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Abstract

A fundamental question in data-driven deci-
sion making is how to quantify the uncertainty
of predictions to inform risk-sensitive down-
stream actions, as often required in domains such
as medicine. We develop a decision-theoretic
foundation linking prediction sets to risk-averse
decision-making, addressing three questions: (1)
What is the correct notion of uncertainty quantifi-
cation for risk-averse decision makers? We prove
that prediction sets are optimal for decision mak-
ers who wish to optimize their value at risk. (2)
What is the optimal policy that a risk averse deci-
sion maker should use to map prediction sets to
actions? We show that a simple max-min decision
policy is optimal for risk-averse decision makers.
Finally, (3) How can we derive prediction sets that
are optimal for such decision makers? We pro-
vide an exact characterization in the population
regime and a distribution free finite-sample con-
struction. These insights leads to Risk-Averse Cal-
ibration (RAC), a principled algorithm that is both
practical—exploiting black-box predictions to en-
hance downstream utility—and safe—adhering to
user-defined risk thresholds. We experimentally
demonstrate RAC’s advantages in medical diag-
nosis and recommendation systems, showing that
it substantially improves the trade-off between
safety and utility, delivering higher utility than
existing methods while avoiding critical errors.

1. Introduction

Predictions are frequently used to inform actions. For ex-
ample, in clinical medicine, patient data are used to pre-
dict diagnoses and outcomes when choosing treatments. In
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high-stakes cases—where an incorrect treatment decision
could lead to serious complications or death—it is crucial
not to rely solely on a model’s predictions. Instead, deci-
sions must account for the uncertainty in these predictions,
opting for more conservative interventions when that uncer-
tainty makes the potential outcomes (e.g., complications,
side effects) highly variable. Connecting uncertain pre-
dictions to actionable, principled decisions is a significant
challenge in safety-critical domains, including medical diag-
nosis, finance, robotics, and control, and requires balancing
safety with utility. One extreme is to avoid any action en-
tirely—sacrificing prediction’s practical value for absolute
safety—while the other is to aggressively exploit predictions
to maximize expected utility, accepting significant downside
risk at the cost of realizing poor outcomes with substantial
probability. Balancing this trade-off calls for an optimal
approach to risk-sensitive decision making. To this end, we
focus on the following question:

What is the optimal interface between prediction and action
that allows for navigating the trade-off between safety and
utility in high stakes applications?

The optimal design of an action policy crucially depends
on how uncertainty is quantified. Among various methods,
a widely adopted approach—spurred by advances in con-
formal prediction—is to produce prediction sets rather than
point estimates. But what exactly are prediction sets good
for? Which decision-making processes make them the right
language for communicating uncertainty? And, given such
a process, what is the optimal rule for transforming predic-
tion sets into actions? To address these questions, we first
introduce our setting and notation. We consider a feature
space X and a label set ), endowed with the distribution
(z,y) ~ D. A downstream decision maker has an action set
A and a utility function u : A x Y — R that maps actions a
and realized labels y to utilities u(a, y), which the decision
maker seeks to maximize. Upon observing x € X, the deci-
sion maker must take an action a € A without observing the
true label y, relying instead on predictions about y. Within
this framework, we aim to answer the above questions.

In seeking answers, it is instructive to reflect on what we can
say about calibrated forecasts, an alternative way of quanti-
fying uncertainty with well-established decision-theoretic
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Figure 1. RAC pipeline, an interface between prediction and action for high-stakes applications.

foundations—that has its own limitations. Suppose we are
in a multiclass classification setting, and we represent labels
y € Y using one-hot vectors in the k-dimensional probabil-
ity simplex. A forecasting rule f : X — [0, 1]¥ is calibrated
if, for every prediction p, we have E[y | f(z) = p| = p,
meaning it is unbiased given the forecast. Then a simple
consequence of calibration (Foster and Vohra, 1997; Zhao
et al., 2021; Noarov et al., 2023) is that for any expecta-
tion maximizing decision maker, choosing the action that
would maximize expected utility as if the forecast was cor-
rect is the optimal policy amongst all policies mapping
forecasts to actions. Formally, if f is calibrated, then
applying BR,(f(z)) = argmaxqes Eyos(olu(a,y)]
achieves higher expected utility than any other policy map-
ping forecasts to actions. In this sense, calibration is the
right language for communicating uncertainty to expecta-
tion maximizing—i.e. risk neutral—agents, and the right
rule for such agents to ingest calibrated forecasts is to act as
if they are correct specifications of the label distribution.

In contrast, we seek the right interface between predictions
and actions for risk-averse agents. Let a(-) : X — A be an
action policy. We call v(-) : X — R a utility certificate if it
satisfies the following safety guarantee:

Priu(a(X),Y) > v(X)] = 1 - a. ()

In words, with probability at least 1 — «, the utility of an
agent following the policy a(z) is guaranteed to be at least
v(z). Naturally, we aim to maximize the average value of
the utility certificate v subject to satisfying the requirement
in (1) —i.e., as the risk-averse agent, we seek to maximize
the average quantile of their utility, commonly referred to
as the value at risk in the financial risk literature (see Sec-
tion 2 for details on the problem formulation). This objec-
tive yields the optimal balance between safety and utility,
achieved by finding the pair (a, ) that satisfies the safety
constraint while maximizing the average utility certificate.

In practice, however, the true probability distribution that
connects the actions to their utility values is unknown. In-
stead, the decision maker must rely on (uncertain) predic-

tions to best balance the trade-off between safety and utility.
The core challenge in this regard is to develop the right
notion of uncertainty quantification for the predictions and
optimal action policies based on such uncertainty measures.

We show that prediction sets are the right medium for com-
municating uncertainty to risk-averse decision makers who
seek high-probability guarantees on their realized utility,
i.e., the quantiles of their utility distribution as formulated
in (1). Specifically, we prove that optimizing action policies
to maximize utility while satisfying (1) is fundamentally
equivalent to designing prediction sets optimally, followed
by a simple max-min decision rule. This establishes pre-
diction sets as a sufficient statistic for safe action policies,
encapsulating all necessary information for risk-averse deci-
sion making. We then derive an explicit formulation for the
optimal prediction sets, which serves as the foundation for
a finite-sample algorithm providing distribution-free safety
guarantees. Put together, these results characterize the opti-
mal interface between predictions and actions for risk-averse
decision making as depicted in Figure 1. In more detail:

1. Max-min decision rule. When given prediction sets
C(z) with only a marginal coverage guarantee, risk-
averse decision makers should choose their action by
maximizing worst-case utility over all labels y € C(z).
We prove this max-min policy is minimax optimal over
all data distributions satisfying the marginal coverage
guarantee (Proposition 2.2).

