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Abstract—This study proposes a novel framework to estimate
parameters for reproducing target multicellular patterns using
an agent-based model (ABM). Two major challenges in multicel-
lular ABMs are estimating cell-level parameters (agent-specific
variables) and quantitatively evaluating the topological char-
acteristics of multicellular arrangements under stochastic cell
proliferation and death. To address these challenges, we integrate
two approaches: Betti vectors and inverse surrogate modeling.
The Betti vectors obtained through topological data analysis can
consistently represent features of a wide range of multicellular
spatial configurations. The inverse surrogate modeling enables
direct inference of the corresponding ABM parameters from the
target patterns. We validated the proposed framework using
zebrafish pigment pattern formation, a representative model
of pattern formation driven by multicellular interactions. The
results demonstrate that the proposed framework successfully
infers ABM parameters. Additionally, when we applied the
framework to mutant zebrafish pigment patterns, we estimated
parameters with limited similarities to target patterns. This
discrepancy suggests that the framework may also serve as a
detection tool for identifying missing or unknown mechanisms in
the underlying ABM or biological system.

Index Terms—Multicellular pattern formation, agent-based
model, topological data analysis, surrogate modeling.

I. INTRODUCTION

Significance of elucidating mechanisms of multicellular
behavior - Multicellular pattern formation is a biological
process in which cells self-organize into spatially distinct
structures. This process is essential for the development of
complex tissues and organs, as well as during tissue repair
and regeneration. These complex patterns arise from the coor-
dination of cell-cell interactions and environmental cues. Many
diseases, including some cancers and genetic disorders, yield
irregular patterns from abnormal cellular behavior that result
in the dysfunction of these multicellular interactions. A goal of
biomedical researchers is to understand the mechanisms that
control multicellular pattern formation, and to leverage these
principles to understand disease pathology and treatments, and
to create engineered tissues [1]–[3], artificial organs [4]–[6],
and other synthetic biological systems [7]–[9].

Vitalization of computer simulation of cellular behavior -
Various computational modeling approaches have been devel-
oped to understand the mechanisms that underlie multicellular
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Fig. 1. Proposed agent-based model (ABM) optimization workflow. (a)
A training and testing dataset of the desired ABM is generated through
hypercube sampling. (b) Cellular ABM outputs can be generically quantified
using topological data analysis, resulting in a series of Betti vectors that
represent the topological features of the ABM output. (c) Surrogate model
training and testing using quantified model outputs (Betti vectors) and known
input parameter values. (d) Target patterns can be queried into the trained
model to elucidate parameter combinations that may yield similar patterns in
simulation.

pattern formation, including reaction-diffusion systems [10]–
[13], mechanical models [14]–[16], and agent-based models
(ABMs) [17], [18]. Agent-Based Models (ABMs) are multi-
scale, computational models that represent each cell as an
information processing unit or “agent”. Each agent is governed
by a set of rules that dictate its behavior, which may be
dependent on interactions with the simulation environment
or other agents. This approach is particularly well-suited for
understanding multicellular behavior as a ”bottom-up” model
because it enables the study of emergent pattern formation
through explicit representation of cellular interactions.

Current challenges for computational modeling of cel-
lular behavior - Although ABMs are promising for studying
multicellular behavior, there are two main challenges for
effective and efficient implementation. (See also the excellent
survey papers, e.g., [19] and Section 4 in [20].)

• Difficulty in estimating cellular-level (agent-specific)
variables - One of the typical drawbacks of ABM has
long been the difficulty of estimating agent-specific pa-
rameters [21]. A common approach to this challenge is to
explore a parameter space in a grid search manner [22].
Unfortunately, it is often impractical to explore high-
dimensional parameter spaces within a limited time be-
cause each ABM simulation of individual cells and their
local interactions is computationally intensive.



• Difficulty in handling stochastic proliferation and
death of cells - In order to handle cell proliferation and
death within the ABM framework, it is necessary to have
varying model complexity (i.e., number of agents) [20],
which significantly affects the difficulty and instability of
estimating agent-specific parameters.

