
Published as a conference paper at ICLR 2023

GENERATING DIVERSE COOPERATIVE AGENTS BY
LEARNING INCOMPATIBLE POLICIES

Rujikorn Charakorn1, Poramate Manoonpong1,2, Nat Dilokthanakul3
1VISTEC, Rayong, Thailand 2SDU, Odense, Denmark 3KMITL, Bangkok, Thailand
{rujikorn.c s19, poramate.m}@vistec.ac.th, nat.di@kmitl.ac.th

ABSTRACT

Training a robust cooperative agent requires diverse partner agents. However,
obtaining those agents is difficult. Previous works aim to learn diverse behaviors
by changing the state-action distribution of agents. But, without information about
the task’s goal, the diversified agents are not guided to find other important, al-
beit sub-optimal, solutions: the agents might learn only variations of the same
solution. In this work, we propose to learn diverse behaviors via policy compatibil-
ity. Conceptually, policy compatibility measures whether policies of interest can
coordinate effectively. We theoretically show that incompatible policies are not
similar. Thus, policy compatibility—which has been used exclusively as a measure
of robustness—can be used as a proxy for learning diverse behaviors. Then, we
incorporate the proposed objective into a population-based training scheme to
allow concurrent training of multiple agents. Additionally, we use state-action
information to induce local variations of each policy. Empirically, the proposed
method consistently discovers more solutions than baseline methods across various
multi-goal cooperative environments. Finally, in multi-recipe Overcooked, we
show that our method produces populations of behaviorally diverse agents, which
enables generalist agents trained with such a population to be more robust.

1 INTRODUCTION

Cooperating with unseen agents (e.g., humans) in multi-agent systems is a challenging problem.
Current state-of-the-art cooperative multi-agent reinforcement learning (MARL) techniques can
produce highly competent agents in cooperative environments (Kuba et al., 2021; Yu et al., 2021).
However, those agents are often overfitted to their training partners and cannot coordinate with unseen
agents effectively (Carroll et al., 2019; Bard et al., 2020; Hu et al., 2020; Mahajan et al., 2022).

The problem of working with unseen partners, i.e., ad-hoc teamwork problem (Stone et al., 2010),
has been tackled in many different ways (Albrecht & Stone, 2018; Carroll et al., 2019; Shih et al.,
2020; Gu et al., 2021; Rahman et al., 2021; Zintgraf et al., 2021; He et al., 2022; Mirsky et al., 2022;
Parekh et al., 2022). These methods allow an agent to learn how to coordinate with unseen agents
and, sometimes, humans. However, the success of these methods depends on the quality of training
partners; it has been shown that the diversity of training partners is crucial to the generalization of the
agent (Charakorn et al., 2021; Knott et al., 2021; Strouse et al., 2021; McKee et al., 2022; Muglich
et al., 2022). In spite of its importance, obtaining a diverse set of partners is still an open problem.

The simplest way to generate training partners is to use hand-crafted policies (Ghosh et al., 2020;
Xie et al., 2021; Wang et al., 2022), domain-specific reward shaping (Leibo et al., 2021; Tang et al.,
2021; Yu et al., 2023), or multiple runs of the self-play training process (Grover et al., 2018; Strouse
et al., 2021). These methods, however, are not scalable nor guaranteed to produce diverse behaviors.
Prior works propose techniques aiming to generate diverse agents by changing the state visitation and
action distributions (Lucas & Allen, 2022), or joint trajectory distribution of the agents (Mahajan
et al., 2019; Lupu et al., 2021). However, as discussed by Lupu et al. (2021), there is a potential
drawback of using such information from trajectories to diversify the behaviors. Specifically, agents
that make locally different decisions do not necessarily exhibit different high-level behaviors.

To avoid this potential pitfall, we propose an alternative approach for learning diverse behaviors using
information about the task’s objective via the expected return. In contrast to previous works that

1

Published as a conference paper at ICLR 2023

use joint trajectory distribution to represent behavior, we use policy compatibility instead. Because
cooperative environments commonly require all agents to coordinate on the same solution, if the
agents have learned different solutions, they cannot coordinate effectively and, thus, are incompatible.
Consequently, if an agent discovers a solution that is incompatible with all other agents in a population,
then the solution must be unique relative to the population. Based on this reasoning, we introduce a
simple but effective training objective that regularizes agents in a population to find solutions that
are compatible with their partner agents but incompatible with others in the population. We call this
method “Learning Incompatible Policies” (LIPO).

We theoretically show that optimizing the proposed objective will yield a distinct policy. Then, we
extend the objective to a population-based training scheme that allows concurrent training of multiple
policies. Additionally, we utilize a mutual information (MI) objective to diversify local behaviors of
each policy. Empirically, without using any domain knowledge, LIPO can discover more solutions
than previous methods under various multi-goal settings. To further study the effectiveness of LIPO
in a complex environment, we present a multi-recipe variant of Overcooked and show that LIPO
produces behaviorally diverse agents that prefer to complete different cooking recipes. Experimental
results across three environments suggest that LIPO is robust to the state and action spaces, the reward
structure, and the number of possible solutions. Finally, we find that training generalist agents with
a diverse population produced by LIPO yields more robust agents than training with a less diverse
baseline population. See our project page at https://bit.ly/marl-lipo

2 PRELIMINARIES

Our main focus lies in fully cooperative environments modeled as decentralized partially observ-
able Markov decision processes (Dec-POMDP, Bernstein et al. (2002)). In this work, we start
our investigation in the two-player variant. A two-player Dec-POMDP is defined by a tuple
(S,A1,A2,Ω1,Ω2, T,O, r, γ,H), where S is the state space, A ≡ A1 ×A2 and Ω ≡ Ω1 × Ω2 are
the joint-action and joint-observation spaces of player 1 and player 2. The transition probability
from state s to s′ after taking a joint action (a1, a2) is given by T (s′|s, a1, a2). O(o1, o2|s) is the
conditional probability of observing a joint observation (o1, o2) under state s. All players share a
common reward function r(s, a1, a2), γ is the reward discount factor and H is the horizon length.

Players, with potentially different observation and action spaces, are controlled by policy π1 and π2.
At each timestep t, the players observe ot = (o1t , o

2
t) ∼ O(o1t , o

2
t |st) under state st ∈ S and produce

a joint action at = (a1t , a
2
t) ∈ A sampled from the joint policy π(at|τt) = π1(a1t |τ1t)π2(a2t |τ2t),

where τ1t and τ2t contain a trajectory history until timestep t from the perspective of each
agent. All players receive a shared reward rt = r(st, a

1
t , a

2
t). The return of a joint trajectory

τ = (o0, a0, r0, ..., rH−1, oH) ∈ T ≡ (Ω × A × R)H can be written as G(τ) =
∑H

t=0 γ
trt. The

expected return of a joint policy (π1, π2) is J(π1, π2) = Eτ∼ρ(π1,π2)G(τ), where ρ(π1, π2) is the
distribution over trajectories of the joint policy (π1, π2) and P (τ |π1, π2) is the probability of τ being
sampled from a joint policy (π1, π2).

We use subscripts to denote different joint policies and superscripts to refer to different player
roles. For example, πA = (π1

A, π
2
A) is a different joint policy from πB = (π1

B , π
2
B), and πi

A and
πj
A are policies of different roles.1 Finally, we denote the expected joint return of self-play (SP)

trajectories—where both policies are part of the same joint policy, πA—as JSP(πA) := J(π1
A, π

2
A)

and the expected joint return of cross-play (XP) trajectories—where policies are chosen from different
joint policies, πA and πB—as JXP(πA, πB) := J(π1

A, π
2
B) + J(π1

B , π
2
A).

Since we are interested in creating distinct policies for any Dec-POMDP, we need an environment-
agnostic measure that captures the similarity of policies. First, we consider a measure that can
compute the similarity between policies of the same role i, e.g., πi

A and πi
B . We can measure this

with the probability of a joint trajectory τ produced by either πi
A or πi

B . However, in the two-player
setting, we need to pair these policies with a reference policy πj

ref. Specifically, πi
A and πi

B are
considered similar if they are likely to produce the same trajectories when paired with an arbitrary
reference policy πj

ref. We define similar policies as follows:

1Note that LIPO can be applied to environments with more than two players with a slight modification. Specif-
ically, a policy πj would represent the joint policy of all players except player i, πj(aj

t |τ
j
t) = Πk ̸=iπ

k(ak
t |τk

t).

2

https://bit.ly/marl-lipo

Published as a conference paper at ICLR 2023

Definition 2.1 (Similar policies). Considering two policies of the same role i, πi
A and πi

B , and a
reference policy πj

ref of a different role j, πi
A is similar to πi

B up to ϵ if and only if maxτ∈T |1 −
P (τ |πi

A,πj
ref)

P (τ |πi
B ,πj

ref)
| ≤ ϵ, where 0 ≤ ϵ ≤ 1.

Next, we consider an alternate view on assessing the similarity between policies using policy
compatibility (Section 3). Policy compatibility measures the performance difference of a joint policy
πB before and after one of its policies πi

B is substituted by another policy πi
A. We define compatibility

between a policy πi
A and a joint policy πB as follows:

Definition 2.2 (Compatible policies). Given a policy πi
A and a joint policy πB , πi

A is compatible
with πB if and only if J(πi

A, π
j
B) ≥ (1− ϵ)JSP(πB).

3 LEARNING INCOMPATIBLE POLICIES (LIPO)

Our goal is to create distinct policies and, therefore, a population of diverse agents. First, we
theoretically show that policy compatibility can be used to identify whether two policies are different.
Based on this observation, we propose a novel training objective that produces a distinct policy. Then,
we extend this objective for training a population of diverse policies. Finally, we incorporate an MI
objective that encourages each policy to learn local variations.

3.1 LEARNING A DISTINCT POLICY VIA POLICY COMPATIBILITY

Low return

(𝜋𝜋𝐴𝐴1 , 𝜋𝜋𝐴𝐴2)

(𝜋𝜋𝐵𝐵1 , 𝜋𝜋𝐵𝐵2)
Fixed

High return

(a)

(𝜋𝜋𝐴𝐴1 , 𝜋𝜋𝐴𝐴2)

(𝜋𝜋𝐵𝐵1 , 𝜋𝜋𝐵𝐵2)
SimilarHigh return

(b)

(𝜋𝜋𝐴𝐴1 , 𝜋𝜋𝐴𝐴2)

(𝜋𝜋𝐵𝐵1 , 𝜋𝜋𝐵𝐵2)
DissimilarLow return

(c)

Figure 1: (a) The objective of πA (Eq. 1) in relation
to πB . (b, c) Conceptual illustration of Theorem
3.1 and Corollary 3.2. Solid lines represent given
relationships, and dotted lines represent implied
relationships.

In this section, we motivate our objective by
looking at two joint policies: πA = (π1

A, π
2
A)

and πB = (π1
B , π

2
B). The goal is for πA to learn

a different behavior from πB via the compati-
bility criterion. Importantly, the compatibility
criterion can be computed empirically without
direct access to the trajectory distribution, which
can be difficult to estimate. Under mild assump-
tions, we can simplify the setting such that a
simple relationship between similarity measure
and compatibility criterion emerges. By reason-
ing about the expected return under different
pairs of policies, we derive our main result.
Theorem 3.1. If πi

A is similar to πi
B , then πi

A is compatible with πB . (The proof is in App. A.)