2. Prediction-set equivalence. The optimal pair of action
policy and utility certificate can be obtained by apply-
ing the max-min decision rule to a suitably designed
prediction set with marginal coverage (Theorem 2.3).
This establishes that prediction sets are a sufficient
statistic for safe decision making.

3. Optimal design of prediction sets. We formulate
Risk Averse Conformal Prediction Optimization (Sec-
tion 2.2) to find prediction sets that maximize the target
utility quantile under the max-min policy. Using dual-
ity theory, we derive an explicit, one-dimensional char-
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acterization of the optimal sets (Theorem 3.2), which
underpins our finite-sample construction.

4. Finite-sample algorithm. We propose Risk-Averse
Calibration (RAC) (Section 4), which can exploit any
black-box predictive model to derive action policies
and utility certificates while providing a distribution-
free safety guarantee (1). This guarantee holds for any
given utility function.

5. Experiments. In Section 5, we compare RAC with
several conformal-prediction methods (Cortes-Gomez
et al., 2024; Romano et al., 2020; Sadinle et al., 2019)
and best response baselines. Across multiple tasks,
such as medical diagnosis, RAC achieves a superior
trade-off between safety and utility, delivering higher
utility at each user-specified risk threshold.

1.1. Related Work

Conformal prediction (CP), introduced by Vovk et al. (2005),
provides a flexible framework for constructing prediction
sets with finite-sample guarantees (Lei et al., 2018; Shafer
and Vovk, 2008). Recent research has explored adapting
CP to various decision-making problems. Here, we briefly
discuss the most relevant works, and provide a thorough
discussion in the Appendix A.

Risk Control. A growing line of research extends CP be-
yond coverage constraints to control more general risk mea-
sures (Lindemann et al., 2023; Angelopoulos et al., 2022;
2021; Cortes-Gomez et al., 2024; Lekeufack et al., 2024).
Angelopoulos et al. (2022) propose conformal risk control
for risk measures over prediction sets, and Cortes-Gomez
et al. (2024) extend this by constructing sets that satisfy
coverage while achieving low risk. However, they do not
explicitly discuss which actions their sets should inform or
how to design these sets to best serve the decision maker.
Lindemann et al. (2023) apply conformal prediction to safe
planning, and Lekeufack et al. (2024) focus on decisions
parameterized by a single scalar, calibrated to control risk.
However, they restrict their action policy to a predefined
low-dimensional family, leaving open the question of how
to jointly optimize over policy design and uncertainty quan-
tification for risk-averse utility.

In this paper, we fill this gap by addressing three core ques-
tions for a risk-averse decision maker: (1) What is the
correct notion of uncertainty quantification? We prove
that prediction sets are optimal for high-stakes decisions.
(2) How can we design these optimal sets? We provide an ex-
act population-level characterization and a distribution-free,
finite-sample construction. (3) What is the optimal policy
given these sets? We show that a simple max—min rule is
optimal for risk-averse utility. In Section 5, we implement
the most recent approach in this direction, Cortes-Gomez
et al. (2024) and demonstrate that our framework yields

significantly more effective action policies.

Risk Aversion in Economics. Decision-making under
risk aversion is fundamental in economics, beginning with
Bernoulli’s expected utility theory (Bernoulli, 1954) and
formalized by Von Neumann and Morgenstern’s axiomatic
model (von Neumann and Morgenstern, 1944). Pratt (Pratt,
1964) and Arrow (Arrow, 1965) introduced precise mea-
sures of risk aversion (Arrow—Pratt coefficients), while
Hadar and Russell (Hadar and Russell, 1969) and Hanoch
and Levy (Hanoch and Levy, 1969) developed stochastic
dominance criteria. Rothschild and Stiglitz (Rothschild
and Stiglitz, 1970) further refined risk comparison through
mean-preserving spreads. Recent extensions have addressed
robust criteria such as maximin and minimax-regret under
ambiguity (Manski, 2000; 2004; Manski and Tetenov, 2007;
Manski, 2011) (see also the recent survey (Royset, 2024)).
Unlike these classical frameworks, our approach empha-
sizes data-driven learning and distribution-free uncertainty
quantification, providing risk-averse guarantees applicable
to any black-box pretrained model.

Domain-Specific CP Methodologies. Decision making
with CP has also been explored in specific domains such
as robust optimization (Patel et al., 2024b; Johnstone and
Cox, 2021; Yeh et al., 2024), medical tasks (Banerji et al.,
2023; Vazquez and Facelli, 2022), power and energy sys-
tems (Renkema et al., 2024), formal verification (Linde-
mann et al., 2024), and chance-constrained optimization
(Zhao et al., 2024). While our framework could potentially
be extended to these settings, each may involve additional
domain-specific challenges beyond the scope of this work.
Additionally, recent works also explored the application of
CP sets in decision making in the context of counterfactual
inference (Lei and Candes, 2021; Yin et al., 2024; Jin et al.,
2023). We, however, focus on risk averse decision making
using prediction sets. In particular, we show that prediction
sets are a sufficient statistic for risk averse agents that aim
to optimize their value at risk.

2. The Preliminaries of Risk-Averse Decision
Making

In this section, we will formalize the central objective of a
risk averse decision maker. Recall that in our stetting, upon
observing « € X, the decision maker will have to take an
action a € A. The decision maker does not observe the true
label y, but its utility will depend on both the action a and
label y, which is captured by a given utility function w.

