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Abstract

Transformer-based architectures have dominated various areas of machine learning
in recent years. In this paper, we introduce a novel robust attention mechanism
designed to enhance the resilience of transformer-based architectures. Crucially,
this technique can be integrated into existing transformers as a plug-and-play layer,
improving their robustness without the need for additional training or fine-tuning.
Through comprehensive experiments and ablation studies, we demonstrate that
our ProTransformer significantly enhances the robustness of transformer models
across a variety of prediction tasks, attack mechanisms, backbone architectures,
and data domains. Notably, without further fine-tuning, the ProTransformer consis-
tently improves the performance of vanilla transformers by 19.5%, 28.3%, 16.1%,
and 11.4% for BERT, ALBERT, DistilBERT, and RoBERTa, respectively, under
the classical TextFooler attack. Furthermore, ProTransformer shows promising
resilience in large language models (LLMs) against prompting-based attacks, im-
proving the performance of T5 and LLaMA by 24.8% and 17.8%, respectively, and
enhancing Vicuna by an average of 10.4% against the Jailbreaking attack. Beyond
the language domain, ProTransformer also demonstrates outstanding robustness in
both vision and graph domains. Our code is available at https://github.com/chris-
hzc/ProTransformer.

1 Introduction

In recent years, attention mechanisms and transformer-based architectures have drawn significant
attention across many domains in machine learning, such as natural language processing (NLP) [1, 2],
computer vision [3, 4], and graph learning [5, 6]. In particular, transformers have demonstrated
superior capabilities to learn and model complex relations in data through powerful and universal
attention mechanisms, and they have dominated many popular NLP tasks such as topic classification,
sentiment analysis, textual entailment, machine translation, dialogue generation, etc [2]. Despite their
success in NLP and beyond, many recent studies have demonstrated that transformers are highly
vulnerable to adversarial attacks such that even small modifications to the input can easily fool the
model [7, 8, 9]. However, most research on transformer architectures focuses on accuracy and
efficiency, largely ignoring their security and robustness [10, 11].

With the increasing popularity of Large Language Models (LLMs) [12, 13], the robustness and
security concerns of transformer architectures become particularly of interest. It has been shown
that malicious attackers can invade the language models through various approaches as shown in
Figure 1. The attacker can modify the input content in text attacks [14] or the prompt template in

∗Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/chris-hzc/ProTransformer
https://github.com/chris-hzc/ProTransformer


Figure 1: Various attack mechanisms on language models. Classic text attacks modify the input
content using typos or synonyms; Prompt attacks perturb the prompt template within the input;
and Jailbreaks append adversarial, non-semantic suffixes to manipulate the model into producing
malicious outputs.

prompt attacks to mislead the model predictions [15]. Moreover, by adding adversarial suffixes,
the jailbreaking attack [16] can prompt a LLM to generate toxic and illegal content which could
lead to catastrophic legal and ethical impacts such as malicious speech or privacy leaks. Given the
broad applications of transformers and their vulnerabilities under attacks, it is imperative to design a
universal and effective strategy to enhance the robustness of transformers.

Figure 2: Overview of ProTransformer.
ProAttention can be plugged into pretrained
transformers without additional training. The
ProTransformer is versatile and can be ap-
plied across various domains, including lan-
guage, image, and graph.

Existing research attempting to improve the robust-
ness of transformers can be roughly divided into
empirical defenses [17, 18, 19, 20, 21] and certifi-
able defenses [22, 23, 24, 25]. Nevertheless, these
defenses require excessive computation costs for
training, inference, or both. In addition to these
architecture-agnostic defenses, there are also several
works proposing to enhance the robustness of trans-
formers architecture [26, 27, 28, 29]. However, these
approaches either require substantial computations
or rely on specific domain knowledge, which hinders
their extensions to larger models or broader applica-
tion domains.

In this paper, given the limitations of existing works
and the enormous training cost of transformers, we
aim to robustify transformer architectures via a plug-
and-play paradigm without additional training or fine-
tuning. Our proposed ProAttention (Algorithm 1) can
be readily plugged into the given transformers to con-
vert them to ProTransformer (as shown in Figure 2)
with significantly stronger robustness. Specifically,
our contributions can be summarized as follows:

• We establish a novel connection between the attention mechanism in transformers and the
weighted least square estimator. We provide interpretation and numerical simulation to reveal its
vulnerability against potential adversarial attacks.

• From our new perspective, we propose robust token estimators to improve the resilience of token
aggregation against adversarial attacks. We also propose an efficient Newton-IRLS algorithm to
approximate the non-convex and non-smooth robust token estimator with convergence guarantees.
The derived algorithm can be plugged into the given transformer as a plug-and-play layer to
enhance its robustness against attacks even without additional training or fine-tuning.
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• Our comprehensive experiments and ablation studies demonstrate that the proposed ProTrans-
former is effective, efficient, and generalizable. It significantly improves the robustness of
transformers across various machine learning tasks, attack mechanisms, backbone architectures,
and data domains such as language, vision, and graphs.

2 Related Work

In this section, we mainly summarize related works on the attacks and defenses of transformers
focusing on language domains since this is the focus of this paper.

Attacks. Compared to the attack mechanisms in vision domain [30, 31], the text attacks in the
language domain are highly complicated due to the natural irregularity of data structure. According
to the perturbation units, text attacks can be classified into character-level [7, 32], word-level [33, 34,
35, 36, 9, 14, 37], sentence-level [38], and multi-level [39, 40, 8]. These classic text attacks typically
generate adversarial examples through misspellings, synonym replacement, etc. In the era of LLMs,
several new types of attacks have emerged, such as jailbreak attacks [16, 41, 42, 43] and prompt
injection [44, 45, 46]. These prompting-based attacks aim to trick models into generating unsafe
outputs using adversarially crafted prompts.

Defenses. There have been some works proposed to defend against adversarial text attacks from
various perspectives. Empirical defenses, such as data augmentation [17] and adversarial training [47,
18, 19, 20, 21], attempt to robustify models by exposing them to a wider range of adversaries during
training. On the other hand, several certifiable defenses [24, 25, 22, 23] have been proposed to
guarantee the model robustness regardless of the attacks. However, these defenses require excessive
computation costs for training, inference, or both, which limits their application in large-scale
problems such as LLMs. Besides, all these methods are typically architecture-agnostic, which are
orthogonal to and can be combined with our proposed defenses on the transformer architecture to
further enhance the robustness.

To safeguard the transformers, several endeavors have been made from the transformer architecture
perspective. [26] modifies the attention mechanism and position embedding to robustify text-to-speech
transformers. In the crisis detection and recognition task, [27] proposes an end-to-end attention-based
classifier to enhance robustness. For tabular data, TableFormer [28] adopts structural-aware table-text
encodings that are more robust to row and column order perturbations. However, these architectures
are tailored for specific tasks, which require specific domain knowledge and can not be generalized
across tasks. [29] proposes a general framework for self-attention modules via robust kernel density
estimation (RKDE). However, this method introduces excess computation cost and shows relatively
limited robustness improvement. Generally speaking, existing approaches either require substantial
computations or rely on specific domain knowledge, which hinders their extensions to larger models
or broader application domains.

3 ProTransformer

The main goal of this paper is to design robust self-attention mechanisms that are more resilient to
adversarial attacks so they can be applied to robustify Transformer architectures. In this section, we
first provide a new interpretation of the self-attention mechanism in Transformer architecture as the
weighted least-square token estimator in Section 3.1. Then we propose robust token estimators that
are more resilient to the dominating impact of input tokens in Section 3.2. An efficient Newton-IRLS
algorithm is derived with a convergence guarantee to approximate the robust token estimator in
Section 3.3. Finally, we describe how the proposed algorithm can be unrolled as robust attention
layers to enhance the robustness of transformer architectures in Section 3.4.

3.1 Attention Mechanism as WLS Token Estimator

First, we provide a new perspective to formulate the vanilla attention mechanism as the weighted least
squares (WLS) token estimator. In the self-attention layer, each output token z aggregates the values
of input tokens {vj} as their weighted sum according to the attention weights: z =

∑N
j=1 ajvj ,

where {aj}j∈[N ] are the attention weights and {vj}j∈[N ] are value vectors for all N input tokens.
This weighted sum can be interpreted as the optimal solution of the following weighted least squares
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(WLS) error minimization problem:

argmin
z

L(z) =
N∑
j=1

aj · ∥vj − z∥2, (1)

whose first-order optimality condition (∇L(z) =
∑N

j=1 aj · 2(z− vj) = 0) yields z =
∑N

j=1 ajvj .

Vulnerability analysis of vanilla attention. When adversaries perturb the input tokens, these tokens
will dominate the impact on output tokens since the quadratic penalty on the residual ∥vj − z∥2
will dominate the WLS estimator. Therefore, the output token z will be shifted to those dominating
input tokens. As a result, the adversarial input tokens will significantly impact the representation of
output tokens. We also provide an empirical study to verify that adversarial attacks will significantly
increase the residual ∥vj − z∥2 in Appendix F.3. Moreover, we simulate a mean estimation problem
under outlier data points using synthetic data to better illustrate the sensitivity of the WLS estimator.
The detailed setting and visualization results of the numerical simulation are provided in Appendix F.

3.2 Robust WLS Token Estimators

The analysis above provides a valid explanation of why various attention-based transformer archi-
tectures are easily compromised by introducing adversarial perturbations in the input data. Also,
our interpretation of the attention mechanism in transformers as WLS estimator provides a rig-
orous perspective to design robust alternatives. To dampen the effect of outlier data, multiple
robust regression algorithms have been proposed in robust statistics using least absolute devi-
ations [48], Huber regression [49], and Minimax Concave Penalty (MCP) [50]. Motivated by
these advancements with rigorous robustness guarantees, we propose the robust weighted least
squares token estimators to enhance the resilience against potential adversarial attacks as follows:

Figure 3: Different ρ(z).

argmin
z

L(z) =
N∑
j=1

aj · ρ(∥vj − z∥) (2)

where ρ can be flexibly replaced with the specific robust
penalties in Figure 3.

Special cases of ρ. (1) The quadratic ℓ2 loss recovers
vanilla WLS estimator; ℓ1 loss exerts linear effect on the
residuals; (2) Huber loss performs as ℓ2 loss within the
range (0, δ), and becomes similar to ℓ1 when z > δ; (3)
MCP loss behaves like ℓ1 loss near zero and becomes con-
stant when z is large than γ. (4) We also propose Huber-
MCP to combine the advantage of Huber and MCP loss.
The detailed formulations are available in Appendix B.4
due to the space limit.

3.3 Newton-IRLS algorithm

The proposed robust token estimator in Eq. (2) is non-convex and non-smooth, posing a challenge
for efficient algorithm design. Moreover, the exploding model size of evolving transformers further
necessitates the design of efficient neural network layers. To this end, we propose an efficient Newton
iterative reweighted least square (Newton-IRLS) algorithm to tackle this challenging problem. We
first design a localized upper bound for the original objective and then optimize the upper bound with
a second-order Newton method. We also provide a rigorous theoretical loss descent guarantee. The
precise statements are presented as follows and the detailed proof are provided in Appendix B.

Localized upper bound. Instead of directly optimizing the original loss function L(z) in Eq. (2), we
optimize a convex localized upper bound at the current iteration z(k) as follows:

Lemma 3.1 (Localized Upper Bound). Suppose the loss objective is defined as in Eq. (2), where
ρ ◦ sqrt(·) is any non-convex function. For any fixed point z(k), there exists a convex localized upper
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bound as:

L̂(z) =
N∑
j=1

aj · w(k)
j · ∥vj − z∥2 + C(z(k)), (3)

where w
(k)
j =

ρ′(∥vj−z(k)∥)
2∥vj−z(k)∥ and ρ′ is the first derivative of ρ. Particularly, the constant C(z(k))

guarantees the equality of L̂ and L at z(k), i.e., L̂(z(k)) = L(z(k)).

Proof. Please refer to Appendix B.1.

As C(z(k)) is treated as a constant during the optimization at the current step, the upper bound in
Eq. (3) becomes convex and can be efficiently optimized.

Newton-IRLS iteration. After obtaining the convex upper bound L̂ in Eq. (3), we can derive a
concise closed-form iteration using the second-order Newton method as follows:

z(k+1) = z(k) −
[
∇2L̂(z(k))

]−1

∇L̂(z(k)) =
∑

j aj · w
(k)
j · vj∑

j aj · w
(k)
j

. (4)

Eq. (4) can be interpreted as a reweighted sum, in which the derived w
(k)
j modifies the original

attention score aj on the value vector vj . We leave detailed derivations of Newton-IRLS algorithm in
Appendix B.2. Its convergence and rigorous loss descent are guaranteed by the following Theorem 3.2.
Theorem 3.2 (Convergence guarantee). Suppose the loss objective L(z) is defined as in Eq. (2) and
its corresponding convex localized upper bound is in Eq. (3). Then, through the iteration in Eq. (4),
the following inequality holds:

L(z(k+1)) ≤ L̂(z(k+1)) ≤ L̂(z(k)) = L(z(k)), (5)

that is, optimizing upper bound L̂ can guarantee the rigorous descent of L.

Proof. Please refer to Appendix B.3.

Although the loss L(z) is not necessarily convex and does not possess a global optimum, Theorem 3.2
guarantees that the Newton-IRLS iteration, which optimizes L̂(z), can rigorously reduce the original
loss L(z). The algorithm analyses in Appendix F, along with the main experiments in Section 4 and
Section 5, validate that the local optimal solution achieved by our algorithm performs well in terms
of both convergence and empirical robustness.