Therefore, there has been a continuing demand for methods
to resolve these two interdependent issues.

Our key strategy - As a method capable of simultaneously
addressing these two interdependent issues, we propose a new
framework for ABM that combines the principles of surrogate
modeling and topological data analysis (TDA) [23]–[25] (Fig.
1). For the first key feature, we introduce an inverse surrogate
module that estimates the parameters of the biological system
simulator from the simulator’s outcomes, forming biological
patterns. For the second key feature, we introduce the TDA-
inspired module, which provides a means to assess the global
structure of patterns. This allows for meaningful compari-
son even when the number, position, or scale of features
differs between the simulation and the target. We refer to
this approach as the Topology-Informed Inverse Parameter
Surrogate (TI2PS) framework, emphasizing the integration of
both Topology and Inverse parameterization in a surrogate
modeling pipeline.

To evaluate the feasibility of the proposed framework,
we applied the TI2PS approach to simulations of zebrafish
pigment pattern formation in development [26]. This zebrafish
pigment system provides an ideal testbed, utilizing two in-
teracting cell types to produce characteristic spatial patterns
governed by fundamental cellular behaviors — migration, di-
vision, and death [26]. We implemented the inverse surrogate
model based on a generalized linear model (GLM) with two
different activation functions. Furthermore, we applied the
trained inverse surrogate model to estimate parameters from
mutant zebrafish pigment patterns.

II. RELATED WORK

This paper focuses on the intersection of ABMs, surrogate
models, and TDA, which are recent popular tools used to
shed light on the principles of cellular behavior. In this
section, we clarify the novelty of this paper in terms of recent
developments regarding these three tools.

Multiscale extension of ABMs - Recent reviews have
emphasized that ABMs are promising tools for linking macro-
scopic tissue-level phenomena with microscopic cellular dy-
namics [20], [27]–[29]. A key challenge in this integration
is inferring cell-level behavioral rules from observable tissue-
level patterns.

Affinity of ABMs and surrogate models - The combina-
tion of ABM and surrogate models is an especially active area
that has been attracting a lot of attention in recent years [30]–
[32]. In general, surrogate modeling aims to use simplified
models to approximate ABM’s agent-specific variables effi-
ciently. However, a straightforward application to its cellular
behavior is not appropriate. Due to the stochastic nature of cell
proliferation, death, and other biological processes, the number

and arrangement of cells may vary across simulations, making
one-to-one correspondence between simulated and reference
patterns difficult.

Affinity of ABMs and TDA - The combination of topo-
logical data analysis with ABM has become popular in recent
years [33], [34]. In general, TDA is a set of mathematical
techniques that extract structural features (connectivity, loops,
and voids) from spatial data [23]–[25]. Instead of relying on
point-wise correspondence, TDA provides a means to assess
the global structure of patterns, allowing for meaningful com-
parison even when the number, position, or scale of features
differs between the simulation and the target. However, the
incorporation of TDA itself does not have the ability to directly
alleviate the difficulty of estimating ABM’s agent-specific
variables.

Novelty of our approach - As a nexus of the above three
trends in ABM, this paper proposes a new way to make
the estimation of cell-level (agent-specific) variables tractable
while capturing the global structure of cellular behavior by
introducing a surrogate model and a TDA mechanism to ABM
in an explicit way.

III. METHOD

This section specifies the problem of estimating the parame-
ters of a biological system simulator from observed biological
patterns, and describes the proposed inverse surrogate model-
ing approach to this problem.

A. Problem Specification

Our goal is to construct the inverse surrogate model that
takes as input an observed biological pattern and outputs
the parameters of a biological system simulator. The input
biological pattern is a set of cell positions X = {Xc}c∈C on
a two-dimensional plane, where C is a set of cell types. Each
Xc = {xc

i}
Nc

i=1 is a set of cell positions of type c, where Nc is
the number of cells of type c and xc

i ∈ R2 represents a two-
dimensional coordinate of an i-th cell of type c. The output of
our model is simulator’s parameters Θ = {θcc′}c,c′∈C , where
each parameter set θcc′ = {θcc′d }

Dθ

d=1 ∈ RDθ
>0 is indexed by

the pair of cell types c and c′ to represent the relationships
between the same or different cell types.