We focus on risk-averse decision making, where the goal is
to choose actions that ensure a sufficiently high utility with
high probability over the randomness of the label. That is,
risk aversion prioritizes minimizing the likelihood of low-
utility outcomes, even at the cost of overlooking higher but
uncertain utilities. Formally, given a risk tolerance thresh-
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old o, a decision maker facing x € X assigns each action
a € Aavalue: v,(a;x) := quantile_[u(a,Y) | X = z],
where Y ~ p(y | ). This standard risk measure, known in
financial risk literature as Value at Risk (VaR) (Duffie and
Pan, 1997), represents the largest value such that, if action a
is taken, the utility is at least v, (a; ) with probability 1 — .
Thus, the risk-averse decision maker selects the action max-
imizing v, (a; x), ensuring the highest guaranteed utility.

Vo) = max Vo (a; ) (2)

:= max quantile_, [u(a,Y) | X =z], VredX.

acA

The above risk-averse utility should be contrasted with the
best expected utility max, E[u(a,Y)|X = x]. The latter
leads to actions that maximize the average utility whereas
the former aims to maximize the worst-case utility that can
happen with probability 1 — «. Hence the former will be
more risk averse at the cost of becoming more conserva-
tive. It is important to mention that the economic literature
extensively explores various other notions of risk aversion,
such as Conditional Value-at-Risk (CVaR) (see e.g. (Royset,
2024)). However, here we only focus on the aforementioned
risk measure, and the exploration of these alternative risk
notions remains beyond the scope of this work.

Marginal Version. The quantity in (2) is a point-wise or
conditional quantity; i.e. to find the best action according to
(2) the decision maker requires access to the conditional dis-
tribution p(y|z). In practice, such distributions are unknown,
and guarantees of the form (2) are often intractable when
only a finite sample of the distribution is available. An anal-
ogous situation arises in conformal prediction (CP), where
obtaining fully-conditional coverage guarantees is known to
be impossible from a finite sample of data. Consequently,
conformal prediction focuses on relaxed, i.e. marginal (or
“eroup conditional”, which still marginalize over part of
the distribution (Bastani et al., 2022; Jung et al., 2023))
coverage guarantees which are statistically tractable.

By analogy, we will now introduce the marginal version of
(2). First we rewrite the objective. For a given x € X, the
value v, () in (2) can be equivalently written as follows

Maximize v
a€EA,VER

subjectto  Prlu(a,Y)>v|X =2]>1-a.

Let us examine the constraint in the above optimization
more carefully. We are looking for action-value pairs (a, v/)
such that we are guaranteed with probability at least 1 — «
that, when taking action a, the resulting utility is at least v.
Of course, to maximize utility, we should maximize over the
choice of the action a and the value v which results in the
above optimization. Now, the risk-averse constraint in the
above optimization has the following marginal counterpart:

Prfu(a(X),Y) > (X)] > 1 - 0, 3)

where the function a(-) : X — A is a decision-policy that'
maps features to actions such that it guarantees average util-
ity according to the function v(-) : X — R with probability
at least 1 — «, marginalized over X. Now, rather than opti-
mizing over a single value for a and v for each x separately,
we jointly optimize over policies a(-) and value functions
v(+)* which map X’ to actions and values respectively. This
results in the following marginal version of the decision
maker’s optimization problem:

Risk Averse Decision Policy Optimization
(RA-DPO):

megim(i%e Ex [v(X)],

subjectto  Pr[u(a(X),Y) > v(X)] >1—a.

Remark 2.1. While our primary focus is on the marginal
formulation of risk-averse optimization, one can also con-
sider the more advanced setting of group-conditional valid-
ity (Jung et al., 2023; Gibbs et al., 2023). Specifically, for
arbitrary groups g1, . .., 9m C X, the marginal constraint
in RA-DPO generalizes to: Pr [u(a(X),Y) > v(X) | X €
9i| > 1—a, Vi € [m]. Such constraints enable finer control
over risk across subpopulations—critical in applications re-
quiring group-specific guarantees. We leave the exploration
of this objective to future works and believe our findings
provide a principled first step toward that direction.

2.1. A Prediction Set Perspective

Recall that in our setting the (feature, label) pair is gener-
ated according to a distribution. The decision maker only
observes the feature x based on which it will choose its
action a. However, the realized utility will depend on both
the action a and the label y. The decision maker does not
observe the label, but we assume that it has access to a
predictor that provides predictions about the label y given
the input feature . More specifically, we assume that the
predictor will provide prediction sets of the form C'(z) C Y,
r € X, that are guaranteed to contain the true label with
high probability. We assume that the prediction sets satisfy
the marginal coverage guarantee, i.e.,

(X%NP[Y €eCX)z1-a. 4)
Given this framework, two immediate questions arise: (i)
Assuming the only information that the decision maker
has about the true label is through the prediction sets, how
should it choose its actions to maximize (risk-averse) util-
ity? (ii) How should the prediction sets be designed to not

'In this paper, we focus on deterministic action policies.

“Here, note that since v(x) is a utility function, its value can
not be larger than the maximum achievable utility; i.e. v(z) <
Umax ‘= INaX, Maxy u(a,y) forallx € X.
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only be marginally valid according to (4) but also maximize
the utility achieved by the decision maker?

We will proceed with answering question (i) now, and will
provide an answer to question (ii) in the subsequent sections.
Assuming that the decision maker can only take actions
based on the prediction sets —i.e. it has no other information
about the label distributions - then its optimal decision rule
takes a simple and natural form. It will have to play the
action a that maximizes their utility u(a,y) in the worst
case over labels y € C(z). We denote this optimal risk-
averse (RA) decision rule by ara : 2Y — A, and the
corresponding utility certificate by vga : 2¥ — R:

ara (C(x)) = arg max min u(a,y), (5)
vra (C(2)) = mex min u(ay). (6)

We will show that this decision rule is minimax optimal
over the set of all distributions that are consistent with the
marginal guarantee (4). Assume that the decision maker
is given access to a set function C' : X — {2Y}. Let us
also define (2 as the set of all the data distributions that
are consistent with the marginal guarantee; i.e. the set of
all distributions P over (X, V) such that, Pr(x y).p[Y €
C(X)] > 1—a.Letn(-) : 2¥ — Abeapolicy that takes as
input the prediction set C'(x) and outputs an action. Aligned
with RA-DPO, the value of policy 7 with respect to a joint
distribution p(z, y) can then be defined as:

v¥(m,p) = maxi(rglize Ex ~p(a) [Z/(X)},

subject to Pr

XY ~p(z,y) [u(r(C(X)),Y) 2 v(X)] 21 -a.