Corollary 3.2. If πi
A is not compatible with πB , then πi

A is not similar to πi
B .

The result from Corollary 3.2 shows that we can find a policy πi
A that is not similar to πi

B by
decreasing its compatibility with πB until they are incompatible, i.e., J(πi

A, π
j
B) < (1− ϵ)JSP(πB).

Additionally, we can ensure that πA learns a meaningful solution by maximizing JSP(πA). Assuming
that πB has learned a solution and is fixed, the optimization objective of πA can be written as

max
πA

JSP(πA) subject to J(πi
A, π

j
B) < (1− ϵ)JSP(πB) ∀i, j ∈ {1, 2}, i ̸= j (1)

A way to solve such a constrained problem is to convert the constraints into regularization terms. For
simplicity, we use a common λXP > 0 as a hyperparameter for the constraints. Then, we can write
the soft objective of Eq. 1 as

max
πA

JSP(πA)− λXPJXP(πA, πB) (2)

3.2 LEARNING A POPULATION OF DIVERSE POLICIES

To create a population of N diverse policies, P = {πA|1 ≤ A ≤ N}, we need an objective
that requires each member of the population to have a different behavior relative to the rest of the
population. We can write such an objective by expanding the XP term in Eq. (2) to include all other
policies in the population. Additionally, we relax the assumption that other policies are fixed to

3

Published as a conference paper at ICLR 2023

allow concurrent training of all policies. For a policy πA ∈ P , with an aggregation function fagg, its
objective becomes

max
πA

JLIPO(πA,P) = JSP(πA)− λXPJ̃XP(πA,P), (3)

where J̃XP(πA,P) = fagg(Bxp
A), (4)

Bxp
A = {JXP(πA, πB) | πB ∈ P−A}, (5)

P−A = P\{πA} (6)
While using the average operation as the aggregation function is plausible, we find that using the max
operation helps stabilize the training process and produces more diverse policies. We suspect that the
average operation might produce many conflicting gradients and does not prioritize compatible XP
pairs. We refer to JLIPO as the compatibility gap between a policy πA and a population P .

We can see that the compatibility gap objective only uses the expected return (JSP and J̃XP) and is
insensitive to the state and action information. We argue that this distinction between LIPO and
previous methods helps the agents discover more solutions in various situations (Sec. 4.1 and 4.5).

3.3 INDUCING VARIATIONS IN EACH POLICY

It is important to note that, regardless of the population size, there could be policies of role i that
are compatible with πA ∈ P but not similar to πi

A. We consider those policies to be variations of
πi
A and propose to capture such variations via an MI objective. Specifically, we condition πi

A on
a latent variable zi such that πA has the form of πA(a|τ) = E(z1,z2)π

1
A(a

1|τ1, z1)π2
A(a

2|τ2, z2)
where p(z1, z2) is a pre-defined prior distribution. We can induce variations of πi

A by maximizing
I({oi, ai}; zi), where I(·; ·) is the MI between two random variables. Intuitively, this objective
encourages each policy to observe different observations and perform different actions given different
values of the latent variable. However, maximizing I({oi, ai}; zi) directly is intractable, instead we
optimize the variational lower bound of the MI (Jordan et al., 1999) (see App. B for the derivation)

I({oi, ai}; zi) ≥ H(zi) + Ezi,(oi,ai)[log qϕA
(zi|oi, ai)], (7)

where qϕA
(zi|oi, ai) is an approximation of the true posterior p(zi|oi, ai) parameterized by ϕA. So,

maximizing I({o1, a1}; z1) and I({o2, a2}; z2) is an optimization problem that can be written as

max
πA,ϕA

1

2

2∑
i=1

H(zi) + Ezi,(oi,ai) log qϕA
(zi|oi, ai) (8)

In the previous work (Mahajan et al., 2019), shared z (i.e., z1 = z2) is used allowing both policies to
collectively switch between different modes of behavior. However, LIPO uses independently sampled
z as it utilizes z for a different purpose. Specifically, LIPO maximizes JLIPO to learn diverse solutions
and optimizes the MI objective to learn variations of each solution. That is, the MI objective does not
directly impact the diversity between different policies but increases variations of each individual
policy. We note that the MI objective is optional; we show that without the MI objective, LIPO still
produces diverse policies (Sec. 4.4).

3.4 IMPLEMENTATION

In practice, we modify the MI objective (Eq. 8) to be differentiable with respect to the policy πi
A.

Specifically, the variational posterior qϕA
is modified such that, instead of a sampled action ai, it takes

the action distribution πi
A(·|oi, zi) as an input, i.e., qϕA

(z|o, πi
A(·|oi, zi)). In contrast to previous

MI-based approaches (Eysenbach et al., 2018; Sharma et al., 2019; Jiang & Lu, 2021; Lucas & Allen,
2022), we can optimize I({oi, ai}; zi) directly without computing an auxiliary reward (Mahajan
et al., 2019; Osa et al., 2022). The loss function of the modified MI objective is

LMI(πA, ϕA) = −1

2

2∑
i=1

Ezi,(oi,ai) log qϕA
(zi|oi, πi

A(·|oi, zi))) (9)

The objective of a policy πA in a population P becomes
max
πA,ϕA

JLIPO(πA,P)− λMILMI(πA, ϕA) (10)

4

Published as a conference paper at ICLR 2023

We set z as a discrete variable and use the uniform distribution for p(z1) and p(z2). At the beginning
of each episode, each policy is given an independently sampled z that will be used until the end of
the episode. We use MAPPO (Yu et al., 2021) for maximizing JSP and minimizing J̃XP. More details,
including the pseudocode and the extension to more than two players, can be found in App. D.

4 EXPERIMENTS

We study the effectiveness of LIPO under three multi-goal cooperative environments in which both
players must collectively choose to accomplish one of the available goals. We evaluate the diversity of
a population based on the number of distinct goals achieved. We compare LIPO to other cooperative
MARL methods that do not require domain knowledge to generate diverse agents. Our baselines are
as follows: (i) Multi SP (multiple runs of self-play), (ii) SPMI (A single run of SP with added MI
objective), (iii) MAVEN (Mahajan et al., 2019), and (iv) TrajeDi (Lupu et al., 2021). We also use
Multi SPMI and Multi MAVEN as baselines by training SPMI and MAVEN multiple times. We also
discuss on methods that utilize domain knowledge in Sec. 5.

4.1 DISCOVERING DIVERSE SOLUTIONS

We use two simple environments to study the effectiveness of various methods in discovering
solutions: (i) One-Step Cooperative Matrix Game (CMG), in which there are many possible solutions,
and (ii) Point Mass Rendezvous (PMR), a temporally extended cooperative navigation environment.

One-Step Cooperative Matrix Game (CMG): A game of CMG is defined by a tuple
(M, {km}, {rm}), where M is the number of solutions. For m ∈ {1, ...,M}, km is the number of
compatible actions and rm is the reward of a solution m. By choosing the same solution, both players
get a reward rm associated with the chosen solution. We consider two setups of CMG: sub-optimal
(CMG-S) and hard-to-find (CMG-H). For CMG-S, we set (M = 32, km = 8, rm = 0.5∗(1+ m−1

M−1)),
which causes each solution to have a different reward, ranging from 0.5 to 1. For CMG-H, we use
(M = 32, km = m, rm = 1), which makes solutions with a smaller number of compatible actions
harder to be found by random exploration. An example payoff matrix is shown in Fig. 2a.

33300

33300

33300

00022

00022

0

0

0

0

0

000001

(a) (b) (c)

Figure 2: (a) The payoff matrix of
a CMG game with (M = 3, km =
m, rm = m). (b, c) The agents (orange)
and landmark positions (blue) of PMR-C
and PMR-L.

Point Mass Rendezvous (PMR): The environment is
based on the Multi-Agent Particle Environment (Lowe
et al., 2017; Terry et al., 2020). The goal of this envi-
ronment is for the two agents to navigate to a landmark
together. There are M = 4 landmarks, and we consider
each landmark as a solution in this environment. This envi-
ronment has two modes: PMR-C and PMR-L. In PMR-C,
landmarks are distributed evenly on the circumference of
a circle. Thus, all landmarks are equally easy to find and
optimal. In PMR-L, landmarks are placed on a line. In
this scenario, closer landmarks are easier to find.

We define the population size |P| of each method as fol-
lows: For SPMI and MAVEN, |P| is equal to the number of dimensions of the latent variable, |z|. For
Multi SPMI and Multi MAVEN, |P| = |z| · nseed where nseed is the number of random seeds and we
use |z| = 8. For Multi SP, TrajeDi, and LIPO, |P| is the number of joint policies in the population.

Results: Fig. 3 shows the numbers of learned solutions, averaged over three runs. In all environments,
LIPO consistently discovers more solutions than the baselines, given the same population size. The
baselines find fewer solutions in CMG-H and PMR-L than they do in CMG-S and PMR-C, whereas
LIPO performs similarly across settings. LIPO is also better than the baselines at finding sub-optimal
solutions in CMG-S. We note that Multi SP and TrajeDi perform almost ideally in PMR-C, where all
solutions are equivalent, but perform worse in other settings. Also, Multi SPMI finds all four solutions
in PMR when the population size is bigger than 8. However, it performs poorly in CMG. LIPO’s
consistency across environments and settings demonstrates that LIPO is still effective when (i) many
solutions exist, (ii) solutions are not equally optimal, and (iii) solutions are not equally likely to be
found by random exploration. We also have experimented with stronger regularization coefficients
for the baselines, which help the baselines discover more solutions. However, if the regularization
coefficient is too large, they fail to produce capable policies.

5

Published as a conference paper at ICLR 2023

8 16 32 64

0

8

16

32

Multi SP
SP MI

MAVEN
TrajeDi

Multi SP MI
Multi MAVEN

LIPO
Ideal

Population size
D

is
co

ve
re

d
 s

o
lu

ti
o

ns

8 16 32 64

0

8

16

32

Multi SP
SP MI

MAVEN
TrajeDi

Multi SP MI
Multi MAVEN

LIPO
Ideal

Population size

D
is

co
ve

re
d

 s
o

lu
ti

o
ns

8 16 32 64

0

8

16

32

Multi SP
SP MI

MAVEN
TrajeDi

Multi SP MI
Multi MAVEN

LIPO
Ideal

Population size

D
is

co
ve

re
d

 s
o

lu
ti

o
ns

(a) CMG-S

8 16 32 64

0

8

16

32

Multi SP
SP MI

MAVEN
TrajeDi

Multi SP MI
Multi MAVEN

LIPO
Ideal

Population size

D
is

co
ve

re
d

 s
o

lu
ti

o
ns

(b) CMG-H

12 4 8 16 32

1

2

3

4

Multi SP
SP MI

MAVEN
TrajeDi

Multi SP MI
Multi MAVEN

LIPO
Ideal

Population size

D
is

co
ve

re
d

 s
o

lu
ti

o
ns

12 4 8 16 32

1

2

3

4

Multi SP
SP MI

MAVEN
TrajeDi

Multi SP MI
Multi MAVEN

LIPO
Ideal

Population size

D
is

co
ve

re
d

 s
o

lu
ti

o
ns

(c) PMR-C

12 4 8 16 32

1

2

3

4

Multi SP
SP MI

MAVEN
TrajeDi

Multi SP MI
Multi MAVEN

LIPO
Ideal

Population size

D
is

co
ve

re
d

 s
o

lu
ti

o
ns

(d) PMR-L

Figure 3: Numbers of discovered solutions. Ideally, if the
population size increases by one, one more solution should
be discovered, as depicted by the dashed lines (assuming that
a joint policy does not produce a multi-modal behavior).