B. Betti Vector

The Betti vector can represent the topological features of the
cellular point cloud and is derived from the theory of persistent
homology, which can capture spatial patterns across multiple
scales. For each cell type c ∈ C, we compute the Betti vector
according to the following steps.

Step 1: Construction of Vietoris-Rips Filtration - We
consider a set of balls with radius ϵ/2, centered at the positions
of M cells. Here, ϵ ∈ R≥0 is called a filtration value,
M is the number of cells, and each ball center is indexed
sequentially from 1 to M . Under this condition, we construct
a simplicial complex X(ϵ), i.e., a set of simplices based on
the intersections of these balls. A simplex is defined by a set
of center indices, where k-simplex consists of k + 1 indices



and forms a specific geometric structure. For example, the
0-simplex, 1-simplex, and 2-simplex represent a point, a line
segment connecting two points, and a filled triangle connecting
three points, respectively. First, we add all indices of ball
centers (0-simplices) to X(ϵ). Next, if two balls intersect, a
pair of their indices (1-simplex) is added to X(ϵ). Finally, if
three balls intersect each other, a tuple of their center indices
(2-simplex) is added to X(ϵ).

Step 2: Computation of Persistent Homology - We
observe the changes that occur in the topological features of
X(ϵ) with the gradual increasing of ϵ. In particular, we focus
on the birth and death of two topological features: a connected
component and a loop. The connected component is a 0-degree
topological features. At ϵ = 0, each M ball center forms an
independent connected component. As the value of ϵ increases,
adjacent components merge to form a larger connected compo-
nent. The loop is a 1-degree topological feature and is a cycle
formed by multiple center points connected with 1-simplices
(i.e., line segments). When ϵ = 0, no loops exist. However,
as the value of ϵ increases, new loops emerge, while existing
ones may disappear when they are filled by 2-simplices (i.e.,
triangles). Based on this observation, we can represent the
gradual changes in the topological features of each degree
k ∈ {0, 1} as

Pk =
{(
bkj , d

k
j

)}Nk

j=1
, (1)

where Nk is the total number of k-degree topological features,
bkj is the value of ϵ when j-th k-degree topological feature
appears, and dkj is the value of ϵ when it disappears. Pk is
mathematically derived based on the theory of homology in
topology [35].

Step 3: Computation of Betti curves - Using the set of
birth-death pairs Pk obtained in Step 2, we define the Betti
curves, a function that returns the number of topological fea-
tures (i.e., connected components and loops) alive at filtration
value ϵ for each dimension k, as follows:

βk(ϵ) =

Nk∑
j=1

1
(
bkj ≤ ϵ < dkj

)
, (2)

where 1(·) denotes the indicator function, which equals 1 if
the condition given in parenthesis holds and 0 otherwise.

Step 4: Construction of Betti Vector - Let βk
c (ϵ) be the

k-th Betti curve obtained from the set of cell positions of type
c, the Betti vector is defined by

vk
c =

[
βk
c (ϵ1) · · · βk

c (ϵNE
)
]
, (3)

where {ϵi}NE
i=1 is a monotonically increasing sequence of fil-

tration values, and βk
c (ϵi) is the Betti number for the filtration

value ϵi. Finally, by concatenating vk
c across all degrees k and

all cell types c, we obtain the full Betti vector as

v =
[
v0
c1 ; · · · ; v

0
c|C|

; v1
c1 ; · · · ; v

1
c|C|

]T
, (4)

where [ · ; · ] represents the concatenation of row vectors.
This full Betti vector can be used as the input feature for

downstream statistical and machine learning analyses. In this
study, we use the Betti vector as the input of the proposed
inverse surrogate model, where NE = 500, ϵ0 = 0, and

ϵi − ϵi−1 = 0.1 µm for all i ∈ {1, . . . , NE}. This step size
was chosen to balance biological resolution and model input
dimensionality. To compute the persistent homology, we used
the ripser Python library (version 0.6.12) [36].