We are now interested in the policy that is minimax optimal
meaning that it can perform well with respect to the worst
case distribution in €2. That is to say we want to find the
policy 7* that is the answer to,

Maximize Minimize

i nim v*(m,p). @)

Proposition 2.2. Assume o < 0.5 and let 7 (z) be the
optimal solution to (7). Then we have,

*(xz) = argmax min u(a,y). 8
m(x) gmax min (a,y) ®

To summarize, Proposition 2.2 states when the risk averse
decision maker decides based on a prediction set C, that con-
tains the actual label with high probability, there is a simple,
yet minimax optimal policy, ara (C(z)) that guarantees
the minimum utility of vga (C(x)) with high probability.
We now focus on how to design prediction sets that would
be the most useful for the decision maker among all the
prediction sets that provide valid marginal guarantee.

2.2. An Equivalent Formulation via Prediction Sets

In the previous section we argued that, when deciding based
on prediction sets, the (minimax) optimal policy aga and
its associated value vg 4 are given in (5). Hence, assuming
that the decision maker is playing ara, the prediction sets
C'(z) should be designed to maximize the resulting utility
of the decision maker while ensuring marginal coverage;
Le., the following optimization:

Risk Averse Conformal Prediction Optimization
(RA-CPO):

Maximize E C(X))|:==E i
a)él(r.r)uze X[I/RA( ( ))] X{gleajcyergl&)u(a,y)

subjectto  PrlY e C(X)]|>1—a.

One might expect that the result of RA-CPO, i.e. optimiz-
ing the utility using prediction sets, would lead to a lower
utility compared to the original optimization RA-DPO. This
is because: (i) The policy given in (5) is a specific policy
designed to be valid even for the worst-case distribution for
which the prediction sets are marginally valid (see Proposi-
tion 2.2). Hence, this policy could be overly conservative;
(i1) In RA-DPO the optimal action and value functions are
obtained assuming full information about the data distri-
bution, whereas in RA-CPO we require that information
must be filtered through a (properly designed) prediction
set representation. One might expect a-priori that passing
from the actual distribution to a lossy prediction set repre-
sentation would discard information that is critical to finding
the optimal policy. However, the following theorem shows,
perhaps surprisingly, that this is not the case; the optimal
action policy for any distribution can be represented as a
max-min rule over a prediction set.

Theorem 2.3. RA-DPO and RA-CPO are equivalent. In
other words, from any optimal solution of RA-DPO, de-
noted by (a*(x),v*(z)), we can construct an optimal
solution C*(z) to RA-CPO with the same utility, ie.,
Ex [VRA (C*(X))} = Ex [v*(X)]. Also, from any opti-
mal solution of RA-CPO we can construct an optimal solu-
tion for RA-DPO with the same utility.

Implications. Prediction sets are a fundamental object in
risk averse decision making. In particular, the optimal strat-
egy of a risk averse decision maker can be formulated as
playing a max min strategy over a well-designed prediction
set. To fully characterize such optimal policies, the first step
is to derive the optimal solution to RA-CPO.

3. The Optimal Prediction Sets

We characterize the optimal solution (i.e., prediction sets)
for RA-CPO given in (2.2) in terms of the conditional distri-
bution p(y | ). We begin by introducing the fundamental
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Figure 2. Left: Ilustration of how the functions @ and a are com-
puted for a given z € X' and ¢ € [0, 1]. Here we have three actions
A = {a1, a2, a3} and four labels Y = {y1, y2,ys,ya}. We also
let P; := p(y;|z). For each of the actions a;, the value ug, is
the (1 — t)-quantile of u(a;,Y"). The value 8(z, t) corresponds
to the maximum of these quantiles among the actions, and a(x, t)
corresponds to the maximizing action. Right: Illustration of how
the function g(z, ) is obtained from 0(z, t) for a given .

notions that relate optimal utility to coverage. We define the
functions @ : X x [0,1] = Randa : X x [0,1] — Aas,

O(x,t) = max quantile, _; [u(a,Y) | X =z, ©)

a(x,t) = arg meaj(quantilel_t [u(a,Y) | X ==z]. (10)

In words, given a feature x € X’ and a probability coverage
value t € [0, 1], O(x,t) is computed as follows (see also
Figure 2): For each action a, we first find the (1—t)-quantile
of the random variable u(a,Y) with Y being distributed
according to p(y|z). This quantile value is the largest utility
achievable with probability at least £ when we take action
a. By maximizing such (1 — t)-quantiles over the choice
of the action a we obtain O(z,t). In words, for x € X,
the value 0(x, t) represents the optimal (risk-averse) utility
achievable under a conditional coverage assignment ¢, and
the maximizing action is denoted by a(z, t).

Let us now explain how the function (z, t) plays a role in
finding an optimal solution for RA-CPO. Fix an instance z,
assume that we would like to assign conditional coverage
probability ¢ to z. For the specific instance x, we would like
to construct a prediction set C'(x) that with coverage at least
t,ie. Pr(Y € C(x) | X = x) > t, where the probability
is over the conditional distribution p(y|z). We ask: How
should C'(z) be designed to maximize the objective of RA-
CPO? The following proposition provides the answer.

Proposition 3.1. Fix an instance x € X and a coverage
value t € [0,1). Then, among all the sets C C Y that

have coverage at least t, i.e. Pr(Y € C(z)|X = x) > t,
the following set has the largest risk-averse utility value
VvRA(C) = maxge 4 mingec u(a, y):

C(z,t) = {y €Y ula(z,t),y) > B(I,t)}, (11)

Further, we have vy (C(z,t)) = 0(x,t).

