
Published as a conference paper at ICLR 2023

GENERATING DIVERSE COOPERATIVE AGENTS BY
LEARNING INCOMPATIBLE POLICIES

Rujikorn Charakorn1, Poramate Manoonpong1,2, Nat Dilokthanakul3
1VISTEC, Rayong, Thailand 2SDU, Odense, Denmark 3KMITL, Bangkok, Thailand
{rujikorn.c s19, poramate.m}@vistec.ac.th, nat.di@kmitl.ac.th

ABSTRACT

Training a robust cooperative agent requires diverse partner agents. However,
obtaining those agents is difficult. Previous works aim to learn diverse behaviors
by changing the state-action distribution of agents. But, without information about
the task’s goal, the diversified agents are not guided to find other important, al-
beit sub-optimal, solutions: the agents might learn only variations of the same
solution. In this work, we propose to learn diverse behaviors via policy compatibil-
ity. Conceptually, policy compatibility measures whether policies of interest can
coordinate effectively. We theoretically show that incompatible policies are not
similar. Thus, policy compatibility—which has been used exclusively as a measure
of robustness—can be used as a proxy for learning diverse behaviors. Then, we
incorporate the proposed objective into a population-based training scheme to
allow concurrent training of multiple agents. Additionally, we use state-action
information to induce local variations of each policy. Empirically, the proposed
method consistently discovers more solutions than baseline methods across various
multi-goal cooperative environments. Finally, in multi-recipe Overcooked, we
show that our method produces populations of behaviorally diverse agents, which
enables generalist agents trained with such a population to be more robust.

1 INTRODUCTION

Cooperating with unseen agents (e.g., humans) in multi-agent systems is a challenging problem.
Current state-of-the-art cooperative multi-agent reinforcement learning (MARL) techniques can
produce highly competent agents in cooperative environments (Kuba et al., 2021; Yu et al., 2021).
However, those agents are often overfitted to their training partners and cannot coordinate with unseen
agents effectively (Carroll et al., 2019; Bard et al., 2020; Hu et al., 2020; Mahajan et al., 2022).

The problem of working with unseen partners, i.e., ad-hoc teamwork problem (Stone et al., 2010),
has been tackled in many different ways (Albrecht & Stone, 2018; Carroll et al., 2019; Shih et al.,
2020; Gu et al., 2021; Rahman et al., 2021; Zintgraf et al., 2021; He et al., 2022; Mirsky et al., 2022;
Parekh et al., 2022). These methods allow an agent to learn how to coordinate with unseen agents
and, sometimes, humans. However, the success of these methods depends on the quality of training
partners; it has been shown that the diversity of training partners is crucial to the generalization of the
agent (Charakorn et al., 2021; Knott et al., 2021; Strouse et al., 2021; McKee et al., 2022; Muglich
et al., 2022). In spite of its importance, obtaining a diverse set of partners is still an open problem.

The simplest way to generate training partners is to use hand-crafted policies (Ghosh et al., 2020;
Xie et al., 2021; Wang et al., 2022), domain-specific reward shaping (Leibo et al., 2021; Tang et al.,
2021; Yu et al., 2023), or multiple runs of the self-play training process (Grover et al., 2018; Strouse
et al., 2021). These methods, however, are not scalable nor guaranteed to produce diverse behaviors.
Prior works propose techniques aiming to generate diverse agents by changing the state visitation and
action distributions (Lucas & Allen, 2022), or joint trajectory distribution of the agents (Mahajan
et al., 2019; Lupu et al., 2021). However, as discussed by Lupu et al. (2021), there is a potential
drawback of using such information from trajectories to diversify the behaviors. Specifically, agents
that make locally different decisions do not necessarily exhibit different high-level behaviors.