1 2 4 8

1

2

4

8

1
0.5

0.25
0.1

Ideal

Population size

C
o

m
p

et
en

t
ag

en
ts

1 2 4 8

1

2

4

8

1
0.5

0.25
0.1

Ideal

Population size

C
o

m
p

et
en

t
ag

en
ts

(a) PMR-C

1 2 4 8

1

2

4

8

1
0.5

0.25
0.1

Ideal

Population size

C
o

m
p

et
en

t
ag

en
ts

(b) PMR-L

Figure 4: Numbers of compe-
tent joint policies using vari-
ous combinations of N (x-axis)
and λXP (colors) in PMR.

4.2 TRADE-OFF BETWEEN COMPETENCY AND DISSIMILARITY OF JOINT POLICIES

It is possible that optimizing a regularized objective might incur training instability and create
incapable policies. Here, we investigate the effect of different combinations of λXP and the population
size (N) on the competency of the policies.

Fig. 4 shows the number of competent joint policies when using different values of N and λXP in
PMR. Particularly, in PMR, a joint policy is considered competent when both players stay close to
a landmark at the end of an episode. We observe that when the population size is larger than the
number of solutions (N > M), some surplus policies do not learn to reach a goal. Importantly, the
number of competent joint policies depends on the value of λXP: lower values of λXP yield more
capable policies. However, using too low λXP will generate policies that share a common solution
when N ≤ M as shown in App. J.1.1. Additionally, when N ≤ M , all trained agents are competent
except when λXP is too high in PMR-L. These results suggest that there is a trade-off between the
number of capable joint policies and policy dissimilarity. When using a larger population size, a
small λXP should be used to avoid producing incompetent agents, while a bigger λXP should be used
with smaller population sizes to ensure the dissimilarity between joint policies.

4.3 TRADE-OFF BETWEEN COMPUTATION COST AND DIVERSITY

1 2 3 4 5 6 7

1

2

3

4

N = 4
PMR-C

N = 8
PMR-L

Cross-play pairs per iteration

D
is

co
ve

re
d

 c
o

nv
en

ti
o

ns

Figure 5: Number of learned solu-
tions using various nxp.

Not only is using bigger values of N more likely to produce
incompetent policies, but it is also computationally expen-
sive. Formally, the computation complexity of approximating
J̃XP(·,P) is O(Nnxp) where nxp is the number of XP pairs
used to approximate J̃XP(πA,P). So, we investigate a way
to reduce the cost of calculating J̃XP(πA,P) by reducing nxp.
According to Eq. 5, the default value is nxp = N − 1. When
nxp < N − 1, nxp policies are chosen randomly from P−A by
sampling without replacement.

We observe that, while being computationally cheaper, using
nxp < N − 1 tends to produce less diverse populations as
shown in Fig. 5. Thus, nxp can be considered a hyperparameter
that controls the computation-diversity trade-off. However, as shown by the dashed lines, the effect
of nxp on population diversity is less prominent in PMR-C, where solutions are equally likely to be
found. We use nxp = N − 1 in all other experiments. See App. J.1.2 for results in CMG.

6

Published as a conference paper at ICLR 2023

4.4 EFFECT OF THE MUTUAL INFORMATION OBJECTIVE

(a) λMI = 0.5 (b) λMI = 0.5 (c) λMI = 0.5 (d) λMI = 0.5

(e) λMI = 0 (f) λMI = 0 (g) λMI = 0 (h) λMI = 0

Figure 6: The top and bottom rows show four joint policies produced by a single run of LIPO training
with and without the MI objective, respectively. Different colors of the trajectories correspond to
different values of z. The orange and green circles show the starting positions. The blue circles
represent the landmarks.

Fig. 6 shows the behaviors of the policies produced by LIPO with and without the MI objective in
PMR-C. We can see the effect of the MI objective in the variety of the trajectories. Overall, each
agent exhibits larger variations given a small MI regularization λMI = 0.5. This result aligns with
our motivation of using the MI objective to learn variations of each solution. With or without the MI
regularization, LIPO discovers all the landmarks with N = 4.

4.5 DISCOVERING RECIPES IN MULTI-RECIPE OVERCOOKED

Chopping
Station

Onion

Lettuce

Tomato

Delivery
Location

Carrot

Counter Plate

Players

(a) A sample initial state

Chopped Tomato

Chopped Lettuce

Tomato & Lettuce Salad Tomato & Carrot Salad

Chopped Onion

Chopped Carrot

(b) Possible recipes

Figure 7: An overview of the multi-recipe Overcooked game.

Overcooked, a collaborative cooking
game, has been used to study the
cooperative ability of learned agents
in prior works (Carroll et al., 2019;
Charakorn et al., 2020; Strouse et al.,
2021; McKee et al., 2022). To in-
vestigate the usefulness of LIPO in
a high-dimensional environment, we
implement a more complex version of
the game based on the work of Wu
et al. (2021); players have to complete
and serve one of the six pre-defined
recipes as fast as possible, as opposed
to delivering a single menu item re-
peatedly. We emphasize that this environment is much more challenging than the ones in the previous
experiments because of various aspects: First, it has a sparse reward signal. Second, there are multiple
sub-tasks. Third, different recipes have different sub-tasks. Each of these characteristics of the
environment complicates the process of finding diverse solutions. Furthermore, we note that recipes
containing a carrot or a tomato are harder to complete than other recipes as they involve an additional
coordination step. Particularly, carrot and tomato have to be sent over by the agent on the right, unlike
lettuce and onion. Fig. 7 shows an overview of the game.

The goal in this experiment is to learn a population of behaviorally diverse agents. We choose to
quantify the diversity of a population based on the entropy of its recipe distribution. For a population

P , we approximate the probability of recipe i being completed as P (recipei|P) ≈
∑

πA
mi(πA)∑

i

∑
πA

mi(πA) ,

where mi(πA) denotes the frequency of recipe i under a joint policy πA. The recipe frequencies,
{mi(πA)|1 ≤ i ≤ 6}, for each joint policy πA ∈ P are measured by counting the completed recipes
from 1,000 self-play episodes. For Multi SP, TrajeDi and LIPO, we set N = 8. For Multi SPMI and
Multi MAVEN, we use nseed = 8 and |z| = 8.

7

Published as a conference paper at ICLR 2023

Lettuce Onion Tomato Carrot Tomato
Lettuce

Tomato
Carrot

0

0.1

0.2

0.3

0.4

0.5

0.6

R
ec

ip
e

p
ro

b
ab

il
it

y

(a) Multi SP

Lettuce Onion Tomato Carrot Tomato
Lettuce

Tomato
Carrot

0

0.1

0.2

0.3

0.4

0.5

0.6

R
ec

ip
e

p
ro

b
ab

il
it

y

(b) Multi SPMI

Lettuce Onion Tomato Carrot Tomato
Lettuce

Tomato
Carrot

0

0.1

0.2

0.3

0.4

0.5

0.6

R
ec

ip
e

p
ro

b
ab

il
it

y

(c) Multi MAVEN

Lettuce Onion Tomato Carrot Tomato
Lettuce

Tomato
Carrot

0

0.1

0.2

0.3

0.4

0.5

0.6

R
ec

ip
e

p
ro

b
ab

il
it

y

(d) TrajeDi

Lettuce Onion Tomato Carrot Tomato
Lettuce

Tomato
Carrot

0

0.1

0.2

0.3

0.4

0.5

0.6

R
ec

ip
e

p
ro

b
ab

il
it

y
(e) LIPO (λMI = 0.5)

Lettuce Onion Tomato Carrot Tomato
Lettuce

Tomato
Carrot

0

0.1

0.2

0.3

0.4

0.5

0.6

R
ec

ip
e

p
ro

b
ab

il
it

y

(f) LIPO (λMI = 0)

Figure 8: Recipe distributions of generated populations compared to the uniform distribution (dashed
line). We provide a reference for the uniform distribution as it has the highest entropy.

Table 1: The means and standard errors entropy of approximated population recipe distributions.

Multi SP TrajeDi Multi SPMI Multi MAVEN LIPO (λMI = 0.5) LIPO (λMI = 0)

1.16 ± 0.03 0.98 ± 0.17 1.43 ± 0.05 1.53 ± 0.07 1.58 ± 0.07 1.26 ± 0.17

Results: Quantitatively, Tab. 1 shows that LIPO has the highest population recipe distribution
entropy, averaged over five random seeds. This result indicates that LIPO populations use all recipes
more uniformly than the baseline populations, even though some recipes take longer to complete
or are harder to find by random exploration. The recipe distribution of populations produced by
each method can be found in Fig. 8. We find that LIPO populations with λMI = 0 still, similar
to λMI = 0.5, consistently learn to use the hard-to-find Tomato & Carrot Salad recipe.
However, the frequencies of Chopped Tomato and Chopped Carrot are lowered (Fig. 8f).
This means that there are multiple joint policies that learn to complete the same recipe while being
incompatible with each other. We suspect that using λMI > 0 alleviates this problem by regularizing
each joint policy to represent a policy with broader state-action coverage (e.g., learn multiple ways of
completing a recipe), indirectly pushing other joint policies to use different recipes in order to be
incompatible. Qualitatively, we can see in App. J.2 that the baselines produce agents with similar
recipe frequencies. The resulting populations, thus, contain agents with a similar recipe preference.
In contrast, LIPO produces agents with distinct recipe frequencies, collectively making the population
more diverse than the baselines. We also visualize the behaviors learned by LIPO in App. J.3.

4.6 TRAINING GENERALIST AGENTS WITH GENERATED POPULATIONS

In addition to evaluating the diversity of agents in Overcooked, we quantify the usefulness of the
produced agents by using them as training partners of a generalist agent and test the agent with
held-out populations. Intuitively, more diverse training partners would enable the agent to generalize
and coordinate with unseen agents better. Additionally, we include a population of six specialized SP
policies where each policy is trained to complete a specific recipe by adjusting the reward function.
The specialist population is created for evaluating the agent when the partner has a strong preference.

Fig. 9a shows that all generalist agents perform similarly when tested with held-out baseline
populations. However, the agents trained with a baseline population perform poorly when matched
with held-out LIPO and specialist populations. In contrast, those trained with a LIPO population
perform better in both situations. Specifically, they have a significantly higher success rate when
paired with the specialist with a strong preference for Tomato & Carrot Salad as shown in
Fig. 9b. We attribute the success rate difference to the fact that this recipe has a lower completion
probability in all except LIPO populations. As a result, generalist agents trained with a LIPO
population perform better in terms of the overall success rate when tested with specialist agents.
Overall, training with a LIPO population helps the generalist agents to better coordinate with more
partner types as indicated by the harmonic means.