The optimal sets for RA-CPO (2.2) can now be obtained
based on the following re-parametrization in terms of the
coverage probabilities that we assign to each x € X. In
order to satisfy the marginal constraint of RA-CPO, we will
need to assign to each x, a coverage value ¢(x) such that
Ex[t(X)] > 1 — a. From the above proposition, if an
instance x is assigned with ¢ units of (probability) coverage,
then it can add the maximum utility amount of 8(z,t) to
the objective and its corresponding prediction set, which is
optimal given ¢ units of coverage assigned to z, is given in
(11). Hence, to find the optimal prediction sets we should
find the assignment ¢(x) which optimally distributes the
(1 — ) units of probability over the feature space X, such
that the expected utility is optimized. This step is captured
by the following equivalent reformulation of RA-CPO:

maximize
£:X—[0,1]

subject to:  Ex [t(X)] > 1—a.

Ex [0(X,1(X))] -

Once the optimal solution t*(z) to the above re-
parametrization of RA-CPO is found, then the optimal pol-
icy/actions, denoted by a*(x) = a(x,t*(x)), are derived
according to (9), and the optimal prediction set is given by:

C*(z) = {y eY: ula(x),y) > H(m,t*(x))}. (13)

Let us summarize what we have done so far: We proved that
RA-DPO (2) and RA-CPO (2.2) are equivalent. Then, to
solve the RA-CPO we used a reparametrization as in (12),
which we will now solve.

Using tools from duality theory, we can show that the op-
timization problem (12) admits a solution with a simple
“one-dimensional” structure in terms of scalar parameter
B € R and an assignment function g : X x R — [0,1]
defined as *

g(z,8) = arg Sgl[gﬁ]{e(a 5) + Ps}. (14)

An illustration of the function g(x, 3) is provided in Fig-
ure 2. One can observe that g(z,-) is connected to the
convex-conjugate transform of the function 6(z, -).

3For simplicity, we assume in this section that the maximizer
of O(x, s) + Bs is unique with probability 1.
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Theorem 3.2. Assume that the marginal distribution of X
is continuous. Then, optimal solution of (12) has the form

t*(z) = g(x,8")

for avalue B* € R. Consequently, the optimal prediction
sets for RA-CPO are obtained using t*(x) from (13). Fur-
ther, the value of B* is a solution to the following equation
in terms of the scalar 8: Ex[g(X,B)] =1 — «

The main implication of the above theorem is that it provides
a simple characterization of the optimal sets given access
to the data distribution: (i) Find the scalar 5* that satisfies
Ex[g(X,8*)] = 1 — «; (ii) For each € X compute
t*(z) := g(x, 8*) from (14); (iii) The optimal prediction
set for 2z, C*(z), is then given by (13).

The scalar characterization via 3 is particularly useful when
only approximate conditional probabilities are available. By
substituting p(y | =) with an approximation in all defini-
tions, we can still apply Theorem 3.2 to find a (3 that ensures
valid coverage for the corresponding prediction sets. This
simple scalar calibration then yields prediction sets whose
risk-averse utility are improved (and eventually becomes op-
timal) as the quality of the estimated probabilities improves.

4. The Main Algorithm: Risk Averse
Calibration (RAC)

In Section 3, we derived the structure of the optimal predic-
tion sets for the RA-CPO problem. These sets are defined by
the functions 6(x, t) and a(z,t) given in (9), which funda-
mentally relate coverage to utility and actions, as well as the
assignment function g(x, ) introduced in (14). These quan-
tities are defined based on the true conditional distribution
which is often unknown in practice.

In this section, we consider the finite-sample setting. We
assume access to calibration samples {(X;,Y;)}" ; and
a predictive model f : X — Ay, which assigns a |)|-
dimensional probability vector to each x € X. The output
[z represents approximate label probabilities, such as those
from a pre-trained model’s softmax layer. We denote by
f«(y) the probability assigned to label y for input x.

Using the model f, we will estimate the functions 6, a,
and g, defined in (9) and (14), by substituting the true con-
ditional probabilities with their estimated counterparts ob-
tained via f. Concretely,

0(z,t) = max quantile, [u(a,Y) | Y ~ fa], (15)
a€c
a(z,t) = arg maj(quantilel_t[u(a,Y) |Y ~ f2]. (16)
ac

and
gz, B) = arg maX] {é(as, s) + ﬂs} . (17)

s€[0,1

Algorithm 1 Risk Averse Calibration (RAC)
Input: Miscoverage level «, calibration samples
{(X;,Y;)}, test covariate X, 1.
For each y € ): solve

/3 = arg min /3
Y gﬁE]R
n

s.t. 1 (Z]—[Yi e C(X:; B)]

n+1 =

1l CCi0]) 21—
Output: Compute

Crac(Xnt1) ={yeVlye C(Xn+1§/éy)}-

From the result of Theorem 3.2 we know that the optimal
prediction sets admit a “one-dimensional” structure in terms
of the scalar parameter 8 € R, and the optimal conditional
coverage assignment is derived using the function g(z, 3).
Hence, to simplify notation, we analogously define

0(x.0) = 8z, §(x.)), alz,B) = afx, §(x.5)).
Following (13), the prediction sets take the form

Oas B) = {y eV ulale, f).y) > é<x,ﬁ>}.

We can now present our main algorithm.

Theorem 4.1. Assuming that the calibration data
{(X:, Y)Yy and (X p+1, Yn41) are exchangeable, we have

Pr [Yn-',-l IS ORAC(Xn-i-l)] >1—a.

Put it differently, Theorem 4.1 states that the prediction
sets constructed by RAC have the so-called property of
distribution-free coverage guarantee. Recalling the defini-
tions (5), we can now state the following corollary.

Corollary 4.2. Assuming that the calibration data
{(X:,Y:)} and (X, 11, Yay1) are exchangeable, we have

Pr [u(ara (Crac(Xn41)) s Ynt1) = vra(Crac(Xni1))]
>1—a.

Putting the pieces together, Corollary 4.2 ensures that a
simple max-min decision policy over RAC-constructed pre-
diction sets provides a pair of action policy and utility certifi-
cate, namely aga (Crac(Xtest)) and vra (Crac(Xiest))s
providing a distribution free safety guarantee according to
(1). Moreover, Theorem 3.2 highlights RAC’s practical rele-
vance in terms of exploiting the predictive model. Specifi-
cally, RAC’s utility performance depends on the quality of
the predictive model f: if f closely estimates the true con-
ditional probabilities, then the model-based definitions in
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Figure 3. Results from two experiments. (a) Average realized max-min value as a function of «. (b) Fraction of wrong critical decisions:
in medical diagnosis, severe omission of appropriate care (e.g., failing to act on pneumonia or COVID-19 cases); in MovieLens, the
percentage of movies rated 1 or 2 that were incorrectly recommended. (c) Average realized utility. (d) Realized miscoverage.