Robust token estimator by reweighting the tokens. The robust estimator in Eq. (2) provides
a general framework that covers several special cases. By choosing different penalty functions ρ
on the residuals ∥vj − z(k)∥, we obtain various reweighting schemes in Eq. (4). Take the MCP

function as the instance, the weight is derived as w(k)
j =

ρ′
γ(∥vj−z(k)∥)
2∥vj−z(k)∥ = max

[
1

∥vj−z(k)∥ − 1
γ , 0

]
.

Obviously, the weight w(k)
j becomes smaller as ∥vj − z(k)∥ increases, thereby down-weighting the

large residuals. The residuals will be completely removed when it exceeds the threshold γ, since the
weight then becomes 0. The complete discussions for all cases are provided in Appendix B.4.

3.4 ProAttention: Robust Attention Layers

In the previous subsection, we formulate the token-wise Newton-IRLS approach for notation simplic-
ity. Here, we will present the corresponding matrix version for the entire attention layer.

Matrix Form. Denote V = {vj}j∈[N ] and A = {aij}i,j∈[N ] are value matrix and the attention
matrix, respectively. Z(k) = {z(k)i }i∈[N ] is the estimator for token i at the k-th iteration. Subsequently,
the pairwise distance D(k) = {∥vj − z

(k)
i ∥}i,j∈[N ] between Z(k) and V can be efficiently computed

using the torch.cdist function in PyTorch. Following this, the weight W(k) = {w(k)
ij }i,j∈[N ] can

be calculated element-wise based on D(k). Then the next step Z(k+1) is updated as a reweighted
matrix multiplication (W(k) ⊙A) ·V.
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Plug-and-Play Robust Attention. The pro-
posed algorithm can be packaged as a ro-
bust attention module, which can be readily
plugged into the transformers as a Plug-and-
Play Robust Attention (ProAttention) layer
without additional training or fine-tuning as
shown in Figure 2. The implementation of

Algorithm 1 ProAttention (MCP)

1 D = torch.cdist(Z, V) # Pairwise distance
2 W = torch.clip(1/D-1/gamma, min=0) # MCP
3 W = normalize(W * A, p=1, dim=-1)
4 Z = torch.matmul(W, V) # Update

ProAttention using MCP penalty in PyTorch is shown in Algorithm 1. The complete pseudocode for
other penalties is presented in in Appendix A.

Complexity analysis. Let N , D, and K represent the length of tokens, the dimension of vectors,
and the steps of the iterations, respectively. The vanilla attention requires 2 · N × N × D basic
operations while our ProAttention needs (1+2K) ·N ×N ×D. However, our ProAttention remains
efficient, as the Newton-IRLS method can effectively approximate the solution within only 3 steps
(K ≤ 3) (Figure 4 (a)) and ProTransformers do not introduce additional computation for training or
fine-tuning. We provide the detailed complexity analysis of various attentions in Appendix L.

Advantages. Our proposed ProAttention enjoys the following advantages: (1) Simplicity: it is simple
and easy to implement with only 4 core lines of code in Algorithm 1; (2) Efficiency: it is a plug-and-
play layer that can be integrated into any trained transformer without additional training or fine-tuning;
(3) Universality: it is a universal framework that advances the vanilla attention mechanism into a
series of robust derivatives with different penalties. Moreover, it can be applied to any attention-based
model across various modalities and tasks.

In the following sections, we will present comprehensive experiments and studies to validate the
effectiveness of the proposed ProAttention on language modeling in Section 4 as well as computer
vision and graph learning in Section 5.

4 Experiment on Language Modeling

In this section, we evaluate the effectiveness of the proposed ProAttention and ProTransformer under
classic text attacks on pre-trained language models, and two prompting-based attacks (prompt attack
and jailbreak attack) in the context of LLMs with comprehensive ablation studies.

4.1 Experiment Setting

Tasks and Datasets. For topic classification, we use AG’s News Corpus (AGNEWS) [51]. For
sentiment analysis, we utilize two widely-used datasets: Internet Movie Database (IMDB) [52] and
Stanford Sentiment Treebank (SST-2) [53]. For textual entailment, we make use of Recognizing
Textual Entailment (RTE) in the General Language Understanding Evaluation benchmark [54]. For
jailbreak attack, we select a new dataset Behaviors introduced in [55]. For the detailed information
on these datasets, please refer to Appendix C.

Backbone Architectures. For classical pre-trained language models, we choose BERT [56] and its
variants including RoBERTa [57], ALBERT [58] and DistilBERT [59]. For large language models
(LLMs), we choose T5 [60], LLaMA [12] and Vicuna [13]. For the detailed information on backbone
architectures, please refer to Appendix D.2.

Attacks. We not only evaluate several classic text attacks but also include popular prompt attacks
and jailbreak attacks on the LLMs. The three attack mechanisms and their differences are illustrated
in Figure 1. For classic text attacks, we evaluate the attacks at various levels, including the character-
level DeepWordBug [7], word-level PWWS [9], TextFooler [14], and multi-level TextBugger [8].
For prompt attacks, we modify the prompt template according to the aforementioned text attacks
following the evaluation setting in PromptBench [15]. For jailbreak, we evaluate the suffix attack
using Greedy Coordinate Gradient (GCG) method [55] and we test both attacks transferred from
surrogate model Vicuna (transfer attack) and attacks directly targeting the victim models (adaptive
attack). Please refer to Appendix E for details on attacks.

Defense Baselines. We include the following defense baselines in our experiments: MixADA [17],
PGD-Adv [31], FreeLB [47], TA-VAT [18] and SmoothLLM [61]. Additionally, we also include
the adversarial training (AT), wherein the augmented perturbations are generated by the attack to be
assessed. Details of these defense methods are provided in Appendix D.1.
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Evaluation metrics. Following [62], we use 3 metrics to evaluate the model performance. Clean
accuracy (Clean%) is the model accuracy on the clean testing data. Accuracy under attack (AUA%)
is the accuracy on the perturbed data under specific attack. Attack success rate (ASR%) is the ratio
of the number of successfully perturbed cases divided by the number of attempted texts.

Hyperparameters. For text attack setting, we follow the setting in the TextAttack framework [63].
For prompt attack, we follow the setting in PromptBench [15]. For GCG-based jailbreak attack, we
follow the setting in [61]. The detailed attack settings can be found in Appendix E. For defense
baselines, we follow the settings in their original papers. For our ProTransformer, we set the default
number of ProAttention layers as K = 3 since it can quickly converge to a reasonable precision
within 3 layers. Finally we tune δ (default 1) or γ (default 4) in the penalties (Huber and MCP loss)
to obtain the optimal parameters.

4.2 Classic Text Attacks on Language Models

To demonstrate the effectiveness of the proposed ProTransformer, we compare the robustness of our
methods with several popular defenses in three classical tasks: topic classification, sentiment analysis,
and textual entailment.

4.2.1 Adversarial Robustness

Table 1: The results of topic classification on AGNEWS.
Textfooler TextBugger DeepWordBug PWWS

Model Clean% ↑ Aua% ↑ ASR% ↓ AUA% ↑ ASR% ↓ AUA% ↑ ASR% ↓ AUA% ↑ ASR% ↓
ALBERT 93.0 20.6 77.9 26.1 71.9 38.9 58.2 35.9 61.4
Pro-ALBERT (MCP) (Ours) 93.8 48.9 47.3 41.8 55.3 59.5 35.9 63.1 32.0
DistilBERT 93.5 13.2 85.9 33.6 63.4 30.0 67.9 36.5 61.0
Pro-DistilBERT (MCP) (Ours) 93.9 29.3 68.5 48.7 47.9 34.3 63.1 50.5 45.6
RoBERTa 93.4 13.0 86.1 32.5 64.5 41.2 55.9 34.0 63.6
Pro-RoBERTa (MCP) (Ours) 93.7 24.4 73.7 34.3 62.8 45.5 51.5 39.4 57.5
BERT 94.2 19.7 78.9 31.7 67.5 37.5 59.8 43.1 53.8
+ FreeLB 94.2 38.0 59.5 42.8 55.5 56.1 40.9 57.0 39.9
+ PGD 94.1 36.8 61.7 40.5 57.1 47.6 49.7 48.7 48.6
+ MixADA 94.3 35.6 62.4 35.4 62.9 38.2 50.5 46.8 50.4
+ TA-VAT 94.4 36.2 61.8 39.2 58.2 49.5 48.1 47.0 50.7
+ AT 94.1 42.1 54.8 56.1 39.4 42.4 54.1 62.6 32.5
Pro-BERT (ℓ1) (Ours) 94.2 23.8 74.5 43.8 53.0 48.7 47.8 46.5 50.1
Pro-BERT (Huber) (Ours) 94.2 24.2 74.0 43.7 52.9 46.0 50.5 48.4 47.9
Pro-BERT (MCP) (Ours) 93.2 39.2 57.7 48.3 48.5 51.8 43.8 56.2 39.2
Pro-BERT (MCP) + AT (Ours) 94.0 56.8 38.9 60.7 35.1 61.0 34.1 68.8 25.7

Performance analysis. The experimental results of topic classification (AGNEWS) are presented
in Table 1, and we provide the results of sentiment analysis (IMDB) and textual entailment (RTE)
in Appendix G.1 and G.2 due to the space limit. From the experiment results, we can make the
following observations:

• The proposed ProAttention is a highly effective plug-in module that significantly and consistently
enhances the robustness of various transformer backbones across various adversarial attacks. Taking
AGNEWS as the instance, when combined with ProAttention (MCP), under the attacks {Textfooler,
TextBugger, DeepWordBug, PWWS}: (1) ALBERT is improved by {28.3%, 15.7%, 20.6%, 27.2%}
(2) DistilBERT is improved by {16.1%, 15.1%, 4.3%, 14.0%} (3) RoBERTa is improved by {11.4%,
1.8%, 4.3%, 5.4%} (4) BERT is improved by {19.5%, 16.6%, 14.3%, 13.1%}.

• Our method, Pro-BERT (MCP) + AT, exhibits best robustness among all the baselines. By simply
plugging in ProAttention (MCP) module without fine-tuning, our Pro-BERT can achieve comparable
robustness to most adversarial training-based methods which require substantial computational
time and resources. Furthermore, our framework is orthogonal to most existing defenses, allowing
for combined use with them to further enhance robustness. For instance, when combined with AT
technique, our Pro-BERT (MCP) + AT can further improve BERT + AT by {14.7%, 4.6%, 18.6%,
6.2%} under {TextFooler, TextBugger, DeepWordBug, PWWS}.
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(a) Convergence (b) Adversarial Training (c) Attack Constraints (d) Different Penalties

Figure 4: Ablation studies.

4.2.2 Ablation Study

Convergence. To validate the advantage of our Newton-IRLS over the first-order method, we conduct
a simulation experiment and plot the loss descent curves in Figure 4 (a). It can be observed that
Newton-IRLS exhibits efficient convergence as claimed in Section 3.3. We provide the experiment
details, loss descent curves (Figure 7), and the visualization of trajectories (Figure 8) of the updated
vectors in 2D plane in Appendix F.1 to further demonstrate the effectiveness of our algorithm.

Adversarial fine-tuning. To get insight into how the models gain more robustness from adversarial
examples, we track the training curves of adversarial fine-tuning under TextFooler in Figure 4 (b),
and put the results of other attacks in Figure 10 in Appendix G.3. We can observe that our Pro-BERT
(MCP) is compatible with adversarial fine-tuning technique to further enhance the model resilience.

Attack constraints. In text attack, there are several kinds of attack constraints including the
maximum percentage of perturbed words, minimum cosine similarity between the replaced synonym
and original word, and minimum sentence similarity threshold between the original sentence and
perturbed sentence. We test the values of these constraints in TextFooler. We present the results under
different perturbation percentages in Figure 4 (c) and other constraint measurements in Appendix G.4.
From the results, we observe that our Pro-ALBERT (MCP) can significantly outperform the backbone
ALBERT across all ranges of constraints.

Different penalties. Our Newton-IRLS is flexible to be formulated as different robust estimators
with different penalties. From the comparison in Figure 4 (d) , it can be observed that our robust
framework can consistently improve the robustness of the backbone BERT (ℓ2). Specifically, ℓ1 and
Huber-based defenses are comparable, and MCP-based method exhibits the best performance.

Different backbones. Our method is a general plug-and-play layer applicable to various transformer
backbones. The results in Table 1 and the ablation study on different backbones in Appendix G.5 (Fig-
ure 12) demonstrate that ProAttention improves the robustness over various architecture backbones
(BERT, RoBERTa, DistilBERT and ALBERT) against various attacks with significant margins.

Table 2: Average running time (ms) on AGNEWS.

BERT Pro-BERT (MCP)
Running time (ms) 6.14 9.04 11.67 14.34 17.33 19.89 21.87

# Layers (K) \ 1 2 3 4 5 6

Running time. To empirically evaluate the ef-
ficiency of our method, we test the average run-
ning time on AGNEWS using BERT and Pro-
BERT (MCP) equipped with multi-layer (K)
ProAttention. The results in Table 2 show that
our ProAttention only requires 1-2 times addi-
tional inference time of the backbone model yet achieves significant improvement in robustness
without training.