C. Inverse Surrogate Model

We use a GLM to estimate the model parameters from
the observed biological patterns. The GLM is formulated as
follows:

θcc′ = σ
(
vTWcc′

)
, (5)

where Wcc′ ∈ RDv×Dθ is a matrix of partial regression
coefficients corresponding to θcc′ , and σ(·) : RDθ → RDθ

is an element-wise nonlinear function. In this study, we use
two nonlinear functions: a sigmoid function given by

Sigmoid(x) =
1

1 + e−x
, (6)

and a rectified linear unit (ReLU) function given by

ReLU(x) = max(0, x) =

{
x x > 0,

0 x ≤ 0.
(7)

D. Optimization

We prepare a dataset containing N sets of cell positions
X = {Xn}Nn=1 and optimize the coefficients of the proposed
GLM using the Betti vectors V = {vn}Nn=1, where vn is
obtained by converting the set of cell positions Xn with
the algorithm described in section III-B. Different optimiza-
tion methods are used depending on whether the non-linear
function of the GLM is a sigmoid function or a ReLU
function. For the GLM with a sigmoid function, we opti-
mize the partial regression coefficients based on the Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) algorithm by mini-
mizing the following sum of squared error:

LSSE =
1

N

N∑
n=1

∑
c,c′∈C

∥∥∥∥θ̂cc′

n − Sigmoid(vT
nW

cc′)

∥∥∥∥2
2

, (8)

where ∥ · ∥2 is the L2 norm, and θ̂
cc

n = {θ̂cc′nd }
Dθ

d=1 ∈ RDθ
>0

is a set of ground-truth simulator’s parameters corresponding
to the n-th set of cell positions Xn. For the GLM with a
ReLU function, on the other hand, we implement the GLM
using a deep neural network tool, and the partial regression
coefficients are optimized based on the Adaptive Moment
Estimation (Adam) by minimizing the following Huber loss:

LHuber=
1

N

N∑
n=1

∑
c,c′∈C

Dθ∑
d=1

Huber
(
θ̂cc

′

nd−ReLU(vT
nW

cc′)
)
, (9)

where Huber(·) : R→ R is a loss function defined by

Huber(x) =

{
0.5x2 |x| ≤ 1,

|x| − 0.5 |x| > 1.
(10)

IV. EXPERIMENTS

A. Data

We create 700 pairs of Θ and v for training and 300 pairs
for testing our inverse surrogate model using the simulation
with an ABM. Since the simulation includes stochastic be-
havior, we generate five variations of the cell position pattern
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Fig. 2. An example of ABM simulation results. All parameters for the ABM
simulation were taken from [26].

X from single parameter set Θ, and then the average of the
Betti vectors calculated from these five patterns is used as the
counterpart for that parameter set. In addition, to investigate
the performance of the inverse surrogate model, we manually
craft examples of cell positions based on known variations in
zebrafish pigment patterns, including dali/+ and leopard.

1) Agent-Based Model for Zebrafish Stripe: An overview of
the simulation process for zebrafish cell positions with ABMs
is shown in Algorithm 1 and Fig. 2. The set of cell positions
X = {Xc}c∈C is derived from an ABM simulation using
Θ generated by Latin Hypercube sampling. The simulation
variable t ∈ [0, T ], representing real-world time in days, is
introduced for cell position variables: Xc(t) and xc

i (t), where
Xc(t) is a set of cell positions of type c at time t, and
xc
i (t) is an i-th cell position of type c at time t. We also

set C = {B,Y}, where B and Y represent the two types of
iridophore relevant for the formation of zebrafish stripes: black
melanophores and yellow xanthophores.

