼ µz , (1)

where x ∈ Rd denotes the model parameters, µz is the data distribution over the measurable space
(Z,Z) and f : Rd × Z → R is a loss function. The main difficulty in addressing this problem is
that µz is typically unknown. Suppose we have access to an infinite sequence of independent and
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identically distributed (i.i.d.) data samples D := {Z1, Z2, . . . } from µz . In that case, we can resort
to the online stochastic gradient descent (SGD) algorithm, which is based on the following recursion:

Xk+1 = Xk − η

b

∑

i∈Ωk+1

∇f(Xk, Zi) , (2)

where k denotes the iterations, Ωk := {b(k−1)+1, b(k−1)+2, . . . , bk} is the batch of data-points
at iteration k, η denotes the step size, b denotes the batch size such that |Ωk| = b, and Zi with i ∈ Ωk,
denotes the i-th data sample at the k-th iteration. This algorithm is also called ‘single-pass’ SGD, as
it sees each data point Zi in the infinite data sequence D only once.

While drawing i.i.d. data samples at each iteration is possible in certain applications, in the majority
of practical settings, we only have access to a finite number of data points, preventing online SGD
use. More precisely, we have access to a dataset of n i.i.d. points Dn := {Z1, . . . , Zn}1, and given
these points the goal is then to minimize the empirical risk F̂ (n), given as follows:

minimize x 7→ F̂ (n)(x) :=
1

n

n∑

i=1

f(x, Zi) over Rd . (3)

To attack this problem, one of the most popular approaches is the offline version of (2), which is
based on the following recursion:

X
(n)
k+1 = X

(n)
k − η

b

∑

i∈Ω
(n)
k+1

∇f(X
(n)
k , Zi) , (4)

where Ω
(n)
k ⊂ {1, . . . , n} denotes the indices of the (uniformly) randomly chosen data points at

iteration k with |Ω(n)
k | = b ≤ n and ·(n) emphasizes the dependence on the sample size n. Analogous

to the single-pass regime, this approach is also called the multi-pass SGD, as it requires observing
the same data points multiple times.

Despite its ubiquitous use in modern machine learning applications, the theoretical properties of
offline SGD have not yet been well-established. Among a plethora of analyses addressing this
question, one promising approach has been based on the observation that parameters learned by
SGD can exhibit heavy tails. In particular, [ŞGN+19] have empirically demonstrated a heavy-tailed
behavior for the sequence of stochastic gradient noise:

(
∇F̂ (n)(X

(n)
k )− b−1

∑
i∈Ω

(n)
k+1

∇f(X
(n)
k , Zi)

)
k≥1

.

Since then, further studies have extended this observation to other sequences appearing in machine
learning algorithms [ZFM+20, MM19, ZLMU22]. These results were recently extended by
[BSE+21], who showed that the parameter sequence (X

(n)
k )k≥1 itself can also exhibit heavy tails

for large η and small b. These empirical investigations all hinted a connection between the observed
heavy tails and the generalization performance of SGD: heavier the tails might indicate a better
generalization performance.

Motivated by these empirical findings, several subsequent papers theoretically investigated how heavy-
tailed behavior can emerge in stochastic optimization. In this context, [GSZ21] have shown that when
online SGD is used with a quadratic loss (i.e., f(x, z = (a, y)) = 2−1(a⊤x−y)2), the distribution of
the iterates (Xk)k≥0 can converge to a heavy-tailed distribution, even with exponentially light-tailed
data (e.g., Gaussian). More precisely, for a fixed step-size η > 0, they showed that, under appropriate
assumptions, there exist constants c ∈ R+ and α > 0, such that the following identity holds:

lim
t→∞

tαP (∥X∞∥ > t) = c, (5)

where X∞ ∼ π and π denotes the stationary distribution of online SGD (2). This result illustrates
that the distribution of the online SGD iterates follows a power-law decay with the tail index
α: P (∥X∞∥ > t) ≈ t−α for large t. Furthermore, α depends monotonically on the algorithm

1Here we deliberately choose the same notation Zi for both infinite and finite data regimes to highlight
the fact that we can theoretically view the finite data regime from the following perspective: given an infinite
sequence of data points D, the finite regime only uses the first n elements of D, which constitute Dn.
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Figure 1: Left: histograms of the parameter norms for Gaussian data linear regression. Right:
histograms of NN parameter norms for the first layer, trained on MNIST. Norms exceeding the µ+2σ
threshold are marked with a red asterisk.

hyperparameters η, b, and certain properties of the data distribution µz . This result is also
consistent with [DMN+21, Example 1], which shows a simple instance from linear stochastic
approximation such that for any fixed step-size η, there exists pc > 0 such that for any p ≥ pc,
limk→+∞ E[∥Xk∥p] = +∞. In a concurrent study, [HM21] showed that this property is, in fact,
not specific for quadratic problems and can hold for more general loss functions and different choices
of stochastic optimizers, with the constraint that i.i.d. data samples are available at every iteration2.

Another line of research has investigated the theoretical links between heavy tails and the generaliza-
tion performance of SGD. Under different theoretical settings and based on different assumptions,
[SSDE20, BSE+21, LWŞ22, RBG+22, HSKM22, RZGŞ23] proved generalization bounds (i.e.,
bounds on |F̂ (n)(x) − F (x)|) illustrating that the heavy tails can be indeed beneficial for better
performance. However, all these results rely on exact heavy tails, which, to our current knowledge,
can only occur in the online SGD regime where there is access to an infinite sequence of data points.
Hence the current theory (both on the emergence of heavy tails and their links to generalization
performance) still falls short in terms of explaining the empirical heavy-tailed behavior observed in
offline SGD as reported in [ŞGN+19, MM19, ZFM+20, BSE+21].

Main problematic and contributions. Although empirically observed, it is currently unknown
how heavy-tailed behavior arises in offline SGD since the aforementioned theory [GSZ21, HM21]
requires infinite data. Our main goal in this paper is hence to develop a theoretical framework to
catch how and in what form heavy tails may arise in offline SGD, where the dataset is finite.

We build our theory based on two main observations. The first observation is that, since we have
finitely many data points in offline SGD, the moments (of any order) of the iterates X

(n)
k can be

bounded (see, e.g., [CGZ19]), hence in this case we cannot expect exact power-law tails in the form
of (5) in general. Our second observation, on the other hand, is that since the finite dataset Dn can be
seen as the first n elements of the infinite sequence D, as n increases the offline SGD recursion (4)
should converge to the online SGD recursion (2) in some sense. Hence, when online SGD shows a
heavy-tailed behavior (i.e., the case where n → +∞), as we increase n, we can expect that the tail
behavior of offline SGD should be more and more ‘power-law-like’.
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Figure 2: Estimated tail indices

To further illustrate this observation, as
a preliminary exploration, we run offline
SGD in a 100-dimensional linear regres-
sion problem, as well as a classification
problem on the MNIST dataset, using a
fully-connected, 3-layer neural network.3

In Figure 1, we plot the histograms of
the parameter norms after 1000 (and 5000
resp.) iterations. We observe the following consistent patterns: (i) the means and standard deviations
of the parameters’ estimated stabilizing distributions increase with n, and (ii), the quantity and mag-
nitude of the parameters far from the bulk of the distribution increase with n. In other words, as we
increase the number of samples n in offline SGD, the behavior of the iterates becomes heavier-tailed.

2We will present these results in more detail in Section 2.
3The exact experimental details can be found in Section 4.
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As another example, we utilize the tail-estimator from [GSZ21]4 to compare the estimated tail indices
α for offline and online SGD. The results are plotted in Figure 2 and correspond to 10 random
initializations with different step-sizes (for further details, see Tail estimation). We observe that, as n
increases, the estimated tail indices for offline SGD (shown in green) get closer to the true tail index
corresponding to online SGD (the horizontal blue line).

Our main contribution in this paper is to make these observations rigorous and explicit. In particular,
we extend the tail estimation results for online SGD [GSZ21, HM21] to offline SGD, and show that
the stationary distribution of offline SGD iterates will exhibit ‘approximate’ heavy tails. Informally,
for both quadratic and a class of strongly convex losses, we show that, with high probability, there
exist constants c1, c2, such that for large enough t we have the following tail bound:

[
c1
tα

− 1

t
W1(µz, µ

(n)
z )

]
≲ P(∥X(n)

∞ ∥ > t) ≲

[
c2
tα

+
1

t
W1(µz, µ

(n)
z )

]
, (6)

where α is the tail index of online SGD as given in (5), X(n)
∞ ∼ π(n) denotes a sample from the

stationary distribution π(n) of offline SGD (4), µ(n)
z = n−1

∑n
i=1 δZi

denotes the empirical measure
of the data points in the data sample Dn = {Z1, . . . , Zn}, and W1 denotes the Wasserstein-1 distance
(to be defined formally in the next section).

Our result indicates that the tail behavior of offline SGD is mainly driven by two terms: (i) a persistent
term (c/tα) that determines the power-law decay, and (ii) a vanishing term W1(µz, µ

(n)
z )/t, as we

take n → ∞. In other words, compared to (5), we can see that, with high-probability, X(n)
∞ exhibits

an approximate power-law decay behavior, with a discrepancy controlled by W1(µz, µ
(n)
z ).

