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ABSTRACT

Time series forecasting is crucial in various fields, including finance, energy con-
sumption, weather, transportation, and network traffic. It necessitates effective
and efficient sequence modeling to encapsulate intricate temporal relationships.
However, conventional methods often aggregate sequential information into repre-
sentations of each time point by considering other points in the sequence, thereby
ignoring the intra-individual information and suffering from inefficiency. To ad-
dress these challenges, we introduce a novel approach, DROSIA: Decoupled
Representation On Sequential Information Aggregation, which only integrates
temporal relationships once as an additional representation for each point, achiev-
ing sequential information aggregation in a decoupled fashion. Thus balancing
between individual and sequential information, along with a reduction in com-
putational complexity. We select several widely used time series forecasting
datasets, and previously top-performing models and baselines, for a comprehen-
sive comparison. The experimental results validate the effectiveness and efficiency
of DROSIA, which achieves state-of-the-art performance with only linear com-
plexity. When provided with a fair length of input data, the channel-independent
DROSIA even outperforms the current best channel-dependent model, highlight-
ing its proficiency in sequence modeling and capturing long-distance dependen-
cies. Our code will be made open-source in the subsequent version of this paper.

1 INTRODUCTION

A time series is a sequence of data points recorded in chronological order, which reflects the at-
tribute characteristics of an object at various stages of its dynamic development. Time series data
spans across numerous fields, including finance, energy consumption, weather, transportation, and
network traffic. This type of data typically presents high-dimensional features and long sequences,
characterized by intricate nonlinear relationships between time points. These complexities make it
challenging to predict future developments accurately based on historical data. Consequently, time
series forecasting stands as one of the most significant and challenging domains within data analysis,
demanding effective and efficient sequence modeling to capture complex temporal relationships.

In recent years, numerous studies on time series forecasting have shown that deep learning methods
significantly outperform traditional approaches, elevating deep learning forecasters to the forefront
of research. For example, MLP-based models (Oreshkin et al., [2020; [Tolstikhin et al., 2021} [Zeng
et al., 2023; |Li et al., 2023 [Zhang et al.,|2022; Han et al., |2024) have garnered significant interest
for their simplicity, efficiency, and predictive accuracy. CNN-based (Bai et al.| 2018 Wang et al.,
2022;Gao et al.| 2020; |Sen et al.| 2019; [Liu et al.|2022; 'Wu et al.| |2023)) and RNN-based (Lai et al.,
2018 [Voelker et al., [2019; [Salinas et al., [2020) models have enhanced forecasting effectiveness by
integrating local or global spatio-temporal information from time series data. Subsequently, meth-
ods based on attention mechanism have emerged as the dominant approach in sequence modeling,
empowering numerous deep learning forecasters (Qin et al., [2017) to further refine their temporal
relationship capturing capabilities. Particularly, Transformer-based models (Li et al.l [2019; [Chen
et al.l 2021} [Zhou et al., 2021} Liu et al., 2021; [Zhou et al.l [2022; Zhang & Yan| [2023} Nie et al.,
2023;|Liu et al., [2024} Dai et al.,2024), have showcased unparalleled prowess in sequence modeling.
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Existing sequence modeling methods typically aggregate sequential information into representations
of each time point by considering other points in the sequence, which overlooks the unique informa-
tion within individual points and may lacks efficiency. For instance, the self-attention mechanism,
attends to all time points to update the current one, leading to a quadratic computational complex-
ity that can become a bottleneck in the training and the inference processes (Dao et al., [2022).
Additionally, the distinct information within each point can be compromised during sequence mod-
eling. However, “the ‘structure’ (sedimented individual meanings) is powerful” (Fine, [1993). In-
spired from the concept of Transverse Interaction: Individuals recognize the physical environment
as a symbolic other and use this understanding to structure their interaction with a “generalized
other” (Weigert, |1991)). we propose a sociological perspective on the relationship between time se-
ries and individual points, which emphasizes that individual information is of great significance and
necessitates a full interaction with the collective to enhance sequence modeling. Current methods,
however, may overly sacrifice individual information for the sake of sequential information.