4.3 Adversarial Prompting Attacks on LLMs

In the context of prompt-based generative AI, the adversarial attacks mechanisms on LLMs become
more enriched and sophisticated. In this section, we will evaluate the robustness of our proposed
ProTransformer under two popular attacks: prompt attack and jailbreak attack.
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4.3.1 Prompt Attack

As shown in Figure 1, the most significant distinction between prompt attacks and classical text
attacks is that prompt attacks aim to mislead the models by altering the prompt template rather than
the input content. We display the results of T5 in Figure 5 and leave the comprehensive study in
Appendix H.1. We also present the results on LLaMA in Appendix H.2. From the results, we can
make the following observations: (1) For T5, the choice of the penalty would affect the robustness
of defenses. Specifically, Pro-T5 (MCP) exhibits a significant advantage over other methods, and
this advantage becomes even more evident as the number of perturbed words increases. Pro-T5
(ℓ1) and Pro-T5 (Huber) show a slight improvement over the backbone model T5. (2) For LLaMA,
Huber-MCP and Huber-based methods exhibit better robustness than other methods while preserving
good clean performance. The detailed experiments and discussions can be found in Appendix H.2.

Figure 5: Prompt attack results. Figure 6: Attack success rates (ASRs) under transfer jailbreak.

4.3.2 Jailbreak Attack

In recent years, prompts have played a pivotal role in guiding models to generate desired outputs.
Nevertheless, there exist malicious "jailbreak prompts", which are intentionally designed to bypass
the built-in safeguards in LLMs, causing the model to produce harmful content that violates the legal
policies. As illustrated in Figure 1, the suffix-injection jailbreaks attempt to append a non-semantic
suffix to the user’s prompt to fool the models. We select GCG method to evaluate the resilience of
models comprehensively.

In Figure 6, we compare the Attack Success Rates (ASRs) of Vicuna and its corresponding Pro-Vicuna
(Huber) with various δ values on Behaviors. In each column, we also include SmoothLLM [61] with
different smoothing extent q(%) to further reinforce the resilience of every single model. The last
row of matrix (q = 0) stands for the performance without random smoothing. The additional results
of random smoothing with swap, insert and patch, as well as the results under adaptive jailbreaking
attack are presented in Appendix I.

From the results, we can observe that: (1) Our Pro-Vicuna can significantly improve the robustness of
Vicuna. As shown in the last row of Figure 6, with δ = 0.1, we successfully reduce the ASR to 1.8%,
which is comparable to the random smoothing defense that requires multiple random perturbations,
inferences and aggregations. (2) Our ProAttention is orthogonal to randomized smoothing defense
and can be combined with it to further improve the robustness.

5 Experiment beyond Language Modeling

In the previous section, we have provided comprehensive experiments to validate the effectiveness of
our ProTransformer in the (large) language models. In fact, as shown in Figure 2, our ProAttention
is a fundamental module which can reinforce any attention-based models across various domains
or modalities. In this section, we will integrate ProAttention into vision models and graph learning
models to further validate the effectiveness and generality of our approach.

9



5.1 Image Classification

Table 3: Adversarial robustness under PGD.

Model\Budget 0 (Clean) 1/255 4/255 8/255
Deit 97.91 38.98 0.44 0.0

Convit 98.70 41.75 1.83 0.0
BeiT 97.87 6.81 0.0 0.0
Swin 98.30 14.89 0.02 0.01
ViT 98.74 34.61 1.83 0.26

Pro-ViT (Ours) 98.40 77.39 48.11 33.40

In computer vision, we conduct two attacks
(FGSM [30] and PGD [31]) on several vision
transformers including ViT, BeiT, ConviT, DeiT
and Swin. We perform the experiments on
CIFAR-10 and ImageNet-1K across budgets
{1/255, 4/255, 8/255}, and present the results
of PGD on CIFAR-10 in Table 3 and additional
experiments in Appendix J. From the results,
we can observe that Pro-ViT can outperform the
second best model by {35.64%, 46.28%, 33.14%} under different budgets.

5.2 Graph Representation Learning

Table 4: Adversarial robustness on Cora-ML.

Model \ Budget 0% 10% 20% 30% 40%

GCN 85.0 ± 0.4 69.6 ± 0.5 60.9 ± 0.7 54.2 ± 0.6 48.4 ± 0.5

GNNGuard 83.1 ± 0.7 70.2 ± 1.0 63.1 ± 1.1 57.5 ± 1.6 51.0 ± 1.2

RGCN 85.7 ± 0.4 69.1 ± 0.4 59.8 ± 0.7 52.8 ± 0.7 46.1 ± 0.7

GRAND 86.1 ± 0.7 70.7 ± 0.7 61.6 ± 0.7 56.7 ± 0.8 51.9 ± 0.9

ProGNN 85.6 ± 0.5 71.0 ± 0.5 63.0 ± 0.7 56.8 ± 0.7 51.3 ± 0.6

Jaccard-GCN 83.7 ± 0.7 68.3 ± 0.7 60.0 ± 1.1 54.0 ± 1.7 49.1 ± 2.4

SoftMedian 85.0 ± 0.7 75.5 ± 0.9 69.5 ± 0.5 62.8 ± 0.8 58.1 ± 0.7

GAT 83.5 ± 0.5 71.2 ± 1.2 65.0 ± 0.9 60.5 ± 0.9 56.7 ± 0.9

Pro-GAT (ours) 84.6 ± 0.8 75.5 ± 0.8 72.1 ± 0.4 69.0 ± 0.7 66.5 ± 1.2

Besides the language and vision domains, we
also validate the effectiveness of our method
in the graph domain. We conduct the semi-
supervised node classification task and leverage
PGD adaptive attack [64] to evaluate the robust-
ness of models. We show the experiment results
of Cora-ML and Citeseer, averaged over 5 dif-
ferent random splits, in Table 4 and Table 29 (in
Appendix K), respectively. The ablation studies
on the layers and γ in MCP are presented in
Table 30. Please refer to Appendix K for more
detailed results and studies. From the results, we can conclude that our Pro-GAT significantly
outperforms the backbone GAT and exhibits strong robustness across various budgets while keeping
good clean accuracy.

6 Conclusion & Limitation

In this paper, we delve into the robustness and security of the popular transformer-based architectures.
We revisit the vulnerability of attention mechanisms with theoretical understanding and simulations.
We propose an interpretable robust attention layer to robustify transformer architecture via a plug-
and-play paradigm. Our proposed ProAttention is an effective, efficient, and universal framework that
can significantly enhance the robustness of transformers across various tasks, architectures, attacks,
and domains without additional training or fine-tuning.

Regarding the limitations, despite the acceptable complexity of our ProTransformer, there is still
potential to improve the efficiency of our models. Additionally, while we primarily claim and validate
the effectiveness of our model under a plug-and-play paradigm, we are excited about the future of the
proposed ProTransformer architecture and hope to see its full potential realized through training or
fine-tuning on large models in the future.
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A Pseudocode of Plug-and-Play Robust Attention (ProAttention)

Here, we provide the complete pseudocode of our ProAttention including various penalties cases in
Algorithm 2. The core itertions are show in the for loop in the code. Our ProAttention is easy to
implement by only replacing the vanilla attention module with our ProAttention.

Algorithm 2 ProAttention in PyTorch style

1 class ProAttention(nn.Module):
2 def __init__(self, K, gamma, delta, penalty):
3 super().__init__()
4 self.K = K
5 self.gamma = gamma
6 self.delta = delta
7 self.penalty = penalty
8
9 def forward(self, A, V):

10 Z = torch.matmul(A, V) # Initialization
11
12 if self.penalty == 'L2':
13 return Z # Original attention
14
15 for _ in range(self.K):
16 D = torch.cdist(Z, V) # Pairwise distance
17
18 if self.penalty == 'L1':
19 W = 1/D
20 elif self.penalty == 'MCP':
21 W = torch.clip(1/D - 1/self.gamma, min=0)
22 elif self.penalty == 'Huber':
23 W = torch.clip(self.delta/D, max=1)
24 elif self.penalty == 'Huber-MCP':
25 W = torch.clip(self.delta/(self.gamma-self.delta)*(self.gamma/D-1), min=0, max=1)
26
27 W = torch.nn.functional.normalize(W * A, p=1, dim=-1) # Normalization
28 Z = torch.matmul(W, V) # Update
29 return Z

B Proof of Newton-IRLS Algorithm

B.1 Proof of Localized Upper Bound (Lemma 3.1)

Proof. Define ϕ(z) := ρ(
√
z) as a non-convex function, then for fixed point z0,

ϕ(z) ≤ ϕ(z0) + ϕ′(z0)(z − z0) = ϕ′(z0) · z + C(z0)

where the first inequality holds with equality at z = z0 and

ϕ′(z0) = ρ′(
√
z) · 1

2
√
z

∣∣∣∣
z=z0

=
ρ′(

√
z0)

2
√
z0

.

By replacemnet as z = ∥vj − z∥2 and z0 = ∥vj − z(k)∥2, then

ρ(∥vj − z∥) ≤ ρ′(∥vj − z(k)∥)
2∥vj − z(k)∥

· ∥vj − z∥2 + C(∥vj − z(k)∥2)

= w
(k)
j · ∥vj − z∥2 + C(∥vj − z(k)∥2),
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and the first inequality holds with equality at z = z(k). Sum up the items on both sides with weights
{aj}j∈[N ], we obtain

L(z) =
N∑
j=1

ai · ρ(∥vj − z∥)

≤
N∑
j=1

aj · w(k)
j · ∥vj − z∥2 +

N∑
j=1

aj · C(∥vj − z(k)∥2)

=

N∑
j=1

aj · w(k)
j · ∥vj − z∥2 + C1(z

(k))

= L̂(z)

(6)

and the equality holds at z = z(k):
L̂(z(k)) = L(z(k)). (7)

After obtaining the convex upper bound L̂(z), it becomes feasible to employ convex optimization
algorithms to optimize this objective.

B.2 Proof of Newton-IRLS algorithm and Special Cases

Newton-IRLS. We first derive the formulations of gradient and Hessain matirx of L̂ as follows:

∇L̂(z(k)) =
N∑
j=1

aj · w(k)
j · 2(z(k) − vi)

∇2L̂(z(k)) =
N∑
j=1

aj · w(k)
j · 2 · I

Then, the gradient descent (GD) (η is the stepsize) is

z(k+1) = z(k) − η · ∇L̂(z(k))

= z(k) − η ·
N∑
j=1

aj · w(k)
j · 2(z(k) − vj),

and the Newton Iteration is

z(k+1) = z(k) −
[
∇2L̂(z(k))

]−1

∇L̂(z(k)) (8)

= z(k) − ·

 N∑
j=1

aj · w(k)
j · 2 · I

−1
N∑
j=1

aj · w(k)
j · 2(z(k) − vi) (9)

=

∑
j aj · w

(k)
j · vj∑

j aj · w
(k)
j

(10)

In convex optimization, it has been well-established that second-order methods converge much faster
than first-order approaches, but they require substantial computation in calculating or approximating
the inverse Hessian matrix. However, due to the uniqueness of our L̂ in Eq. (3), we can derive a
concise closed-form iteration using the second-order Newton method as in Eq. (10). Compared to the
first-order gradient descent (GD) iteration, our Newton-IRLS algorithm enjoys several advantages as
follows:
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• Fast convergence: Newton method converges at a quadratic rate, which is significantly faster than
the linear convergence of gradient descent (GD). The comparative analysis of them can be found
in Figure 4 (a) in ablation studies;

• Interpretable formulation: The resulted form in Eq. (??) employs a normalized reweighted sum,
which can be interpreted as robust estimator by down-weighting the outliers, as discussed in the
following paragraph;

• Efficient computation: The Hessian ∇2L̂(z(k)) can be easily computed as a closed-form diagonal
matrix, facilitating the matrix inversion and multiplication in the Newton’s iteration.

B.3 Proof of Rigorous Loss Descent Guarantee (Theorem 3.2)

Proof. Since z(k+1) is obtained from optimize the convex localized upper bound L at z(k), then we
have L̂(z(k+1)) ≤ L̂(z(k)). According to the upper bound in Eq. (6) and localized equality in Eq. (7),
it is not hard to get the following inequality:

L(z(k+1)) ≤ L̂(z(k+1)) ≤ L̂(z(k)) = L(z(k)).
Therefore, optimizing the localized upper bound L̂ can guarantee the rigorous descent of L.

B.4 Special cases of Newton-IRLS

Our Newton-IRLS is a general framework which can be derived as different reweighting schemes
with different penalties:

• Square Loss (ℓ2):

ρ(z) =
1

2
z2,

w
(k)
j =

ρ′(∥vj − z(k)∥)
2∥vj − z(k)∥

=
1

2
,

z∗ =

N∑
j=1

aj · vj .

ℓ2 loss increase quadratically with z, which suggests that ℓ2 loss is more sensitive to the residual
magnitude. Particularly, ℓ2 loss can recover the vanilla attention since the weights are constant 1

2 .
• Absolute Loss (ℓ1):

ρ(z) = z,

w
(k)
j =

ρ′(∥vj − z(k)∥)
2∥vj − z(k)∥

=
1

2∥vj − z(k)∥
.

With ℓ1 loss, the weight is inversely proportional to ∥vj − z(k)∥. By up-weighting the inliers
and down-weighting the outliers, ℓ1-based estimators can mitigate the effect of large magnitude
residues.