Fortunately, the term W1(µz, µ
(n)
z ) has been well-studied in the literature. By combining our results

with Wasserstein convergence theorems for empirical measures [FG15], we further present nonasymp-
totic tail bounds for offline SGD. Our main takeaway is as follows: as n increases, offline SGD will
exhibit approximate power-laws, where the approximation error vanishes with a rate given by how fast
the empirical distribution of the data points µ(n)

z converges to the true data distribution µz as n → ∞.

To prove our tail bounds, as an intermediate step, we prove nonasymptotic Wasserstein convergence re-
sults for offline SGD in the form: W1(π, π

(n)) ≲ W1(µz, µ
(n)
z ), with high probability, recalling that

π and π(n) respectively denote online and offline SGD stationary distributions. These results, we be-
lieve, hold independent interest for the community. Finally, we support our theory with various exper-
iments conducted on both synthetic quadratic optimization problems and real neural network settings.

2 Preliminaries and Technical Background

2.1 Notation and preliminary definitions

We let Id denote the d× d identity matrix. We denote [n] = {1, . . . , n}, Pn,b = {I ⊂ [n], |I| = b}.
For a vector x ∈ Rd, ∥x∥ denotes the Euclidean norm of x, and for matrix A, the norm ∥A∥ =
sup∥x∥=1 ∥Ax∥ denote its spectral norm. We denote with σmin(A), σmax(A) the smallest and largest
singular values of A, respectively. P

(
Rd

)
is the set of all probability measures on Rd, and L (X) de-

notes the probability law of a random variable X . We denote the set of all couplings of two measures µ
and ν with Γ(µ, ν). Finally, for two functions f(n) and g(n) defined on R+, we denote f = O(g), if
there exist constants c ∈ R+, n0 ∈ N, such that f(n) ≤ cg(n),∀n > n0. The Dirac measure concen-
trated at x is defined as follows: for a measurable set E, δx(E) = 1 if x ∈ E, δx(E) = 0, otherwise.

For p ∈ [1,∞), the Wasserstein-p distance between two distributions µ and ν on Rd is defined as:

Wp(µ, ν) := inf
γ∈Γ(µ,ν)

(∫
∥x− y∥p dγ(x, y)

)1/p

.

We correspondingly define the Wasserstein-p distance between two distributions µ and ν on Rd×d as

Wp(µ, ν) := inf
γ∈Γ(µ,ν)

(∫
∥A−B∥p dγ(A,B)

)1/p

.

4The justification for the estimator choice can be found in the appendix, Sec. E.
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2.2 Heavy tails in online SGD

We first formally define heavy-tailed distributions with a power-law decay, used throughout our work.
Definition 1 (Heavy-tailed distributions with a power-law decay). A random vector X is said to
follow a distribution with a power-law decay if limt→∞ tαP(∥X∥ ≥ t) = c0, for constants c0 > 0
and α > 0, the latter known as the tail index.

The tail index α determines the thickness of the tails: larger values of α imply a lighter tail.

Recently, [GSZ21] showed that online SGD might produce heavy tails even with exponentially light-
tailed data. More precisely, they focused on a quadratic optimization problem, where z ≡ (a, q) ∈
Rd+1 and f(x, z) = 2−1(a⊤x− q)2. With this choice, the online SGD recursion reads as follows:

Xk+1 = Xk − η

b

∑

i∈Ωk+1

(
aia

⊤
i Xk − aiqi

)
= (Id −ηAk+1)Xk + ηbk+1 (7)

where (Zk)k≥1 ≡ (ak, qk)k≥1, Ak := b−1
∑

i∈Ωk
aia

⊤
i , and bk := b−1

∑
i∈Ωk

aiqi.

In this setting, they proved the following theorem.
Theorem 1 ([GSZ21]). Assume that (ak, qk)k≥1 are i.i.d. random variables such that a1 ∼
N(0, σ2 Id), with σ2 > 0 and qi has a continuous density with respect to the Lebesgue measure on
R with all its moments being finite. In addition suppose that E[log ∥ Id −ηA1∥] < 0. Then, there
exists a unique α > 0 such that E[∥ Id −ηA1∥α] = 1 and the iterates (Xk)k≥0 in (7) converge in
distribution to a unique stationary distribution π such that if X∞ ∼ π and α /∈ N:

lim
t→∞

tαP (∥X∞∥ > t) = c , with c ∈ R+ . (8)

The authors of [GSZ21] also showed that the tail index α is monotonic with respect to the algorithm
hyperparameters η and b: a larger η or smaller b indicates heavier tails, i.e., smaller α5.

In a concurrent study, [HM21] considered a more general class of loss functions and choices of
stochastic optimization algorithms. They proved a general result, where we translate it for online
SGD applied on strongly convex losses in the following theorem.
Theorem 2 ([HM21]). Assume that for every z ∈ Z, f(·, z) is twice differentiable and is strongly
convex. Consider the recursion in (2) with a sequence of i.i.d. random variables (Zk)k≥1 and let R
and r be two non-negative functions defined as: for any z ∈ Z,

R(z) := supx∈Rd

∥∥Id −η∇2f(x, z)
∥∥ , and r(z) := lim inf∥x∥→∞ σmin

(
Id −η∇2f(x, z)

)
.

Further assume that E[R(Z1) + ∥∇f(x⋆, Z1)∥] < +∞, for some x⋆ ∈ Rd, E[logR(Z1)] < 0, and
P(r(Z1) > 1) > 0. Then, the iterates (Xk)k≥1 in (2) admit a stationary distribution π. Moreover,
there exist α, β > 0 such that E[r(Z)α] = 1, E[R(Z)β ] = 1, and for any ε > 0:

lim sup
t→∞

tα+εP (∥X∞∥ > t) > 0, and lim sup
t→∞

tβ−εP (∥X∞∥ > t) < +∞ ,

where X∞ ∼ π.

The result illustrates that power laws can arise in general convex stochastic optimization algorithms.
We note that in general, Theorem 2 does not require each f(·, z) to be strongly convex, in fact, it can
accommodate non-convex functions as well. However, we are not aware of any popular non-convex
machine learning problem that can satisfy all the assumptions of Theorem 2. Nevertheless, for better
illustration, in Section F, we show that an ℓ2-regularized logistic regression problem with random
regularization coefficients falls into the scope of Theorem 2.

The two aforementioned theorems are limited to the online setting, and it is unclear whether they
apply to a finite number of data points n. In the subsequent section, we aim to extend these theorems
to the offline setting.

5Without the Gaussian data assumption, [GSZ21] proved lower-bounds over α instead of the exact identifi-
cation of α as given in (8). We also note that the condition α /∈ N is not required in [GSZ21]: without such a
condition, one can show that, for any u ∈ Rd with ∥u∥ = 1, limt→∞ tαP

(
u⊤X∞ > t

)
has a non-trivial limit.

For the clarity of the presentation, we focus on the tails of the norm ∥X∞∥, hence use a non-integer α, which
leads to (8) (for the equivalence of these expressions, see [BDM+16, Theorem C.2.1]).
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3 Main results
3.1 Quadratic objectives

We first focus on the quadratic optimization setting considered in Theorem 1 as its proof is simpler
and more instructive. Similarly as before, let (ai, qi)i≥1 be i.i.d. random variables in Rd+1, such
that zi ≡ (ai, qi). Following the notation from (4), we can correspondingly define the offline SGD
recursion as follows:

X
(n)
k+1 = X

(n)
k − η

b

∑

i∈Ω
(n)
k+1

(
aia

⊤
i X

(n)
k − aiqi

)
= (Id −ηA

(n)
k+1)X

(n)
k + ηb

(n)
k+1, (9)

where A
(n)
k := b−1

∑
i∈Ω

(n)
k

aia
⊤
i , b

(n)
k := b−1

∑
i∈Ω

(n)
k

aiqi , and Ω
(n)
k is as defined in (4). Now,

(A
(n)
k ,b

(n)
k )k≥1 are i.i.d. random variables with respect to the empirical measure:

µ
(n)
A,b =

(
n

b

)−1 (nb)∑

i=1

δ{A(n)
i ,b

(n)
i } , (10)

where we enumerate all possible choices of minibatch indices Pn,b = {I ⊂ {1, . . . , n} : |I| = b} as

Pn,b = {S(n)1 ,S
(n)
2 , . . . ,S

(n)

(nb)
} and (A

(n)

i ,b
(n)

i }(
n
b)

i=1 are i.i.d. random variables defined as follows:

A
(n)

i =
1

b

∑

j∈S
(n)
i

aja
⊤
j , b

(n)

i =
1

b

∑

j∈S
(n)
i

ajqj . (11)

We denote by µA,b the common distribution of (A
(n)

i ,b
(n)

i )
(nb)
i=1. Note that it does not depend on n

but only b.

With these definitions at hand, we define the two marginal measures of µA,b and µ
(n)
A,b with µA,

µb, and µ
(n)
A , µ(n)

b , respectively. Before proceeding to the theorem, we have to define Wasserstein
ergodicity. A discrete-time Markov chain (Yk)k≥0 is said to be (Wasserstein-1) geometrically ergodic
if it admits a stationary distribution πY and there exist constants c ≥ 0 and ρ ∈ (0, 1), such that

W1(L (Yk), πY ) ≤ ce−ρk , for any k ≥ 0 . (12)

The chain is simply called (Wasserstein-1) ergodic if limk→∞ W1(L (Yk), πY ) = 0.