To avoid this potential pitfall, we propose an alternative approach for learning diverse behaviors using
information about the task’s objective via the expected return. In contrast to previous works that

1

Published as a conference paper at ICLR 2023

use joint trajectory distribution to represent behavior, we use policy compatibility instead. Because
cooperative environments commonly require all agents to coordinate on the same solution, if the
agents have learned different solutions, they cannot coordinate effectively and, thus, are incompatible.
Consequently, if an agent discovers a solution that is incompatible with all other agents in a population,
then the solution must be unique relative to the population. Based on this reasoning, we introduce a
simple but effective training objective that regularizes agents in a population to find solutions that
are compatible with their partner agents but incompatible with others in the population. We call this
method “Learning Incompatible Policies” (LIPO).

We theoretically show that optimizing the proposed objective will yield a distinct policy. Then, we
extend the objective to a population-based training scheme that allows concurrent training of multiple
policies. Additionally, we utilize a mutual information (MI) objective to diversify local behaviors of
each policy. Empirically, without using any domain knowledge, LIPO can discover more solutions
than previous methods under various multi-goal settings. To further study the effectiveness of LIPO
in a complex environment, we present a multi-recipe variant of Overcooked and show that LIPO
produces behaviorally diverse agents that prefer to complete different cooking recipes. Experimental
results across three environments suggest that LIPO is robust to the state and action spaces, the reward
structure, and the number of possible solutions. Finally, we find that training generalist agents with
a diverse population produced by LIPO yields more robust agents than training with a less diverse
baseline population. See our project page at https://bit.ly/marl-lipo

2 PRELIMINARIES

Our main focus lies in fully cooperative environments modeled as decentralized partially observ-
able Markov decision processes (Dec-POMDP, Bernstein et al. (2002)). In this work, we start
our investigation in the two-player variant. A two-player Dec-POMDP is defined by a tuple
(S;A1;A2;
1;
2; T;O; r;
;H), where S is the state space, A ≡ A1 ×A2 and
 ≡
1 ×
2 are
the joint-action and joint-observation spaces of player 1 and player 2. The transition probability
from state s to s0 after taking a joint action (a1; a2) is given by T (s0|s; a1; a2). O(o1; o2|s) is the
conditional probability of observing a joint observation (o1; o2) under state s. All players share a
common reward function r(s; a1; a2),
 is the reward discount factor and H is the horizon length.

Players, with potentially different observation and action spaces, are controlled by policy �1 and �2.
At each timestep t, the players observe ot = (o1t ; o

2
t) ∼ O(o1t ; o

2
t |st) under state st ∈ S and produce

a joint action at = (a1t ; a
2
t) ∈ A sampled from the joint policy �(at|�t) = �1(a1t |�1t)�2(a2t |�2t),

where �1t and �2t contain a trajectory history until timestep t from the perspective of each
agent. All players receive a shared reward rt = r(st; a

1
t ; a

2
t). The return of a joint trajectory

� = (o0; a0; r0; :::; rH�1; oH) ∈ T ≡ (
 × A × R)H can be written as G(�) =
PH

t=0

trt. The

expected return of a joint policy (�1; �2) is J(�1; �2) = Eτ�ρ(π1,π2)G(�), where �(�1; �2) is the
distribution over trajectories of the joint policy (�1; �2) and P (� |�1; �2) is the probability of � being
sampled from a joint policy (�1; �2).

We use subscripts to denote different joint policies and superscripts to refer to different player
roles. For example, �A = (�1

A; �
2
A) is a different joint policy from �B = (�1

B ; �
2
B), and �i

A and
�j
A are policies of different roles.1 Finally, we denote the expected joint return of self-play (SP)

trajectories—where both policies are part of the same joint policy, �A—as JSP(�A) := J(�1
A; �

2
A)

and the expected joint return of cross-play (XP) trajectories—where policies are chosen from different
joint policies, �A and �B—as JXP(�A; �B) := J(�1

A; �
2
B) + J(�1

B ; �
2
A).