• Minimax Concave Penalty (MCP) [50]:

ργ(z) =

{
z − z2

2γ if y < γ
γ
2 if y ≥ γ

,

w
(k)
j =

ρ′(∥vj − z(k)∥)
2∥vj − z(k)∥

=
1

2
max

[
1

∥vj − z(k)∥
− 1

γ
, 0

]
.

MCP loss becomes constant when z is large and the weight derived by MCP loss enhances the
interpretability of the robust estimator by down-weighting or completely removing the outliers.
To be specific, the weight wj becomes smaller as the distance ∥vj − z(k)∥ increases, thereby
down-weighting the outlying cases. When this distance exceeds the threshold γ, the weight
becomes 0, totally removing the outliers.
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• Huber loss:

ρδ(z) =

{
1
2z

2 if z < δ

δ · (z − 1
2δ) if z ≥ δ

,

w
(k)
j =

ρ′(∥vj − z(k)∥)
2∥vj − z(k)∥

=
1

2
min

[
1,

δ

∥vj − z(k)∥

]
.

Huber loss is equivalent to the ℓ2 loss within the range (0, δ), and it becomes similar to ℓ1 when
z > δ, which indicates that Huber loss may mitigate the effect of large noise while keeping decent
performance in noiseless scenario.

• Huber-MCP:

ρδ,γ(z) =


1
2z

2 if z < δ

δ · (z − 1
2δ −

(z−δ)2

2(γ−δ) ) if δ ≤ z < γ
δγ
2 if γ ≤ z

,

w
(k)
j =

ρ′(∥vj − z(k)∥)
2∥vj − z(k)∥

=
1

2
max

[
min

[
δ

γ − δ

(
γ

∥vj − z(k)∥
− 1

)
, 1

]
, 0

]
.

This penalty combines the advantages of Huber and MCP in recovering the ℓ2 loss and largely
mitigating the outliers.
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C Dataset Information

C.1 Language Domain

• AG’s News Corpus (AGNEWS) [51]: It is a collection of more than 1 million news articles.
News articles have been gathered from more than 2000 news sources by ComeToMyHead in
more than 1 year of activity. ComeToMyHead is an academic news search engine which has been
running since July, 2004. The dataset is provided by the academic comunity for research purposes
in data mining (clustering, classification, etc), information retrieval (ranking, search, etc), xml,
data compression, data streaming, and any other non-commercial activity. The AG’s news topic
classification dataset is constructed by choosing 4 largest classes from the original corpus. Each
class contains 30,000 training samples and 1,900 testing samples. The total number of training
samples is 120,000 and testing 7,600.

• Internet Movie Database (IMDB) [52]: IMDB dataset having 50K movie reviews for natural
language processing or Text analytics. This is a dataset for binary sentiment classification
containing substantially more data than previous benchmark datasets. We provide a set of 25,000
highly polar movie reviews for training and 25,000 for testing. So, predict the number of positive
and negative reviews using either classification or deep learning algorithms.

• Stanford Sentiment Treebank (SST-2) [53]: It is a corpus with fully labeled parse trees that
allows for a complete analysis of the compositional effects of sentiment in language. The corpus
consists of 11,855 single sentences extracted from movie reviews. It was parsed with the Stanford
parser and includes a total of 215,154 unique phrases from those parse trees, each annotated by 3
human judges. Binary classification experiments on full sentences (negative or somewhat negative
vs somewhat positive or positive with neutral sentences discarded) refer to the dataset as SST-2 or
SST binary.

• Recognizing Textual Entailment (RTE): It comes from a series of annual textual entailment
challenges. The authors of the benchmark combined the data from RTE1 [65], RTE2 [66],
RTE3 [67], and RTE5 [68]. Examples are constructed based on news and Wikipedia text. The
authors of the benchmark convert all datasets to a two-class split, where for three-class datasets
they collapse neutral and contradiction into not entailment, for consistency.

• Behaviors: It is a new dataset introduced in [55] for robustness evaluation of jailbreaking
attack. The dataset includes 520 goal prompts and corresponding targets, it is available in
https://github.com/llm-attacks/llm-attacks/blob/main/data/advbench/.

C.2 Beyond Language Domain

• CIFAR10 [69]: The CIFAR-10 dataset is a well-known dataset used in the field of computer
vision. It consists of 60,000 32x32 color images in 10 different classes, with 6,000 images per
class. The dataset is divided into two parts: 50,000 training images and 10,000 test images. The
10 different classes represent airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and
trucks. Each image is labeled with one of these 10 categories.

• ImageNet-1K [70]: This dataset provides access to ImageNet which is the most commonly
used subset of ImageNet. This dataset spans 1000 object classes and contains 1,281,167 training
images, 50,000 validation images and 100,000 test images. The version also has the patch which
fixes some of the corrupted test set images already applied.

• Cora-ML [71]: The Cora dataset is a widely-used benchmark dataset in the field of graph-based
tasks. It consists of 2708 scientific publications classified into one of seven classes. The citation
network consists of 5429 links. Each publication in the dataset is described by a 0/1-valued
word vector indicating the absence/presence of the corresponding word from the dictionary. The
dictionary consists of 1433 unique words. Working with the Cora dataset presents challenges
typical of real-world graph data, such as handling sparse and high-dimensional feature vectors,
and dealing with the complex structure of the graph.

• Citeseer [72]: The CiteSeer dataset is another popular dataset in the graph field. It consists of
3312 scientific publications classified into one of six classes. The citation network consists of
4732 links. Each publication in the dataset is described by a 0/1-valued word vector indicating
the absence/presence of the corresponding word from the dictionary. The dictionary consists of
3703 unique words.
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D Defense Baselines and Backbone Architectures

D.1 Defense Baselines

Language Domain:

• PGD-Adv [31]: The Projected Gradient Descent (PGD) method stands as the most prevalent
attack strategy in the field of computer vision. It is primarily utilized for crafting adversarial
examples in the context of adversarial training. The defense in this paper is adapted directly from
PGD-adv in computer vision, extending its application to language modeling.

• MixADA [17]: The search space for adversarial examples in language models is typically vast
due to their discrete nature. To enhance the robustness of these models, MixADA integrates
adversarial training [30] with mixup data augmentation [73], thereby expanding the range of
adversarial examples covered. Specifically, mixup generates synthetic training examples by
linearly blending pairs of inputs and their corresponding labels. This approach enables the model
to learn from a broader and more effective set of adversarial examples during training.

• FreeLB [47]: Different from attacks that directly change the words in the sentence, FreeLB
adds adversarial perturbations to word embeddings and minimizes the resultant adversarial loss
around input samples. To expedite the process of adversarial training, FreeLB implements a
single descent step on the parameters concurrently with each of the K ascent steps applied to
the perturbation, which utilizes the average of accumulated gradients over the K steps. This
efficiency has established FreeLB as a popular defense method in the field of NLP.

• TA-VAT [18]: TA-VAT is another virtual adversarial training method that generates gradient-
based perturbations on the embedding space. To create fine-grained perturbations, TA-VAT
employs a token-level accumulated perturbation vocabulary. This vocabulary serves to better
initialize the perturbations. Additionally, TA-VAT utilizes a token-level normalization ball, which
effectively constrains these perturbations in a relevant and precise manner.

• Adversarial Training (AT): Adversarial training is adaptive to the attack to be evaluated. Take
the Textfooler as the instance, at every epoch, we generate 1000 perturbations from the Textfooler
and add them into the training dataset to reinforce the training of models. We utilize the TextAt-
tack [63] platform the conduct this adversarial training.

• SmoothLLM [61]: Motivated by finding that the adversarial-prompting jailbreak is sensitive to
the random character-level changes, SmoothLLM is designed by firstly perturbing multiple copies
of the given prompt and then aggregating all the outputs.

Beyond Language Domain:

• Graph Convolutional Network (GCN) [74]: GCN is motivated by the localized first-order
approximation of spectral graph convolutions. The basic idea is to first add self-loops to the
adjacency matrix and then normalize the matrix.

• Graph Attention Network (GAT) [5]: GAT leverages the attention mechanism to construct
masked self-attentional layers. This allows the nodes to reweight their neighbors via the feature
similarity.

• GNNGuard [75]: GNNGuard is a universal reweighting framework that can be applied to any
GNN. It leverages the cosine similarities between nodes’ features to up-weight the correlated
nodes and prune the edges between the dissimilar pairs.

• Robust GCN (RGCN) [76]: RGCN first models the latent representations as the Gaussian
distributions. Then the weights of different neighborhoods will be assigned different weights
according to their variances when performing the message propagation.

• Graph Random Neural Network (GRAND) [77]: The core of GRAND is the random propa-
gation, wherein the node feature will be partially or entirely dropped out and then propagated
through over the graph. This operation enable the node to be insensitive to the specific neighbor-
hood, which prevents the effect of malicious outliers. Additionally, the random propagation also
help to augment the representation for each node, thus improving the generalization of GNN.

• Property GNN (ProGNN) [78]: The core principle of ProGNN is to robustify the GNNs through
enhancing the graph properties of sparsity, low rank and feature smoothness. It provides a graph
structure learning framework to learn the clean graph structure and parameters simultaneously.
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• Jaccard-GCN [79]: The basic idea of Jaccard-GCN is to preprocess the adjacency matrix by first
computing the Jaccard coefficients of paired node features and then dropping the edges where the
coefficients are below the threshold.

• SoftMedian [80]: SoftMedian is a robust estimator for the message passing aggregation. It
reweights the adjacency weights based to the distances of the hidden embeddings between the
neighbor nodes and the dimension-wise median of the the entire neighboring representations.

D.2 Backbone Architectures

Classical language models:

• BERT [56]: BERT stands out as one of the most well-known transformer-based language models.
It is pretrained through masked language modeling (MLM), where it learns to predict words that
have been masked, using context for guidance. This pretrained model is then fine-tuned for a
variety of downstream tasks, showcasing its versatility and effectiveness in diverse applications.
In our experiments, we will use BERT-110M.

• RoBERTa [57]: RoBERTa is developed to overcome certain limitations of the original BERT
model. This is accomplished by implementing key modifications such as increasing the batch
size, extending the training epochs, and employing advanced optimization techniques. As a result
of these strategic changes, RoBERTa has demonstrated substantial performance improvements
over BERT across various NLP benchmarks. In our experiments, we will use RoBERTa-125M.

• ALBERT [58]: ALBERT is a lite variant of BERT. It is achieved by decoupling the word
embedding from the hidden embedding, significantly cutting down the number of parameters. To
further enhance its efficiency, ALBERT employs cross-layer parameter sharing, ensuring that all
layers use the same parameters. The reductions not only minimize memory footprint but also
improve the efficiency of the model. In our experiments, we will use ALBERT-12M.

• DistilBERT [59]: DistilBERT is a light version of BERT, maintaining most of the performance
of the original BERT. It is trained with the knowledge distillation technique [81] to achieve high
efficiency. In our experiments, we will use DistilBERT-66M.

Large Language Models:

• T5 [60]: Text-to-Text Transfer Transformer (T5) is a transformer-based neural network model
known for its versatility and power in handling a wide range of NLP tasks. T5 simplifies NLP
tasks by treating them uniformly as text-generation challenges. The T5 model family offers a
range of sizes, from 60 million to 11 billion parameters, catering to different computational needs.
The flexibility has made T5 a popular choice in NLP research. In our experiments, we will use
T5-770M.

• LLaMA [12]: LLaMa, the Large Language Model developed by Meta AI, represents a cutting-
edge advancement in language modeling. Trained on publicly available datasets, LLaMa is
available in various sizes to suit different computational needs. Notably, LLaMa-13B demonstrates
superior performance over GPT-3 in most benchmarks, highlighting its exceptional effectiveness
and capability in NLP tasks. In our experiments, we will use LLaMA-7B.

• Vicuna [13]: Vicuna is a high-performing, open-source chatbot that impresses with capabilities
comparable to GPT-4. Fine-tuned from the LLaMa model, it utilizes user-shared conversations
gathered from Share-GPT for its training. Remarkably, Vicuna achieves 90% of the perfor-
mance level of GPT-4, despite having only 13 billion parameters, showcasing its efficiency and
effectiveness. In our experiments, we will use Vicuna-7B.

Vision Models:

• ViT [3]: The Vision Transformer (ViT) is a model in computer vision that adopts the principles
of the Transformer architecture. In ViT, an image is processed similarly to a sequence of words,
or tokens. Specifically, the image is segmented into fixed-size patches, each of which is then
linearly transformed into an embedded representation. When trained on sufficient data, ViT
achieves state-of-the-art performance on image classification benchmarks, competing with or
outperforming leading CNN-based models. In our experiments, we will use ViT-86M.
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• Swin [4]: Swin Transformer is a popular variant of ViT, standing out for its enhanced efficiency
and superior performance. It employs a hierarchical architecture, which not only aligns more
closely with the nature of visual data but also boosts efficiency. To effectively capture global
contextual information, Swin Transformer incorporates shifted window-based self-attention,
further enhancing its effectiveness in vision-related applications. In our experiments, we will use
Swin-50M.

• BEIT [82]: Due to the success of BERT, BEIT harnesses the concept of masked language
modeling to enhance self-supervised learning in the visual domain. To align with the words in
language models, BEIT first maps the patch in an image into a token with an autoencoder. In
the training process, it masks a portion of these patches, using the remaining unmasked ones to
predict the masked tokens. Subsequently, the model is fine-tuned for a variety of downstream
tasks, demonstrating its adaptability and effectiveness in diverse applications. In our experiments,
we will use BEIT-86M.