We can now state our first main contribution, an extension of Theorem 1 to the offline setting:

Theorem 3. Let n ≥ 1 and ϵn ∈ [0, 1] be the probability that (X(n)
k )k≥0 is not ergodic (in the

Wasserstein sense)6 with a stationary distribution π(n) having finite q-th moment with q > 1. Assume
that the conditions of Theorem 1 hold with α > 1. Then, for any ϵ > 0, there exist constants c̃1, c̃2,
and t0 > 0 such that for all ζ ∈ (0, 1], t > t0, with probability larger than 1− ϵn − ζ, the following
inequalities hold:

[
1

2α
c− ϵ

tα
− c̃1

tn1/2

√
log

c̃2
ζ

]
≤ P(∥X(n)

∞ ∥ > t) ≤
[
2α

c+ ϵ

tα
+

2c̃1
tn1/2

√
log

c̃2
ζ

]
, (13)

where c is given in (8).

This result shows that whenever the online SGD recursion admits heavy tails, the offline SGD recur-
sion will exhibit ‘approximate’ heavy tails. More precisely, as can be seen in (13), the tails will have
a global power-law behavior due to the term t−α, where α is the tail index determined by online SGD.
On the other hand, the power-law behavior is only approximate, as we have an additional term, which
vanishes at a rate O(n−1/2). Hence, as n increases, the power-law behavior will be more prominent,
which might bring an explanation for why heavy tails are still observed even when n is finite.

To establish Theorem 3, as an intermediate step, we show that π(n) converges to π in the Wasserstein-1
metric. The result is given in the following theorem and can be interesting on its own.

6Since we are assuming Gaussian data, ϵn will converge to zero with an exponential rate. However, we do
not focus on explicit calculations of this quantity as it is rather orthogonal to our problematic.
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Theorem 4. Under the setting of Theorem 3, for p, q > 0 with 1/p+ 1/q = 1, p > d/2, q < α, the
following holds with probability larger than 1− ϵn:

W1(π, π
(n)) ≤ c0

η

1− δA
Wp(µA,b, µ

(n)
A,b) , (14)

where c0 = (E[∥X(n)
0 ∥q])1/q + 1 with X

(n)
0 ∼ π(n), and δA = E[∥ Id −ηA1∥].

This result shows that the stationary distribution of offline SGD will converge to the one of online
SGD as n → ∞, and the rate of this convergence is determined by how fast the empirical distri-
bution of the dataset converges to the true data distribution, as measured by Wp(µA,b, µ

(n)
A,b).

Once (14) is established, to obtain Theorem 3, we use the relationship that W1(π, π
(n)) ≥

W1(L (∥X(n)
∞ ∥),L (∥X∞∥)) =

∫∞
0

|P(∥X(n)
∞ ∥ > t) − P(∥X∞∥ > t)| dt (see Lemmas 1 and

3 in the Appendix). Finally, by exploiting the assumptions made on µA,b in Theorem 1, we can
invoke [FG15] (see Lemma 2 in Section A.1) and show that Wp(µA,b, µ

(n)
A,b) behaves as O(n−1/2).

3.2 Strongly convex objectives

We now focus on more complex loss functions, as in Theorem 2. For simplicity, we consider b = 1.
The general case, while similar, would complicate the notation and, in our opinion, make our results
more difficult to digest. We start by rewriting offline SGD with respect to an empirical measure µ

(n)
z :

X
(n)
k+1 = X

(n)
k − η∇f(X

(n)
k , Ẑ

(n)
k+1) , (15)

where (Ẑ
(n)
k )k≥1 are i.i.d. random variables associated with the empirical measure defined for any

A ∈ Z as:
µ
(n)
z (A) = n−1

∑n
j=1 δẐ(n)

j
(A) . (16)

We first make the following assumption.

Assumption 1. (a) There exists L > 0 such that ∥∇f(x, z)−∇f(x, z′)∥ ≤ L(∥x∥+1)(∥z− z′∥),
for any z, z′ ∈ Z and x ∈ Rd.
(b) The data distribution µz has finite q-th moments with some q ≥ 1.

Assumption 1-(a) is a Lipschitz-like condition that is useful for decoupling x and z, and is commonly
used in the analysis of optimization and stochastic approximations algorithms; see, e.g., [BWMP12].
We can now state our second main contribution, an extension of Theorem 2 to the offline setting.

Theorem 5. Let (Xk)k≥0 and (X
(n)
k )k≥0 be defined as in (2) and (4) with b = 1 and n ≥ 1. Assume

Assumption 1 and the conditions of Theorem 2 with β > 1 hold. Further assume that R(Z1) is non-
deterministic (see Theorem 2), (Xk)k≥0 is geometrically ergodic and ϵn ∈ [0, 1] is the probability
that (X(n)

k )k≥0 is not ergodic (in the Wasserstein sense). Then, for every ε > 0, there exist constants
c, cα, cβ , and t0 ≥ 0, such that for all t > t0, the following inequalities hold with probability larger
than 1− ϵn:
[

1

2α+ϵ

cα
tα+ϵ

− c

t
W1(µz, µ

(n)
z )

]
≤ P(∥X(n)

∞ ∥ > t) ≤
[
2β−ϵ cβ

tβ−ϵ
+

2c

t
W1(µz, µ

(n)
z )

]
, ∀n,

where c = (E[∥X(n)
0 ∥] + 1)Lη/(1− δR) with δR = E[R(Z1)], and X

(n)
0 ∼ π(n).

This theorem shows that the approximate power-laws will also be apparent for more general loss
functions: for large enough n, the tails of offline SGD will be upper- and lower-bounded by two
power-laws with exponents α and β. Note that the ergodicity of (Xk)k≥0 can be established by
using similar tools provided in [DDB20]. On the other hand, the assumption on R(Z1) being non-
deterministic and E[Rβ(Z1)] = 1 with β > 1 jointly indicate that δR = E[R(Z1)] < 1, which is a
form of contraction on average, hence the strong convexity condition is needed.

Similarly to Theorem 3, in order to prove this result, we first obtain a nonasymptotic Wasserstein
convergence bound between π(n) and π, stated as follows:

7



Figure 3: QQ-plots of 1D linear regression experiment. Left: Online SGD exhibits heavy-tails. Right:
Offline SGD with varying n; larger n exhibits heavier tails.

Theorem 6. Under the setting of Theorem 5, the following holds with probability greater than 1− ϵn:

W1(π, π
(n)) ≤ c0L

η

1− δR
W1(µz, µ

(n)
z ) ,

with c0 = E[∥X(n)
0 ∥] + 1, where X

(n)
0 ∼ π(n).

The convergence rate implied by Theorem 6 is implicitly related to the finite moments of the data-
generating distribution µz . Using the results of [FG15] ( Lemma 2 in the Appendix), we can determine
the convergence rate r, where with high probability it will hold that W1(π, π

(n)) = O(n−r), with
r ∈ (0, 1/2]. Let the data have finite moments up to order q. Then, for example, if q > 4d, we get
r = 1/2, i.e., the fastest rate. As another example: if d > 2 and q = 3, we obtain a rate r = 1/d.
In other words, the moments of the data-generating distribution determine whether we can achieve
a dimension-free rate or fall victim to the curse of dimensionality. Thus, if the data do not admit
higher-order moments, our results show that we need a large number of data points n to be able to
observe power-law tails in offline SGD.

4 Experiments

In this section, we support our theoretical findings on both synthetic and real-world problems. Our
primary objective is to validate the tail behavior of offline SGD iterates by adapting previous online
SGD analyses [GSZ21, SSG19], in which the authors investigated how heavy-tailed behavior relates
to the step size η and batch size b, or their ratio η/b7.

4.1 Linear regression

10 20 50 100 200 500
n

0.0

0.2

0.4

|
(n

) |

Batch size: 1

10 20 50 100 200 500
n

Batch size: 5

10 20 50 100 200 500
n

Batch size: 20

0.001
0.003
0.005
0.007
0.009

1.15
1.368
1.587
1.806
2.024

Figure 4: Estimated tail indices difference

Experimental setup.
In the linear regression
examples, we examine
the case with a quadratic
loss and Gaussian data.
In this simple scenario, it
was observed that online
SGD could exhibit heavy-
tailed behavior [GSZ21].
The model can be sum-
marized as follows: with initial parameters X̄0 ∼ N

(
0, σ2

x Id
)
, features ai ∼ N

(
0, σ2 Id

)
, and targets

yi | ai, X̄0 ∼ N
(
a⊤i X̄0, σ

2
y

)
, for i = 1, . . . , n, and σ, σx, σy > 0. In our experiments, we fix σ =

1, σx = σy = 3, use either d = 1 or d = 100, and simulate the statistical model to obtain {ai, yi}ni=1.

In order to examine the offline version of the model (i.e., for offline SGD), we utilize a finite
dataset with n points rather than observing new samples at each iteration. We then analyze the same
experimental setting with an increasing number of samples n and illustrate how similar heavy-tailed
behavior emerges in offline SGD.