8

Published as a conference paper at ICLR 2023

0.90
(0.05)

0.86
(0.03)

0.99
(0.00)

0.98
(0.00)

0.67
(0.02)

0.66
(0.07)

0.82
(0.03)

0.94
(0.04)

0.87
(0.05)

0.99
(0.00)

0.99
(0.00)

0.43
(0.03)

0.61
(0.07)

0.73
(0.03)

0.88
(0.02)

0.88
(0.02)

1.00
(0.00)

0.99
(0.00)

0.43
(0.04)

0.60
(0.02)

0.72
(0.03)

0.87
(0.02)

0.97
(0.01)

0.99
(0.01)

0.98
(0.00)

0.51
(0.03)

0.57
(0.01)

0.75
(0.02)

0.92
(0.05)

0.94
(0.06)

1.00
(0.02)

0.99
(0.00)

0.49
(0.02)

0.56
(0.07)

0.75
(0.01)

Multi
SP TrajeDi

Multi
SP MI

Multi
MAVEN LIPO Specialist

Harmonic
mean

LIPO

Multi
MAVEN

Multi
SP MI

TrajeDi

Multi
SP

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Test population

Tr
ai

ni
ng

 p
o

p
ul

at
io

n

0.90
(0.05)

0.86
(0.03)

0.99
(0.00)

0.98
(0.00)

0.67
(0.02)

0.66
(0.07)

0.82
(0.03)

0.94
(0.04)

0.87
(0.05)

0.99
(0.00)

0.99
(0.00)

0.43
(0.03)

0.61
(0.07)

0.73
(0.03)

0.88
(0.02)

0.88
(0.02)

1.00
(0.00)

0.99
(0.00)

0.43
(0.04)

0.60
(0.02)

0.72
(0.03)

0.87
(0.02)

0.97
(0.01)

0.99
(0.01)

0.98
(0.00)

0.51
(0.03)

0.57
(0.01)

0.75
(0.02)

0.92
(0.05)

0.94
(0.06)

1.00
(0.02)

0.99
(0.00)

0.49
(0.02)

0.56
(0.07)

0.75
(0.01)

Multi
SP TrajeDi

Multi
SP MI

Multi
MAVEN LIPO Specialist

Harmonic
mean

LIPO

Multi
MAVEN

Multi
SP MI

TrajeDi

Multi
SP

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Test population

Tr
ai

ni
ng

 p
o

p
ul

at
io

n

(a)

0.88
(0.08)

0.74
(0.07)

0.53
(0.10)

0.47
(0.08)

0.78
(0.13)

0.53
(0.11)

0.60
(0.12)

0.96
(0.08)

0.72
(0.12)

0.41
(0.12)

0.40
(0.10)

0.87
(0.07)

0.27
(0.16)

0.49
(0.11)

0.93
(0.01)

0.72
(0.06)

0.49
(0.05)

0.34
(0.04)

0.78
(0.06)

0.33
(0.03)

0.51
(0.04)

0.88
(0.02)

0.93
(0.04)

0.40
(0.03)

0.33
(0.02)

0.59
(0.02)

0.34
(0.02)

0.47
(0.01)

0.94
(0.15)

0.88
(0.14)

0.30
(0.12)

0.23
(0.17)

0.77
(0.16)

0.23
(0.16)

0.37
(0.09)

Lettuce Onion Tomato Carrot
Tomato
Lettuce

Tomato
Carrot

Harmonic
mean

LIPO

Multi
MAVEN

Multi
SP MI

TrajeDi

Multi
SP

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Test specialist partner

Tr
ai

ni
ng

 p
o

p
ul

at
io

n

(b)

0.90
(0.05)

0.86
(0.03)

0.99
(0.00)

0.98
(0.00)

0.67
(0.02)

0.66
(0.07)

0.82
(0.03)

0.94
(0.04)

0.87
(0.05)

0.99
(0.00)

0.99
(0.00)

0.43
(0.03)

0.61
(0.07)

0.73
(0.03)

0.88
(0.02)

0.88
(0.02)

1.00
(0.00)

0.99
(0.00)

0.43
(0.04)

0.60
(0.02)

0.72
(0.03)

0.87
(0.02)

0.97
(0.01)

0.99
(0.01)

0.98
(0.00)

0.51
(0.03)

0.57
(0.01)

0.75
(0.02)

0.92
(0.05)

0.94
(0.06)

1.00
(0.02)

0.99
(0.00)

0.49
(0.02)

0.56
(0.07)

0.75
(0.01)

Multi
SP TrajeDi

Multi
SP MI

Multi
MAVEN LIPO Specialist

Harmonic
mean

LIPO

Multi
MAVEN

Multi
SP MI

TrajeDi

Multi
SP

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Test population

Tr
ai

ni
ng

 p
o

p
ul

at
io

n

Figure 9: The mean success rates and standard errors (in parentheses) of trained generalist agents
when matched with unseen test agents. Each generalist agent is trained with only one population and
evaluated with all test partners, each with 300 episodes. The result in each row is averaged over five
generalist agents trained with an independently generated population from the corresponding method.
A held-out population from each method is used as a test population. The right-most column shows
the harmonic mean of the success rate of all held-out populations (a) and specialist agents (b).

5 RELATED WORK

Learning a collection of diverse agents has been utilized in various contexts (Parker-Holder et al.,
2020; Sun et al., 2020; Zahavy et al., 2021; Zhou et al., 2021). In the cooperative domain, Canaan et al.
(2019; 2020) use the Quality Diversity (QD) algorithm (Mouret & Clune, 2015; Pugh et al., 2016)
to produce a population of behaviorally diverse agents. QD, however, requires domain knowledge
to encode different types of behaviors. For example, in CMG, the algorithm requires the mapping
between actions and corresponding solutions. In Overcooked, it needs to know all possible recipes
beforehand. Without such a domain knowledge, it would be difficult to use QD to produce a diverse
population. TrajeDi (Lupu et al., 2021) produces a diverse population of agents based on the trajectory
distribution. Finally, MEP (Zhao et al., 2021) trains a population of agents with an auxiliary reward
based on population entropy. Like TrajeDi and MEP, ours does not require domain-specific knowledge.
However, to promote behavioral diversity, LIPO utilizes the expected returns of different policy pairs
as opposed to state-action information.

The idea of diversifying the empirical return has been explored in the context of finding diverse
solutions in non-transitive competitive games (Liu et al., 2021; Balduzzi et al., 2019; Perez-Nieves
et al., 2021). In particular, Liu et al. (2021) share some similar ideas with our work. They propose
to use the expected returns, when encountering different opponents, and state-action information to
promote diversity of agents. A concurrent work by Rahman et al. (2022) applies a similar idea of
diversifying the expected joint return to generate diverse partners in cooperative settings. LIPO can
be thought of as a special case designed specifically for cooperative environments (see App. E).

MI objectives have been used in RL to learn diverse behaviors (Eysenbach et al., 2018; Sharma et al.,
2019; Kumar et al., 2020; Osa et al., 2022). In cooperative MARL, MAVEN (Mahajan et al., 2019)
optimizes both RL and MI objectives to encourage the agents to explore in a committed manner and
discover diverse solutions. Also, Any-play (Lucas & Allen, 2022) uses a similar objective to produce
training partners with many solutions for a generalist agent. In contrast, our approach uses the MI
objective to regularize each policy to learn local variations of each solution.

6 CONCLUSION

We propose LIPO, a simple and generic method that can create a population of diverse agents in
cooperative multi-agent environments. Unlike previous work that uses state-action information
from joint trajectories, LIPO utilizes the concept of policy compatibility to create diverse policies.
This alternative view of quantifying diversity makes LIPO more robust to state and action spaces.
Also, LIPO uses the MI objective to learn local variations of each solution. Empirically, LIPO
consistently produces more diverse populations than the baselines across a variety of three multi-goal
environments. Finally, in multi-recipe Overcooked, LIPO produces populations of diverse partners
that help the generalist agents to generalize to unseen agents better. We include further discussions
and limitations of LIPO in App. F and G.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENT

This work is partially supported by King Mongkut’s Institute of Technology Ladkrabang [2566-02-
06-002]. We thank Natchaya Sricom for drawing Fig. 1 and 7. We thank Supasorn Suwajanakorn,
Sucha Supittayapornpong and Maytus Piriyajitakonkij for their suggestions on early draft versions.
We also thank anonymous reviewers for their constructive feedbacks.

REPRODUCIBILITY STATEMENT

We have include additional information to reproduce the experimental results in the supplementary
text:

• Environment details (App. C)

• Pseudocode and implementation details (App. D)

• Hyperparameters used in all experiments (App. H and I)

The source code is available at https://github.com/51616/marl-lipo.

REFERENCES

Stefano V Albrecht and Peter Stone. Autonomous agents modelling other agents: A comprehensive
survey and open problems. Artificial Intelligence, 258:66–95, 2018.

David Balduzzi, Marta Garnelo, Yoram Bachrach, Wojciech Czarnecki, Julien Perolat, Max Jader-
berg, and Thore Graepel. Open-ended learning in symmetric zero-sum games. In International
Conference on Machine Learning, pp. 434–443. PMLR, 2019.

Nolan Bard, Jakob N Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H Francis Song, Emilio
Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, et al. The hanabi challenge: A
new frontier for ai research. Artificial Intelligence, 280:103216, 2020.

Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of
decentralized control of markov decision processes. Mathematics of operations research, 27(4):
819–840, 2002.

Rodrigo Canaan, Julian Togelius, Andy Nealen, and Stefan Menzel. Diverse agents for ad-hoc
cooperation in hanabi. In 2019 IEEE Conference on Games (CoG), pp. 1–8. IEEE, 2019.

Rodrigo Canaan, Xianbo Gao, Julian Togelius, Andy Nealen, and Stefan Menzel. Generating and
adapting to diverse ad-hoc cooperation agents in hanabi. arXiv preprint arXiv:2004.13710, 2020.

Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca
Dragan. On the utility of learning about humans for human-ai coordination. Advances in neural
information processing systems, 32, 2019.

Rujikorn Charakorn, Poramate Manoonpong, and Nat Dilokthanakul. Investigating partner diversifica-
tion methods in cooperative multi-agent deep reinforcement learning. In International Conference
on Neural Information Processing, pp. 395–402. Springer, 2020.

Rujikorn Charakorn, Poramate Manoonpong, and Nat Dilokthanakul. Learning to cooperate with
unseen agents through meta-reinforcement learning. In Proceedings of the 20th International
Conference on Autonomous Agents and MultiAgent Systems, pp. 1478–1479, 2021.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
need: Learning skills without a reward function. In International Conference on Learning
Representations, 2018.

Ahana Ghosh, Sebastian Tschiatschek, Hamed Mahdavi, and Adish Singla. Towards deployment
of robust cooperative ai agents: An algorithmic framework for learning adaptive policies. In
Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems,
pp. 447–455, 2020.

10

https://github.com/51616/marl-lipo

Published as a conference paper at ICLR 2023

Aditya Grover, Maruan Al-Shedivat, Jayesh Gupta, Yuri Burda, and Harrison Edwards. Learning
policy representations in multiagent systems. In International conference on machine learning, pp.
1802–1811. PMLR, 2018.

Pengjie Gu, Mengchen Zhao, Jianye Hao, and Bo An. Online ad hoc teamwork under partial
observability. In International Conference on Learning Representations, 2021.

Jerry Zhi-Yang He, Zackory Erickson, Daniel S Brown, Aditi Raghunathan, and Anca Dragan.
Learning representations that enable generalization in assistive tasks. In 6th Annual Conference on
Robot Learning, 2022.

Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. “other-play” for zero-shot
coordination. In International Conference on Machine Learning, pp. 4399–4410. PMLR, 2020.

Jiechuan Jiang and Zongqing Lu. The emergence of individuality. In International Conference on
Machine Learning, pp. 4992–5001. PMLR, 2021.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction to
variational methods for graphical models. Machine learning, 37(2):183–233, 1999.

Paul Knott, Micah Carroll, Sam Devlin, Kamil Ciosek, Katja Hofmann, Anca Dragan, and Rohin
Shah. Evaluating the robustness of collaborative agents. In Proceedings of the 20th International
Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’21, pp. 1560–1562, Rich-
land, SC, 2021. International Foundation for Autonomous Agents and Multiagent Systems. ISBN
9781450383073.

Jakub Grudzien Kuba, Ruiqing Chen, Munning Wen, Ying Wen, Fanglei Sun, Jun Wang, and Yaodong
Yang. Trust region policy optimisation in multi-agent reinforcement learning. arXiv preprint
arXiv:2109.11251, 2021.

Saurabh Kumar, Aviral Kumar, Sergey Levine, and Chelsea Finn. One solution is not all you need:
Few-shot extrapolation via structured maxent rl. Advances in Neural Information Processing
Systems, 33:8198–8210, 2020.

Joel Z Leibo, Edgar A Dueñez-Guzman, Alexander Vezhnevets, John P Agapiou, Peter Sunehag,
Raphael Koster, Jayd Matyas, Charlie Beattie, Igor Mordatch, and Thore Graepel. Scalable
evaluation of multi-agent reinforcement learning with melting pot. In International Conference on
Machine Learning, pp. 6187–6199. PMLR, 2021.

Xiangyu Liu, Hangtian Jia, Ying Wen, Yaodong Yang, Yujing Hu, Yingfeng Chen, Changjie Fan,
and Zhipeng Hu. Towards unifying behavioral and response diversity for open-ended learning in
zero-sum games. Advances in Neural Information Processing Systems, 34, 2021.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. Advances in neural information
processing systems, 30, 2017.

Keane Lucas and Ross E Allen. Any-play: An intrinsic augmentation for zero-shot coordination.
arXiv preprint arXiv:2201.12436, 2022.

Andrei Lupu, Brandon Cui, Hengyuan Hu, and Jakob Foerster. Trajectory diversity for zero-shot
coordination. In International Conference on Machine Learning, pp. 7204–7213. PMLR, 2021.

Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. Maven: Multi-agent
variational exploration. In Advances in Neural Information Processing Systems, pp. 7611–7622,
2019.

Anuj Mahajan, Mikayel Samvelyan, Tarun Gupta, Benjamin Ellis, Mingfei Sun, Tim Rocktäschel,
and Shimon Whiteson. Generalization in cooperative multi-agent systems. arXiv preprint
arXiv:2202.00104, 2022.

Kevin R McKee, Joel Z Leibo, Charlie Beattie, and Richard Everett. Quantifying the effects of
environment and population diversity in multi-agent reinforcement learning. Autonomous Agents
and Multi-Agent Systems, 36(1):1–16, 2022.

11

Published as a conference paper at ICLR 2023

Reuth Mirsky, Ignacio Carlucho, Arrasy Rahman, Elliot Fosong, William Macke, Mohan Sridharan,
Peter Stone, and Stefano V Albrecht. A survey of ad hoc teamwork research. In European
Conference on Multi-Agent Systems, pp. 275–293. Springer, 2022.

Jean-Baptiste Mouret and Jeff Clune. Illuminating search spaces by mapping elites. arXiv preprint
arXiv:1504.04909, 2015.

Darius Muglich, Luisa M Zintgraf, Christian A Schroeder De Witt, Shimon Whiteson, and Jakob
Foerster. Generalized beliefs for cooperative ai. In International Conference on Machine Learning,
pp. 16062–16082. PMLR, 2022.

Takayuki Osa, Voot Tangkaratt, and Masashi Sugiyama. Discovering diverse solutions in deep
reinforcement learning by maximizing state-action-based mutual information. Neural Networks,
2022.

Sagar Parekh, Soheil Habibian, and Dylan P Losey. Rili: Robustly influencing latent intent. arXiv
preprint arXiv:2203.12705, 2022.

Jack Parker-Holder, Aldo Pacchiano, Krzysztof M Choromanski, and Stephen J Roberts. Effective
diversity in population based reinforcement learning. Advances in Neural Information Processing
Systems, 33:18050–18062, 2020.

Nicolas Perez-Nieves, Yaodong Yang, Oliver Slumbers, David H Mguni, Ying Wen, and Jun Wang.
Modelling behavioural diversity for learning in open-ended games. In International Conference on
Machine Learning, pp. 8514–8524. PMLR, 2021.

Justin K Pugh, Lisa B Soros, and Kenneth O Stanley. Quality diversity: A new frontier for evolutionary
computation. Frontiers in Robotics and AI, 3:40, 2016.

Arrasy Rahman, Elliot Fosong, Ignacio Carlucho, and Stefano V Albrecht. Towards robust ad hoc
teamwork agents by creating diverse training teammates. arXiv preprint arXiv:2207.14138, 2022.

Muhammad A Rahman, Niklas Hopner, Filippos Christianos, and Stefano V Albrecht. Towards open
ad hoc teamwork using graph-based policy learning. In International Conference on Machine
Learning, pp. 8776–8786. PMLR, 2021.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware
unsupervised discovery of skills. arXiv preprint arXiv:1907.01657, 2019.

Andy Shih, Arjun Sawhney, Jovana Kondic, Stefano Ermon, and Dorsa Sadigh. On the critical
role of conventions in adaptive human-ai collaboration. In International Conference on Learning
Representations, 2020.

Peter Stone, Gal A Kaminka, Sarit Kraus, and Jeffrey S Rosenschein. Ad hoc autonomous agent
teams: Collaboration without pre-coordination. In Twenty-Fourth AAAI Conference on Artificial
Intelligence, 2010.

DJ Strouse, Kevin McKee, Matt Botvinick, Edward Hughes, and Richard Everett. Collaborating
with humans without human data. Advances in Neural Information Processing Systems, 34:
14502–14515, 2021.

Hao Sun, Zhenghao Peng, Bo Dai, Jian Guo, Dahua Lin, and Bolei Zhou. Novel policy seeking with
constrained optimization. arXiv preprint arXiv:2005.10696, 2020.

Zhenggang Tang, Chao Yu, Boyuan Chen, Huazhe Xu, Xiaolong Wang, Fei Fang, Simon Du,
Yu Wang, and Yi Wu. Discovering diverse multi-agent strategic behavior via reward randomization.
arXiv preprint arXiv:2103.04564, 2021.

J. K Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan Sulivan, Luis
Santos, Rodrigo Perez, Caroline Horsch, Clemens Dieffendahl, Niall L Williams, Yashas Lokesh,
Ryan Sullivan, and Praveen Ravi. Pettingzoo: Gym for multi-agent reinforcement learning. arXiv
preprint arXiv:2009.14471, 2020.

12

Published as a conference paper at ICLR 2023

Woodrow Zhouyuan Wang, Andy Shih, Annie Xie, and Dorsa Sadigh. Influencing towards stable
multi-agent interactions. In Conference on Robot Learning, pp. 1132–1143. PMLR, 2022.

Sarah A. Wu, Rose E. Wang, James A. Evans, Joshua B. Tenenbaum, David C. Parkes, and Max
Kleiman-Weiner. Too many cooks: Coordinating multi-agent collaboration through inverse
planning. Topics in Cognitive Science, n/a(n/a), 2021. doi: https://doi.org/10.1111/tops.12525.
URL https://onlinelibrary.wiley.com/doi/abs/10.1111/tops.12525.

Annie Xie, Dylan Losey, Ryan Tolsma, Chelsea Finn, and Dorsa Sadigh. Learning latent representa-
tions to influence multi-agent interaction. In Conference on Robot Learning, pp. 575–588. PMLR,
2021.

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu. The surprising
effectiveness of mappo in cooperative, multi-agent games. arXiv preprint arXiv:2103.01955, 2021.

Chao Yu, Jiaxuan Gao, Weilin Liu, Botian Xu, Hao Tang, Jiaqi Yang, Yu Wang, and Yi Wu. Learning
zero-shot cooperation with humans, assuming humans are biased. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=TrwE8l9aJzs.

Tom Zahavy, Brendan O’Donoghue, Andre Barreto, Sebastian Flennerhag, Volodymyr Mnih, and
Satinder Singh. Discovering diverse nearly optimal policies with successor features. In ICML
2021 Workshop on Unsupervised Reinforcement Learning, 2021.

Rui Zhao, Jinming Song, Hu Haifeng, Yang Gao, Yi Wu, Zhongqian Sun, and Yang Wei. Max-
imum entropy population based training for zero-shot human-ai coordination. arXiv preprint
arXiv:2112.11701, 2021.

Zihan Zhou, Wei Fu, Bingliang Zhang, and Yi Wu. Continuously discovering novel strategies via
reward-switching policy optimization. In International Conference on Learning Representations,
2021.

Luisa Zintgraf, Sam Devlin, Kamil Ciosek, Shimon Whiteson, and Katja Hofmann. Deep interactive
bayesian reinforcement learning via meta-learning. In Proceedings of the 20th International
Conference on Autonomous Agents and MultiAgent Systems, pp. 1712–1714, 2021.

13

https://onlinelibrary.wiley.com/doi/abs/10.1111/tops.12525
https://openreview.net/forum?id=TrwE8l9aJzs
https://openreview.net/forum?id=TrwE8l9aJzs

Published as a conference paper at ICLR 2023

A PROOF FOR THEOREM 3.1

We prove the relationship of similar policies and compatible policies in Theorem 3.1 under the
following assumptions.

Assumption A.1 (All joint trajectories are supported by πB). P (τ |πi
B , π

j
B) > 0; ∀τ ∈ T

Assumption A.2 (Shared ϵ). A common 0 ≤ ϵ ≤ 1 is used for Def. 2.1 and 2.2

Assumption A.3 (Positive return). G(τ) > 0;∀τ ∈ T
Theorem. If πi

A is similar to πi
B , then πi

A is compatible with πB .

Proof. Let r(τ) = P (τ |πi
A,πj

B)

P (τ |πi
B ,πj

B)
. Because πi

A is similar to πi
B , we know that 1− ϵ ≤ r(τ) ≤ 1+ ϵ; ∀τ

from Def. 2.1. Consequently, we can use importance sampling to write J(πi
A, π

j
B) in relation to

J(πi
B , π

j
B):

J(πi
A, π

j
B) = Eτ∼ρ(πi

A,πj
B)G(τ)

=

∫
τ

P (τ |πi
A, π

j
B)G(τ)

=

∫
τ

P (τ |πi
B , π

j
B)

P (τ |πi
B , π

j
B)

P (τ |πi
A, π

j
B)G(τ)

=

∫
τ

r(τ)P (τ |πi
B , π

j
B)G(τ)

= Eτ∼ρ(πi
B ,πj

B)r(τ)G(τ)

Because 1 − ϵ ≤ r(τ) ≤ 1 + ϵ and G(τ) > 0;∀τ ∈ T , the expected return J(πi
A, π

j
B) has the

following upper and lower bounds:

(1− ϵ)Eτ∼ρ(πi
B ,πj

B)G(τ) ≤J(πi
A, π

j
B) ≤ (1 + ϵ)Eτ∼ρ(πi

B ,πj
B)G(τ)

(1− ϵ)JSP(πB) ≤J(πi
A, π

j
B) ≤ (1 + ϵ)JSP(πB)

This means that πi
A is compatible with πB (Def. 2.2).