To illustrate our concept and address the limitations of current sequence modeling methods, we have
developed a novel approach called DROSIA, which integrates rich temporal relationships as addi-
tional representations for each time point, thereby enhancing the expressive power of the data and
better balancing the trade-off between sequential information and individual point information. We
have conducted comprehensive experiments on several prominent and frequently used multivariate
long-term time series forecasting datasets. DROSIA has demonstrated exceptional sequence model-
ing capabilities, and the results suggest that our proposed model attains state-of-the-art performance
in downstream tasks while notably decreasing computational complexity. The contributions of this
paper can be summarized as follows:

* We propose a novel sequence modeling method — DROSIA, which aggregates sequential
information in a decoupled fashion, effectively balancing it with information of individuals.

» DROSIA exhibits exceptional proficiency in time series forecasting, achieving state-of-the-
art performance with linear complexity, especially in experiments involving long sequences
and large datasets, highlighting its efficacy in capturing long-distance dependencies.

* When compared to several previous state-of-the-art channel-dependent models, DROSIA
demonstrates superior performance across all datasets with a fair input length to the number
of channels, as DROSIA does not leverage any inter-channel information.

2 RELATED WORK

Sequential Information Aggregation Methods. Sequence information aggregation, or sequence
modeling, is a pivotal technology across various fields, including natural language processing,
speech recognition, and time series analysis. RNNs (Elmanl [1990) process sequential information
through recursive computations. LSTM (Hochreiter & Schmidhuber, |1997)) and GRU (Cho et al.,
2014) are two most commonly employed variants, which effectively manage the forgetting and re-
tention of information via gating mechanisms, thereby mitigating the challenges traditional RNNs
encounter when learning long-distance dependencies. RCNN (Girshick et al., 2014; Gu et al., [2021])
leverages the strengths of both RNNs and CNNs (LeCun et al.l |1998), extracting local features
through convolutional operations before aggregating information via recursive computations.

Subsequently, the attention mechanism has become the dominant technology for sequence model-
ing. Traditional models have been bolstered by the integration of attention mechanisms (Qin et al.,
2017), and the Transformer (Vaswani et al., [2017)), which is built on self-attention, has seen remark-
able success across a wide range of tasks. However, the attention mechanism has drawbacks in
terms of computational efficiency. Its high computational cost can be a significant barrier for many
researchers and engineers, thereby hindering its widespread adoption and dissemination.

Time Series Forecasting Models. In recent years, deep networks have advanced significantly in
time series forecasting. RNN-based models (Lai et al., 2018; [Voelker et al., [2019; |Salinas et al.,
2020) are effective in capturing temporal relationships but suffer from computational inefficiency
and limited capability in modeling long-distance dependencies. CNN-based models (Bai et al.,
2018; Wang et al., 2022} |Gao et al.| 2020; |Sen et al.| 2019} [Liu et al.| 2022; Wu et al.| [2023)), which
perform convolution to hierarchically extract temporal features, have achieved competitive forecast-
ing performance. MLP-based models (Oreshkin et al., [2020; [Tolstikhin et al., 2021} Zeng et al.,
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2023} [Li et al.| 2023} [Zhang et al.| |2022; Wang et al., [2024a; Han et al., 2024)) have garnered con-
siderable interest due to their efficient data processing and ability to capture temporal relationships.

Inspired by the capabilities of Transformer-based models (Li et al., |2019; (Chen et al., 2021} Zhou
et al.2021;|Liu et al.|[2021};|Zhou et al.|[2022}; Zhang & Yanl[2023]; Nie et al.,2023; Liu et al., 2024;
Dai et al.,[2024) in capturing long-distance dependencies and complex temporal relationships, they
have been extensively applied across various time series tasks. Prior research has largely centered
on point-wise modeling. However, due to the computational complexity of Transformer, numerous
studies have sought to enhance efficiency. The PatchTST (Nie et al., [2023)) has demonstrated the
advantages of representing time series through patching, effectively reducing sequence length while
boosting forecasting performance. Nevertheless, Transformer-based methods still struggle with effi-
ciency in multivariate long-term prediction scenarios. iTransformer (Liu et al.,[2024)) approaches the
problem by representing each channel as a whole along the time axis and applying the Transformer
encoder to these representations, which significantly reduces complexity but at the cost of losing
temporal information, leading to suboptimal performance in cases with fewer channels and longer
sequences. TimeXer (Wang et al.|[2024b)) leverages the benefits of both PatchTST and iTransformer,
achieving promising results, yet the computational time remains a significant drawback.