7The code scripts for reproducing the experimental results can be accessed at github.com/krunolp/offline_ht.
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Figure 5: Estimated tail indices for a 3-layer fully connected NN

Preliminary tail inspection. We begin by analyzing how the tail behavior differs between online
and offline SGD (with varying n in the latter). Specifically, in Figure 3, we depict a 1-dimensional
linear regression task by analyzing the QQ-plots of the estimated stabilizing distributions after 1000
iterations. We observe that online SGD with a sufficiently large η exhibits heavy, non-Gaussian
tails, underscoring the prevalence of heavy tails even in such simple scenarios. Furthermore, we
also observe that offline SGD exhibits increasingly heavier tails as the sample size n increases, as
our theoretical results suggest.

Tail estimation. We now set d = 100 and run the corresponding offline and online SGD recursions.
We then use a tail-index estimator [MMO15], which assumes that the recursions both converge to an
exact heavy-tailed distribution. While this is true for online SGD due to Theorem 1, offline SGD will
only possess approximate heavy-tails, and the power-law behavior might not be apparent for small
n. Hence, for small n, we expect the estimated tail index for offline SGD will be inaccurate and get
more and more accurate as we increase n.

We illustrate this in Figure 2, in which we plot the range of estimated offline SGD tail indices (marked
in green) corresponding to 10 random initializations, while varying n and η. We can see that, across
all learning rates, the variance of the tail estimation decreases as n increases and that the estimated
values get closer to the estimated tail index for online SGD (marked as the horizontal blue line).

Further analyses. We now run online and offline SGD recursions, varying η from 0.001 to 0.01, b
from 1 to 20, and n from 1 to 500. Each hyperparameter configuration is run 1600 times with distinct
initializations, yielding 1600 estimated samples from the stationary distributions, used to estimate
the tail indexes. In order to estimate the tail-indexes α (online SGD) and α(n) (offline SGD) of the
respective stationary distributions, we follow the procedure as explained in [GSZ21]. Finally, in
Figure 4, we plot the absolute difference of the estimated indexes, |α̂(n) − α̂|.
We find that a larger number of data samples leads to a smaller discrepancy between the online and
offline approximations across all batch sizes b and step sizes η. This trend is consistently observed.
Moreover, we observe that larger values of η lead to a smaller discrepancy on average, across all n.
The conclusion here is that, as n increases, the power-law tails in offline SGD become more apparent
and the estimator can identify the true tail index corresponding to online SGD even for moderately
large n, which confirms our initial expectations.

4.2 Neural networks (NN)

To test the applicability of our theory in more practical scenarios, we conduct a second experiment
using fully connected (FC) NNs (3 layers, 128 neurons, ReLU activations), as well as larger architec-
tures, such as LeNet (60k parameters, 3 convolutional layers, 2 FC layers)8[LBBH98], and AlexNet
(62.3M parameters, 5 convolutional layers, 3 FC layers)[KSH17]. The models are trained for 10, 000
iterations using cross-entropy loss on the MNIST and CIFAR-10 datasets. We vary the learning rate
from 10−4 to 10−1, and the batch size b from 1 to 10, with offline SGD utilizing 25%, 50%, and 75%
of the training data.

We proceed similarly to the linear regression experiment and again replicate the method presented
in [GSZ21]: we estimate the tail index per layer, and plot the corresponding results, with different
colors representing different data proportions (1.00 indicates the full data set). The results for the
fully connected network are presented in Figure 5 (on CIFAR-10 & MNIST), LeNet (on MNIST)

8For completeness, LeNet further uses 2 subsampling layers.
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Figure 7: Estimated tail indices, LeNet, MNIST

in Figure 7, and AlexNet (on CIFAR-10) in Figure 6. The LeNet CIFAR-10 and AlexNet MNIST
results can be found in the Appendix D.
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Figure 6: Estimated tail indices, AlexNet, CIFAR-10

Our observations show
that the estimated
α̂(n) has a strong
correlation with α̂:
using a reasonably
large proportion of
the data enables us
to estimate the tail
index that is measured
over the whole dataset.
Moreover, although
the dependence of
α̂(n) on η/b varies
between layers, the
measured α̂(n)’s correlate well with the ratio η/b across all datasets and NN architectures9. While
our theory does not directly cover this setup, our results show that similar behavior is also observed
in more complicated scenarios.

5 Conclusion

We established a relationship between the data-generating distributions and stationary distributions
of offline and online SGD. This enabled us to develop the first theoretical result illuminating the
heavy-tailed behavior in offline SGD. We extended previous results encompassing both quadratic
losses, as well as more sophisticated strongly convex loss functions. Through an experimental study,
we validated our theoretical findings in a variety of settings.

Limitations. There are two main limitations to our work. Firstly, our analysis focuses predominantly
on the ‘upper’ tails of the distributions. Studying the bulk of the distribution of the iterates may reveal
new findings. For example, research in this direction could connect our findings to learning theory
by leveraging existing generalization bounds (e.g., see Corollary 2 in [HSKM22] for a link between
‘lower’ tails and generalization error). Secondly, it would be of great interest to extend our results to
the non-convex deep learning settings. Finally, since this is a theoretical paper studying online and
offline SGD, our work contains no direct potential negative societal impacts.

Acknowledgments. We thank Benjamin Dupuis for the valuable feedback. AD would like to
thank the Isaac Newton Institute for Mathematical Sciences for support and hospitality during the
programme The mathematical and statistical foundation of future data-driven engineering when
work on this paper was undertaken. Umut Şimşekli’s research is supported by the French government
under management of Agence Nationale de la Recherche as part of the “Investissements d’avenir”
program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute) and the European Research Council
Starting Grant DYNASTY – 101039676.

9The monotonic relation between the tail exponent and the η/b ratio is in line with findings from [GSZ21],
although new findings (see Sec.6.6 in [ZLMU22]) point out that a mere dependence on this ratio has been found
broken. We believe that for other ranges of the parameters (outside of the ones originally used in [GSZ21]), a
different behavior could be observed.
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Approximate Heavy Tails in Offline (Multi-Pass) Stochastic
Gradient Descent

APPENDIX

The organization of the appendix is as follows:

• In Section A, we provide the background material required for the proof methodology.
• In Section B, we present technical results used to conclude the results of our work.
• In Section C, we give the proofs of Theorems 3-6.
• In Section D, we provide additional experimental results.
• In Section E, we justify the tail estimator choice.

A Additional Technical Background

A.1 Existing results

Lemma 1 (Explicit solution of Wasserstein distance [PZ19]). Let µ1, µ2 ∈ P(R) be two probability
measures on R, and denote their cumulative distribution functions by F1(x) and F2(x) respectively.
Then, the Wasserstein-p distance between µ1 and µ2 has an explicit formula:

Wp (µ1, µ2) =

(∫ 1

0

∣∣F−1
1 (q)− F−1

2 (q)
∣∣p dq

)1/p

,

where F−1
1 and F−1

2 denote the quantile functions. In the case when p = 1, by applying the change
of variables, one can obtain the following:

W1 (µ1, µ2) =

∫

R
|F1(x)− F2(x)| dx.

Now, for q > 0, α > 0, γ > 0 and µ ∈ P
(
Rd

)
, let:

Mq(µ) :=

∫

Rd

|x|qµ(dx) and Eα,γ(µ) :=
∫

Rd

eγ|x|
α

µ(dx).

Furthermore, consider an i.i.d. sequence (Xk)k≥1 of µ-distributed random variables and, for n ≥ 1,
define the empirical measure by:

µ(n) :=
1

n

n∑

k=1

δXk
.

We can now proceed to state the following result.
Lemma 2 ([FG15]). Let µ ∈ P

(
Rd

)
and let p > 0. Assume one of the three following conditions:

(1) α > p, γ > 0, Eα,γ(µ) < ∞,
(2) α ∈ (0, p), γ > 0, Eα,γ(µ) < ∞,
(3) q > 2p,Mq(µ) < ∞.
Then for all n ≥ 1, all x ∈ (0,∞),

P
(
Wp(µ

(n), µ) ≥ x
)
≤ a(n, x)1{x≤1} + b(n, x)

where

a(n, x) = C





exp
(
−cnx2

)
if p > d/2

exp
(
−cn(x/ log(2 + 1/x))2

)
if p = d/2

exp
(
−cnxd/p

)
if p ∈ [1, d/2)

and

b(n, x) = C





exp
(
−cnxα/p

)
1{x>1} under (1),

exp
(
−c(nx)(α−ε)/p

)
1{x≤1} + exp

(
−c(nx)α/p

)
1{x>1} ∀ε ∈ (0, α) under (2),

n(nx)−(q−ε)/p ∀ε ∈ (0, q) under (3).