Since we are interested in creating distinct policies for any Dec-POMDP, we need an environment-
agnostic measure that captures the similarity of policies. First, we consider a measure that can
compute the similarity between policies of the same role i, e.g., �i

A and �i
B . We can measure this

with the probability of a joint trajectory � produced by either �i
A or �i

B . However, in the two-player
setting, we need to pair these policies with a reference policy �j

ref. Specifically, �i
A and �i

B are
considered similar if they are likely to produce the same trajectories when paired with an arbitrary
reference policy �j

ref. We define similar policies as follows:

1Note that LIPO can be applied to environments with more than two players with a slight modification. Specif-
ically, a policy �j would represent the joint policy of all players except player i, �j(ajt j�

j
t) = �k 6=i�

k(akt j�kt).

2

https://bit.ly/marl-lipo

Published as a conference paper at ICLR 2023

De�nition 2.1 (Similar policies). Considering two policies of the same rolei , � i
A and� i

B , and a
reference policy� j

ref of a different rolej , � i
A is similar to� i

B up to � if and only if max� 2T j1 �
P (� j � i

A ;� j
ref)

P (� j � i
B ;� j

ref)
j � � , where0 � � � 1.

Next, we consider an alternate view on assessing the similarity between policies using policy
compatibility (Section 3). Policy compatibility measures the performance difference of a joint policy
� B before and after one of its policies� i

B is substituted by another policy� i
A . We de�ne compatibility

between a policy� i
A and a joint policy� B as follows:

De�nition 2.2 (Compatible policies). Given a policy� i
A and a joint policy� B , � i

A is compatible
with � B if and only if J (� i

A ; � j
B) � (1 � �)JSP(� B).

3 LEARNING INCOMPATIBLE POLICIES (LIPO)

Our goal is to create distinct policies and, therefore, a population of diverse agents. First, we
theoretically show that policy compatibility can be used to identify whether two policies are different.
Based on this observation, we propose a novel training objective that produces a distinct policy. Then,
we extend this objective for training a population of diverse policies. Finally, we incorporate an MI
objective that encourages each policy to learn local variations.

3.1 LEARNING A DISTINCT POLICY VIA POLICY COMPATIBILITY

(a) (b) (c)

Figure 1: (a) The objective of� A (Eq. 1) in relation
to � B . (b, c) Conceptual illustration of Theorem
3.1 and Corollary 3.2. Solid lines represent given
relationships, and dotted lines represent implied
relationships.

In this section, we motivate our objective by
looking at two joint policies:� A = (� 1

A ; � 2
A)

and� B = (� 1
B ; � 2

B). The goal is for� A to learn
a different behavior from� B via the compati-
bility criterion. Importantly, the compatibility
criterion can be computed empirically without
direct access to the trajectory distribution, which
can be dif�cult to estimate. Under mild assump-
tions, we can simplify the setting such that a
simple relationship between similarity measure
and compatibility criterion emerges. By reason-
ing about the expected return under different
pairs of policies, we derive our main result.

Theorem 3.1. If � i
A is similar to� i

B , then� i
A is compatible with� B . (The proof is in App. A.)

Corollary 3.2. If � i
A is not compatible with� B , then� i

A is not similar to� i
B .

The result from Corollary 3.2 shows that we can �nd a policy� i
A that is not similar to� i

B by
decreasing its compatibility with� B until they are incompatible, i.e.,J (� i

A ; � j
B) < (1 � �)JSP(� B).

Additionally, we can ensure that� A learns a meaningful solution by maximizingJSP(� A). Assuming
that� B has learned a solution and is �xed, the optimization objective of� A can be written as

max
� A

JSP(� A) subject toJ (� i
A ; � j

B) < (1 � �)JSP(� B) 8i; j 2 f 1; 2g; i 6= j (1)

A way to solve such a constrained problem is to convert the constraints into regularization terms. For
simplicity, we use a common� XP > 0 as a hyperparameter for the constraints. Then, we can write
the soft objective of Eq. 1 as

max
� A

JSP(� A) � � XPJXP(� A ; � B) (2)