Moreover, current research related to large language model (LLM) has attracted significant interest.
Numerous researchers leverage the pre-trained LLMs to time series analysis|Zhou et al.| (2023)); Sun
et al.| (2024), including the forecasting (Chang et al.| (2023)); (Gruver et al.| (2023); Pan et al.[ (2024));
Jin et al.| (2024). Benefiting from the vast amount of pre-trained data and the well-structured em-
bedding space, the LLM-based forecasters have demonstrated promising performance in time series
forecasting tasks. LLMA4TS |Chang et al.[ (2023) and “OneFitAll” Zhou et al.| (2023) finetune the
LLMs to align the original word embedding with time series embeddings, While TEST |Sun et al.
(2024), S2IP-LLM [Pan et al.|[(2024), and TIME-LLM [Jin et al. (2024) tokenize the time series data
first, and align them to the semantic space of LLMs, then enhance the models’ effectiveness through
various prompt techniques. However, some researchers have also questioned the effectiveness of
LLM-based methods in time series forecasting Tan et al.[(2024), after conducting thorough experi-
ments for LLM and non-LLM forecasters, they claimed that ’despite the recent popularity of LLMs
in time series forecasting, they do not appear to meaningfully improve performance”.

3 METHODOLOGY

Time series can be defined as X = {z1,z9,..., 2}, € R, where ¢ represents the current time
point, starting from 1, and d denotes the dimensionality of the features at each time point. The
objective of time series forecasting is to predict the sequence Y = {x¢11, Xt 42, .., Te4n}, With
h being the prediction horizon. We propose a novel method called Decoupled Representation On
Information Aggregation, abbreviated as DROSIA, which comprises three components: patch em-
bedding, DROSIA encoding, and linear decoding. The overall architecture is depicted in Figure

3.1 PATCH EMBEDDING

To enhance prediction accuracy and computational efficiency, we define a sliding window of length
kasT; = {xit1,Tit2, ..., Titx} With a stride of s, to segment the time series into patches. We
utilize a fully connected linear layer for patch embedding, which takes each patch as input and
produces a single vector as the patch’s representation, referred to as S; for the i-th patch.

S; = Linear(T;),i=1,2,...,n (D

In Equation (1), n represents the total number of input patches. The linear layer treats the multivari-
ate time series as multiple univariate series (in a channel-independent manner) (Han et al.| |2023)),
multiplying the k values within the sliding window by a matrix with dimensions k x d, where d is the
dimensionality of patch embedding. This approach aligns with the methodology of PatchTST (Nie
et al.| [2023). which has been shown the advantages in long-term time series forecasting tasks across
various related studies. After extracting patch-wise representations from the time series, PatchTST
utilizes the Transformer (Vaswani et al., 2017)) to encode these embeddings. In contrast, we employ
DROSIA as the encoder. The following subsection will delve into the implementation details of
DROSIA and highlight its distinctions from the self-attention mechanism and other methods.
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Figure 1: Overall architecture of DROSIA model, includes patch embedding, DROSIA encoding,
and linear decoding. Note that DROSIA encoder could be repeatedly used. Information extraction
extracts sequential information from all patch embeddings in the same channel, and fuses it with
these embeddings in a decoupled manner. We will describe the details in the following of this paper.

3.2 DROSIA ENCODING

The DROSIA encoding module extracts sequential information from the patch embeddings, serving
as additional representations of these patches, and then fuses the two back to original dimensionality
of embeddings. In multi-layer networks, this process can be repeated, indicating that the fused
representation can either be passed through another encoding layer or directly input into the decoder.

STt = DROSIA(S?),j=1,2,...,1 (2

Equation (2) outlines the overall process of the DROSIA encoder, which will be described in detail
from Equation (3) to Equation (7). In this context, DROSIA refers to a single encoder layer, !
denotes the number of layers. S' indicates the input to the first encoder layer, meanwhile the output
of the embedding layer. S7 is the input to the j-th layer. We consider sequential information as
additional representation of the input, to achieve representation decoupling. The encoder primarily
comprises three stages: sequence aggregation, information extraction, and representation fusion.

Sequence Aggregation. The output representations from the patch embedding or the previous layer
of DROSIA encoder are first concatenated, which we refer to as sequence aggregation.
Cl=8l08l 008, 3)

K3

In Equation (3), the o represents the concatenate operation. The high-dimensional representation
resulting from this concatenation is rich in temporal information, which must be fully exploited to
enhance the model’s overall performance in the sequence modeling process.