The positive constants C and c depend only on p, d and either on α, γ, Eα,γ(µ) (under (1)) or on
α, γ, Eα,γ(µ), ε (under (2)) or on q,Mq(µ), ε (under (3)).
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B Technical Lemmas

Lemma 3. Let X and Y be two random vectors in Rd. Then, we have

W1(L (X),L (Y )) ≥W1(L (∥X∥),L (∥Y ∥)). (17)

Proof. By the definition of the Wasserstein distance, we have that

W1(L (X),L (Y )) = inf
γ∈Γ(L (X),L (Y ))

∫

Rd×Rd

∥x− y∥dγ(x, y) (18)

=

∫

Rd×Rd

∥x− y∥dγ∗(x, y), (19)

where γ∗ is the coupling that attains the infimum (the proof of the existence of such coupling for any
Wasserstein-p distance, where p ≥ 1, can be found in, e.g., [Bog06, Theorem 8.10.45]). Then, by the
reverse triangle inequality, we have

W1(L (X),L (Y )) ≥
∫

Rd×Rd

|∥x∥ − ∥y∥|dγ∗(x, y) (20)

=

∫

R+×R+

|x− y| dT#γ
∗(x, y), (21)

where T : Rd × Rd 7→ R+ × R+ is the map (x, y) 7→ (∥x∥, ∥y∥) and T#γ
∗ is the pushforward

measure such that for a measurable set B ⊂ R+×R+, we have T#γ
∗(B) = γ∗(T−1(B)). As T#γ

∗

is a coupling between ∥X∥ and ∥Y ∥, we have that

W1(L (X),L (Y )) ≥ inf
γ∈Γ(L (∥X∥),L (∥Y ∥))

∫

R+×R+

|x− y| dγ(x, y) (22)

=W1(L (∥X∥),L (∥Y ∥)). (23)

This concludes the proof.

C Proofs

This section contains the proofs of our theoretical findings.

C.1 Proof of Theorem 4

Proof. First, note that the unique stationary distributions of (Xk)k≥0 and (X
(n)
k )k≥0 are denoted

respectively by π and π(n). Denote by En the event on which (X
(n)
k )k≥0 has a stationary distribution

π(n) such that P(En) ≥ 1− ϵn (where ϵn ∈ [0, 1] is the probability that (X(n)
k )k≥0 is not ergodic,

in the Wasserstein sense). Given En, let (Ak,A
(n)
k )k≥1 and (bk,b

(n)
k )k≥1 be the sequences of

i.i.d. optimal couplings for µA and µ
(n)
A , µb and µ

(n)
b respectively. Therefore, by construction, for

any k ∈ N, E[∥Ak − A
(n)
k ∥] = W1(µA, µ

(n)
A ), and E[∥bk − b

(n)
k ∥] = W1(µb, µ

(n)
b ). Based

on these two sequences, we consider the processes (Xk)k≥0, (X(n)
k )k≥0, (Yk)k≥0 defined by the

recursions:

1. Xk+1 = (Id −ηAk+1)Xk + ηbk+1 , where X0 ∼ π,

2. X
(n)
k+1 = (Id −ηA

(n)
k+1)X

(n)
k + ηb

(n)
k+1, where X

(n)
0 ∼ π(n),

3. Yk+1 = (Id −ηAk+1)Yk + ηbk+1, where Y0 = X
(n)
0 .

Note that (Xk)k≥0 corresponds to the online SGD recursion (7), and (X
(n)
k )k≥0 to the offline SGD

recursion (9). In addition, since these two Markov chains are started at stationarity, we have:

W1(π, π
(n)) = W1(L (X0),L (X

(n)
0 )) = W1(L (Xk),L (X

(n)
k )), ∀k.
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With these definitions at hand and this observation, using triangle inequality, we can obtain:

W1(π, π
(n)) = W1(L (Xk),L (X

(n)
k ))

≤ W1(L (Xk),L (Yk)) +W1(L (Yk),L (X
(n)
k )).

Now, by [GSZ21, Theorem 8], we have that Yk is geometrically ergodic with respect to its stationary
distribution π, i.e., there exist constants cρ > 0, ρ ∈ (0, 1) such that the following inequality holds:

W1(L (Yk), π) ≤ cρW1(L (Y0), π)e
−ρk , for any k ≥ 0 . (24)

Therefore, we have:

W1(π, π
(n)) ≤ cρe

−ρkW1(π,L (Y0)) +W1(L (Yk),L (X
(n)
k )),

as W1(L (Xk),L (Yk)) = W1(π,L (Yk)) ≤ cρe
−ρkW1(π,L (Y0)). Rearranging the above

terms, we get W1(π, π
(n))(1− cρe

−ρk) ≤ W1(L (Yk),L (X
(n)
k )) implying:

W1(π, π
(n)) ≤ (1− cρe

−ρk)−1W1(L (Yk),L (X
(n)
k )). (25)

To bound the right-hand side of (25), we consider the following difference by using the recursion
definitions:

Yk+1 −X
(n)
k+1 = Yk − ηAk+1Yk + ηbk+1 −X

(n)
k + ηA

(n)
k+1X

(n)
k − ηb

(n)
k+1 (26)

= (Id −ηAk+1)(Yk −X
(n)
k )− η(Ak+1 −A

(n)
k+1)X

(n)
k + η(bk+1 − b

(n)
k+1). (27)

Writing out the recursion, we can obtain:

Yk+1 −X
(n)
k+1 = (Y0 −X

(n)
0 )

k∏

i=0

(Id −ηAi+1)

− η

k∑

i=0


X(n)

i (Ai+1 −A
(n)
i+1)

k+1∏

j=i+2

(Id −ηAj)




+ η

k∑

i=0


(bi+1 − b

(n)
i+1)

k+1∏

j=i+2

(Id −ηAj)


 ,

where for any sequence (ai)i≥0, we let
∏k

i=j ai = 1 when j > k. Now, taking the norm of both
sides, using the triangle inequality, and taking expectations given En, we obtain:

E[∥Yk+1 −X
(n)
k+1∥] ≤ E[∥(Y0 −X

(n)
0 )

k∏

i=0

(Id −ηAi+1)∥]

+ ηE[
k∑

i=0

∥X(n)
i (Ai+1 −A

(n)
i+1)

k+1∏

j=i+2

(Id −ηAj)∥]

+ ηE[
k∑

i=0

∥(bi+1 − b
(n)
i+1)

k+1∏

j=i+2

(Id −ηAj)∥].

(28)
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We shall now analyze each of the three summands separately. For the first term in (28), as we start
with Y0 = X

(n)
0 , it equals zero. For the second term in (28), we have:

ηE[
k∑

i=0

∥X(n)
i (Ai+1 −A

(n)
i+1)

k+1∏

j=i+2

(Id −ηAj)∥]

(a)
= η

k∑

i=0

E[∥X(n)
i (Ai+1 −A

(n)
i+1)

k+1∏

j=i+2

(Id −ηAj)∥]

(b)
≤ η

k∑

i=0

E[∥X(n)
i (Ai+1 −A

(n)
i+1)∥]Ek−i[∥ Id −ηA1∥]

(c)
≤ η

k∑

i=0

(E[∥X(n)
i ∥q]) 1

q (E[∥Ai+1 −A
(n)
i+1∥p])

1
pEk−i[∥ Id −ηA1∥],

where (a) follows from the linearity of expectation, (b) follows as A1, . . . ,Ai−1 are i.i.d. and
independent from Ai, . . . ,Ak+1, and (c) is obtained by applying the Hölder’s inequality, where p
and q are such that 1/p+1/q = 1, with p, q ∈ (1,+∞), q < α and p > d/2 (used later in the proof),
where α is the tail index.

As the chain (X
(n)
k )k≥0 starts from its stationary distribution π(n), we have that (E[∥X(n)

i ∥q])1/q =

(E[∥X(n)
0 ∥q])1/q,∀i. Using the fact that (Ai −A

(n)
i )k+1

i=1 are i.i.d. random variables (the randomness
arises from the empirical measure µ

(n)
A ), E[∥ Id −ηA1∥α] = 1 and α > 1, we have that:

δA := E[∥ Id −ηA1∥] < 1. (29)

Therefore, we can obtain the following bound:

ηE[
k∑

i=0

∥X(n)
i (Ai+1 −A

(n)
i+1)

k+1∏

j=i+2

(Id −ηAj)∥]

≤ η(E[∥X(n)
0 ∥q]) 1

q (E[∥A1 −A
(n)
1 ∥p]) 1

p

k∑

i=0

Ek−i[∥ Id −ηA1∥]

≤ η(E[∥X(n)
0 ∥q]) 1

q (E[∥A1 −A
(n)
1 ∥p]) 1

p
1

1− δA
,

where the last equality follows from (29) and the power series sum formula. Using the same
arguments, we can bound the third term in (28):

ηE[
k∑

i=0

∥(bi+1 − b
(n)
i+1)

k+1∏

j=i+2

(Id −ηAj)∥] ≤ ηE[∥b1 − b
(n)
1 ∥] 1

1− δA
.