∴ If πi
A is similar to πi

B , then πi
A is compatible with πB .

Remark: Assumption A.3 can be satisfied by offsetting the joint return of all trajectories such
that minτ G(τ) > 0. However, since we use MAPPO as the base algorithm, the expected return
is subtracted by a baseline to compute the advantage during the policy update, which removes the
effect of the offset. In practice, even under environments that do not satisfy G(τ) > 0, LIPO can still
discover diverse solutions effectively, as shown in the experiments.

B DERIVATION OF THE LOWER BOUND OF THE MI OBJECTIVE

We provide derivation of Eq. 7 here. Let p(zi|{oi, ai}) be the true posterior of zi and qϕ be the
approximation of p parameterized by ϕ. The lower bound of I({oi, ai}|zi) can be derived as follows:

I({oi, ai}; zi) = H(zi)−H(zi|{oi, ai})
= H(zi) + Ezi,(oi,ai)[log p(z

i|{oi, ai})]
= H(zi) + Ezi,(oi,ai)[log p(z

i|{oi, ai})− log qϕ(z
i|{oi, ai}) + log qϕ(z

i|{oi, ai})]
= H(zi) + Ezi,(oi,ai)[log qϕ(z

i|{oi, ai})] + KL(p(zi|{oi, zi})||qϕ(zi|{oi, zi}))
I({oi, ai}; zi) ≥ H(zi) + Ezi,(oi,ai)[log qϕA

(zi|{oi, ai})]

14

Published as a conference paper at ICLR 2023

C ADDITIONAL ENVIRONMENT DETAILS

C.1 ONE-STEP COOPERATIVE MATRIX GAME

A game of CMG is defined by a tuple (M, {km}, {rm}), where M is the number of solutions. For
m ∈ {1, ...,M}, km is the number of compatible actions and rm is the reward of a solution m. The
game is stateless and terminate immediately after both players simultaneously choose an action. By
choosing the same solution, both players get a reward rm associated with the chosen solution. This
means that the solutions are not equally optimal if the values in {rm} are not identical. Similarly, if
the values in {km} are not identical then the solutions are not equally likely to be chosen by a uniform
joint policy. We consider two setups of CMG: sub-optimal (CMG-S) and hard-to-find (CMG-H).

For CMG-S, we set (M = 32, km = 8, rm = 0.5 ∗ (1 + m−1
M−1)), which causes each solution to have

a different reward, ranging from 0.5 to 1. There are 32 solutions, each with 8 compatible actions.
There are 32× 8 = 256 possible actions for each player.

For CMG-H, we use (M = 32, km = m, rm = 1), which makes solutions with a smaller number
of compatible actions harder to be found by random exploration. There are 32 solutions, each with
different number of compatible actions, ranging from 1 to 32. The number of available actions for
each player is

∑m=32
m=1 m = 528.

C.2 POINT MASS RENDEZVOUS (PMR)

PMR is based on the the Multi-Agent Particle Environment (Lowe et al., 2017; Terry et al., 2020).
The observation of each agent includes absolute position, current velocity, and the relative distance
to the landmarks and the other agent. These features are concatenated as a 1-D vector of length 14.
The possible actions are: no op, move, {up, down, left, right}. In PMR-C, the start
positions of the agents are {(0.3,0), (-0.3,0)} and the landmarks positions are {(1.59, 1.59), (1.59,
-1.59), (-1.59, 1.59), (-1.59, -1.59)}. For PMR-L, the start and the landmark positions are {(1,0),(0,1)}
and {(0,2.25),(0,0.75),(0,-0.75),(0,-2.25)}. An episode will be terminated after 50 timesteps. The
agents are incentivized to go to the same landmark and stay close together with the reward function

rt = 1− d(pi, c)−min
l∈L

d(l, c),

where d(·, ·) is the euclidean distance between two points, pi is the 2-d coordinate of agent i, c is the
average coordinate of all agents, and L is the set of all landmarks.

C.3 MULTI-RECIPE OVERCOOKED

We implement a multi-recipe of the game based on the work of Wu et al. (2021). In this version
of Overcooked, there are four ingredients: lettuce, onion, tomato, and carrot. The ingredients are
randomly placed at pre-defined positions in the layout. Particularly, the lettuce and the onion are
randomly placed on the left or the middle counter. The tomato and the carrot are randomly placed on
the right or the middle counter. These ingredients can be composed into different recipes making
each ingredient unique: four recipes (LettuceSalad, TomatoSalad, ChoppedCarrot,
ChoppedOnion) require only a single ingredient, while the other two (TomatoLettuceSalad,
TomatoCarrotSalad) require two ingredients. The ingredients have to be chopped at the chop-
ping station before placing on the plate. After the required ingredients are put on the plate, they must
be delivered to the delivery station.

Both players have the same egocentric observation and action spaces. The observation is a set
of hand-crafted features that represent a local view of the environment. Specifically, we use the
following features: absolute position and facing direction, relative distance to the objects and the
other agent, state of the ingredients, four booleans indicating if the agent is next to a counter in four
cardinal positions, currently held items, the state of the held foods, and the type and state of the items
in front of the agent. These features are concatenated as a 1-D vector of length 54. At every timestep,
each player has to choose one of the six possible actions: no op, move {up, down, left,
right}, and interact.

An episode lasts at most 200 timesteps and terminates immediately after a successful delivery. An
episode without delivery is considered unsuccessful. We incentivize the agents to interact with the

15

Published as a conference paper at ICLR 2023

objects and deliver as fast as possible with the following reward function:

rt = rinteract + rprogress + rcomplete − p,

here rinteract is a shaped reward given when an agent interacts with an object for the first time in
an episode, rprogress is given when the players progress toward a recipe completion (i.e., chopping
required ingredients or putting chopped ingredients on the plate), rcomplete is given upon successful
delivery, and p is a penalty. We use rinteract = 0.5, rprogress = 1.0, rcomplete = 10, and p = 0.1. We note
that recipes with more than one ingredient will give only slightly higher rewards (rinteract + rprogress)
but are significantly harder to be discovered by random exploration than those with one ingredient.

Additional experimental details: For specialist agents, the rewards are given when interacting,
progressing, or completing a specific recipe. For the held-out populations, we remove incompetent
policies with the expected return of less than zero from the test populations created by TrajeDi
and LIPO. We do not remove those in the training populations. We do this because testing with
an incompetent policy does not give any meaningful information, as almost all episodes will be
unsuccessful.

D IMPLEMENTATION DETAILS

Algorithm 1: Training process of LIPO (on-policy)
This pseudocode is based on self-play. Blue text is related to the MI objective. LIPO specific code is
highlighted in green.
Input: A Population P = {πA |1 ≤ A ≤ N}, the number of XP pairs used to approximate J̃xp(πA,P)

(nxp), the number of players in an episode (m), and the number of SP and XP episodes per iteration (ESP
and EXP).

while not done do
for A ∈ {1, ..., N} do
Bsp ← GetEpisodeRollouts(πA, πA, ESP,m)
Compute JSP(πA) using Bsp

Bxp ← GetCrossPlayRollouts(πA,P, nxp, EXP,m)
Compute J̃XP(πA,P) using Bxp (Eq. 4)
Compute LMI using Bsp and Bxp (Eq. 9)
θA ← θA −∇θA [−JSP+λXPJ̃XP+λMILMI]
ϕA ← ϕA − λMI∇ϕALMI

Algorithm 2: Rollout collection functions
Function GetEpisodeRollouts(πA, πB , E):
B ← {}
for i ∈ {1, ...,m} do

for episode ∈ {1, .., E
m
} do

z1, ..., zm ∼ p(z1, ..., zm)

zj ←
{
zk

}m

k ̸=i

πj(·|·, zj) = Πk ̸=iπ
k(·|·, zk)

τ ∼ ρ(πi
A(·|·, zi), πj

B(·|·, z
j))

B ← B ∪ {τ}
return B

Function GetCrossPlayRollouts(πA,P, nxp, EXP):
Bxp ← {}
P ′

−A ← SampleWithoutReplacement(P−A, nxp)
for πB ∈ P ′

−A do
B ← GetEpisodeRollouts(πA, πB ,

EXP
|P′

−A
|)

Bxp ← Bxp ∪ B
return Bxp

The pseudocode for LIPO is shown in Algorithm 1 and 2. If there are more than two players (m > 2),
πj would represent the joint policy of all players except player i, πj(ajt |τ

j
t) = Πk ̸=iπ

k(akt |τkt). We
note that scaling LIPO to more than two players does not increase the training time. It is the same
as the two-player setting as long as the numbers of SP and XP episodes are the same. In practice,

16

Published as a conference paper at ICLR 2023

Table 2: Hyperparameters used by the MAPPO algorithm.

Hyperparameters Value

Learning rate 0.003 (CMG and PMR)
0.005 (Overcooked)

Batch size
100 (CMG)

2,500 (PMR)
10,000 (Overcooked)

Epochs 10 (CMG and PMR)
15 (Overcooked)

Number of mini-batches 2 (CMG and PMR)
5 (Overcooked)

Entropy coefficient 0.0 (CMG)
0.03 (PMR and Overcooked)

Discount factor (γ) 0.99
GAE lambda 0.95
Value loss coefficient 0.5
PPO clipping parameter 0.3
Gradient clipping 0.5
Adam epsilon 1e-5

however, more XP episodes might be needed to better estimate J̃XP. We use the parameter sharing
technique for better sample efficiency and faster convergence (Tan, 1993; Foerster et al., 2018; Rashid
et al., 2018). Assuming that a policy πi

A is a neural network parameterized by θiA, this means that for
a joint policy (π1

A, π
2
A), we have θ1A = θ2A. Still, π1

A and π2
A can behave differently as they observe

different parts of the environment and have a different player indicator concatenated with their local
observations.

All methods are implemented on top of MAPPO except MAVEN. The critic, policy, and discriminator
are feed-forward neural networks with two hidden layers, each having 64 units. For a fair comparison,
we use the same or more environment steps in the policy update of the baselines compared to LIPO.
Common hyperparameters of methods based on MAPPO are shown in Table. 2.

D.1 MAPPO

MAPPO is the base MARL algorithm for all baselines except MAVEN. The policy parameters are
shared among all policies. The critic takes a state of the environment and outputs an expected return
of a given global state. The global state is provided by the environment and only used during training.
For the complete training objectives of MAPPO, we refer the reader to Appendix A of Yu et al.
(2021).

D.2 MULTI SP

A simple but effective way to produce diverse agents by training multiple SP agents with different
neural network initializations and random seeds. Specifically, each run produces a joint policy πA

that maximizes JSP(πA) using MAPPO.

D.3 SPMI

A single run of SP agent trained with added MI objective I(z|oi, ai). SPMI uses a shared z for both
policies and considers each z as a different joint policy. We train SPMI using the same training
procedure as LIPO by setting N = 1, λXP = 0 and z1 = z2. The discriminator takes a local

17

Published as a conference paper at ICLR 2023

observation oi and action distribution πi(·|oi) as inputs and outputs the discrete probability of the
latent variable. The latent variable of all policies is shared during an episode.