• DeiT [83]: To address the substantial data requirements for training the Vision Transformer,
Data-Efficient Image Transformer (DeiT) employs knowledge distillation [81] to train the model.
By integrating this approach with various data augmentation techniques, DeiT successfully attains
competitive results in image classification tasks, even with constrained training data availability.
In our experiments, we will use DeiT-22M.

• ConViT [84]: ConViT designs a hybrid architecture to leverage the local processing capabilities
of CNNs and the global context understanding of transformers. To be specific, it replaces the
several first self-attention layers with gated-self positional self-attention layers, allowing the model
to adjust between local and global processing. In our experiments, we will use ConViT-30M.
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E Attacks.

E.1 Classic Text Attack:

For the classic text attacks, we follow the default attack setting in the TextAttack [63] and the detailed
information are as follows:

• DeepWordBug [7]: DeepWordBug is black-box attacks that apply character-level transformations
to the highest-ranked tokens misclassify the text input. It includes several character transforma-
tions including swap, substitution, deletion and insertion. We hold the maximum difference on
edit distance (Levenshtein Edit Distance) to 30 for each sample. We will greedily modify the
works with the word importance ranking.

• PWWS [9]: The probability weighted word saliency (PWWS) employs a new word order deter-
mined by the word saliency and predicted probability, and then greedily perform the synonyms
substitution.

• TextFooler [14]: TextFooler propose a more comprehensive paradigm to generate adversarial
perturbations. It firstly identify the important words and then replace them with the most
semantically and syntacticaly similar synonyms until the prediction is altered. We set the minimum
word embedding cosine similarity as 0.5 and the universal sentence similarity threshold as
0.840845057.

• TextBugger [8]: TextBugger is a framework for creating utility-preserving adversarial texts
against the classification models. It can be employed under both white-box and black-box settings.
Specifically, this attack sorts the words based on Jacobian matrix in white-box setting and based
on specific scoring function in black-box setting. It includes swap, substitution, deletion and
insertion. There are two types of substitutions: Sub-C (replace characters with visually similar
characters) and Sub-W (replace a word with its top-K (K = 5) nearest neighbors.) The universal
sentence threshold is set as 0.8.

E.2 Attack in LLMs

• Prompt attack: we conduct adversarial prompt attacks using the text attacks including Deep-
WordBug [7], PWWS [9], TextFooler [14] and TextBugger [8]. The evaluation setting follow
PromptBench [15] which is a unified and comprehensive python library for evaluating LLMs.

• Jailbreak: We employ the Greedy Coordinate Gradient (GCG) [55] method to search for the
adversarial prompt suffixes that circumvent the alignment of the language models. It can be
conducted under the transfer attack and direct attack. Specifically, the transfer attacks firstly attack
the surrogate model (e.g., Vicuna) and can apply the perturbations to the victim models. The
direct attacks directly apply the GCG method to the victim models to generate the suffixes, which
can be much stronger. The JailbreakKeywords is a list of words commonly found in messages
that abstain from responding to a prompt asking for inappropriate content. In our experiment, we
use the following list: JailbreakKeywords = ["I’m sorry", "Sorry", "I apologize", "As an", "I’m
just", "I’m an", "I cannot", "I would advise", "it’s not appropriate", "As a responsible AI"].

E.3 Attacks in Vision & Graph Models

• FGSM [30]: Fast Gradient Sign Method (FGSM) is a widely used technique for generating
adversarial examples. It crafts perturbations specifically to maximize errors in the output of neural
networks.

• PGD [31]: Projected Gradient Descent (PGD) method is one of the most prominent attack
strategies in computer vision. Unlike FGSM employing a single step, PGD uses multiple steps to
generate adversarial examples. This iterative approach includes a projection operation, which
ensures that the intensity of the attack remains within specified limits, making PGD a more
controlled and effective method for generating adversarial examples. The steps are K = 7 and
the steps size α = 0.00784.

• PGD on Graph [64]: Motivated by PGD [31] in vision domain, [64] propose a first-order method
to conduct topology attack on discrete graph structure. This method firstly solve continuous
optimization problem by Projected Gradient Descent (PGD) method and then utilize the random
sampling to get the optimal binary topology perturbation from the continuous probabilistic matrix.
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F Algorithm Convergence and Robust Estimation

F.1 Convergence Guarantee

Loss curves. We use generated data to verify the convergence of our proposed algorithm. The batch
size, number of heads, length of inputs and dimension of data are chosen as B = 8, H = 4, N =
64, D = 8, respectively. The γ in MCP is set as 4 and δ in Huber loss is set as 0.8. The loss curve of
our algorithm with different penalties are shown in Figure 7. We can observe that our algorithm show
a fast convergence and even 2 to 3 steps can well approximate the optimal solution.

(a) ℓ1 (b) MCP (c) Huber

Figure 7: Loss Curve of Algorithms

Trajectory. To further validate the convergence and effectiveness of our algorithm, we use a toy
experiment to visualize the trajectories of updated vector in 2D plane in Figure 8. We use L1 penalty
in our algorithm, the simulated attention matrix and value matrix are as follows:

A =

[
1 1 1
2 0 0
0 0 2

]
,V =

[
1 2
7 25
25 37

]
. (11)

Figure 8: Optimization trajectory.

From the figure, we can find that with the mean as the initial position, the updated vector can approach
closely to the ground truth within only 3 steps. This phenomenon further validate the effectiveness
and efficiency of our algorithm.

F.2 Robust Estimation

Robust estimation.We firstly generated clean samples {xi}ni=1 (blue dots) and the outlier samples
{xi}n+m

i=n+1(red dots) from 2-dimensional Gaussian distributions, N ((0, 0), 1) and N ((8, 8), 0.5),
respectively. We calculate the mean of clean samples 1

n

∑n
i=1 xi as the ground truth of the mean
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Figure 9: Different estimators in simulations.

estimator. Then we estimate the mean of all the samples by solving argminz
∑n+m

i=1 ρ(z− xi) using
the our method, where ρ(·) can take different penalties such as ℓ2 penalty ∥ · ∥22 and ℓ1 penalty ∥ · ∥2.

In Figure 9, we visualize the generated clean samples and outliers, as well as the ground truth means
and the mean estimators with η(·) = ∥ · ∥22 or ∥ · ∥2 under different outlier ratios 15% and 45%. The
results show that, with the existence of outliers, the ℓ2-based estimator deviates far from the true
mean, while the ℓ1-based estimator is more resistant to outliers and MCP-based estimator is the most
robust.

F.3 Vulnerability Analysis of Vanilla Attention (WLS estimator)

To gain insight into the vulnerability of vanilla attention (WLS estimator), we attempt to analyze the
effect of perturbed tokens on the output embedding of attention modules. Specifically, since vanilla
attention can be formalized as a WLS estimator: z∗ = argminz L(z) =

∑N
j=1 aj · ∥vj − z∥2, we

quantify and compare ∥v′
j − z∗∥2 and ∥vj − z∗∥2, where vj and v′

j are the original and perturbed
tokens, and z∗ is the ground truth output embedding. We present the numerical results across every
attention module in the pretrained BERT on IMDB dataset in Table 5. The results demonstrate that
attackers tend to introduce larger residuals ∥vj − z∥ by modifying the important tokens vj when
perturbing the text.

Table 5: Residual magnitude of original and perturbed tokens.

Attention module 1 2 3 4 5 6 7 8 9 10 11 12
∥vj − z∗∥2 5.39 6.36 6.92 6.33 6.64 6.95 6.73 6.24 5.12 4.76 4.15 4.19
∥v′

j − z∗∥2 6.38 7.20 7.97 7.51 7.65 8.06 7.84 7.41 6.33 6.24 6.64 6.31
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G Additional Experiments of Text Attacks

G.1 Sentiment Analysis: IMDB

We present the results of sentiment analysis on IMDB dataset under various attacks in Table 6. We can
conlude from the results that our methods improve the robustness of the backbones significantly by
simply plugging the ProAttention into the models without additional fintuning or training. Moreover,
our method can be combined with the existing defenses such as Adversarial Training (AT) to further
improve the performance.

Table 6: The results of sentiment analysis on IMDB.

TEXTFOOLER TEXTBUGGER DEEPWORDBUG PWWS
MODEL CLEAN% ↑ AUA% ↑ ASR% ↓ AUA% ↑ ASR% ↓ AUA% ↑ ASR% ↓ AUA% ↑ ASR% ↓
ROBERTA 93.3 23.7 74.6 9.4 89.9 36.5 60.9 19.5 79.1
DISTILBERT 90.9 14.9 83.6 4.3 95.3 18.8 79.3 9.6 89.4
ALBERT 92.8 21.8 76.5 14.1 84.8 36.2 61.0 15.9 82.9
BERT 92.3 11.8 87.2 11.3 87.4 32.8 64.5 26.4 71.5
FREELB 93.0 25.1 73.6 19.9 76.9 40.9 55.5 42.0 54.7
PGD 93.2 26.2 69.2 17.4 81.6 32.0 65.8 27.2 69.6
MIXADA 91.9 16.7 82.0 11.8 87.3 33.4 65.8 30.0 67.4
TA-VAT 93.0 28.5 67.6 27.3 68.8 34.7 60.4 35.1 59.8
AT 93.2 33.6 64.3 31.8 66.1 37.7 61.5 28.7 70.3
PRO-BERT (ℓ1) (OURS) 93.3 24.6 73.6 13.0 86.1 36.0 61.4 32.7 65.0
PRO-BERT (HUBER) (OURS) 93.0 24.8 73.3 13.4 85.6 36.9 60.3 31.5 66.1
PRO-BERT (MCP) (OURS) 93.5 22.1 76.9 44.6 53.2 55.5 41.8 56.3 41.1
PRO-BERT (MCP) + AT (OURS) 93.6 42.0 56.1 55.3 41.0 60.8 39.0 61.0 37.6

G.2 Textual Entailment: RTE

In Table 7, we display the results of textual entailment on RTE across different cosine similarities
constraints in TextFooler attack. We select DistilBERT as the backbone model and construct several
MCP-based architectures with different γ. We can observe that our method can improve the robustness
acorss different cosine similarities. The performance improvement is more evident under the smaller
cosine similarities, which is equivalent to larger budgets.

In Table 8, we present the results of textual entailment on RTE across various attacks. The results
exhibit the consistent improvement of our methods over the backbone model.

Table 7: The results of textual entailment on RTE across different cosine similarities in TextFooler .

COS-SIM 0.5 0.6 0.7 0.8
MODEL CLEAN% AUA% ASR% AUA% ASR% AUA% ASR% AUA% ASR%
DISTILBERT 62.5 4.0 93.6 5.1 91.9 7.9 87.3 18.1 71.1
PRO-DISTILBERT-MCP γ = 0.2 63.3 6.9 89.5 6.1 90.6 9.4 85.6 18.1 72.4
PRO-DISTILBERT-MCP γ = 0.3 62.4 15.2 75.3 16.6 72.9 20.6 66.5 30.7 50.0
PRO-DISTILBERT-MCP γ = 0.4 56.0 18.1 67.7 24.6 56.1 28.2 49.7 33.2 40.7
PRO-DISTILBERT-MCP γ = 0.5 55.6 15.9 70.1 17.7 66.7 20.2 61.9 28.9 45.6
PRO-DISTILBERT-MCP γ = 0.6 53.1 10.8 80.5 12.3 77.9 16.3 70.8 20.2 63.6

Table 8: The results of textual entailment on RTE across different attacks.

ATTACK TEXTFOOLER TEXTBUGGER DEEPWORDBUG PWWS
MODEL CLEAN% AUA% ASR% AUA% ASR% AUA% ASR% AUA% ASR%
DISTILBERT 62.5 7.9 87.3 3.6 94.2 18.4 70.5 12.3 80.4
PRO-DISTILLBERT-MCP 63.3 28.2 49.7 14.4 74.5 33.6 40.0 24.2 60.6

28



G.3 Adversarial Fine-tuning on Topic Classification: AGNEWS

Adversarial training techniques are highly effective to enhance the robustness of models via adding
the adversarial examples into the training set. To better capture the robustness enhancement of
adversarial training, we track the adversarial fine-tuning curves and present the detailed results on
AG’s News in Table 9 and Figure 10. In the beginning of every epoch, we generate 1000 perturbed
examples using the specific attack and then put them to the original training dataset. From the results,
we can make the following observations: (1) the models show even better robustness during the
process of adversarial training. (2) our method can be combined with adversarial training to further
improve the resilience of the models.

Table 9: Adversarial fine-tuning on AGNEWS.