Combining the above, we can obtain that:

E[∥Yk+1 −X
(n)
k+1∥] ≤ η(E[∥X(n)

0 ∥q]) 1
q (E[∥A1 −A

(n)
1 ∥p]) 1

p
1

1− δA
+ ηE[∥b1 − b

(n)
1 ∥] 1

1− δA

=
η

1− δA

(
(E[∥X(n)

0 ∥q]) 1
q (E[∥A1 −A

(n)
1 ∥p]) 1

p + E[∥b1 − b
(n)
1 ∥]

)

≤ η

1− δA

(
(E[∥X(n)

0 ∥q]) 1
q (E[∥A1 −A

(n)
1 ∥p]) 1

p + (E[∥b1 − b
(n)
1 ∥p]) 1

p

)

=
η

1− δA

(
(E[∥X(n)

0 ∥q]) 1
q Wp(µA, µ

(n)
A ) +Wp(µb, µ

(n)
b )

)
(30)

≤ η

1− δA

(
((E[∥X(n)

0 ∥q]) 1
q + 1)Wp(µA,b, µ

(n)
A,b)

)
, (31)

where the penultimate inequality follows from Jensen’s inequality: it implies that Wp(µ, ν) ≤
Wq(µ, ν), for p ≤ q (see, e.g., [Vil09]). The last inequality follows as Wp(µA, µ

(n)
A ) ≤

Wp(µA,b, µ
(n)
A,b), and Wp(µb, µ

(n)
b ) ≤ Wp(µA,b, µ

(n)
A,b). Together with (25), we have:

16



W1(π, π
(n)) ≤ ((E[∥X(n)

0 ∥q]) 1
q + 1)(1− cρe

−ρk)−1 η

1− δA
Wp(µA,b, µ

(n)
A,b) .

By taking the limit as k → ∞, we can conclude the proof of Theorem 4.

C.2 Proof of Theorem 3

Proof. Using results from Theorem 4, we now proceed to bound the Wasserstein-p distance between
the probability laws of A1 and A

(n)
1 . Reminiding ourselves that each element in the i.i.d. sequence

(ak)k≥1 follows a N(0, σ2 Id), we denote this measure with µa. Correspondingly, we denote its
empirical measure with µ

(n)
a = n−1

∑n
j=1 δaj

. Given En, we let (ak, a
(n)
k )k≥1 be the sequence

of i.i.d. optimal couplings for µa and µ
(n)
a , so that by construction, for any k ∈ N, (E[∥ak −

a
(n)
k ∥2p])1/2p = W2p(µa, µ

(n)
a ). Now:

Wp(µA, µ
(n)
A ) ≤ (E[∥1

b

∑

i∈Ω1

aia
⊤
i − 1

b

∑

j∈Ω
(n)
1

aja
⊤
j ∥p])1/p

(a)
≤ 1

b
b(E[∥(a1a⊤1 − a

(n)
1 a

(n)⊤
1 )∥p])1/p

= (E[∥a1a⊤1 − a1a
(n)⊤
1 + a1a

(n)⊤
1 − a

(n)
1 a

(n)⊤
1 ∥p])1/p

(b)
≤ (E[∥a1a⊤1 − a1a

(n)⊤
1 ∥p])1/p + (E[∥a1a(n)⊤1 − a

(n)
1 a

(n)⊤
1 ∥p])1/p

= (E[∥a1∥p∥a1 − a
(n)
1 ∥p])1/p + (E[∥a(n)1 ∥p∥a1 − a

(n)
1 ∥p])1/p

(c)
≤

(
(E[∥a1∥2p])1/2p + (E[∥a(n)1 ∥2p])1/2p

)
(E[∥a1 − a

(n)
1 ∥2p])1/2p

where (a) follows from Minkowski’s inequality and the fact that (ak)k≥1 are i.i.d. random variables,
as well as (a(n)k )k≥1. Inequality (b) follows due to Minkowski’s inequality, and (c) follows using the
generalized Hölder’s inequality with 1/2p+ 1/2p = 1/p.

Now, we can proceed to utilize Lemma 2 and (30). In order to apply Lemma 2 to the difference of
measures between A1 and A

(n)
1 (i.e., between a1 and a

(n)
1 ), as E[∥X(n)

0 ∥q]1/q < ∞ for all q < α,
we require q < α and 1/p+ 1/q = 1 (due to Hölder’s inequality).

First, we select p large and q small enough for both q < α and p > d/2. Now, in order to satisfy the

requirements of Lemma 2, we set ϵ∗ :=
√

1
nC1

log 4c1
ζ . This choice allows us to obtain that, with

probability greater than 1 − ζ/2, (E[∥a1 − a
(n)
1 ∥2p])1/2p = W2p(µa, µ

(n)
a ) < ϵ∗. Therefore, we

have that, with probability greater than 1− ζ/2:

(E[∥a1 − a
(n)
1 ∥2p])1/2p ≤

√
1

nC1
log

4c1
ζ

= O(n−1/2),

where the positive constants C1 and c1 depend only on p, d, µa1
. Therefore, with probability greater

than 1− ζ/2:

(E[∥A1 −A
(n)
1 ∥p])1/p ≤ ((E[∥a1∥2p])1/2p + (E[∥a(n)1 ∥2p])1/2p)

√
1

nC1
log

4c1
ζ

= C2n
−1/2

√
log

c3
ζ
, (32)

with C2 =
√

1
C1

((E[∥a1∥2p])1/2p + (E[∥a(n)1 ∥2p])1/2p) and c3 = 4c1.

In order to bound (E[∥bk − b
(n)
k ∥p])1/p, we can apply Lemma 2 again to obtain constants C4 and c5

such that, with probability greater than 1− ζ/2 :

(E[∥bk − b
(n)
k ∥p])1/p ≤ C4n

−1/2

√
log

c5
ζ

= O(n−1/2). (33)
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Using (32), (33) with Theorem 4 (see (25) and (30)), and denoting C6 = C2(E[∥X(n)
0 ∥q])1/q + C4

and c7 = max{c3, c5} we can obtain, with probability greater than 1− ζ:

W1(π, π
(n)) ≤ η

1− δ

(
C6

√
log

c7
ζ

)
n−1/2. (34)

Therefore, we obtain that, with probability greater than 1− ζ, W1(π, π
(n)) = O(n−1/2).

Due to [GSZ21] we have limt→∞ tαP (∥X∞∥ > t) ∈ (0,∞). Now, let ϵ > 0. Then, there exists t0
s.t. for all t ≥ t0, |tαP(∥X∞∥ > t)− c| ≤ ϵ, for some c ∈ (0,∞). From (34), we know that with

probability greater than 1− ζ , there exist constants c̃1, c̃2 such that W1(π, π
(n)) ≤ c̃1

√
log c̃2

ζ n
−1/2.

Now, using Lemma 3, we can obtain that, with probability greater than 1− ϵn − ζ:

c̃1

√
log

c̃2
ζ

1

n1/2
≥ W1(π, π

(n))

≥
∫ ∞

0

| P(∥X∞∥ > t)− P(∥X(n)
∞ ∥ > t) | dt

≥
∫ t′′

t′
| P(∥X∞∥ > t)− P(∥X(n)

∞ ∥ > t) | dt,

where we have used that limt→∞ P(∥X∞∥ > t) = 0 and limt→∞ P(∥X(n)
∞ ∥ > t) = 0, in order to

select t′ and t′′ large enough for the last inequality to hold. Now, we have that
∫ t′′

t′
| P(∥X∞∥ > t)− P(∥X(n)

∞ ∥ > t) | dt ≥
∫ t′′

t′

c− ϵ

tα
dt−

∫ t′′

t′
P(∥X(n)

∞ ∥ > t) dt

≥ (t′′ − t′)
(c− ϵ)

(t′′)α
− (t′′ − t′)P(∥X(n)

∞ ∥ > t′).

Therefore, by choosing t′′ = 2t′, we can obtain:

P(∥X(n)
∞ ∥ > t′) ≥ c− ϵ

2α(t′)α
− c̃1

t′n1/2

√
log

c̃2
ζ
. (35)

Similarly, for any ϵ > 0 and t > t0, we have tαP(∥X∞∥ > t) ≤ ϵ+ c, and using similar arguments
we obtain:

c̃1

√
log

c̃2
ζ

1

n1/2
≥

∫ t′′

t′
P(∥X(n)

∞ ∥ > t) dt−
∫ t′′

t′

c+ ϵ

tα
dt

≥ (t′′ − t′)P(∥X(n)
∞ ∥ > t′′)− (t′′ − t′)

c+ ϵ

(t′)α
.

Finally, choosing as before t′′ = 2t′, we can obtain:

P(∥X(n)
∞ ∥ > 2t′) ≤ c+ ϵ

(t′)α
+

c̃1
t′n1/2

√
log

c̃2
ζ
. (36)

Substituting for t̄ = 2t′, we can obtain:

P(∥X(n)
∞ ∥ > t̄) ≤ 2α(c+ ϵ)

t̄α
+

2c̃1
t̄n1/2

√
log

c̃2
ζ
. (37)

Combining (35) and (37), we obtain that with probability greater than 1− ζ − ϵn, for any ϵ > 0 and
t > t0:

P(∥X(n)
∞ ∥ > t) ≥ 1

2α
c− ϵ

tα
− c̃1

tn1/2

√
log

c̃2
ζ
, and (38)

P(∥X(n)
∞ ∥ > t) ≤ 2α

c+ ϵ

tα
+

2c̃1
tn1/2

√
log

c̃2
ζ
. (39)

This concludes the proof of Theorem 3.
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Proof of results in Section 3.2

Let us now consider a setting where f(·, z) is not necessarily a quadratic function. As before, we
assume the data comes from an unknown data distribution µz on Rd+1. Furthermore, with (Ẑ

(n)
k )k≥1,

we denote the i.i.d. random variables associated with the empirical measure µ(n)
z = n−1

∑n
j=1 δẐ(n)

j
,

as defined in (15). We consider the case b = 1 for simplicity.