D.4 MAVEN

MAVEN (Mahajan et al., 2019) is explicitly designed for learning diverse solutions in cooperative
multi-agent environments. A joint policy is represented as π(·|τ, z), and each mode of behavior is
represented by the latent variable z. Similar to SPMI, MAVEN uses a shared z for all policies. We
use the same network architecture presented in Mahajan et al. (2019) with recurrent neural networks.
However, we do not use the hierarchical policy but sample z from the uniform distribution. The latent
variable of all policies is shared.

D.5 MULTI SPMI AND MULTI MAVEN

A population containing joint policies from multiple runs of SPMI and MAVEN. Like Multi SP,
each run has different neural network initializations and random seeds. The population size is
|P| = nseed|z|, where nseed is the number of runs. Notably, this baseline uses the training data
differently from the base algorithms. Instead of training a long single run, this approach allows
the policy to ”restart” by using different initialization of neural networks. For example, training a
single run with |z| = N,nseed = 1 might not discover as many solutions as training nseed runs with
|z| = N

nseed
even though the population size is the same. Empirically, we find that multiple shorter

runs can find more solutions compared to a single long run of the corresponding algorithm. Thus, we
omit the results of the base algorithms in multi-recipe Overcooked.

D.6 TRAJEDI

TrajedDi produces a population of diverse agents that also maximize the expected return in cooperative
environments. The diversity measure of this method is based on the Jensen-Shannon divergence
(JSD) between the trajectory distribution of each policy. Different from the original implementation,
we remove the best-response (BR) policy from the population. Since the BR policy might work well
with only a subset of solutions, removing BR potentially increase the number of variations in the
population. Our modified loss is:

L = −[

N∑
A=1

(JSP(πA)) + αJSDγ(π1, ..., πN)], (11)

where JSD is the proposed diversity objective of TrajeDi, and α and γ are the hyperparameters of
TrajeDi.

D.7 LIPO

LIPO uses the same implementation as SPMI except LIPO uses independent latent variable for each
policy and λXP > 0. Additionally, LIPO uses extra critics for the XP trajectories. In total, LIPO has
an SP critic V πA

sp and N − 1 XP critics {V πA,πB
xp | πB ∈ P−A}. In each training iteration, LIPO

collects SP and XP trajectories of all policy combinations. MAPPO is used for both maximizing JSP

and minimizing J̃XP. The critics are trained using SP trajectories and all of XP trajectories, while the
policy is trained using SP trajectories and XP trajectories from the XP pair that has the highest joint
return, max(Bxp).

D.8 GENERALIST AGENT

The policy and critic networks of a generalist agent use two 256-unit GRU layers (Cho et al., 2014)
followed by a linear layer. The input also includes the reward and action of the previous timestep.
We use MAPPO for training a generalist agent. We train both the policy and critic with the batch size
of 320,000 timesteps using truncated backpropagation through time (BPTT). The samples are reused
for 15 epochs. Each minibatch contains 1,600 sequences with a maximum length of 50 timesteps.
We also use learning rate annealing, specifically the generalist agent starting from 0.005 to 0.003
with linear scheduling. Other hyperparameters are shared with other methods (Tab. 2). A training

18

Published as a conference paper at ICLR 2023

partner for a generalist agent is sampled uniformly from the training population at the beginning of
an episode.

E RELATIONSHIP WITH RAHMAN ET AL. (2022)

Rahman et al. (2022) propose to optimize the self-play returns while maximizing the diversity term
Div(C), where C is a N ×N cross-play payoff matrix. Specifically, they propose to learn diverse
policies via the following objective:

max
C

Tr(C) + Div(C) (12)

They propose to use Div(C) = Det(κ(C)) where κ(C) is an N × N matrix with κi,j(C) being
similarity between policy πi and πj . The radial basis function (RBF) kernel of the empirical returns
is used to measure the similarity between two policies:

κi,j(C) = exp(−||Ci,· − Cj,·||2

σ2
), (13)

where Ci,· is row ith of C. In other words, Ci,· is the vector containing the empirical return of πi

when matched with other policies in the population. Intuitively, this objective diversifies the policies
via the expected returns similar to LIPO. Using the same notation of the cross-play matrix, we can
write the objective of training a LIPO population as:

max
C

Tr(C)− λXP

∑
i

max
1≤j≤N

i ̸=j

Ci,j (14)

This objective wants the diagonal (JSP) to be maximized and the off-diagonal entries of the cross-play
matrix (J̃XP) to be minimized. This is a special case of Eq. 12 where Div(C) is based on policy
compatibility.

F DISCUSSIONS

Agents trained with LIPO are incentivized to act adversarially toward agents that behave differently
from itself. This behavior might not be desirable for certain downstream tasks. For example, agents
produced by LIPO might not be suitable for interacting with humans as they would refuse to conform
with the user. However, as shown in Sec. 4.6, training a generalist agent with these agents would have
the opposite effect: the generalist agent would try to comply with the current partner’s preference.

LIPO produces a population of near-optimal solutions, a generalist agent trained with a LIPO
population might not coordinate well with significantly sub-optimal agents. In a prior work, Strouse
et al. (2021) show that augmenting the training population with past checkpoints (FCP) helps the
trained generalist agent to effectively coordinate with sub-optimal agents. Since LIPO and FCP are
orthogonal, populations created by LIPO can be also augmented in the same way as FCP.

Previous works find incompatible policies to be undesirable since they are generally results of
coordinated symmetry breaking (Bard et al., 2020; Hu et al., 2020; 2021); these policies perform
poorly when interacting with unseen partners. However, we show that learning incompatible policies
can be useful for generating behaviorally diverse agents in various scenarios. The produced agents
can then be used as training partners for a generalist agent. Using LIPO in environments where many
solutions are equivalent may produce such undesirable symmetry-breaking conventions. We believe
that LIPO can be combined with other techniques, e.g., other-play (Hu et al., 2020) and equivariant
coordinator (Muglich et al., 2022), to avoid learning arbitrary symmetry-breaking. We leave the
study of the combination of LIPO and these techniques for future work. A concurrent work by Cui
et al. (2023) proposes an extension of LIPO by combining insights from off-belief learning (Hu et al.,
2021) to avoid ”sabotaging” behavior of LIPO agents.

G LIMITATIONS

LIPO requires an additional hyperparameter λXP. If λXP is too big, it is possible that the main RL
objective, JSP, would be interfered which will result in an incompetent joint policy (Sec. 4.2). An

19

Published as a conference paper at ICLR 2023

adaptive mechanism that selects a suitable value for λXP at different stages of training could help
increase training stability.

Although LIPO can be fully parallelized, it requires more computation than the baselines to get an
accurate approximation of J̃XP, which makes it harder to scale up to bigger population sizes. Instead
of collecting all policy pairs, sampling a portion of policy pairs to approximate J̃XP could reduce
computation cost and training time at a potential cost of diversity (Sec. 4.3). Instead of using a
uniform sampling, a mechanism that selects the best pair to sample (e.g., bandit algorithm) might
help mitigate the diversity loss from using lower nxp.

In this work, we only investigate the effectiveness of LIPO under a new set of cooperative environ-
ments with multiple discrete solutions. Investigating LIPO in other well-known environments where
the solution space might be continuous, e.g., continuous control (Peng et al., 2021), or environments
with only a single goal, e.g., SMAC (Samvelyan et al., 2019), might yield interesting results and pose
different challenges. We leave this further investigation as our future work.

H HYPERPARAMETERS (CMG AND PMR)

We provide the searched values of each method in Tab. 3, 4, 5, 6, 7 and 8. The hyperparameters
are searched individually for each population size. We use three random seeds for each set of
hyperparameters. We do not use any validation method. Instead, we present the results using the best
parameters in the main paper. For LIPO, we set λMI as 0.0 and 0.5 in CMG and PMR, respectively.

Table 3: The values of λMI used by SPMI in all environments. The best values are shown in bold.

Population size Hyperparameters Values (CMG-S) Values (CMG-H) Values (PMR-C) Values (PMR-L)
1

λMI

- - [0.5,1,5,10] [0.5,1,5,10]
2 - - [0.5,1,5,10] [0.5,1,5,10]
4 - - [0.5,1,5,10] [0.5,1,5,10]
8 [1,5,10,50] [1,5,10,50] [0.5,1,5,10] [0.5,1,5,10]

16 [1,5,10,50] [1,5,10,50] - -
32 [1,5,10,50] [1,5,10,50] - -
64 [1,5,10,50] [1,5,10,50] - -

Table 4: The values of λMI used by MAVEN in all environments. The best values are shown in bold.

Population size Hyperparameters Values (CMG-S) Values (CMG-H) Values (PMR-C) Values (PMR-L)
1

λMI

- - [1,5,10,50] [1,5,10,50]
2 - - [1,5,10,50] [1,5,10,50]
4 - - [1,5,10,50] [1,5,10,50]
8 [1,5,10,50] [1,5,10,50] [1,5,10,50] [1,5,10,50]

16 [1,5,10,50] [1,5,10,50] - -
32 [1,5,10,50] [1,5,10,50] - -
64 [1,5,10,50] [1,5,10,50] - -

Table 5: The values of λMI used by Multi SPMI in all environments. The best values are shown in
bold.

Population size Hyperparameters Values (CMG-S) Values (CMG-H) Values (PMR-C) Values (PMR-L)
1

λMI

- - - -
2 - - - -
4 - - -
8 [1,5,10,50] [1,5,10,50] [1,5,10,50] [1,5,10,50]

16 [1,5,10,50] [1,5,10,50] [1,5,10,50] [1,5,10,50]
32 [1,5,10,50] [1,5,10,50] [1,5,10,50] [1,5,10,50]
64 [1,5,10,50] [1,5,10,50] - -

20

Published as a conference paper at ICLR 2023

Table 6: The values of λMI used by Multi MAVEN in all environments. The best values are shown in
bold.

Population size Hyperparameters Values (CMG-S) Values (CMG-H) Values (PMR-C) Values (PMR-L)
1

λMI

- - - -
2 - - - -
4 - - -
8 [1,5,10,50] [1,5,10,50] [1,5,10,50] [1,5,10,50]

16 [1,5,10,50] [1,5,10,50] [1,5,10,50] [1,5,10,50]
32 [1,5,10,50] [1,5,10,50] [1,5,10,50] [1,5,10,50]
64 [1,5,10,50] [1,5,10,50] - -

Table 7: The values of α and γ used by TrajDi in all environments. The best values are shown in
bold.

Population size Hyperparameters Values (CMG-S) Values (CMG-H) Values (PMR-C) Values (PMR-L)
1

α

- - [1,5,10,50] [1,5,10,50]
2 - - [1,5,10,50] [1,5,10,50]
4 - [1,5,10,50] [1,5,10,50]
8 [0.01,0.05,0.1,0.2] [0.01,0.05,0.1,0.2] [1,5,10,50] [1,5,10,50]

16 [0.01,0.05,0.1,0.2] [0.01,0.05,0.1,0.2] - -
32 [0.01,0.05,0.1,0.2] [0.01,0.05,0.1,0.2] - -
64 [0.01,0.05,0.1,0.2] [0.01,0.05,0.1,0.2] - -

1

γ

- - [0, 0.1, 0.5] [0, 0.1, 0.5]
2 - - [0, 0.1, 0.5] [0, 0.1, 0.5]
4 - - [0, 0.1, 0.5] [0, 0.1, 0.5]
8 0 0 [0, 0.1, 0.5] [0, 0.1, 0.5]

16 0 0 - -
32 0 0 - -
64 0 0 - -

Table 8: The values of λXP used by LIPO in all environments. The best values are shown in bold.