3.2 LEARNING A POPULATION OF DIVERSE POLICIES

To create a population ofN diverse policies,P = f � A j1 � A � N g, we need an objective
that requires each member of the population to have a different behavior relative to the rest of the
population. We can write such an objective by expanding the XP term in Eq. (2) to include all other
policies in the population. Additionally, we relax the assumption that other policies are �xed to

3

Published as a conference paper at ICLR 2023

allow concurrent training of all policies. For a policy� A 2 P , with an aggregation functionf agg, its
objective becomes

max
� A

JLIPO(� A ; P) = JSP(� A) � � XP ~JXP(� A ; P); (3)

where ~JXP(� A ; P) = f agg(B
xp
A); (4)

Bxp
A = f JXP(� A ; � B) j � B 2 P � A g; (5)

P� A = Pnf � A g (6)

While using the average operation as the aggregation function is plausible, we �nd that using the max
operation helps stabilize the training process and produces more diverse policies. We suspect that the
average operation might produce many con�icting gradients and does not prioritize compatible XP
pairs. We refer toJLIPO as thecompatibility gapbetween a policy� A and a populationP.

We can see that the compatibility gap objective only uses the expected return (JSP and ~JXP) and is
insensitive to the state and action information. We argue that this distinction between LIPO and
previous methods helps the agents discover more solutions in various situations (Sec. 4.1 and 4.5).

3.3 INDUCING VARIATIONS IN EACH POLICY

It is important to note that, regardless of the population size, there could be policies of rolei that
are compatible with� A 2 P but not similar to� i

A . We consider those policies to be variations of
� i

A and propose to capture such variations via an MI objective. Speci�cally, we condition� i
A on

a latent variablezi such that� A has the form of� A (aj�) = E(z1 ;z 2) � 1
A (a1j� 1; z1)� 2

A (a2j� 2; z2)
wherep(z1; z2) is a pre-de�ned prior distribution. We can induce variations of� i

A by maximizing
I (f oi ; ai g; zi), whereI (�; �) is the MI between two random variables. Intuitively, this objective
encourages each policy to observe different observations and perform different actions given different
values of the latent variable. However, maximizingI (f oi ; ai g; zi) directly is intractable, instead we
optimize the variational lower bound of the MI (Jordan et al., 1999) (see App. B for the derivation)

I (f oi ; ai g; zi) � H (zi) + Ez i ;(oi ;a i) [logq� A (zi joi ; ai)]; (7)

whereq� A (zi joi ; ai) is an approximation of the true posteriorp(zi joi ; ai) parameterized by� A . So,
maximizingI (f o1; a1g; z1) andI (f o2; a2g; z2) is an optimization problem that can be written as

max
� A ;� A

1
2

2X

i =1

H (zi) + Ez i ;(oi ;a i) logq� A (zi joi ; ai) (8)

In the previous work (Mahajan et al., 2019), sharedz (i.e.,z1 = z2) is used allowing both policies to
collectivelyswitch between different modes of behavior. However, LIPO uses independently sampled
z as it utilizesz for a different purpose. Speci�cally, LIPO maximizesJLIPO to learn diverse solutions
and optimizes the MI objective to learn variations of each solution. That is, the MI objective does not
directly impact the diversitybetweendifferent policies but increases variations of each individual
policy. We note that the MI objective is optional; we show that without the MI objective, LIPO still
produces diverse policies (Sec. 4.4).

3.4 IMPLEMENTATION

In practice, we modify the MI objective (Eq. 8) to be differentiable with respect to the policy� i
A .