C.3 Proof of Theorem 6

Proof. First, we utilize the tail index limits from [HM21] in the strongly convex setting from Theorem
2. We use α and β in order to construct the proof and provide the same argument as in Section 3.1.

Denote by En the event on which (X
(n)
k )k≥0 has a stationary distribution π(n) such that P(En) ≥

1 − ϵn. Given En, let (Zk, Ẑ
(n)
k )k≥1 be the sequences of i.i.d. optimal couplings for µz and µ

(n)
z .

Therefore, by construction, for any k ∈ N, E[∥Zk−Ẑ
(n)
k ∥] = W1(µz, µ

(n)
z ). Based on this sequence,

we consider the processes (Xk)k≥0, (X(n)
k )k≥0, (Yk)k≥0 defined by the recursions:

1. Xk+1 = Xk − η∇f(Xk, Zk+1), where X0 ∼ π,

2. X
(n)
k+1 = X

(n)
k − η∇f(X

(n)
k , Ẑ

(n)
k+1), where X

(n)
0 ∼ π(n),

3. Yk+1 = Yk − η∇f(Yk, Zk+1) where Y0 = X
(n)
0 ,

with the unique stationary distributions of (Xk)k≥0 and (X
(n)
k )k≥0 being denoted by π and π(n)

respectively. Note again that (Xk)k≥0 corresponds to the online SGD recursion (2), and (X
(n)
k )k≥0

to the offline SGD recursion (4), both with b = 1. Under our assumptions, by the definition of
geometric ergodicity, there exist constants cρ > 0 and ρ ∈ (0, 1) such that the following inequality
holds:

W1(L (Yk), π) ≤ cρW1(L (Y0), π)e
−ρk, for any k ≥ 0 . (40)

Analogously to (25), we can conclude:

W1(π, π
(n)) ≤ (1− cρe

−ρk)−1W1(L (Yk),L (X
(n)
k )). (41)

The proof then utilizes Taylor’s expansion with the remainder part in integral form (see, e.g.,
[SCW20]) in the following way:

∇f(Yk, z)−∇f(X
(n)
k , z) = H

(n)
k,z(Yk −X

(n)
k ) (42)

with H
(n)
k,z :=

∫ 1

0
∇2f(Yk − u(Yk −X

(n)
k ), z) du. Therefore:

Yk+1 −X
(n)
k+1 = Yk −X

(n)
k − η

(
∇f(Yk, Zk+1)−∇f(X

(n)
k , Ẑ

(n)
k+1)

)

= Yk −X
(n)
k − η

(
∇f(Yk, Zk+1)−∇f(X

(n)
k , Zk+1) +∇f(X

(n)
k , Zk+1)−∇f(X

(n)
k , Ẑ

(n)
k+1)

)

= Yk −X
(n)
k − ηH

(n)
k,Zk+1

(
Yk −X

(n)
k

)
− η

(
∇f(X

(n)
k , Zk+1)−∇f(X

(n)
k , Ẑ

(n)
k+1)

)

= (Id −ηH
(n)
k,Zk+1

)(Yk −X
(n)
k )− η

(
∇f(X

(n)
k , Zk+1)−∇f(X

(n)
k , Ẑ

(n)
k+1)

)
.

Now, taking the norm of both sides and using the triangle inequality together with Assumption 1, we
can obtain the following:

∥Yk+1 −X
(n)
k+1∥ ≤ ∥ Id −ηH

(n)
k,Zk+1

∥∥Yk −X
(n)
k ∥+ η∥∇f(X

(n)
k , Zk+1)−∇f(X

(n)
k , Ẑ

(n)
k+1)∥

≤ ∥ Id −ηH
(n)
k,Zk+1

∥∥Yk −X
(n)
k ∥+ ηL(∥X(n)

k ∥+ 1)∥Zk+1 − Ẑ
(n)
k+1∥.

19



Now,

∥ Id −η

∫ 1

0

∇2f(y − u(y − x), z) du∥ = ∥
∫ 1

0

Id −η∇2f(y − u(y − x), z) du∥

≤
∫ 1

0

∥∥Id −η∇2f(y − u(y − x), z)
∥∥du

≤
∫ 1

0

supx∈Rd

∥∥Id −η∇2f(x, z)
∥∥du

= R(z), (43)

where again R(z) = supx∈Rd

∥∥Id −η∇2f(x, z)
∥∥. This allows us to conclude the following:

∥Yk+1 −X
(n)
k+1∥ ≤ R(Zk+1)∥Yk −X

(n)
k ∥+ ηL(∥X(n)

k ∥+ 1)∥Zk+1 − Ẑ
(n)
k+1∥.

Denoting B
(n)
k := ∥X(n)

k ∥+ 1, we have:

∥Yk+1 −X
(n)
k+1∥ ≤ R(Zk+1)∥Yk −X

(n)
k ∥+ ηLB

(n)
k ∥Zk+1 − Ẑ

(n)
k+1∥

≤ R(Zk+1)R(Zk)∥Yk−1 −X
(n)
k−1∥+ ηLR(Zk+1)B

(n)
k−1∥Zk − Ẑ

(n)
k ∥+ ηLB

(n)
k ∥Zk+1 − Ẑ

(n)
k+1∥

≤ ∥Y0 −X
(n)
0 ∥

k+1∏

i=1

R(Zi) + ηL

k∑

i=0

B
(n)
i ∥Zi+1 − Ẑ

(n)
i+1∥

k∏

j=i+1

R(Zj+1),

where again, for any sequence (ai)i≥0,
∏k

i=j ai = 1, for j > k. Furthermore, as β > 1 and
E[R(Z1)

β ] = 1, we have:
δR := E[R(Z1)] < 1. (44)

Now, we can take the expectation given En and use that R(Z1), ..., R(Zk+1), and B
(n)
0 , . . . , B

(n)
k

are i.i.d. Furthermore, using (43), (44), and proceeding as in the proof of Theorem 4, we can obtain:

E[∥Yk+1 −X
(n)
k+1∥] ≤ ηL(E[∥X(n)

0 ∥] + 1)E[∥Z1 − Ẑ
(n)
1 ∥] 1

1− δR
.

Finally, denoting E[∥X(n)
0 ∥] + 1 = c0, we obtain that, with probability larger than 1− ϵn:

W1(π, π
(n)) ≤ c0L(1− cρe

−ρk)−1 η

1− δR
W1(µz, µ

(n)
z ).

Taking the limit as k → ∞, we can conclude the proof of Theorem 6.

C.4 Proof of Theorem 5

Proof. Due to [HM21] we know that there exist α, β such that β < α and:

lim sup
t→∞

tα+ϵP (∥X∞∥ > t) > 0, and lim sup
t→∞

tβ−ϵP (∥X∞∥ > t) < +∞. (45)

Using Lemma 3, we can obtain:

W1(π, π
(n)) ≥

∫ ∞

0

| P(∥X∞∥ > t)− P(∥X(n)
∞ ∥ > t) | dt

≥
∫ t′′

t′
| P(∥X∞∥ > t)− P(∥X(n)

∞ ∥ > t) | dt,

where we have used that limt→∞ P(∥X∞∥ > t) = 0 and limt→∞ P(∥X(n)
∞ ∥ > t) = 0, in order to

select t′ and t′′ large enough for the last inequality to hold. Now, using Theorem 2, we can obtain:
∫ t′′

t′
| P(∥X∞∥ > t)− P(∥X(n)

∞ ∥ > t) | dt ≥
∫ t′′

t′

cα
tα+ϵ

dt−
∫ t′′

t′
P(∥X(n)

∞ ∥ > t) dt

≥ (t′′ − t′)
cα

(t′′)α+ϵ
− (t′′ − t′)P(∥X(n)

∞ ∥ > t′),

(46)
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for some constant cα. Therefore, by choosing t′′ = 2t′, we can obtain:

P(∥X(n)
∞ ∥ > t′) ≥ cα

(2t′)α+ϵ
− 1

t′
W1(π, π

(n)).

Using similar arguments, we can obtain:

W1(π, π
(n)) ≥

∫ t′′

t′
P(∥X(n)

∞ ∥ > t) dt−
∫ t′′

t′

cβ
tβ−ϵ

dt

≥ (t′′ − t′)P(∥X(n)
∞ ∥ > t′′)− (t′′ − t′)

cβ
(t′)β−ϵ

.

for a constant cβ . Choosing t′′ = 2t′ and substituting 1
2 t̄ = t′, we obtain:

P(∥X(n)
∞ ∥ > t̄) ≤ 2

t̄
W1(π, π

(n)) +
2β−ϵcβ
t̄β−ϵ

. (47)

Using Theorem 6 and (46)-(47), we can conclude the proof of Theorem 5.
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Figure 8: Estimated tail indices, LeNet, CIFAR-10
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Figure 9: Estimated tail indices, AlexNet, MNIST

D Further experimental results

In this section, we present the remaining experimental findings.

D.1 Neural Network Experiments

First, we showcase the remaining plots from Section 4. As outlined in 4.2, we conducted model
training for 10, 000 iterations, utilizing the cross-entropy loss and employing the MNIST and CIFAR-
10 datasets. The learning rates ranged from 10−4 to 10−1, while the batch sizes varied between 1 and
10. We employed offline SGD with a subset of the data amounting to 25%, 50%, and 75%. In Figure
8, we exhibit the estimated tail indices for the LeNet architecture with the CIFAR-10 dataset, while
Figure 9 shows the estimated tail indices for the AlexNet architecture implemented with the MNIST
dataset.