Population size Hyperparameters Values (CMG-S) Values (CMG-H) Values (PMR-C) Values (PMR-L)
1

λXP

- - [0.1,0.25,0.5,1] [0.1,0.25,0.5,1]
2 - - [0.1,0.25,0.5,1] [0.1,0.25,0.5,1]
4 - - [0.1,0.25,0.5,1] [0.1,0.25,0.5,1]
8 [0.5,1] [0.5,1] [0.1,0.25,0.5,1] [0.1,0.25,0.5,1]

16 [0.5,1] [0.5,1] - -
32 [0.5,1] [0.5,1] - -
64 [0.5,1] [0.5,1] - -

I HYPERPARAMETERS (OVERCOOKED)

For each method, we use the parameters that give the highest entropy to generate five populations for
Sec. 4.5, and Sec. 4.6. The searched values of each method are:

• TrajeDi: We perform a grid search with following hyperparameters: α ∈ {5, 10} and
γ ∈ {0, 0.5}. We use α = 5 and γ = 0.5 for the results in the paper.

• Multi SPMI: We perform a grid search of λMI ∈ {5, 10}. We use λMI = 5 for the results in
the paper.

• Multi MAVEN: We perform a grid search of λMI ∈ {5, 10}. We use λMI = 5 for the results
in the paper.

• LIPO: We perform a grid search with following hyperparameters: λXP ∈ {0.2, 0.3} and
λMI ∈ {0.1, 0.5}. We use λXP = 0.3 and λMI = 0.5 for the results in the paper.

J ADDITIONAL RESULTS

J.1 ADDITIONAL ABLATION RESULTS

We provide additional results of numbers of learned solutions with varying N and λXP (Fig. 10),
numbers of competent agents in CMG with varying N and λXP (Fig. 11), and numbers of learned
solutions with varying nxp in CMG (Fig. 12) here. These results are consistent with the analysis
presented in Sec. 4.2 and 4.3.

21

Published as a conference paper at ICLR 2023

J.1.1 ADDITIONAL RESULTS WITH VARYING N AND λXP

8 16 32 64

0

8

16

32

1
0.5

Ideal

Population size

D
is

co
ve

re
d

 s
o

lu
ti

o
ns

(a) CMG-S

8 16 32 64

0

8

16

32

1
0.5

Ideal

Population size

D
is

co
ve

re
d

 s
o

lu
ti

o
ns

(b) CMG-H

1 2 4 8

1

2

3

4

1
0.5

0.25
0.1

Ideal

Population size

D
is

co
ve

re
d

 s
o

lu
ti

o
ns

(c) PMR-C

1 2 4 8

1

2

3

4

1
0.5

0.25
0.1

Ideal

Population size

D
is

co
ve

re
d

 s
o

lu
ti

o
ns

(d) PMR-L

Figure 10: Numbers of learned solutions with different values of λxp

8 16 32 64
0

8

16

32

64

1
0.5

Ideal

Population size

C
o

m
p

et
en

t
ag

en
ts

(a) CMG-S

8 16 32 64
0

8

16

32

64

1
0.5

Ideal

Population size

C
o

m
p

et
en

t
ag

en
ts

(b) CMG-H

Figure 11: Numbers of competent agents using various combinations of N (x-axis) and λXP (colors)
in CMG.

J.1.2 ADDITIONAL RESULTS WITH VARYING nxp

4 8 16 32

4

8

16

32

N = 32 CMG-S CMG-H

Cross-play pairs per iteration

D
is

co
ve

re
d

 c
o

nv
en

ti
o

ns

Figure 12: Numbers of learned solutions with varying nxp. The result is consistent with the results in
PMR provided in the main text: The lower nxp is, the fewer solutions are learned.

22

Published as a conference paper at ICLR 2023

J.2 RADAR PLOTS OF RECIPE FREQUENCIES

Chopped
Lettuce

Chopped
Tomato

Chopped
Carrot

Chopped
Onion

Tomato
Lettuce
Salad

Tomato
Carrot
Salad

(a) Multi SP

Chopped
Lettuce

Chopped
Tomato

Chopped
Carrot

Chopped
Onion

Tomato
Lettuce
Salad

Tomato
Carrot
Salad

(b) Multi SPMI

Chopped
Lettuce

Chopped
Tomato

Chopped
Carrot

Chopped
Onion

Tomato
Lettuce
Salad

Tomato
Carrot
Salad

(c) Multi MAVEN

Chopped
Lettuce

Chopped
Tomato

Chopped
Carrot

Chopped
Onion

Tomato
Lettuce
Salad

Tomato
Carrot
Salad

(d) TrajeDi

Chopped
Lettuce

Chopped
Tomato

Chopped
Carrot

Chopped
Onion

Tomato
Lettuce
Salad

Tomato
Carrot
Salad

(e) LIPO

Chopped
Lettuce

Chopped
Tomato

Chopped
Carrot

Chopped
Onion

Tomato
Lettuce
Salad

Tomato
Carrot
Salad

(f) LIPO (λMI = 0)

Figure 13: Recipe frequencies of generated populations. Each colored line represents recipe frequen-
cies of an agent in a population. Red thick lines connect the highest frequency of each recipe. The
outer ring represents the frequency of 1,000.

Fig. 13 shows recipe frequencies of the population with highest recipe entropy (out of five runs)
from each method. The frequencies are calculated based on completed recipe from 1,000 self-play
episodes of each agent as described in Sec. 4.5. Qualitatively, we can see that agents in a LIPO

23

Published as a conference paper at ICLR 2023

population have more distinct recipe frequencies. That is, agents are different from each other in
terms of recipe preference.

J.3 VISUALIZATION OF BEHAVIORS

We visualize the behaviors joint policies produced by LIPO in PMR and Overcooked at https:
//sites.google.com/view/iclr-lipo-2023. Here, we show snapshots of four joint
policies that have a distinct recipe preference in Overcooked.

(a) Recipe preference: Tomato & Carrot Salad

(b) Recipe preference: Chopped Lettuce

(c) Recipe preference: Chopped Onion

(d) Recipe preference: Tomato & Lettuce Salad

Figure 14: Four joint policies from a population of eight joint policies produced by a single run of
LIPO. Each row shows snapshots of a joint policy illustrating a distinct recipe preference.

24

https://sites.google.com/view/iclr-lipo-2023
https://sites.google.com/view/iclr-lipo-2023

Published as a conference paper at ICLR 2023

REFERENCES

Nolan Bard, Jakob N Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H Francis Song, Emilio
Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, et al. The hanabi challenge: A
new frontier for ai research. Artificial Intelligence, 280:103216, 2020.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of
neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259, 2014.

Brandon Cui, Andrei Lupu, Samuel Sokota, Hengyuan Hu, David J Wu, and Jakob Nicolaus Foerster.
Adversarial diversity in hanabi. In International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=uLE3WF3-H_5.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. “other-play” for zero-shot
coordination. In International Conference on Machine Learning, pp. 4399–4410. PMLR, 2020.

Hengyuan Hu, Adam Lerer, Brandon Cui, Luis Pineda, Noam Brown, and Jakob Foerster. Off-belief
learning. In International Conference on Machine Learning, pp. 4369–4379. PMLR, 2021.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. Advances in neural information
processing systems, 30, 2017.

Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. Maven: Multi-agent
variational exploration. In Advances in Neural Information Processing Systems, pp. 7611–7622,
2019.

Darius Muglich, Christian Schroeder de Witt, Elise van der Pol, Shimon Whiteson, and Jakob Foerster.
Equivariant networks for zero-shot coordination. arXiv preprint arXiv:2210.12124, 2022.

Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr,
Wendelin Böhmer, and Shimon Whiteson. Facmac: Factored multi-agent centralised policy
gradients. Advances in Neural Information Processing Systems, 34, 2021.

Arrasy Rahman, Elliot Fosong, Ignacio Carlucho, and Stefano V Albrecht. Towards robust ad hoc
teamwork agents by creating diverse training teammates. arXiv preprint arXiv:2207.14138, 2022.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and Shi-
mon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent reinforcement
learning. In International Conference on Machine Learning, pp. 4295–4304. PMLR, 2018.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The
starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

DJ Strouse, Kevin McKee, Matt Botvinick, Edward Hughes, and Richard Everett. Collaborating
with humans without human data. Advances in Neural Information Processing Systems, 34:
14502–14515, 2021.

Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceedings
of the tenth international conference on machine learning, pp. 330–337, 1993.

J. K Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan Sulivan, Luis
Santos, Rodrigo Perez, Caroline Horsch, Clemens Dieffendahl, Niall L Williams, Yashas Lokesh,
Ryan Sullivan, and Praveen Ravi. Pettingzoo: Gym for multi-agent reinforcement learning. arXiv
preprint arXiv:2009.14471, 2020.

Sarah A. Wu, Rose E. Wang, James A. Evans, Joshua B. Tenenbaum, David C. Parkes, and Max
Kleiman-Weiner. Too many cooks: Coordinating multi-agent collaboration through inverse
planning. Topics in Cognitive Science, n/a(n/a), 2021. doi: https://doi.org/10.1111/tops.12525.
URL https://onlinelibrary.wiley.com/doi/abs/10.1111/tops.12525.

25

https://openreview.net/forum?id=uLE3WF3-H_5
https://onlinelibrary.wiley.com/doi/abs/10.1111/tops.12525

Published as a conference paper at ICLR 2023

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu. The surprising
effectiveness of mappo in cooperative, multi-agent games. arXiv preprint arXiv:2103.01955, 2021.

26

	Introduction
	Preliminaries
	Learning Incompatible Policies (LIPO)
	Learning a Distinct Policy via Policy Compatibility
	Learning a Population of Diverse Policies
	Inducing Variations in Each Policy
	Implementation

	Experiments
	Discovering Diverse Solutions
	Trade-Off Between Competency and Dissimilarity of Joint Policies
	Trade-Off Between Computation Cost and Diversity
	Effect of the Mutual Information Objective
	Discovering Recipes in Multi-Recipe Overcooked
	Training Generalist Agents with Generated Populations

	Related Work
	Conclusion
	Proof for Theorem 3.1
	Derivation of the Lower Bound of the MI Objective
	Additional Environment Details
	One-Step Cooperative Matrix Game
	Point Mass Rendezvous (PMR)
	Multi-Recipe Overcooked

	Implementation Details
	MAPPO
	Multi SP
	SPMI
	MAVEN
	Multi SPMI and Multi MAVEN
	TrajeDi
	LIPO
	Generalist Agent

	Relationship with rahman2022towards
	Discussions
	Limitations
	Hyperparameters (CMG and PMR)
	Hyperparameters (Overcooked)
	Additional Results
	Additional Ablation Results
	Additional Results with Varying N and XP
	Additional Results with Varying nxp

	Radar Plots of Recipe Frequencies
	Visualization of Behaviors