Information Extraction. The information extraction phase is applied to the high-dimensional rep-
resentations derived from the sequence aggregation stage. Its objective is to distill more valuable
sequential information for subsequent tasks while decreasing the computational complexity. For this
purpose, We employ a simple and efficient MLP for the information extraction process.

RI = MLP(CY) @)

The high-dimensional representations are compressed into a lower-dimensional space to form the
sequential information, thereby reducing the number of parameters. Note that we use an MLP just
because its simplicity, however, it could be replaced by more sophisticated methods if desired.

Representation Fusion. The extracted sequential information is concatenated with the original
patch embeddings or the outputs from the previous encoder, as illustrated in Figure[2} This process
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Figure 2: DROSIA encoder concatenates the patch embeddings and extracts sequential information
from them. This information is duplicated and combined with the original patch embeddings to
create decoupled representations, which are then fused back to the original dimensionality.

resembles residual connection |He et al| (2016), but in a decoupled manner, which enhances the
information representation capability and improves efficiency, while also facilitating full interaction
between the two types of information and optimization for deeper network. Subsequently, the fused
representations of patches and sequential information are processed through a normalization layer,
where both parts undergo a unified normalization operation. The function is outlined as follows.

D = LayerNorm(S? o R?) )
hi — M H
LayerNorm(H) = w (6)
Var(H)

In Equation (5) and (6), Layer N orm refers to the normalization operation. The H represents the
input, while h; denotes the i-th item of H. Mean and Var are functions to compute the mean and
the variance respectively. Normalization (Kim et al.| [2021) aids in optimizing training phase and
mitigates the adverse effects of non-stationary processes, which are common in time series data.

Unlike conventional sequence modeling approaches, DROSIA extracts sequential information once
per encoder layer, and then aggregates it with the original patch embeddings in a decoupled fash-
ion. For instance, self-attention mechanisms attend to all time points and aggregates sequential
information through a weighted sum of points’ representations, potentially overlooking individual
information and lacks efficiency. In contrast, DROSIA considers sequential information as addi-
tional representation and decouples the two, thereby preserving the benefits of both sequential and
individual information while circumventing issues such as the quadratic computational complexity.

STl = FFN(D) (7

Ultimately, we utilize a feed-forward network to facilitate complete interaction between the two
types of information, and compress the fused representation to the dimensionality of the input data.

3.3 LINEAR DECODING

Once the data has passed through [ layers of DROSIA encoder, the output from the final layer,
denoted as s'*1, is then fed into the linear decoding module to yield the final forecasting results.

Y = Projection(5l+1) (8)

In Equation (8), the Projection is performed using a fully connected linear layer. During the train-
ing phase, the model’s prediction results are compared against the actual subsequent time series data
to compute the error. Subsequently, the parameters of DROSIA are updated using the backpropaga-
tion algorithm. The error is quantified using the mean squared error (MSE). Our configuration of the
decoding module aligns with numerous previous studies, including PatchTST and iTransformer.
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4 EXPERIMENTS

Datasets. We comprehensively assessed the performance of the DROSIA model on eight multi-
variate long-term time series forecasting datasets: Electricity (ECL), four subsets of ETT (ETTml,
ETTm2, ETThl, and ETTh2), Traffic, Exchange, and Weather. These datasets are publicly available
on GitHu The data processing and split ratio were consistent with TimesNet(Wu et al., 2023)).

Baselines. We selected several previous state-of-the-art models, including Transformer-based mod-
els such as iTransformer(Liu et al., [2024), PatchTST(Nie et al., [2023), FEDformer(Zhou et al.,
2022), and Autoformer(Chen et al.l 2021). CNN-based model, TimesNet(Wu et al., [2023), and
MLP-based models, TiDE(Das et al.,2023)) and DLinear(Zeng et al.,[2023)). All models were imple-
mented using the original code or replicated adhering to details described in the respective papers.

Settings. By default, we configure all Transformer-based models with dropout probability p = 0.1
and the number of attention heads n = 16. For PatchTST and DROSIA, the patch size is 16 with
a stride as 8, in line with previous research. When conducting experiments on Weather, ECL, and
Traffic, both DROSIA and Transformer-based models are equipped with 3 encoder layers, and latent
dimension d = 512. For smaller datasets, such as Exchange and ETT subsets, we employ a smaller
model size to mitigate the risk of overfitting: 2 layers and d = 256. The dimension ratio of the two
types of representations (individual versus sequential) within DROSIA is 1 : 1 across all scenarios.