Speci�cally, the variational posteriorq� A is modi�ed such that, instead of a sampled actionai , it takes
the action distribution� i

A (�joi ; zi) as an input, i.e.,q� A (zjo; � i
A (�joi ; zi)) . In contrast to previous

MI-based approaches (Eysenbach et al., 2018; Sharma et al., 2019; Jiang & Lu, 2021; Lucas & Allen,
2022), we can optimizeI (f oi ; ai g; zi) directly without computing an auxiliary reward (Mahajan
et al., 2019; Osa et al., 2022). The loss function of the modi�ed MI objective is

L MI (� A ; � A) = �
1
2

2X

i =1

Ez i ;(oi ;a i) logq� A (zi joi ; � i
A (�joi ; zi))) (9)

The objective of a policy� A in a populationP becomes

max
� A ;� A

JLIPO(� A ; P) � � MI L MI (� A ; � A) (10)

4

Published as a conference paper at ICLR 2023

We setz as a discrete variable and use the uniform distribution forp(z1) andp(z2). At the beginning
of each episode, each policy is given an independently sampledz that will be used until the end of
the episode. We use MAPPO (Yu et al., 2021) for maximizingJSP and minimizing ~JXP. More details,
including the pseudocode and the extension to more than two players, can be found in App. D.

4 EXPERIMENTS

We study the effectiveness of LIPO under three multi-goal cooperative environments in which both
players must collectively choose to accomplish one of the available goals. We evaluate the diversity of
a population based on the number of distinct goals achieved. We compare LIPO to other cooperative
MARL methods that do not require domain knowledge to generate diverse agents. Our baselines are
as follows: (i)Multi SP (multiple runs of self-play), (ii)SPMI (A single run of SP with added MI
objective), (iii)MAVEN (Mahajan et al., 2019), and (iv)TrajeDi (Lupu et al., 2021). We also use
Multi SPMI andMulti MAVEN as baselines by trainingSPMI and MAVEN multiple times. We also
discuss on methods that utilize domain knowledge in Sec. 5.

4.1 DISCOVERINGDIVERSE SOLUTIONS

We use two simple environments to study the effectiveness of various methods in discovering
solutions: (i)One-Step Cooperative Matrix Game(CMG), in which there are many possible solutions,
and (ii)Point Mass Rendezvous(PMR), a temporally extended cooperative navigation environment.

One-Step Cooperative Matrix Game (CMG): A game of CMG is de�ned by a tuple
(M; f km g; f rm g), whereM is the number of solutions. Form 2 f 1; :::; M g, km is the number of
compatible actions andr m is the reward of a solutionm. By choosing the same solution, both players
get a rewardr m associated with the chosen solution. We consider two setups of CMG: sub-optimal
(CMG-S) and hard-to-�nd (CMG-H). For CMG-S, we set (M = 32, km = 8 , rm = 0 :5� (1+ m � 1

M � 1)),
which causes each solution to have a different reward, ranging from 0.5 to 1. For CMG-H, we use
(M = 32, km = m, r m = 1), which makes solutions with a smaller number of compatible actions
harder to be found by random exploration. An example payoff matrix is shown in Fig. 2a.

(a) (b) (c)

Figure 2: (a) The payoff matrix of
a CMG game with (M = 3 ; km =
m; r m = m). (b, c) The agents (orange)
and landmark positions (blue) of PMR-C
and PMR-L.

Point Mass Rendezvous (PMR):The environment is
based on the Multi-Agent Particle Environment (Lowe
et al., 2017; Terry et al., 2020). The goal of this envi-
ronment is for the two agents to navigate to a landmark
together. There areM = 4 landmarks, and we consider
each landmark as a solution in this environment. This envi-
ronment has two modes:PMR-C andPMR-L . In PMR-C,
landmarks are distributed evenly on the circumference of
a circle. Thus, all landmarks are equally easy to �nd and
optimal. In PMR-L, landmarks are placed on a line. In
this scenario, closer landmarks are easier to �nd.

We de�ne the population sizejPj of each method as fol-
lows: ForSPMI and MAVEN, jPj is equal to the number of dimensions of the latent variable,jzj. For
Multi SPMI and Multi MAVEN, jPj = jzj � nseedwherenseedis the number of random seeds and we
usejzj = 8 . For Multi SP, TrajeDi, and LIPO,jPj is the number of joint policies in the population.