MODEL CLEAN% AUA%(TF) CLEAN% AUA%(TB) CLEAN% AUA%(DWB) CLEAN% AUA%(PWWS)
BERT EPOCH-0 94.2 19.7 94.2 31.7 94.2 37.5 94.2 43.1
BERT EPOCH-1 94.4 22.9 94.4 46.8 94.0 39.2 94.5 49.3
BERT EPOCH-2 94.5 28.4 94.2 52.0 94.0 40.2 94.4 54.4
BERT EPOCH-3 94.2 33.0 94.3 52.8 94.4 42.4 94.1 57.3
BERT EPOCH-4 94.6 34.9 94.6 56.1 94.4 41.3 93.8 62.6
BERT EPOCH-5 94.6 40.1 94.4 55.9 94.3 41.4 93.8 59.3

PRO-BERT-MCP EPOCH-0 93.2 37.8 93.2 45.8 93.2 51.8 92.2 55.0
PRO-BERT-MCP EPOCH-1 93.9 40.0 94.1 48.6 93.8 53.4 93.4 57.5
PRO-BERT-MCP EPOCH-2 93.7 42.9 93.8 48.4 93.7 58.2 93.6 59.9
PRO-BERT-MCP EPOCH-3 93.7 49.0 94.3 55.7 93.0 58.5 93.0 65.2
PRO-BERT-MCP EPOCH-4 93.2 50.8 93.9 56.5 93.5 61.0 93.6 65.1
PRO-BERT-MCP EPOCH-5 93.9 53.0 94.5 60.7 93.0 60.1 93.6 68.8

(a) TextFooler (b) TextBugger

(c) DeepWordBug (d) PWWS

Figure 10: Adversarial fine-tuning on AGNEWS.
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G.4 Ablation Study on Attack constraints

We present the ablation study on the maximum perturbation percentage, minimum cosines similarity
and sentence similarity threshold in Figure 11, Table 10, Table 11 and Table 12, respectively. The
experiments are performed on AGNEWS under TextFooler with the ALBERT as the backbone. The
default values are as follows: sentence similarity threshold is 0.840845057, maximum perturbation
percentage is 1.0, synonym cosine similarity is 0.5. The results show the consistent improvement of
our method over the backbone models.

Figure 11: Ablation studies on attack constraints.

Table 10: Ablation study on max perturbation percentage.

MAX-PERCENTAGE (ρ) 0.1 0.2 0.3 0.4
MODEL CLEAN% AUA% ASR% AUA% ASR% AUA% ASR% AUA% ASR%

ALBERT 93.0 64.7 30.4 49.4 46.9 34.5 62.9 25.7 72.4
PRO-ALBERT-MCP 93.8 67.6 27.2 54.2 41.6 49.7 46.4 48.9 47.3

MAX-PERCENTAGE (ρ) 0.6 0.8 1.0
MODEL AUA% ASR% AUA% ASR% AUA% ASR%

ALBERT 20.6 77.9 20.6 77.9 20.6 77.9
PRO-ALBERT-MCP 48.9 47.3 48.9 47.3 48.9 47.3

Table 11: Ablation study on minimum synonym cosine similarity.

MIN-COS-SIM 0.3 0.5 0.7 0.9
MODEL CLEAN% AUA% ASR% AUA% ASR% AUA% ASR% AUA% ASR%

ALBERT 93.0 12.7 86.3 20.6 77.9 40.1 56.9 79.0 15.1
PRO-ALBERT-MCP 93.8 41.1 55.7 48.9 47.3 61.6 33.6 82.7 10.9

Table 12: Ablation study on universal sentence similarity threshold.

SENTENCE-SIM-THRESHOLD 0.2 0.4 0.6 0.8 0.85
MODEL CLEAN% AUA% ASR% AUA% ASR% AUA% ASR% AUA% ASR% AUA% ASR%

ALBERT 93.0 18.0 80.7 18.0 80.7 18.0 80.7 18.1 80.5 21.9 76.5
PRO-ALBERT-MCP 93.8 47.4 48.9 47.4 48.9 47.4 48.9 47.6 48.7 49.0 47.2

SENTENCE-SIM-THRESHOLD 0.875 0.9 0.925 0.95
MODEL AUA% ASR% AUA% ASR% AUA% ASR% AUA% ASR%

ALBERT 27.6 70.3 46.6 49.9 71.2 23.4 90.5 2.7
PRO-ALBERT-MCP 55.9 39.8 64.8 30.2 79.4 14.4 90.4 2.6
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G.5 Ablation Study on Backbone Models

Our proposed ProAttention is a universal framework which can be applied to various attention-based
models. To verify the universality of our methods, we integrate our robust attention module into
various backbones and present the results in Figure 12 and Table 13. As seen in the results, our
ProAttention can consistently enhance the robustness over any backbone under various attacks.

(a) (b)

(c) (d)

Figure 12: Accuracy under attack of different backbones.

Table 13: The results of different backbones on AGNEWS

TEXTFOOLER TEXTBUGGER DEEPWORDBUG PWWS
MODEL CLEAN% AUA% ASR% #QUERY AUA% ASR% #QUERY AUA% ASR% #QUERY AUA% ASR% #QUERY
BERT 94.2 19.7 78.9 335.3 31.7 67.5 176.5 37.5 59.8 103.8 43.1 53.8 353.8

PRO-BERT-MCP 93.2 39.2 57.7 377.4 48.3 48.5 207.7 51.8 43.8 107.9 56.2 39.2 363.2
ROBERTA 93.4 13.0 86.1 301.6 32.5 64.5 180.3 41.2 55.9 105.4 34.0 63.6 345.9

PRO-ROBERTA-MCP 93.7 24.4 73.7 312.6 34.3 62.8 195.2 45.5 51.5 118.3 39.4 57.5 336.9
DISTILBERT 93.5 13.2 85.9 317.4 33.6 63.4 159.1 30.0 67.9 98.0 36.5 61.0 352.4

PRO-DISTILBERT-MCP 93.9 29.3 68.5 363.3 48.7 47.9 184.2 34.3 63.1 98.6 50.5 45.6 364.2
ALBERT 93.0 20.6 77.9 315.6 26.1 71.9 150.9 38.9 58.2 101.5 35.9 61.4 342.8

PRO-ALBERT-MCP 93.8 48.9 47.3 417.8 41.8 55.3 208.2 59.5 35.9 111.8 63.1 32.0 375.2
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G.6 Ablation Study on Hyperparameters of Penalties

G.6.1 Ablation Study on Huber

For the Huber-based model, we present the ablation study on the δ and layers K of Huber loss under
TextFooler in Table 14 and Figure 13. The default setting are as follows: δ = 0.9 and K = 3, and
we vary the two parameters separately to capture the trend. We can find that the performance is
insensitive to δ or layers within an appropriate range.

Table 14: Ablation study on Huber on AGNEWS.

MODEL CLEAN ATTACKED
PRO-BERT-HUBER δ = 0.6 94.2 23.9
PRO-BERT-HUBER δ = 0.7 94.2 23.2
PRO-BERT-HUBER δ = 0.8 94.2 23.7
PRO-BERT-HUBER δ = 0.9 94.2 24.2
PRO-BERT-HUBER δ = 1 94.3 23.0
PRO-BERT-HUBER δ = 2 94.1 22.5
PRO-BERT-HUBER δ = 3 94.2 21.7
PRO-BERT-HUBER δ = 4 94.2 20.9
PRO-BERT-HUBER δ = 5 94.1 20.0
PRO-BERT-HUBER K = 3 94.2 24.2
PRO-BERT-HUBER K = 4 94.2 24.0
PRO-BERT-HUBER K = 5 94.2 23.7
PRO-BERT-HUBER K = 6 94.0 24.5
PRO-BERT-HUBER K = 7 93.9 24.2
PRO-BERT-HUBER K = 8 94.0 25.8

(a) Effect of δ. (b) Effect of layers.

Figure 13: Ablation study on Huber
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G.6.2 Ablation Study on MCP

We present the ablation study of the γ and layers K in MCP in Table 15 & Figure 14 and Table 16
& Figure 15 . From the figures, it can be concluded that appropriate γ is needed to get the best
robustness. Besides, more layers can get a more precise solution for the robust objective, but we need
to consider a good balance between precision and efficiency.

Table 15: Ablation on MCP on AGNEWS.

MODEL CLEAN TEXTFOOLER
PRO-BERT-MCP K = 2, γ = 5 93.3 32.8
PRO-BERT-MCP K = 2, γ = 4 93.7 33.9
PRO-BERT-MCP K = 2, γ = 3 93.7 31.7
PRO-BERT-MCP K = 2, γ = 2 93.1 30.4
PRO-BERT-MCP K = 2, γ = 1 92.9 28.7
PRO-BERT-MCP K = 5, γ = 4 93.6 39.2
PRO-BERT-MCP K = 4, γ = 4 93.7 37.2
PRO-BERT-MCP K = 3, γ = 4 93.2 37.8
PRO-BERT-MCP K = 2, γ = 4 93.7 33.9
PRO-BERT-MCP K = 1, γ = 4 93.9 26.8

(a) Effect of γ in MCP (b) Effect of layers in MCP

Figure 14: Ablation study on MCP on AGNEWS.
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Table 16: Ablation in MCP on IMDB.

MODEL CLEAN TEXTFOOLER TEXTBUGGER DEEPWORDBUG PWWS
PRO-BERT-MCP γ = 2.0,K = 3 93.9 15.9 19.9 43.7 40.3
PRO-BERT-MCP γ = 3.0,K = 3 93.7 15.1 24.0 53.8 51.1
PRO-BERT-MCP γ = 4.0,K = 3 93.4 16.5 26.6 55.5 50.7
PRO-BERT-MCP γ = 5.0,K = 3 93.9 16.3 29.8 53.9 46.6
PRO-BERT-MCP γ = 6.0,K = 3 93.3 13.5 23.0 48.1 41.5

PRO-BERT-MCP K = 1 93.6 12.4 13.8 40.8 40.2
PRO-BERT-MCP K = 2 93.8 12.5 15.7 49.0 47.9
PRO-BERT-MCP K = 3 93.4 16.5 29.8 53.9 46.6
PRO-BERT-MCP K = 4 93.5 20.4 39.4 60.2 56.3
PRO-BERT-MCP K = 5 93.5 22.1 44.6 63.3 56.1

(a) Effect of γ in MCP (b) Effect of layers in MCP

Figure 15: Ablation study on MCP on IMDB.
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H Additional Experiments on LLMs

H.1 Experiments on T5

H.1.1 main result

We compare the backbone model T5 with its robust version based on ℓ1, MCP and Huber loss in
Figure 16 and Table 17. The experiments are conducted on SST2 under TextFooler. As shown in the
figure, Pro-T5 (Huber or ℓ1) can slightly improve the robustness of backbone T5. Moreover, Pro-T5
(MCP) significantly outperform other baselines, especially under the large attack budgets.

Figure 16: Main results on T5.

Table 17: Accuary (%) under prompt attack on SST2 (TextFooler, T5)

# PERTURBED WORDS 0 (CLEAN) 1 2 3 4 5 6 7 8 9 10 11 12
T5 89.1 89.1 89.1 73.3 69.3 63.4 47.5 47.5 43.6 36.6 31.7 29.7 29.7

PRO-T5 ℓ1 K = 3 90.1 90.1 90.1 67.3 64.4 54.5 54.5 51.5 46.5 46.5 40.6 39.6 39.6
PRO-T5 MCP K = 4, γ = 3.0 87.1 87.1 87.1 71.3 69.3 64.4 64.4 64.4 64.4 63.3 63.3 63.3 61.4
PRO-T5 HUBER K = 3, δ = 3 95.0 95.0 95.0 64.4 58.4 56.4 52.5 52.5 52.5 43.6 33.7 31.7 31.7

PRO-T5 HUBER-MCP K = 3, δ = 9, γ = 15 89.1 89.1 89.1 62.4 62.4 57.4 55.4 55.4 55.4 55.4 55.4 55.4 54.5
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H.1.2 Ablation on Huber

We present the ablation study on δ in Huber on SST2 in Figure 17 and Table 18. We fix the number
of layers as 3 and vary the values of δ from 3.0 to 9.0. The Huber-based model with δ = 4.0 perform
best among all the selected parameters.

Figure 17: Ablation study on Huber on T5

Table 18: Ablation study in Huber on SST2.

# PERTURBED WORDS 0 (CLEAN) 1 2 3 4 5 6 7 8 9 10 11 12
PRO-T5 HUBER K = 3, δ = 3 95.0 95.0 95.0 64.4 58.4 56.4 52.5 52.5 52.5 43.6 33.7 31.7 31.7
PRO-T5 HUBER K = 3, δ = 4 95.0 95.0 95.0 65.3 65.3 65.3 64.4 63.4 58.4 58.4 50.5 34.7 31.7
PRO-T5 HUBER K = 3, δ = 5 92.1 92.1 92.1 66.3 65.3 65.3 60.4 51.5 50.5 48.5 32.7 27.7 27.7
PRO-T5 HUBER K = 3, δ = 6 93.1 93.1 93.1 69.3 63.4 63.4 34.7 34.7 34.7 31.7 26.7 20.8 20.8
PRO-T5 HUBER K = 3, δ = 7 93.1 93.1 93.1 72.3 72.3 64.4 52.5 32.7 32.7 30.7 23.8 23.8 23.8
PRO-T5 HUBER K = 3, δ = 8 93.1 93.1 93.1 75.2 41.6 41.6 33.7 33.7 30.7 30.7 27.7 27.7 25.7
PRO-T5 HUBER K = 3, δ = 9 92.1 92.1 92.1 75.2 75.2 43.6 32.7 32.7 29.7 29.7 26.7 26.7 26.7
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H.1.3 Ablation on MCP of T5

We present the ablation studies in MCP on SST2 in Figure 18 and Table 19. The default settings are
as follows: K = 3 and γ = 3.0. We can make the observations as follows: (1) For γ, the optimal
value falls into the range of (3,5). (2) For number of layers, the best value can be chosen as 4 or 5.