(15) and (17) approximate their true counterparts in (9) and
(14), ensuring that RAC-informed decisions align closely
with the optimal ones, as guaranteed by Theorem 3.2.

5. Experiments

In this section, given a pre-trained model which assigns
probability f,(y) to input-label pair (x,y), we compare
RAC with two groups of baselines:

Calibration + Best-Response. We calibrate the model
on the calibration data using a strengthened version of
decision calibration (Zhao et al., 2021), specifically the
variant from (Noarov et al., 2023), which provides swap
regret bounds. We then apply the best-response policy:
best-response(z) = argmaxqed By, () [u(a,y)].
While this method may achieve higher average utility, it
fully trusts the model and is prone to critical errors.

Conformal Prediction + Max-Min. We construct (1 —
«)-valid prediction sets using split conformal prediction
with three different scoring rules. The decision policy then
applies the max-min rule from Section 2: aga(C(z)) =
arg max,e4 Mingec(z) u(a,y), which we proved is the
optimal strategy when deciding based on prediction sets:

* score-1 (Sadinle et al., 2019): 1 — f,(y),
X fa)

Yy fu(y)> fu(y)

¢ score-2 (Romano et al., 2020):

* score-3 (Cortes-Gomez et al., 2024): a greedy scoring
rule tailored to the max-min policy.

By varying o, we can control the degree of conservativeness,

trading off average utility against the avoidance of catas-
trophic errors. We compare in terms of safety and utility
using the following metrics: (a) Average realized max-min
value: The mean of the worst-case utility across the pre-
diction sets (i.e., the average of vga in (5)). (b) Fraction
of critical mistakes: For samples with a critical ground-
truth label, we report the fraction of cases in which each
method chooses the worst action. (¢) Average realized util-
ity: The empirical mean of the realized utilities across all
test samples. (d) Realized miscoverage: The fraction of test
samples for which the true label is not in the prediction set.

5.1. Medical Diagnosis

In this experiment, we explore decision making in medi-
cal diagnosis and treatment as a risk-sensitive application.
We use the COVID-19 Radiography Database (Chowdhury
et al., 2020; Rahman et al., 2021), containing chest X-ray
images of four classes: Normal, Pneumonia, COVID-19,
and Lung Opacity. The data are randomly split into training
(70%), calibration (10%), and test (20%) sets. We then
fine-tune an Inception_v3 model (Szegedy et al., 2015;
2016) (pretrained by google on ImageNet) by retraining the
higher layers, while preserving the early-layer features.

To capture clinical priorities, we employ the utility matrix
in Table 1, which maps each true condition (row) to a set
of actions (column). Although we use the specific matrix
below, our setup can accommodate any alternative design.
(Further details on the Al-assisted construction appear in
the Appendix C) All the baselines then will be calibrated to
connect model’s predictions to these four actions.



Decision Theoretic Foundations for Conformal Prediction

True Label No Action Antibiotics Quarantine Testing
Normal 10 2 2 4
Pneumonia 0 10 3 7
COVID-19 0 3 10 8
Lung Opacity 1 4 4 10

Table 1. Utility matrix for the four-class chest X-ray task.

After training, we vary the nominal miscoverage parameter
« during calibration to study its impact on performance. As
shown in Figure 3(a), our method achieves the best trade-
off curve among baselines, providing higher worst-case
utilities for every nominal . Equivalently, it offers stronger
utility certificates at each high-probability threshold. In
Figure 3(c), it also consistently outperforms other prediction
set-based methods in terms of average utility.

While the best-response method attains the highest overall
average utility, Figure 3(b) highlights its susceptibility to
critical mistakes. For example, in COVID-19 cases, best-
response chooses no action over 60% of the time, recom-
mending a wrong treatment on a large fraction of patients
with COVID-19. Our risk-averse policy (RAC) drive this
error rate below 10% (at o = 0.02), incurring only a mod-
est (under 5%) drop in average utility. Finally, Figure 3(d)
confirms that all prediction-set-based baselines achieve their
target miscoverage levels, ensuring the associated high-
probability utility guarantees remain statistically valid. Ad-
ditionally, in Figure 4, we also report the full distribution of
the utility of the actions made by RAC for different values of
alpha. There, it is even more clear that as we increase 1 — «,
RAC avoids the extremely low utility actions at the cost of
missing on some of the highest utility ones, by resorting to
conservative decisions.

The plots reported in this experiment can serve a broader pur-
pose beyond evaluation: they provide a practical interface
for choosing the right level of risk aversion in real-world
deployments. By inspecting trade-offs across different o
values, e.g. by looking at plots similar to Figures 3 and
4, practitioners can tune the system to their needs—for in-
stance, favoring safety over utility in high-stakes settings
like medicine, or vice versa in lower-risk applications.

5.2. Recommender Systems

We next consider a risk-sensitive recommendation scenario
using the MovieLens dataset. Each data point is a user—
movie pair (x = (user features, movie features), y) , where
the label y € {1,2,3,4,5} is the user’s rating. We split
the data into training (80%), calibration (10%), and test
(10%), and train a neural network classifier f (details in the
Appendix) to estimate the probability distribution f, (z).

At test time, the policy must decide whether to recommend
or not recommend a movie. We use the utility function in

Comparison of Utility PDFs

0.7

mmm best-response (Avg utility = 7.68)

06 RAC a = 0.06 (Avg utility = 7.62)

Missing on some of the highest utility
actions as a result of reducing the risks|

N RAC o =0.04 (Avg utility = 7.46)
= RAC a =0.02 (Avg utility = 7.26)

0.4 Resorting to conservative actions .

Probability

Reducing the critical errors

3

Utility

Figure 4. Comparison of the full utility distribution for different
variants of RAC and the best-response method.