Results:Fig. 3 shows the numbers of learned solutions, averaged over three runs. In all environments,
LIPO consistently discovers more solutions than the baselines, given the same population size. The
baselines �nd fewer solutions in CMG-H and PMR-L than they do in CMG-S and PMR-C, whereas
LIPO performs similarly across settings. LIPO is also better than the baselines at �nding sub-optimal
solutions in CMG-S. We note that Multi SP and TrajeDi perform almost ideally in PMR-C, where all
solutions are equivalent, but perform worse in other settings. Also, MultiSPMI �nds all four solutions
in PMR when the population size is bigger than 8. However, it performs poorly in CMG. LIPO's
consistency across environments and settings demonstrates that LIPO is still effective when (i) many
solutions exist, (ii) solutions are not equally optimal, and (iii) solutions are not equally likely to be
found by random exploration. We also have experimented with stronger regularization coef�cients
for the baselines, which help the baselines discover more solutions. However, if the regularization
coef�cient is too large, they fail to produce capable policies.

5

Published as a conference paper at ICLR 2023

(a) CMG-S (b) CMG-H

(c) PMR-C (d) PMR-L

Figure 3: Numbers of discovered solutions. Ideally, if the
population size increases by one, one more solution should
be discovered, as depicted by the dashed lines (assuming that
a joint policy does not produce a multi-modal behavior).

(a) PMR-C

(b) PMR-L

Figure 4: Numbers of compe-
tent joint policies using vari-
ous combinations of N (x-axis)
and� XP (colors) in PMR.

4.2 TRADE-OFF BETWEEN COMPETENCY AND DISSIMILARITY OF JOINT POLICIES

It is possible that optimizing a regularized objective might incur training instability and create
incapable policies. Here, we investigate the effect of different combinations of� XP and the population
size (N) on the competency of the policies.

Fig. 4 shows the number of competent joint policies when using different values ofN and� XP in
PMR. Particularly, in PMR, a joint policy is considered competent when both players stay close to
a landmark at the end of an episode. We observe that when the population size is larger than the
number of solutions (N > M), some surplus policies do not learn to reach a goal. Importantly, the
number of competent joint policies depends on the value of� XP: lower values of� XP yield more
capable policies. However, using too low� XP will generate policies that share a common solution
whenN � M as shown in App. J.1.1. Additionally, whenN � M , all trained agents are competent
except when� XP is too high in PMR-L. These results suggest that there is a trade-off between the
number of capable joint policies and policy dissimilarity. When using a larger population size, a
small � XP should be used to avoid producing incompetent agents, while a bigger� XP should be used
with smaller population sizes to ensure the dissimilarity between joint policies.

4.3 TRADE-OFF BETWEEN COMPUTATION COST AND DIVERSITY

Figure 5: Number of learned solu-
tions using variousnxp .

Not only is using bigger values ofN more likely to produce
incompetent policies, but it is also computationally expen-
sive. Formally, the computation complexity of approximating
~JXP(�; P) is O(Nn xp) wherenxp is the number of XP pairs
used to approximate~JXP(� A ; P). So, we investigate a way
to reduce the cost of calculating~JXP(� A ; P) by reducingnxp .
According to Eq. 5, the default value isnxp = N � 1. When
nxp < N � 1, nxp policies are chosen randomly fromP� A by
sampling without replacement.

We observe that, while being computationally cheaper, using
nxp < N � 1 tends to produce less diverse populations as
shown in Fig. 5. Thus,nxp can be considered a hyperparameter
that controls the computation-diversity trade-off. However, as shown by the dashed lines, the effect
of nxp on population diversity is less prominent in PMR-C, where solutions are equally likely to be
found. We usenxp = N � 1 in all other experiments. See App. J.1.2 for results in CMG.

6

Published as a conference paper at ICLR 2023

4.4 EFFECT OF THEMUTUAL INFORMATION OBJECTIVE

(a) � MI = 0 :5 (b) � MI = 0 :5 (c) � MI = 0 :5 (d) � MI = 0 :5

(e) � MI = 0 (f) � MI = 0 (g) � MI = 0 (h) � MI = 0

Figure 6: The top and bottom rows show four joint policies produced by a single run of LIPO training
with and without the MI objective, respectively. Different colors of the trajectories correspond to
different values ofz. The orange and green circles show the starting positions. The blue circles
represent the landmarks.