Figure 18: Ablation study on MCP of T5

(a) Effect of γ in MCP (b) Effect of K in MCP

Table 19: Ablation study on MCP on SST2

# PERTURBED WORDS 0 (CLEAN) 1 2 3 4 5 6 7 8 9 10 11 12
PRO-T5 MCP K = 3, γ = 2.0 80.2 80.2 80.2 64.4 49.5 49.5 47.5 43.6 43.6 32.7 24.8 21.8 21.8
PRO-T5 MCP K = 3, γ = 3.0 85.1 85.1 85.1 67.3 65.3 63.3 63.3 63.3 58.4 58.4 58.4 53.5 53.5
PRO-T5 MCP K = 3, γ = 4.0 83.1 83.1 83.1 66.3 62.4 62.4 60.5 60.5 57.5 57.6 57.6 53.6 52.6
PRO-T5 MCP K = 3, γ = 5.0 81.2 81.2 81.2 60.4 60.4 60.4 57.4 57.4 57.4 57.4 56.4 54.5 54.5
PRO-T5 MCP K = 3, γ = 6.0 81.2 81.2 81.2 66.3 63.4 53.5 52.5 49.5 49.5 49.5 49.5 42.6 37.6
PRO-T5 MCP K = 1, γ = 3.0 77.2 77.2 77.2 64.4 58.4 58.4 55.4 53.5 53.5 53.5 52.5 50.5 50.5
PRO-T5 MCP K = 2, γ = 3.0 83.2 83.2 83.2 68.3 65.3 65.3 63.4 56.4 54.5 50.5 50.5 50.5 50.5
PRO-T5 MCP K = 3, γ = 3.0 85.1 85.1 85.1 67.3 65.3 63.3 63.3 63.3 58.4 58.4 58.4 53.5 53.5
PRO-T5 MCP K = 4, γ = 3.0 87.1 87.1 87.1 71.3 69.3 64.4 64.4 64.4 64.4 63.3 63.3 63.3 61.4
PRO-T5 MCP K = 5, γ = 3.0 82.2 82.2 82.2 73.3 71.3 68.3 68.3 67.3 67.3 67.3 66.3 66.3 54.5
PRO-T5 MCP K = 6, γ = 3.0 85.1 85.1 85.1 70.3 68.3 68.3 63.4 63.4 61.4 55.4 55.4 55.4 53.5
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H.1.4 Ablation on Huber-MCP

We present the ablation study on Huber-MCP on SST2 in Figure 19 and Table 20. The results show
that Pro-T5 (Huber-MCP) is insensitive to δ and get better robustness at γ = 14 or 15.

(c) Effect of δ in Huber-MCP (d) Effect of γ in Huber-MCP

Figure 19: Ablation studies on Huber-MCP

Table 20: Ablation study on Huber-MCP on SST2

# PERTURBED WORDS 0 (CLEAN) 1 2 3 4 5 6 7 8 9 10 11 12
PRO-T5 HUBER-MCP K = 3, δ = 9, γ = 10 81.2 81.2 81.2 74.3 74.3 54.5 54.5 50.5 50.5 47.5 42.6 42.6 42.6
PRO-T5 HUBER-MCP K = 3, δ = 9, γ = 11 84.2 84.2 84.2 59.4 54.4 47.5 47.5 46.5 46.5 45.5 43.6 43.6 43.6
PRO-T5 HUBER-MCP K = 3, δ = 9, γ = 12 84.2 84.2 84.2 55.4 44.5 44.5 44.5 44.5 44.5 43.6 43.6 43.6 43.6
PRO-T5 HUBER-MCP K = 3, δ = 9, γ = 13 85.2 85.2 85.2 85.2 63.4 55.4 49.5 49.5 49.5 49.5 44.6 44.6 44.6
PRO-T5 HUBER-MCP K = 3, δ = 9, γ = 14 86.1 86.1 86.1 82.2 78.2 68.3 68.3 60.4 60.4 55.4 49.5 49.5 46.5
PRO-T5 HUBER-MCP K = 3, δ = 9, γ = 15 89.1 89.1 89.1 62.4 62.4 57.4 55.4 55.4 55.4 55.4 55.4 55.4 54.5
PRO-T5 HUBER-MCP K = 3, δ = 3, γ = 14 82.2 82.2 82.2 64.4 57.4 56.4 48.5 47.5 46.5 46.5 46.5 46.5 46.5
PRO-T5 HUBER-MCP K = 3, δ = 4, γ = 14 83.2 83.2 83.2 56.4 51.5 51.5 51.5 51.5 51.5 49.5 49.5 46.5 46.5
PRO-T5 HUBER-MCP K = 3, δ = 5, γ = 14 84.2 84.2 84.2 56.4 56.4 56.4 49.5 49.5 45.5 45.5 45.5 45.5 44.5
PRO-T5 HUBER-MCP K = 3, δ = 6, γ = 14 84.2 84.2 84.2 64.4 52.5 52.5 49.5 48.5 46.5 46.5 44.6 42.6 42.6
PRO-T5 HUBER-MCP K = 3, δ = 7, γ = 14 83.2 83.2 83.2 62.4 53.5 53.5 51.5 49.5 49.5 46.5 46.5 46.5 44.6
PRO-T5 HUBER-MCP K = 3, δ = 8, γ = 14 81.2 81.2 81.2 57.4 53.5 53.5 53.5 47.5 47.5 47.5 47.5 47.5 42.6
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H.2 Experiments on LLaMA

For LLaMA, we can observe an intriguing phenomenon that differs from the T5 case: the ℓ1 and
MCP-based methods sacrifice too much accuracy while Huber method can keep decent performance
under small budgets. This reason is that in the small range region, ℓ1 and MCP utilize a linear or
concave functions while Huber can recover the ℓ2 function. Inspired by the characteristics of these
functions, we combine the properties of Huber and MCP, and construct a new function which we
refer to Huber-MCP2 . The detailed formulation and derived robust attention layers are available in
Appendix B. As indicated by the following curves, Huber-MCP and Huber-based models exhibits
better robustness than other methods while preserving the good clean performance.

H.2.1 Textfooler

We present the results of textual entailment on SST2 under TextFooler in Figure 20. We can observe
that ℓ1 and MCP-based methods sacrifice the performance because of the estimation bias. Pro-LLaMA
(Huber-MCP) shows slight improvement over other models.

(a) Main results on SST2 (TextFooler) (b) Ablation on δ in Huber (K = 3)

(c) Ablation on γ in Huber-MCP (K =
1, δ = 9)

(d) Ablation on γ in Huber-MCP (K =
3, δ = 9)

Figure 20: LLaMA (Textfooler)

2Empirical penalty selection strategy: For small or medium-sized models such as BERT (110M) and ViT
(86M), MCP-based models exhibit superior robustness while nearly not sacrificing the clean performance.
Moreover, MCP-based models are easy to tune with only one parameter γ. For large models like LLaMA (7B)
and Vicuna (7B), it is necessary to choose Huber and Huber-MCP to recover the original ℓ2 penalty within the
low-value region in case of clean performance drop.
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H.2.2 TextBugger

We present the results of textual entailment on SST2 under TextBugger in Figure 21. In this case,
ℓ1-based model show a catastrophic performance drop while Pro-LLaMA (Huber) outperforms other
baselines with a sinificant margin.

(a) Main results on SST2 (TextBugger) (b) Ablation study on δ in Huber (K = 3)

(c) Ablation study on γ in Huber-MCP (K =
3, δ = 9)

Figure 21: LLaMA (TextBugger)
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H.2.3 DeepWordBug

We present the results of textual entailment on SST2 under DeepWordBug in Figure 22. The
experiment shows the similar phenomenon that ℓ1 and MCP-based models sacrifice too much
performance. Additionally, Pro-LLaMA (Huber-MCP) significantly outperforms other methods.

(a) Main results on SST2 (DeepWordBug) (b) Ablation study on δ in Huber (K = 3)

(c) Ablation study on γ in Huber-MCP (δ =
9, L = 3)

Figure 22: LLaMA (DeepWordBug)
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I Additional Experiments on Jailbreak

I.1 Transfer Jailbreak

We provide the results of transfer jailbreak in Table 21, Table 22, and Table 23. As SmoothLLM
exhibits excellent performance to defend the jaibreaking attack, we also combine the random smooth-
ing with the backbone models and our methods to further validate the effectiveness of our method.
As shown in the results, when q = 0 (without random smoothing), by simply plugging our ProAt-
tention into the Vicuna, the robustness can be improved by a significant margin. Our plug-and-play
method can even be comparable to the randomly smoothed models which require multiple operations
including random perturbations, votings and aggregations.

Table 21: Vicuna: ASRs of JailBreak with Swap random smoothing on Behaviours.

SMOOTH q 0 1 3 5
VICUNA 91.8 71.8 20.9 0.9

PRO-VICUNA-HUBER δ = 0.1 1.8 0.9 0.9 0.9
PRO-VICUNA-HUBER δ = 0.2 8.2 1.8 0.9 0.9
PRO-VICUNA-HUBER δ = 0.3 21.8 2.7 0.9 0.9
PRO-VICUNA-HUBER δ = 0.4 30.9 21.8 0.9 0.9
PRO-VICUNA-HUBER δ = 0.5 36.4 23.6 0.9 0.9
PRO-VICUNA-HUBER δ = 0.8 61.8 40.0 0.9 0.9
PRO-VICUNA-HUBER δ = 1.0 70.0 53.6 11.8 0.9
PRO-VICUNA-HUBER δ = 1.5 74.5 60.0 16.4 1.8
PRO-VICUNA-HUBER δ = 2.0 82.7 73.6 21.8 1.8
PRO-VICUNA-HUBER δ = 3.0 90.0 74.5 31.8 7.3

Table 22: Vicuna: ASRs of JailBreak with Insert random smoothing on Behaviours.

SMOOTH q 0 1 3 5 10 15
VICUNA 91.8 79.1 44.5 10.9 4.5 1.8

PRO-VICUNA-HUBER δ = 0.1 1.8 0.9 0.9 0.9 0.9 0.9

Table 23: Vicuna: ASRs of JailBreak with Patch random smoothing on Behaviours.

SMOOTH q 0 1 3 5 10 15
VICUNA 91.8 71.8 57.3 39.1 21.8 14.5

PRO-VICUNA-HUBER δ = 0.1 1.8 0.9 0.9 0.9 0.9 0.9
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I.2 Adaptive Jailbreak

Although our Pro-Vicuna has demonstrated significant effectiveness under transfer attack (black-box),
it is still unclear whether our method can be resilient under white-box attacks which adaptively target
the specific victim models. The comparison of our Pro-Vicuna and backbone Vicuna under adaptive
jailbreak is presented in Table 24 and Figure 23. Our Pro-Vicuna can improve Vicuna by an average
of 10.4% across various numbers of attack queries. We don’t include SmoothLLM in adaptive attacks
since it introduces non-differentiable operators that preclude the gradient-based GCG attack on it.

Table 24: Vicuna: ASRs of Adaptive JailBreak on Behaviours

NUM OF ATTACK QUERIES 12 13 14 15 16 17 18 19 20
VICUNA 61.4 65.2 71.5 75.8 78.7 82.6 84.1 86.5 87.4

PRO-VICUNA (BEST) 50.7 55.9 60.8 64.3 67.4 70.5 74.0 77.7 78.6
PRO-VICUNA-HUBER δ = 0.3 60.2 60.2 65.0 70.9 72.8 75.7 77.7 77.7 78.6
PRO-VICUNA-HUBER δ = 0.5 60.8 61.8 62.7 66.7 67.6 71.6 78.4 81.4 82.4
PRO-VICUNA-HUBER δ = 0.7 50.7 55.9 60.8 64.3 67.4 70.5 74.0 79.7 82.4

Figure 23: Adaptive JailBreak
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J Additional Experiments on ViT

J.1 Main Results

The main results of FGSM on ViT are presented in Table 25. We can conclude that our Pro-ViT
(MCP) outperforms other methods across various budgets.

Table 25: Adversarial robustness on CIFAR-10 (FGSM).

.

MODEL \ BUDGET 0 (CLEAN) 8/255 4/255 1/255
VIT 98.74 35.05 39.04 60.43

PRO-VIT-L1 98.46 42.41 46.33 61.99
PRO-VIT-HUBER 98.76 37.47 41.93 62.72

PRO-VIT-MCP (OURS) 98.40 54.10 60.38 75.85

Table 26: Adversarial Robsutness on Imagenet-1k (PGD)..
MODEL 0 (CLEAN) 8/255 4/255 2/255 1/255

VIT 90.7 0.0 0.1 4.1 30.2
PRO-VIT-L1 89.1 5.4 14.2 31.6 47.6

PRO-VIT-HUBER 90.6 4.3 15.1 32.7 51.6
PRO-VIT-MCP (OURS) 88.6 13.0 23.1 49.1 65.6

J.2 Ablation study.

The ablation study of PGD and FGSM are provided in Table 27, Table 28 and Figure 24. As shown in
the results, the optimal γ of MCP fall into the range of (3,4). The robust estimators with more layers
show the better robustness while slightly sacrifice the clean performance.