Table 2: if a movie with true rating y is recommended, the
utility is y — 3, while not recommending yields 0. We vary

Action 1 2 3

NotRec 0 0O 0 O 0
Rec 2 -1 0 +1 +2

Table 2. Utility matrix for the MovieLens recommendation task.

the nominal miscoverage o during calibration and measure
performance on test data. As shown in Figure 3(a), our
method achieves the best trade-off among baselines, offering
stronger utility certificates (worst-case utility) at all « levels.
Figure 3(c) also shows that our approach outperforms other
CP-based methods in average utility.

Although the best-response method achieves the highest
overall average utility, Figure 3(b) reveals its vulnerability
to “critical mistakes”—frequently recommending movies
rated 1 or 2. Such failures can undermine user trust and harm
companies policy in keeping their customers. In contrast,
RAC (a = 0.05) cuts these critical errors by 75%, while
incurring only a modest (15%) reduction in average utility.

6. Discussion and Future Work

In this paper, we established the decision-theoretic founda-
tions of conformal prediction, showing that valid prediction
sets act as sufficient statistics for risk-averse agents opti-
mizing their value at risk. We developed an algorithmic
interface linking predictions from any black-box model to
actions with marginal, distribution-free safety guarantees.

Although our focus has been primarily on marginal safety
guarantees, we acknowledge the practical importance of
stronger conditional guarantees. These include group-
conditional (based on covariate characteristics), label-
conditional (based on true labels), and action-conditional
safety (based on chosen actions). Extending our results
systematically to these more nuanced scenarios presents
promising directions for future research.
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A. Extended related works

The foundational idea of prediction sets can be traced back to early studies by Wilks (1941); Wald (1943); Scheffe and
Tukey (1945); Tukey (1947). The initial concepts of conformal prediction (CP) were introduced in Saunders et al. (1999);
Vovk et al. (1999; 2005). With the advancement of machine learning, conformal prediction has become a widely adopted
framework for constructing prediction sets (Vovk, 2013; Papadopoulos et al., 2002; Lei et al., 2018; Romano et al., 2020;
2019; Park et al., 2022; Angelopoulos et al., 2020). There has been a growing body of work aiming to adapt conformal
prediction methods for a range of decision-making problems. In the following, we will discuss the ones relevant to the
present work.

Risk Control. A growing line of research extends CP beyond coverage constraints to control more general risk measures
(Lindemann et al., 2023; Angelopoulos et al., 2022; 2021; Cortes-Gomez et al., 2024; Lekeufack et al., 2024; Zecchin
and Simeone, 2024a; Blot et al., 2024; Zecchin and Simeone, 2024b). In particular, Angelopoulos et al. (2022) propose
conformal risk control for monotone risk measures over prediction sets, and Cortes-Gomez et al. (2024) extend this by
constructing sets that satisfy coverage while achieving low risk. However, these works do not explicitly discuss which
actions their sets should inform or how to design these sets to best serve the decision maker. Moreover, Lindemann et al.
(2023) applies conformal prediction to safe planning, and Lekeufack et al. (2024) focuses on decisions parameterized by a
single scalar, calibrated to control risk. However, these works restrict their action policy to a predefined low-dimensional
family, leaving open the question of how to jointly optimize over policy design and uncertainty quantification for risk-averse
utility.

In this paper, we fill this gap by addressing three core questions for a risk-averse decision maker: (1) What is the correct
notion of uncertainty quantification? We prove that prediction sets are optimal for high-stakes decisions. (2) How can
we design these optimal sets? We provide an exact population-level characterization and a distribution-free, finite-sample
construction. (3) What is the optimal policy given these sets? We show that a simple max—min rule is optimal for risk-averse
utility. In Section 5, we implement the most recent approach in this direction (Cortes-Gomez et al., 2024), and demonstrate
that our framework yields significantly more effective action policies.

On top of the fundamental differences we mentioned, there are also technical differences. After proving the equivalence of
the risk-averse objective defined in Section 2 to the prediction set optimization called RA-CPO in Section 2.2, one might
think we can define a risk function of the form [(C) = —max,c4 mingcc(,) u(a,y), and then apply risk controlling
methods to control this risk. However, controlling this risk alone is meaningless, as it is always possible to control the
risk by outputting trivial sets. Hence, the risk should be controlled combined with coverage guarantees. The only risk
controlling framework that additionally allows for a coverage constraint is the work of Cortes-Gomez et al. (2024), which
we compare our performance with in Section 5, and show our superior performance in handling the safety utility trade-off.
Furthermore, the defined loss function [ for a generic utility function u, lacks any (approximate) separability property or
sub-modularity, which are essential for algorithmic development of Cortes-Gomez et al. (2024). We, however, work directly
with the max-min objective and do not rely on any assumptions. For readers familiar with nested conformal prediction
(Gupta et al., 2022), perhaps another way to elaborate on this important technical difference is to look at Section ??, where
in Theorem 3.2, we characterize the optimal prediction sets over the population. It is clear then that the optimal sets do not
necessarily form a nested sequence of sets as we sweep the miscoverage threshold «. This is in contrast to when we want
to find optimal sets corresponding to minimum average prediction set size (or any other separable objective). There, the
optimal characterization is of the form p(y|z) > ¢ (or more generally of the form s(z, y) < ¢ for some score function s),
where ¢ is tuned to satisfy the marginal coverage constraint (Lei et al., 2013; Sadinle et al., 2019; Kiyani et al., 2024b). This
distinction hints to the sub-optimality of the algorithms that rely on monotonicity properties of the risk, e.g. thresholding a
score function, in obtaining the best risk averse action policies and safety guarantee.