We initialize the set of cell positions X(0) = {Xc(0)}c∈C
by evenly arranging cells in horizontal lines within a simula-
tion domain of width w0 and height h0 as previously described
in [26]. Each black cell line contains NB cells and is positioned
h ∈ HB µm from the top edge of the simulation domain,
and each yellow cell line contains NY cells and is positioned
h ∈ HY µm from the same edge. The lines begin lpad µm
from the left edge and end lpad µm from the right edge.

Between each time step, i.e., t ∈ N ∪ {0}, the simulation
domain is stretched horizontally and vertically by k µm
to recapitulate the growth of the developing zebrafish. In
proportion to the stretch of the simulation domain, the cells
are also rearranged as follows:

xc
i (t)← xc

i (t)⊙
(
1 + k

wt

1 + k
ht

)
, (11)

where ⊙ represents the Hadamard product, wt = kt+w0 and
ht = kt+h0 are functions that return the width and height of
the simulation domain at time t.

Furthermore, between each timestep, we simulate cell birth
and death as a probabilistic event dependent on the neigh-
borhood of each cell location. Cell birth and death increase
and decrease the elements of Xc(t) respectively. To simplify
notation, we define the function that counts points within a
region on a two-dimensional plane as follows:

#(S,X) =
∑
x∈X

1S(x), (12)

where S is a region on a two-dimensional plane, X is a set of
two-dimensional vectors representing the cell positions, and
1S(x) : R2 → {1, 0} is an indicator function defined by

1S(x) =

{
1 x ∈ S,
0 x /∈ S.

(13)

Let Ωloc(x)=
{
x′∈R2 | ∥x′ − x∥2≤ lloc

}
be the disk of ra-

dius lloc centered at position x in a two-dimensional plane and
Ωpodia(x)=

{
x′∈R2 | lpodia ≤ ∥x′ − x∥2 ≤ lpodia + lwidth

}
be the annulus of inner radius lpodia and width lwidth centered
at position x in it, the rules for cell death are given as

#
(
Ωloc(x

B
i (t)),X

Y(t)
)
> µ ·#

(
Ωloc(x

B
i (t)),X

B(t)
)

⇒ death of i-th cell of type B, (14)

#
(
Ωloc(x

Y
i (t)),X

B(t)
)
> ν ·#

(
Ωloc(x

Y
i (t)),X

Y(t)
)

⇒ death of i-th cell of type Y, (15)

#
(
Ωpodia(x

B
i (t)),X

B(t)
)
> ξ ·#

(
Ωpodia(x

B
i (t)),X

Y(t)
)

⇒ death of i-th cell of type B
with probability pdeath per day, (16)

where µ, ν, and ξ are hyperparameters obtained from [26].
Let Ωcrowd(x) =

{
x′ ∈ R2 | ∥x′ − x∥2 ≤ lcrowd

}
be the

disk of radius lcrowd centered at x in the two-dimensional
plane, the rules for cell birth are given as

#
(
Ωloc(x),X

B(t)
)
> α ·#

(
Ωloc(x),X

Y(t)
)
,

#
(
Ωloc(x),X

Y(t)
)
> β ·#

(
Ωloc(x),X

B(t)
)
, and

#
(
Ωcrowd(x),X

Y(t)
)
+#

(
Ωcrowd(x),X

B(t)
)
< η

⇒ birth of a black cell at x, (17)

#
(
Ωloc(x),X

Y(t)
)
> ϕ ·#

(
Ωloc(x),X

B(t)
)
,

#
(
Ωloc(x),X

B(t)
)
> ψ ·#

(
Ωloc(x),X

Y(t)
)
, and

#
(
Ωcrowd(x),X

Y(t)
)
+#

(
Ωcrowd(x),X

B(t)
)
< κ

⇒ birth of a yellow cell at x, (18)
where α, β, η, ϕ, ψ, and κ are hyperparameters whose
values are also obtained from [26]. Cell birth can also be a
stochastic event, and a melanophore or xanthophore can arise
at a candidate location without sufficient neighboring cells
with a probability pB or pY, respectively.