Table 1: Overall experimental outcomes for long-term time series forecasting, using four prediction
horizons: H € {96,192, 336, 720} across all datasets, and the length of the input L = 96, which are
consistent with iTransformer (Liu et al.|[2024). The results are averaged from these four horizons.

Model DROSIA iTransformer PatchTST TiDE TimesNet DLinear FEDformer Autoformer
Metric MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
ETTh1 0441 0.435 ] 0464 0455|0443 0438 | 0491 0469 | 0496 0.494 | 0462 0.458 | 0.464 0.468 | 0.499 0.484
ETTh2 [ 0.376 0.401 | 0.384 0.407 | 0.378 0.402 | 0.401 0419 | 0422 0429 | 0.513 0.519 | 0.432 0.447 | 0.450 0.458
ETTml | 0.383 0.396 | 0408 0.412 | 0.388 0.400 | 0.424 0416 | 0432 0.430 | 0.404 0.408 | 0.446 0.452 | 0.579 0.510
ETTm2 | 0.277 0.322 | 0.291 0.334 | 0.280 0.326 | 0.292 0.334 | 0.304 0.339 | 0.354 0.402 | 0.298 0.345 | 0.318 0.362
Exchange | 0.351 0.398 | 0.364 0.407 | 0.3 0.408 | 0.364 0.409 | 0405 0.445] 0.339 0414 | 0.507 0.496 | 0.504 0.501
Weather | 0.255 0.277 | 0.260 0.280 | 0.256 0.278 | 0.273 0.322 | 0.262 0.287 | 0.265 0.316 | 0.302 0.333 | 0.322 0.357
ECL 0.190 0.278 | 0.185 0.274 | 0.196 0.283 | 0.257 0.344 | 0.192 0.294 | 0.215 0.304 | 0.216 0.328 | 0.228 0.335

Traffic 0479 0312 | 0.467 0.314 | 0486 0.322 | 0.759 0.473 | 0.629 0.343 | 0.643 0.400 | 0.621 0.379 | 0.637 0.383

[SNNS]

To reduce the impact of randomness, each experiment is conducted three times to calculate the
average result. The outcomes from different prediction horizons are then further averaged for each
dataset. The mean squared error (MSE) and mean absolute error (MAE) serve as the evaluation
metrics. All experiments are performed on a single NVIDIA 4090 GPU with 24GB of memory.

Table 2: Experiments on ECL and Traffic for a fair comparison between DROSIA and iTransformer,
involving various lengths of input time series L € {96,192, 336,512}, and different output hori-
zons: H € {96,192,336, 720}. Results in bolded red indicate the winner in each scenario.

Length 512 336 192 96

Model DROSIA iTransformer DROSIA iTransformer DROSIA iTransformer DROSIA iTransformer
Metric | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
96 [ 0.131 0.229 [ 0.135 0234 [ 0.134 0.232 | 0.136 0234 | 0.141 0.237 | 0.141 0.237 [ 0.166 0.253 | 0.158 0.249
192 | 0.150 0.246 | 0.154 0.253 | 0.151 0.247 | 0.155 0.251 | 0.158 0.253 | 0.159 0.254 | 0.176  0.264 | 0.170  0.260
336 | 0.167 0.266 | 0.170 0.269 | 0.170  0.266 | 0.173 0.269 | 0.176 0.270 | 0.177 0.273 | 0.193 0.282 | 0.187 0.278
720 | 0.203 0.295 | 0.206 0.300 | 0.208 0.298 | 0.210 0.301 | 0.215 0.304 | 0.216 0.306 | 0.232 0.316 | 0.224 0.310
96 [ 0371 0.263 | 0.395 0.289 [ 0.381 0.268 | 0.401 0.291 | 0.401 0.276 | 0.421 0.298 | 0.454 0.299 [ 0.434 0.299
192 | 0.389 0.271 | 0.415 0.301 | 0.402 0.277 | 0.423 0.306 | 0.422 0.285 | 0.443 0.310 | 0.466 0.305 | 0.454 0.306
336 | 0.400 0.276 | 0.430 0.311 | 0.419 0.285 | 0.441 0.314 | 0.438 0.293 | 0459 0316 | 0483 0.313 | 0472 0315
720 | 0.436  0.296 | 0.472 0.335 | 0.446 0.300 | 0.476 0.336 | 0.466 0.309 | 0.489 0.337 | 0.515 0.332 | 0.507 0.337