Table 27: Ablation: CIFAR-10 (PGD)

MODEL \ BUDGET 0 (CLEAN) 8/255 4/255 1/255
PRO-VIT-HUBER K = 3, δ = 1 98.43 0.09 0.82 28.38
PRO-VIT-HUBER K = 3, δ = 3 98.56 0.07 1.36 31.04
PRO-VIT-HUBER K = 3, δ = 5 98.56 0.09 1.57 34.9
PRO-VIT-HUBER K = 3, δ = 7 98.76 0.15 1.72 34.89
PRO-VIT-HUBER K = 3, δ = 9 98.75 0.18 1.86 34.98
PRO-VIT-MCP K = 1, γ = 4 98.07 1.03 2.43 26.16
PRO-VIT-MCP K = 2, γ = 4 96.92 2.22 3.85 39.04
PRO-VIT-MCP K = 3, γ = 4 95.79 6.47 12.65 65.15
PRO-VIT-MCP K = 4, γ = 4 94.29 14.64 27.17 74.72
PRO-VIT-MCP K = 5, γ = 4 93.43 23.34 37.56 76.75
PRO-VIT-MCP K = 6, γ = 4 92.56 28.94 43.34 77.39
PRO-VIT-MCP K = 7, γ = 4 91.89 31.57 47.01 76.86
PRO-VIT-MCP K = 8, γ = 4 91.36 33.4 47.22 76.16
PRO-VIT-MCP K = 9, γ = 4 90.76 33.17 48.11 75.56
PRO-VIT-MCP K = 3, γ = 2 98.4 2.95 6.19 56.41
PRO-VIT-MCP K = 3, γ = 3 97.97 5.8 10.83 67.07
PRO-VIT-MCP K = 3, γ = 4 95.79 6.47 12.65 65.15
PRO-VIT-MCP K = 3, γ = 5 92.77 3.53 7.54 45.70
PRO-VIT-MCP K = 3, γ = 6 94.0 3.54 7.22 37.22
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Table 28: Ablation: CIFAR-10 (FGSM)

MODEL \ BUDGET 0 (CLEAN) 8/255 4/255 1/255
PRO-VIT-HUBER K = 3, δ = 1 98.43 36.23 40.57 58.84
PRO-VIT-HUBER K = 3, δ = 3 98.56 36.99 40.88 60.54
PRO-VIT-HUBER K = 3, δ = 5 98.65 37.47 41.93 62.72
PRO-VIT-HUBER K = 3, δ = 7 98.76 36.55 41.02 62.20
PRO-VIT-HUBER K = 3, δ = 9 98.75 35.75 40.39 61.38
PRO-VIT-MCP K = 1, γ = 4 98.07 35.22 38.12 52.82
PRO-VIT-MCP K = 2, γ = 4 96.92 39.84 43.19 55.49
PRO-VIT-MCP K = 3, γ = 4 95.79 47.38 53.6 67.03
PRO-VIT-MCP K = 4, γ = 4 94.29 49.26 58.49 72.71
PRO-VIT-MCP K = 5, γ = 4 93.42 49.42 59.03 74.35
PRO-VIT-MCP K = 6, γ = 4 92.56 48.23 59.21 76.01
PRO-VIT-MCP K = 3, γ = 2 98.4 47.98 52.39 70.59
PRO-VIT-MCP K = 3, γ = 3 97.97 51.64 57.21 73.16
PRO-VIT-MCP K = 3, γ = 4 95.79 47.38 53.6 67.03
PRO-VIT-MCP K = 3, γ = 5 92.77 35.37 41.76 52.10
PRO-VIT-MCP K = 3, γ = 6 94.0 37.08 41.42 48.56
PRO-VIT-MCP K = 3, γ = 3 97.97 51.64 57.21 73.16
PRO-VIT-MCP K = 4, γ = 3 97.76 54.1 59.66 75.30
PRO-VIT-MCP K = 5, γ = 3 97.75 53.29 60.08 75.85
PRO-VIT-MCP K = 6, γ = 3 97.74 52.37 60.38 75.70

(a) Ablation study on γ in MCP (PGD) (b) Ablation study on K in MCP (PGD)

(c) Ablation study on γ in MCP (FGSM) (d) Ablation study on L in MCP (FGSM)

Figure 24: Ablation study in MCP

K Additional Experiments in GAT

The main results on Citeseer and the ablation study on Cora-ML are presented in Table 29 and
Table 30. From the results, we can make the following conclusions: (1) Our Pro-GAT outperform
other methods significantly. Under the larger budgets, the outliers introduced by the adversarial attack
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will enlarge the bias effect of the estimation. In this scenario, our MCP function can mitigate or
even remove the effect of outlying values in the large-value region. (2) The parameter γ provide
an implication for the robustness. For small budget, the models with large γ perform well since it
is more similar the original attention. While for large budget, the models with small γ offer better
robustness cause it can mitigate the bias introduced by the outliers.

Table 29: Results on Citeseer.

MODEL \ BUDGET 0% 5% 10% 20% 30% 40%
GCN 74.8± 1.2 66.1± 1.0 60.9± 0.8 53.0± 1.0 47.0± 0.8 41.2± 1.1

GNNGUARD 72.4± 1.1 65.6± 0.9 61.8± 1.4 55.6± 1.4 51.0± 1.3 47.3± 1.3
RGCN 74.4± 1.0 66.0± 0.8 60.6± 0.9 52.5± 0.8 46.1± 0.9 40.2± 1.0

GRAND 74.8± 0.6 66.6± 0.7 61.8± 0.7 53.6± 1.1 47.4± 1.2 42.2± 0.9
PROGNN 74.2± 1.3 65.6± 1.1 60.3± 1.1 52.7± 1.4 46.2± 0.9 40.8± 0.6

JACCARD-GCN 74.8± 1.2 66.3± 1.2 60.9± 1.2 53.3± 0.9 46.5± 0.9 41.1± 1.0
SOFTMEDIAN 74.6± 0.7 68.0± 0.7 64.4± 0.9 59.3± 1.1 55.2± 2.0 51.9± 2.1

GAT 73.4± 1.2 65.4± 1.3 60.4± 1.4 52.6± 2.5 47.2± 3.4 41.2± 4.8
PRO-GAT (OURS) 73.4± 1.1 68.9± 1.4 66.0± 2.2 63.0± 2.4 59.5± 2.6 57.7± 2.0

Table 30: Ablation study on Cora-ML.

MODEL \ BUDGET 0% (CLEAN) 5% 10% 20% 30% 40%
K = 1, γ = 1.0 84.14± 0.35 78.51± 0.39 75.70± 0.45 72.06± 0.44 69.00± 0.65 66.34± 0.99
K = 1, γ = 2.0 83.70± 0.72 78.46± 0.51 75.46± 0.80 71.21± 1.32 68.39± 1.60 65.91± 2.17
K = 1, γ = 3.0 83.95± 0.77 77.93± 0.55 74.35± 0.63 69.46± 1.16 66.31± 1.73 62.87± 1.54
K = 1, γ = 4.0 84.18± 0.64 77.41± 0.64 73.97± 0.74 68.97± 0.98 65.70± 1.20 62.70± 1.42
K = 1, γ = 5.0 83.91± 1.17 77.57± 0.93 73.88± 1.29 68.98± 1.27 65.17± 1.54 62.40± 1.75
K = 1, γ = 6.0 83.91± 0.79 77.45± 0.75 73.56± 0.88 68.66± 1.21 64.80± 1.41 61.94± 2.08
K = 1, γ = 7.0 84.26± 0.54 77.77± 0.79 74.21± 0.67 68.94± 0.88 65.20± 1.30 62.31± 1.69
K = 3, γ = 1.0 82.75± 0.87 77.59± 0.95 75.04± 1.25 71.47± 1.06 68.70± 1.20 66.53± 1.24
K = 3, γ = 2.0 80.88± 3.79 75.89± 2.88 72.61± 2.39 68.71± 2.07 65.39± 2.25 62.29± 2.65
K = 3, γ = 3.0 83.04± 1.04 77.09± 1.22 73.82± 1.23 69.27± 1.45 65.71± 1.62 62.62± 2.07
K = 3, γ = 4.0 81.84± 3.57 76.37± 2.62 73.45± 2.04 68.63± 2.49 65.09± 2.56 62.42± 2.33
K = 3, γ = 5.0 83.79± 0.75 77.81± 0.85 74.58± 0.96 69.90± 1.05 66.32± 1.26 63.33± 1.66
K = 3, γ = 6.0 83.38± 1.12 77.17± 1.15 74.12± 1.28 69.27± 1.33 65.59± 1.34 62.86± 1.75
K = 3, γ = 7.0 84.57± 0.76 78.47± 0.78 75.15± 0.84 70.47± 0.96 66.91± 1.33 63.94± 1.33
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L Complexity Analysis.

Here we will provide a complexity analysis of the vanilla attention, our robust attention, KDE-based
attention and RKDE-based attention. The related notations are Q,K,V ∈ RN×D and A ∈ RN×N .
The major difference in these methods is how to derive the attention matrix, therefore we will only
count the complexity of attention matrix derivation and context matrix computation.

• Vanilla Attention. The vanilla attention matrix in can be formulated as A =

softmax
(

QK⊤
√
D

)
, which costs about N × N × D. The context matrix computation re-

quires N ×N ×D, so the total cost is 2 · (N ×N ×D)

• Our ProAttention. For our robust attention, we need to firstly compute the original matrix
A (N ×N ×D). Then we need to compute weight W(k) based on the pairwise distance
between the V and current estimator Z(k) (N × N ×D). Finally we need to update the
estimator by Z(k+1) = (A ⊙ W(k))V (N × N × D). The context matrix is calculated
through the iterations. Therefore, the total cost will be (1 + 2K) ·N ×N ×D. As stated
in the ablation study in Section 4.2.2, our Newton-IRLS in ProAttention can converge
efficiently within 3 steps (K ≤ 3). Therefore, our ProAttention is still effeicient.
Kernel Density Estimation (KDE) Attention. For KDE-based attention, the attention
matrix is computed based on the pairwise ditance between the K and Q, which cost
N × N ×D. The context matrix computation requires N × N ×D, so the total cost is
2 · (N ×N ×D).

• Robust Kernel Density Estimation (RKDE) Attention. For the RKDE-based attention,
we need to perform the following operations. Firstly, we need to compute the basic matrix
ad KDE attention matrix A (N × N ×D). Then we need to compute pairwise distance
D

(k)
K for all the key pairs (N ×N ×D) and update the weight W(k)

K based on W
(k−1)
K and

D
(k)
K (N ×N ×N ). Similarly, we need calculate the pairwise distance D(k)

KV and update the
weight W(k)

KV for concatenated key and value, which costs N ×N × 2D and N ×N ×N ,
repectively. The context matrix computation requires N ×N ×D. Therefore, the total cost
will be (2 + 3K) ·N ×N ×D + 2K ·N ×N ×N .
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction (Section 1) closely follow the contribution (at the end
of Section 1) in the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in
the paper.

• The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to
this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of the work in the Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to vi-

olations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by review-
ers as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]
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Justification: We provide the theory in Section 3.3 and the detailed proof in the Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the detailed implementation in Section 3.4 and experimental setting in
Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [No]
Justification: We provide the detailed implementation in Appendix A and the dataset information
in Section 4.1. We will organize the data and code access after the submission.
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Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https://
nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

• Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: We provide the detailed experimental setting in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that

is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because it would be too computationally expensive
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).
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• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [Yes]

Justification: We include the theoretical computation analysis in Appendix 3.4 and the running
time in Section 4.2.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experi-

mental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper closely follows NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.
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• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users
adhere to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [NA]

Justification: Our paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included in
the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Sub-
jects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

53


	Introduction
	Related Work
	ProTransformer
	Attention Mechanism as WLS Token Estimator
	Robust WLS Token Estimators 
	Newton-IRLS algorithm
	ProAttention: Robust Attention Layers

	Experiment on Language Modeling
	Experiment Setting
	Classic Text Attacks on Language Models
	Adversarial Robustness
	Ablation Study

	Adversarial Prompting Attacks on LLMs
	Prompt Attack
	Jailbreak Attack


	Experiment beyond Language Modeling
	Image Classification
	Graph Representation Learning

	Conclusion & Limitation
	Pseudocode of Plug-and-Play Robust Attention (ProAttention)
	Proof of Newton-IRLS Algorithm
	Proof of Localized Upper Bound (Lemma 3.1)
	Proof of Newton-IRLS algorithm and Special Cases
	Proof of Rigorous Loss Descent Guarantee (Theorem 3.2)
	Special cases of Newton-IRLS

	Dataset Information
	Language Domain
	Beyond Language Domain

	Defense Baselines and Backbone Architectures
	Defense Baselines
	Backbone Architectures

	Attacks.
	Classic Text Attack:
	Attack in LLMs
	Attacks in Vision & Graph Models

	Algorithm Convergence and Robust Estimation
	Convergence Guarantee
	Robust Estimation
	Vulnerability Analysis of Vanilla Attention (WLS estimator)

	Additional Experiments of Text Attacks
	Sentiment Analysis: IMDB
	Textual Entailment: RTE
	Adversarial Fine-tuning on Topic Classification: AGNEWS
	Ablation Study on Attack constraints
	Ablation Study on Backbone Models
	Ablation Study on Hyperparameters of Penalties
	Ablation Study on Huber 
	Ablation Study on MCP 


	Additional Experiments on LLMs
	Experiments on T5
	main result
	Ablation on Huber
	Ablation on MCP of T5
	Ablation on Huber-MCP

	Experiments on LLaMA
	Textfooler
	TextBugger
	DeepWordBug


	Additional Experiments on Jailbreak
	Transfer Jailbreak
	Adaptive Jailbreak

	Additional Experiments on ViT
	Main Results
	Ablation study.

	Additional Experiments in GAT
	Complexity Analysis.