The cell positions are updated between each timestep by
using the Euler method as follows:

xc
i (t+ δt) ≈ xc

i (t) +
d

dt
xc
i (t) · δt, (19)

where δt is a small time step in days, and the ordinary
differential equation dxc

i (t)/dt is defined by
d

dt
xc
i (t) =−

∑
x′∈Xc(t)\{xc

i}

∇Qcc
(
x′ − xc

i (t)
)

−
∑

c′∈C\{c}

∑
x′∈Xc′(t)

∇Qc′c
(
x′ − xc

i (t)
)
. (20)



Algorithm 1: Simulation of cell positions with ABMs
Input: Initial cell positions X(0) = {Xc(0)}c∈C
Output: X(T ) = {Xc(T )}c∈C

1 while t < T do
2 Stretch the simulation domain and rearrange the

cell positions based on (11);
3 Remove the cells based on (14), (15), and (16);
4 Add new cells based on Algorithm 2;
5 τ ← t;
6 while t < τ + 1 do
7 Move the cells based on (19) and (22) ;
8 t← t+ δt;
9 if t = 4 then

10 Add additional one-layer xanthophore
horizontal stripes at 20 and 80% locations;

Here, Qcc′(·) is the Morse potential function given by

Qcc′(x) = Rcc′ exp

{
−∥x∥2
rcc′

}
−Acc′ exp

{
−∥x∥2
acc′

}
,

(21)
where ∥ · ∥2 is the L2 norm, and the set of parameters
θcc′ = {Rcc′ , rcc

′
, Acc′ , acc

′}, i.e., Dθ = 4, defines the
behavior of interactions between the cells of type c and type c′.
The parameters Rcc′ and Acc′ correspond to the strength scale
of repulsion and attraction, and the parameters rcc

′
and acc

′

correspond to the length scale of repulsion and attraction. To
prevent the cells from moving outside the simulation domain,
we adopt a reflective boundary condition as follows:

xc
i (t+ δt)← fref

(
xc
i (t+ δt),

(
w⌊t⌋ h⌊t⌋

)T)
, (22)

where ⌊·⌋ : R→ R is the floor function and fref is an element-
wise function defined by

fref(x, L) = L− |x mod(2× L)− L| , (23)
where mod is the modulo operation.

As previously described in [26], on the fourth simulated
time step, we add a horizontal, single-layer stripe of Nadd

xanthophores from 20 and 80% from the top of the domain
to ensure consistent formation of three stripes when using
experimentally determined parameters.

2) Manually Crafted Zebrafish Stripe: To validate the ef-
fectiveness of our surrogate model, we generated images of
simulation targets. Images were created with consideration
of known zebrafish pigment patterns, including dali/+ and
leopard. Cell positions are manually placed on a domain with
dimensions equal to the final domain size of the agent-based
model. Cell types are specified during the manual placement
of each cell, with a final total cell count of about 6000
cells (dali/+: 5451 total cells, 1179 melanophores (m), 4272
xanthophores (x); leopard: 6204 total cells, 1029 m, 5175 x).

B. Parameter Settings

We set the values of the hyperparameters and variables for
the ABM-based simulation according to [26]. The width and
height of the simulation domain are initialized as w0 = 2mm,
and h0 = 1mm, and we extend the domain by k = 130 µm
per day. The parameters for the initial cell positions are set
to HB = {100, 400, 600, 900} HY = {500}, NB = 34, and

Algorithm 2: Simulation of cell birth
Data: Maximum number of cells to be born Nlim and

that of attempts to simulate cell birth Ntrial

1 i← 0, Nbirth ← 0;
2 while i < Ntrial do
3 for j ← 1 to (Nlim −Nbirth) do
4 Sample a candidate position x ∈ R2;
5 if there are no cells within lrand µm of x then
6 if x satisfies the condition (17) then
7 Add new black cell at position x;
8 Nbirth ← Nbirth + 1;
9 else if x satisfies the condition (18) then