ECL

Traffic

4.1 EXPERIMENTAL RESULTS

The overall experimental results are presented in Table |1 The bolded values denote the top per-
formance on each dataset, while the underlined indicate the second-highest. As observed, DROSIA
achieves superior or competitive results compared with the previous state-of-the-art models and out-
performs each baseline in the majority of scenarios. However, on datasets with a large number of
variates, such as ECL (321 channels) and Traffic (862 channels), the channel-independent DROSIA

'"https://github.com/thuml/Time-Series-Library
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does not outperform the channel-dependent iTransformer model. This comparison is not entirely
equitable to DROSIA, as the number of channels significantly exceeds the length of the input data.

Consequently, we adjust the input lengths for ECL and Traffic datasets to facilitate fairer compar-
isons between DROSIA and iTransformer. As shown in Table 2] when the input data length is suf-
ficiently long (L > 192), DROSIA consistently outperforms iTransformer on datasets with a large
number of variates, without utilizing any inter-channel information. This outcome underscores the
powerful capability of DROSIA in time series modeling and capturing long-distance dependencies.

As shown in Table [T} DROSIA significantly outperforms the MLP-based methods, TiDE and DLin-
ear, across most scenarios. For the Exchange dataset, which comprises only 8 channels and is subject
to a high degree of data randomness, DROSIA still achieves the best performance in MAE and ranks
second in MSE. In comparison to Transformer-based and CNN-based models, DROSIA consistently
exceeds the performance of FEDformer, Autoformer, TimesNet, and PatchTST, and demonstrates
superior behavior to iTransformer in datasets with a small number of variates.

Table 3: Efficiency comparisons between DROSIA and various typical time series forecasters with
the computational complexity, which is consistent with (Han et al., 2024). DROSIA is the only
method that is linear to the input length L, prediction horizon H, and number of channels C.

DROSIA iTransformer PatchTST Transformer
Complexity | O(CL+CH) | O(CL+C?*+CH) | O(CL*+CH) | O(CL+ L?*+ HL+ CH)

4.2 ABLATION STUDY

Efficiency Analysis. We assessed the efficiency of DROSIA against various typical forecasters.
DROSIA mainly comprises patch embedding, information extraction, representation fusion, and lin-
ear decoding modules. Assuming an input length L, a number of channels C, a patch size p with a
stride s, model dimension is d with ratio of two types of information 1 : 1 (d/2 for each), and predic-
tion horizon is H. The computational complexities are O(CpdL/2s), O(Cd*L/4s), O(Cd?*L/2s),
and O(C Hd/2) respectively. By ignoring all constants, we derive the overall computational com-
plexity of DROSIA as O(CL + CH), which is linear to L, C, and H. The complexity of other
models was also computed in this way, as presented in Table 3] DROSIA stands out as the only
method with linear complexity to L and C of time series data, demonstrating its high efficiency for
time series forecasting tasks, particularly in scenarios of large variate sizes and long input lengths.
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Figure 3: Hyperparameter sensitivity analysis of DROSIA. Four datasets with different variate size
are adopted: ETTm1, Weather, ECL and Traffic, with the patch sizes: p € {4, 8, 16, 32}, dimension
ratio of information within each time patch: r € {1/8,2/8,3/8,4/8,5/8,6/8,7/8}, model dimen-
sion: d € {64,128, 256,512,1024}, and number of encoder layers: n € {1,2,3,4}.

Hyperparameter Sensitivity Analysis. We selected four datasets with varying numbers of chan-
nels: ETTm1 (7 channels), Weather (21 channels), ECL (321 channels), and Traffic (862 channels),
and conducted a sensitivity analysis on several key hyperparameters of DROSIA, which include the
patch size p, the dimension ratio of patch embeddings 7, the model dimension: d, and the number
of encoder layers n. To ensure fairness and avoid bias due to an excessively large patch size, we
set the input length to 192. For all scenarios, we used Mean Squared Error (MSE) as the evaluation
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metric. All other settings were aligned with the default experimental configurations. The results of
this analysis are depicted in Figure 3]

The analysis reveals that variations in patch size have a negligible impact on the overall perfor-
mance of DROSIA across all datasets. For the dimension ratio, model dimension, and number of
encoder layers, datasets with a large number of variates, such as ECL and Traffic, benefit from in-
creased values of 7, d and n to achieve improved prediction performance. Conversely, for smaller
scale datasets like ETTm1 and Weather, DROSIA does not derive significant advantages from larger
values of these hyperparameters, in some cases, the performance even deteriorates.