The inclusion of these plots serves the purpose of completeness, as the overall conclusions remain
unchanged; a strong correlation between α̂(n) and α̂ is exhibited, as well as a notable correlation
between α̂(n)’s and the ratio η/b. These conclusions hold true across all datasets and neural network
architectures, providing further substantiation for our theoretical propositions.

D.2 Further tail examination

From [GSZ21], we have that P (∥X∞∥ > t) ≈ t−α, so the log-log tail histogram of the stationary
distribution should follow a linear line with slope −α in the tails (for large t). We first examine
the histograms of the estimated stationary distributions for both the linear regression setting (as in
Sec. 4.1) and the NN setting (as in Sec. 4.2), analyzing their behavior as the number of samples n
increases. These are depicted in Figures 10-11. Then, we re-run the experiments and examine the
histograms on a log-log scale to see whether the linear slope −α becomes more apparent. For both
cases, as n increases, we observe that this heavy-tailed phenomenon becomes increasingly apparent,
and the tails follow a clearer linear trend. The linear behavior in the tails can be observed in Figures
12-13.

In the entirety of our experiments, encompassing diverse learning rates and layers within both the
linear regression and NN settings, a consistent observation emerges: an increase in the number of
samples employed in offline SGD leads to a convergence of behavior towards that of online SGD. As
previously mentioned in Section 1, while we do not anticipate an exact power-law tailed behavior,
it is noteworthy that the tails exhibit progressively more characteristics resembling a power-law
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distribution. Specifically, the log-log plots demonstrate a linear trend in the tails. This empirical
observation aligns with our theoretical findings, again reinforcing the consistency between the two.
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Figure 10: Histograms of the parameter norms for linear regression with Gaussian data
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Figure 11: Histograms of the weight norms for FC on MNIST dataset
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Figure 12: Log-log histograms of the parameter norms for linear regression with Gaussian data
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Figure 13: Log-log histograms of the weight norms for FC on MNIST dataset
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E Estimator choice justification

(a) (b)

Figure 3: (a) An objective with two local minima m1,m2 seperated by a local maxima at s1 = 0.
(b) Illustration of the tail-index estimator α̂.

Theorem 2 ( [42]). Let w0 ∈ Si, for some 1 ≤ i ≤ r. For t ≥ 0, wεtε−α → Ymi(t), as ε→ 0, in the
sense of finite-dimensional distributions, where Y = (Yy(t))t≥0 is a continuous-time Markov chain
on a state space {m1,m2, . . . ,mr} with the infinitesimal generator Q = (qij)

r
i,j=1 with

qij =
1

α

∣∣∣∣
1

|sj−1 −mi|α
− 1

|sj −mi|α
∣∣∣∣ , (13)

qii = −
∑

j 6=i
qij . (14)

This process admits a density π satisfying QTπ = 0.

A consequence of this theorem is that equilibrium probabilities pi are typically larger for “wide
valleys". To see this consider the special case illustrated in Figure 3(a) with r = 2 local minima
m1 < s1 = 0 < m2 separated by a local maximum at s1 = 0. For this example, m2 > |m1|, and
the second local minimum lies in a wider valley. A simple computation reveals

π1 =
|m1|α

|m1|α +mα
2

, π2 =
|m2|α

|m1|α + |m2|α

We see that π2 > π1, that is in the equilibrium the process spends more time on the wider
walley. In particular, the ratio π2

π1
=
(
m2

|m1|

)α
grows with an exponent α when the ratio m2

|m1| of
the width of the valleys grows. Consequently, if the gradient noise is indeed α-stable distributed,
these results directly provide theoretical evidence for the wide-minima behavior of SGD.

3 Experimental Setup and Methodology
Experimental setup: We investigate the tail behavior of the stochastic gradient noise in
a variety of scenarios. We first consider a fully-connected network (FCN) on the MNIST and
CIFAR10 datasets. For this model, we vary the depth (i.e. the number of layers) in the set
{2, 3, . . . , 10}, the width (i.e. the number of neurons per layer) in the set {2, 4, 8, . . . , 1024}, and
the minibatch size ranging from 1 to full batch. We then consider a convolutional neural network
(CNN) architecture (AlexNet) on the CIFAR10 and CIFAR100 datasets. We scale the number of
filters in each convolutional layer in range {2, 4, . . . , 512}. We randomly split the MNIST dataset
into train and test parts of sizes 60K and 10K, and CIFAR10 and CIFAR100 datasets into train
and test parts of sizes 50K and 10K, respectively. The order of the total number of parameters p
range from several thousands to tens of millions.

For both fully connected and convolutional settings, we run each configuration with the negative-
log-likelihood (i.e. cross entropy) and with the linear hinge loss, and we repeat each experiment
with three different random seeds. The training algorithm is SGD with no explicit modification

7

Figure 14: Evaluation of the estimator from
[MMO15]. Figure is directly taken from [SSG19].

Analytical computation of the true tail exponent,
even in the linear regression setting, is, to our
knowledge, unfortunately not possible. There-
fore, an estimator choice is required. In this
section, we provide our rationale for selecting
the tail estimator from [MMO15] by highlight-
ing its strengths.

The main arguments are as follows: (i) the es-
timator’s theoretical framework is established
through its convergence in distribution to the
true tail index (via a Central Limit Theorem re-
sult, detailed in Theorem 2.3 [MMO15]), which
is further complemented by its demonstrated
asymptotic consistency (as per Corollary 2.4
[MMO15]). (ii) The estimator has already
been used in various articles and its qualities
have been thoroughly examined. For example,
this can be observed in Figure 14 (taken from
[SSG19]), which, in our opinion, contains convincing estimation results (e.g., small error bars
regardless of the magnitude of the true tail index).

F Strongly Convex Problem Example

Consider the following one-dimensional logistic regression where the regularization parameter
λ ∼ Exp(µ), i.e., it follows an Exponential distribution with mean 1/µ - its probability density
function is as follows:

f(λ;µ) =

{
µ−1e−λ/µ λ ≥ 0

0 λ < 0
.

As before, let (ai, qi)i≥1 be i.i.d. random variables in R2, such that zi ≡ (ai, qi). In this scenario,
where a ∼ N(0, σ2) and y ∈ {0, 1}, the loss function equals:

ℓ(x, z) = −y ln

(
1

e−ax + 1

)
− (1− y) ln

(
1− 1

e−ax + 1

)
+

1

2
λ∥x∥2.

Now, the second derivative of the loss with respect to the parameter x equals ∇2ℓ(x, z) = a2eax

(eax+1)2
+λ.

Note that |∇2ℓ(x, z)| ≤ a2/4 + λ,∀x ∈ X . In the SGD case, from [HM21], we have r(z) =
lim inf∥x∥→∞ σmin

(
Id −γ∇2ℓ(x, z)

)
and R(z) = supx

∥∥Id −γ∇2ℓ(x, z)
∥∥. In other words, as we

are in the one-dimensional setting, we have:

r(z) = lim inf
|x|→∞

∣∣∣∣1− γλ− γ
a2eax

(eax + 1)2

∣∣∣∣ = |1− γλ|, and

R(z) = sup
x

∣∣∣∣1− γλ− γ
a2eax

(eax + 1)2

∣∣∣∣ = max

(
|1− γλ|, |1− γλ− γ

a2

4
|
)
.

Now, we require P(r(Z1) > 1) > 0 and E[R(Z1)] < 1. As λ ∼ Exp(µ), we have that P(r(Z1) >
1) > 0. For the latter condition, we can calculate the required expectation:
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E|1− γλ| =
∫ 1

γ

0

(1− γλ)µe−µλ dλ+

∫ ∞

1
γ

(γλ− 1)µe−µλ dλ

= − (γ − µ)− γe−
µ
γ

µ
+

γe−
µ
γ

µ

=
2γe−

µ
γ − γ

µ
+ 1.

Furthermore, we have:

E|1− γ
x2

4
− γλ| = E

∫ 1− γx2

4

0

(1− γ
x2

4
− γλ)µe−µλ dλ+ E

∫ ∞

1− γx2

4

(γ
x2

4
+ γλ− 1)µe−µλ dλ

= E
[
2γ

µ
e

µ
γ (1− γx2

4 ) + 1− γ

µ
− γx2

4

]

=

∫ ∞

−∞

(
2γ

µ
e

µ
γ (1− γx2

4 ) + 1− γ

µ
− γx2

4

)
e−

1
2σ2 x2

√
2πσ2

dx

=
2
√
2γ

µ
√
2− σ2µ

e−
µ
γ − γ(

1

µ
+

σ2

4
) + 1

We can see that, for example, both expressions are less than 1 in modulus for µ = 0.1, σ2 = 1, and
γ = 0.1. It is important to highlight that the aforementioned calculations necessitate the condition
1

2σ2 − µ
4 > 0, or equivalently σ2µ < 2. This condition can be interpreted as a stability criterion,

indicating that the mean of the penalization term λ must increase as the variance of the data grows.
In other words, a larger variance necessitates a higher mean value for λ.
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