10 Add new yellow cell at position x;
11 Nbirth ← Nbirth + 1;
12 else
13 Sample q uniformly from [0, 1];
14 if q < pB then
15 Add new black cell at position x;
16 Nbirth ← Nbirth + 1;
17 else if q < pB+Y then
18 Add new yellow cell at position x;
19 Nbirth ← Nbirth + 1;
20 i← i+ 1;

NY = 51. The hyperparameters of the rules for cell death are
set to µ = 1, ν = 1, and ξ = 1.2, and those for cell birth are
set to α = 1, β = 3.5, η = 6, ϕ = 1.3, ψ = 1.2, and κ = 10.
The radii and width defining the region of the disks or annulus
are given as lloc = 75 µm, lpodia = 318 µm, lwidth = 25 µm,
lcrowd = 82 µm, and lrand = 82 µm. The probabilities related
to the cell death and birth are set to pdeath = 0.0333, pB =
0.03, and pY = 0.005. For the simulation of cell birth, we set
the maximum number of cells to be born Nlim to 500 and that
of attempts to simulate cell birth Ntrial to 2. The parameters
{Rcc′ , Acc′}c,c′∈{B,Y} are sampled within the range of 0 to
1000, while the parameters {rcc′ , acc′}c,c′∈{B,Y} are sampled
within the range of 1 to 100. In the ABM simulation of cell
development, these sampled values remain unchanged. On the
other hand, we use the normalized parameters from 0 to 1 as
the ground-truth simulator’s parameters. We set the simulation
period to T = 24 and the small time step to δt = 1.

The parameters of the Adam optimizer used for training the
proposed model are set to α = 0.001 (learning rate), β1 = 0.9,
β2 = 0.999, and ϵ = 10−7. The batch size and the number of
epochs are 64 and 1000.

C. Evaluation Metrics

We employed two metrics to evaluate the outcome of the
inverse surrogate model. The first is the sum of squared errors
(SSE) for the inferred parameters by the surrogate model,
which is defined by the equation below.

SSE =
∑

c,c′∈C

(
θ̂
cc′

− θcc′
)2

, (24)

where θ̂
cc′

is a true parameter set.
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Fig. 3. Validation results with simulated data: (a-1) target stripe pattern and
(a-2) simulated pattern with estimated parameters from the target; (b-1) target
dot pattern and (b-2) simulated pattern with estimated parameters from the
target.

TABLE I
PERFORMANCE COMPARISON WITH WASSERSTEIN DISTANCE

Model Sigmoid ReLU Random Parameter
Selection

SWD 92.5 151.0 162.9

We also used the Wasserstein distance to evaluate the
divergence between the target and simulated Betti vectors. The
sum of Wasserstein distance (SWD) across degrees and cell
types at time t is defined as:

SWD=
∑

k∈{0,1}

∑
c∈C

inf
γ∈Π(v̂k

c (t),v
k
c (t))

∫
R×R
(ζ − η)2 dγ(ζ, η), (25)

where v̂k
c (t) and vk

c (t) denote the Betti vectors for the target
and simulated patterns of degree k and cell type c at time t.
Here, ζ ∈ v̂k

c (t) and η ∈ vk
c (t) are elements of Betti vectors,

and Π(v̂k
c (t),v

k
c (t)) denotes the set of all valid transport plans

γ whose marginals match the empirical distributions of Betti
vectors from the target and simulated data.