ETTm1 N Weather

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

(a) (b) (© (d

Figure 4: Ablation study of prediction performance of DROSIA, iTransformer, PatchTST, DLinear,
and TimesNet. Four datasets with different variate sizes are adopted: ETTm1, ECL and Traffic, with
varying input lengths: L € {48, 96,192, 336, 512}, and the prediction horizon H = 96.

Influence of Input Length. We selected four datasets with varying variate sizes: ETTm1, Weather,
ECL, and Traffic, to conduct a detailed analysis on the impact of input length. For comparison,
we adopted four baselines, which include Transformer-based models iTransformer and PatchTST,
CNN-based model TimesNet, and MLP-based model DLinear. It should be noted that iTransformer
and TimesNet are channel-dependent models, whereas the others are channel-independent.

As depicted in Figure ] the DROSIA model demonstrates its superior effectiveness across all sce-
narios when compared to channel-independent models like PatchTST and DLinear. It achieves the
best performance on all datasets with longer input time series data lengths (L > 192), even out-
performing channel-dependent models such as TimesNet and iTransformer. For datasets with larger
variate sizes like ECL and Traffic, TimesNet and iTransformer exhibit superior performance when
the input length is set to 48. However, their advantage diminishes and is eventually overtaken as
the input length increases. This trend suggests the value of inter-channel information in time se-
ries forecasting and highlights a limitation of channel-dependent models in capturing long-distance
dependencies. The question of how to better balance sequential and inter-channel information war-
rants further investigation. Moreover, the performance of DROSIA is consistent and progressively
improves with increasing input length, ultimately achieving state-of-the-art forecasting accuracy.
This trend already attests to the model’s robust capability in sequence modeling.

Effectiveness of DROSIA. We investigate the role that decoupled representations play in the overall
performance of DROSIA and the efficacy in time series forecasting. To mitigate the randomness in
experimental outcomes, we selected two datasets with the largest variate sizes: ECL and Traffic, for
comparison. PatchTST, which employs the patch embedding and Transformer encoder to integrate
sequential information, was chosen as the benchmark. As indicated in Table @] DROSIA achieves
the lowest MSEs and MAEs across all prediction horizons. When using the DROSIA approach
(labeled as “P+S”), the performance of both models surpass that of the setting where only sequential
information is utilized across all scenarios. This finding validates the effectiveness of DROSIA in
aggregating sequential information and significantly enhances the model’s prediction accuracy.

Different Information Extraction Methods. As discussed in Section 3.2, we utilize an MLP for
sequential information extraction primarily due to its simplicity, however, it could be substituted
with any methods. To evaluate the impact of various information extractors on the overall effective-
ness of DROSIA, we compare five methods: MLP, Self-Attention, CNN, RNN, and Max Pooling.
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Table 4: Experiments on the decoupled representations, which encompass three cases: “P+S” indi-
cates the inclusion of both patch and sequential representations, while “P” or “S” signifies only one
respectively. The “P+S” configuration of PatchTST means the patch representations and sequential
information extracted via Self-Attention are concatenated, whereas “S” refers to the model’s original
settings. To mitigate the randomness in the results, we utilized two large datasets (ECL and Traffic).

DROSIA PatchTST
Model P+S S P+S S P

Metric | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

96 | 0.166 0.253 | 0.184 0.277 | 0.177 0.267 | 0.183 0.274 | 0.174 0.282
d 192 | 0.176  0.264 | 0.194 0.287 | 0.187 0.273 | 0.192 0.279 | 0.198 0.287
/M| 336 | 0.193 0.282 | 0.211 0.302 | 0.201 0.292 | 0.205 0.296 | 0.213 0.301
720 | 0.232  0.316 | 0.254 0.335 | 0.241 0.317 | 0.246 0.324 | 0.255 0.334
o | 96 | 0454 0.299 | 0485 0.324 | 0474 0.306 | 0.479 0.312 | 0.576 0.370
£ 192 | 0466 0305 | 0.502 0.335 | 0.481 0.309 | 0.485 0.315 | 0.550 0.354
E 336 | 0.483 0.313 | 0.522 0.346 | 0.492 0.314 | 0.496 0.321 | 0.564 0.358
720 | 0.515 0.332 | 0.558 0.363 | 0.523 0.329 | 0.525 0.339 | 0.603 0.377