Fig. 6 shows the behaviors of the policies produced by LIPO with and without the MI objective in
PMR-C. We can see the effect of the MI objective in the variety of the trajectories. Overall, each
agent exhibits larger variations given a small MI regularization� MI = 0 :5. This result aligns with
our motivation of using the MI objective to learn variations of each solution. With or without the MI
regularization, LIPO discovers all the landmarks withN = 4 .

4.5 DISCOVERINGRECIPES INMULTI -RECIPEOVERCOOKED

(a) A sample initial state (b) Possible recipes

Figure 7: An overview of the multi-recipe Overcooked game.

Overcooked, a collaborative cooking
game, has been used to study the
cooperative ability of learned agents
in prior works (Carroll et al., 2019;
Charakorn et al., 2020; Strouse et al.,
2021; McKee et al., 2022). To in-
vestigate the usefulness of LIPO in
a high-dimensional environment, we
implement a more complex version of
the game based on the work of Wu
et al. (2021); players have to complete
and serve one of the six pre-de�ned
recipes as fast as possible, as opposed
to delivering a single menu item re-
peatedly. We emphasize that this environment is much more challenging than the ones in the previous
experiments because of various aspects: First, it has a sparse reward signal. Second, there are multiple
sub-tasks. Third, different recipes have different sub-tasks. Each of these characteristics of the
environment complicates the process of �nding diverse solutions. Furthermore, we note that recipes
containing a carrot or a tomato are harder to complete than other recipes as they involve an additional
coordination step. Particularly, carrot and tomato have to be sent over by the agent on the right, unlike
lettuce and onion. Fig. 7 shows an overview of the game.

The goal in this experiment is to learn a population of behaviorally diverse agents. We choose to
quantify the diversity of a population based on the entropy of its recipe distribution. For a population

P, we approximate the probability of recipei being completed asP(recipei jP) �
P

� A
m i (� A)

P
i

P
� A

m i (� A) ,

wheremi (� A) denotes the frequency of recipei under a joint policy� A . The recipe frequencies,
f mi (� A)j1 � i � 6g, for each joint policy� A 2 P are measured by counting the completed recipes
from 1,000 self-play episodes. For Multi SP, TrajeDi and LIPO, we setN = 8 . For Multi SPMI and
Multi MAVEN, we usenseed= 8 andjzj = 8 .

7

	Introduction
	Preliminaries
	Learning Incompatible Policies (LIPO)
	Learning a Distinct Policy via Policy Compatibility
	Learning a Population of Diverse Policies
	Inducing Variations in Each Policy
	Implementation

	Experiments
	Discovering Diverse Solutions
	Trade-Off Between Competency and Dissimilarity of Joint Policies
	Trade-Off Between Computation Cost and Diversity
	Effect of the Mutual Information Objective
	Discovering Recipes in Multi-Recipe Overcooked
	Training Generalist Agents with Generated Populations

	Related Work
	Conclusion
	Proof for Theorem 3.1
	Derivation of the Lower Bound of the MI Objective
	Additional Environment Details
	One-Step Cooperative Matrix Game
	Point Mass Rendezvous (PMR)
	Multi-Recipe Overcooked

	Implementation Details
	MAPPO
	Multi SP
	SPMI
	MAVEN
	Multi SPMI and Multi MAVEN
	TrajeDi
	LIPO
	Generalist Agent

	Relationship with rahman2022towards
	Discussions
	Limitations
	Hyperparameters (CMG and PMR)
	Hyperparameters (Overcooked)
	Additional Results
	Additional Ablation Results
	Additional Results with Varying N and XP
	Additional Results with Varying nxp

	Radar Plots of Recipe Frequencies
	Visualization of Behaviors