D. Results

1) Validation with Simulated Data: The surrogate model
estimated parameters successfully reproduced spatial patterns
equivalent to the target patterns. First, we present examples
of the estimation results from our testing set. Fig. 3 (a-1) and
(a-2) show the target stripe pattern and the simulation result
obtained using the estimated parameters. In both the target and
the simulated results, three yellow stripes and two black stripes
are clearly visible, demonstrating good agreement between the
generated and target patterns. Similarly, Fig. 3 (b-1) and (b-2)
display the target dot pattern alongside the simulation result
using the corresponding estimated parameters. Both patterns
exhibit the same central dot distribution, with laterally elon-
gated melanophore clusters appearing at the top and bottom of
the figures. The target dot pattern exhibits a higher cell density
compared to the stripe pattern, and the simulation results
with inferred parameters reflect this trend. The SSE between
the target and simulated patterns was 0.082 for the sigmoid
activation function and 0.138 for the ReLU activation function.
Table I summarizes the SWD obtained for different approaches
to infer parameters. We also evaluated the SWD for multiple
simulations using the same parameters. The averaged SWD
over those simulations was 13.1, highlighting the robustness
of our method of using TDA-based quantification of simulation
outcomes to stochastic noise prevalent in ABMs.

2) Validation with Manually Crafted Data: We observed
some similarities between the target simulation pattern and

(a-1) (a-2) (b-1) (b-2)

Fig. 4. Validation result with mutant crafted data: (a-1) target distorted stripe
pattern of dali/+ mutant and (a-2) simulated pattern with estimated parameters
from the target; (b-1) target polka-dot-like pattern of leopard mutant and (b-2)
simulated pattern with estimated parameters from the target.

the surrogate model-guided ABM simulation results. In both
ABM simulations, we observe a dominant xanthophore cell
population in agreement with the target mutant pigment pattern
simulation images (Fig. 4). In the surrogate model guided-
ABM dali/+ pattern, we observe incomplete melanophore
stripe formation similar to the target dali/+ image, but the
simulation is unable to recreate the uniform distribution of
melanophores within each incomplete stripe. In the surrogate
model guided-ABM leopard pattern, we observe small polka-
dot-like melanophore distributions, but the simulation is unable
to produce large polka-dot-like structures that are observed in
the target leopard pattern. From the estimated parameters for
each mutant pattern, a characteristic trend was observed. In
both mutant patterns, the model predicts strong long-range
repulsion among xanthophores (Rxx′

, rxx
′
), resulting in a

predominant xanthophore field in the simulation domain.
V. DISCUSSION AND CONCLUSION

This study proposed the TI2PS framework based on an
inverse surrogate modeling approach for directly estimating
parameters in ABMs from spatial cell patterns. For robust
quantification of patterns, we implemented the Betti vector,
which is a topological descriptor derived from TDA that
effectively captures the global structure of cell patterns. While
we demonstrated the utility of the framework for pigment
pattern formation in zebrafish, the framework is designed to
be applicable to diverse biological systems governed by mul-
ticellular interactions. This framework provides a foundation
for modeling and refining agent-based models of biological
systems.

The TI2PS framework successfully estimated simulator’s
parameters that visually reproduces various pigment patterns
of zebrafish. This result highlights several important findings.
First, it shows that a learnable mapping exists from ABM
simulation results to their corresponding parameters, which
is a key advancement in solving inverse problems in ABM-
based simulations. Second, it shows that the Betti vector can
effectively represent complex cell alignments and function as a
practical input feature for the inverse surrogate model. Further-
more, the inverse surrogate model was a simple GLM. This
suggests an identifiable relationship between the parameters
and the resulting topological features represented by the Betti
vector, reinforcing the appropriateness of using Betti vectors
to represent ABM output.

Although the ABM simulations using the surrogate model
estimated parameters recapitulated some aspects of the target
behavior, the model was ultimately unable to fully reproduce



the mutant patterns. There are two possible explanations for
this outcome. One possibility is that the parameter combina-
tions required to generate the mutant patterns lie outside the
range of the training data. Another possibility is that additional
biological mechanisms not captured by the current simulation
are involved in generating the mutant patterns. In either case,
this framework may serve as a tool to uncover previously
unrecognized mechanisms in multicellular interactions.

While the proposed TI2PS framework shows promising per-
formance, some limitations remain. The current study focuses
on zebrafish pigment pattern formation, and further validation
on other complex biological systems is needed. Improving data
generation efficiency, exploring alternatives to Betti vectors,
and evaluating surrogate model reliability will help enhance
the framework’s generality.
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