Table 5: Experiments for five different sequential information extraction methods: MLP (ours), Self-
Attention, CNN, RNN, and Max Pooling of DROSIA, with the prediction horizon H = 96, and the
length of input time series data L = 96 for all of the 8 datasets. The bolded values denote the best
performance, and underlined values denote the second-best, which are the same as Table E}

Model MLP Self-Attention CNN RNN Max Pooling
Metric MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
ETThl | 0.376 0.397 | 0.381 0.399 | 0.375 0.394 | 0.377 0.393 | 0.384 0.396
ETTh2 | 0.291 0.341 | 0.294 0.341 | 0.292 0.341 | 0.295 0.342 | 0.291 0.340
ETTml | 0.319 0.360 | 0.320 0.359 | 0.330 0.367 | 0.334 0.369 | 0.328 0.365
ETTm2 | 0.175 0.258 | 0.174 0.257 | 0.174 0.256 | 0.176 0.260 | 0.175 0.258
Exchange | 0.082 0.200 | 0.083 0.199 | 0.083 0.201 | 0.083 0.200 | 0.084 0.202
Weather | 0.173 0.214 | 0.171 0.213 | 0.172 0.214 | 0.173 0.214 | 0.175 0.215
ECL 0.166 0.253 | 0.177 0.267 | 0.178 0.272 | 0.181 0.272 | 0.179  0.266
Traffic | 0.454 0.299 | 0.474 0.306 | 0.476 0.322 | 0.467 0.304 | 0479 0.318

CNN refers to a single convolutional layer, and RNN denotes the vanilla version in this context. We
employ all eight datasets for this comparison, with both the input length and the prediction horizon
of the time series data set to 96. The outcomes of these experiments are presented in Table 5]

The results indicate that each sequential information extraction method could excel on different
datasets with smaller variate sizes, such as the four subsets of ETT, Exchange, and Weather. Overall,
the Self-Attention method slightly outperforms the others in these cases. However, for datasets
with larger variate sizes, such as ECL and Traffic, the MLP proves to be more effective. These
findings suggest that for smaller datasets, there is minimal distinction between various extractors,
which underscores the universal effectiveness of DROSIA and the inherent data variability across
these datasets. In contrast, more complex datasets necessitate more advanced sequential information
extraction methods to achieve optimal performance.

5 CONCLUSION AND FUTURE WORK

This paper introduces a novel approach, DROSIA, which incorporates rich temporal relationships
as additional representations within each time patch. This method achieves sequential information
aggregation in a decoupled fashion, effectively balancing sequential and individual information with
linear complexity for sequence modeling. Through comprehensive experimentation, we show that
DROSIA attains state-of-the-art performance, particularly in scenarios involving long sequences and
large scale data. Compared with previous top-performing channel-dependent models like iTrans-
former, the channel-independent DROSIA exhibits superior performance across all datasets when
the input sequence length is adequate. Notably, DROSIA does not rely on inter-channel informa-
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tion, highlighting its efficacy in sequence modeling and capturing long-distance dependencies. We
contend that DROSIA is broadly applicable to a variety of scenarios.

In the ablation study, we have thoroughly demonstrated the efficacy of DROSIA through a multitude
of meticulously designed experiments. However, we also observed that when the input length of time
series is inadequate and the dataset has a large variate size, the prediction accuracy of DROSIA may
fall short of channel-dependent methods. This underscores the significance of inter-channel infor-
mation. Consequently, our future research will concentrate on integrating inter-channel information
without excessively compromising the information within each channel, while also considering the
model’s overall efficiency to achieve a better balance. Through additional experiments (not detailed
in this paper), we have verified that inter-channel information significantly diverges from sequential
information, necessitating distinct integration strategies. Simply applying DROSIA to inter-channel
information aggregation may not be feasible. Overall, this paper presents a successful method for
enhanced intra-channel modeling and identifies a challenging research direction in time series fore-
casting: how to efficiently model both intra- and inter-channel information simultaneously.
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