Robust Optimization. The max-min policy that we will discuss in Section 2.1 also naturally arises at the intersection of
uncertainty quantification and robust optimization (Patel et al., 2024b; Johnstone and Cox, 2021; Chenreddy and Delage,
2024; Li et al., 2025; Yeh et al., 2024; Cao, 2024; Wang et al., 2023; Lou et al., 2024; Patel et al., 2024a; Elmachtoub
et al., 2023; Lin et al., 2024; Chan et al., 2024; 2023; Chan and Kaw, 2020). In robust optimization, decision-making under
uncertainty is typically formulated as a minimax problem, where an optimal decision is sought against worst-case realizations
within an uncertainty set. Despite a structural resemblance of these works to our framework in that they involve optimization
over an uncertainty set, their scope and objectives have some fundamental differences from ours. We fix any black-box
predictive model and any utility function, and in contrast to existing approaches, we jointly characterize the optimal notions
of uncertainty quantification and action policy. Specifically, we ask: (1) What is the appropriate uncertainty quantification
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for risk-averse decision makers? We answer that prediction sets are optimal for achieving high-probability utility guarantees.
(2) How should these prediction sets be optimally constructed? We provide a distribution-free, finite-sample construction
that characterizes the optimal sets. (3) What is the optimal decision policy given these sets? We prove that the max-min
rule is provably optimal for risk averse agents. In doing so, our Risk-Averse Calibration (RAC) method offers a principled
alternative to uncertainty sets based on heuristic conformity score designs, thereby contributing to the growing intersection
of conformal prediction and robust optimization. Additionally, on a more technical note, in Section ??, we show that the
optimal prediction sets that lead to optimal safe action policies when used in tandem with the max-min rule do not necessarily
take the form of thresholding a score function (i.e., s(z,y) < ¢ for some score function s). There, we characterize an
alternative form that, in fact, captures the optimal prediction sets in the context of risk-averse decision-making. That is to say,
our results hint to a principled alternative to conventional score-based prediction sets in the pipeline of robust optimization
to avoid suboptimality.

Risk Aversion in Economics. Decision-making under risk aversion is a foundational topic in economics, shaped
by seminal contributions. Bernoulli (Bernoulli, 1954) introduced expected utility theory, explaining risk aversion via
diminishing marginal utility. Von Neumann and Morgenstern (von Neumann and Morgenstern, 1944) formalized this
with an axiomatic model of rational choice under uncertainty. Pratt (Pratt, 1964) and Arrow (Arrow, 1965) developed the
Arrow—Pratt coefficients, providing precise measures of risk aversion and distinguishing between increasing and decreasing
risk sensitivity. Hadar and Russell (Hadar and Russell, 1969), along with Hanoch and Levy (Hanoch and Levy, 1969),
introduced stochastic dominance to rank risky alternatives for risk-averse agents. Rothschild and Stiglitz (Rothschild and
Stiglitz, 1970) deepened this framework by defining mean-preserving spreads, a formal notion of increased risk. More recent
extensions introduced robust decision-making criteria, such as maximin and minimax-regret, applicable under ambiguous
or unknown probabilities (Manski, 2000; 2004; Manski and Tetenov, 2007; Manski, 2011). Collectively, these works
established the theoretical underpinnings of risk aversion that continue to influence modern economic theory (for a recent
survey look at (Royset, 2024)). In contrast to these works, our work focuses on data-driven learning and uncertainty
quantification aspects of the risk averse decision making. We develop distribution-free methods capable of leveraging any
black-box pretrained model, accompanied with risk aversion guarantees.

Further Related Work. The potential connection of CP ideas to decision making has also been explored in Vovk and
Bendtsen (2018), from the point of view of conformal predictive distributions. Conformal predictive distributions produce
calibrated distributions rather than prediction sets—see e.g. (Vovk et al., 2017; 2018; 2020). Therefore, they are best to
be compared with calibrated forecasts as the methodologies developed in Vovk and Bendtsen (2018) are also targeting
expectation maximizer—i.e. risk neutral- agents. Additionally, recent works also explored the application of CP sets in
decision making in the context of counterfactual inference (Lei and Candes, 2021; Yin et al., 2024; Jin et al., 2023). We,
however, focus on risk averse decision making using prediction sets. In particular, we show that prediction sets are a
sufficient statistic for risk averse agents that aim to optimize their value at risk.

Alternatively, Bayesian methods for risk-averse decision-making often employ Gaussian Processes (GPs) to optimize
measures like Value-at-Risk and Conditional Value-at-Risk; e.g. look at (Sui et al., 2015; Nguyen et al., 2021; Demirel et al.,
2022; Cakmak et al., 2020; Lin et al., 2022; Baudry et al., 2021; Jia et al., 2024). These approaches rely on accurate Bayesian
posterior distributions, thus implicitly assuming well-specified probabilistic models. Our conformal approach complements
rather than competes with Bayesian methods: our theoretical results (up to Section ??) can be directly employed even in
Bayesian settings. In fact, when Bayesian approximations are reliable, one can take advantage of our optimal prediction
sets derivation in population, and then calibrate the prediction sets with finite sample under Bayesian models, without
employing the finite-sample calibration of Section 4. Alternatively, even when Bayesian assumptions’ precision is uncertain,
one can still start from Bayesian posteriors and further calibrate prediction sets using our approach, ensuring robust safety
guarantees.

Although our primary aim is to develop a general framework to construct prediction sets for high-stakes decision-making,
we note that conformal prediction sets have been explored in a wide range of specific applications and domains of high-stakes
nature. For instance, CP methods have been adapted and used in medical tasks (Banerji et al., 2023), power and energy
systems (Renkema et al., 2024), formal verification and control (Lindemann et al., 2024), chance-constrained optimization
(Zhao et al., 2024), and more generally Sun et al. (2024); Ramalingam et al. (2024); Kiyani et al. (2024a); Straitouri
et al. (2023); Vishwakarma et al. (2024); Kiyani et al. (2024b); van der Laan and Alaa (2024); Noorani et al. (2024). Our
framework could potentially be extended to these domains, yet each may present additional, domain-specific challenges that
lie beyond the scope of this work.
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B. Proofs
B.1. Proof of Proposition 2.2

We prove that the risk-averse decision rule

C = i ,
ara (C()) = argmax ,in u(a,y)

solves the minimax problem in (7).

Part 1: Upper bound for any arbitrary policy. Let7(-) : 2¥ — A be any policy, and let C(-) be a fixed set function
satisfying
Pr [YeCX)] >1-a.
(X,Y)~P
We construct a “worst-case” distribution in €2 for 7.

Pick any = € X for which C(x) # (). Define a distribution p*(z, y) by

. . 1 for some y € arg min,cc ) u(7(C(x)), z),
P(X=x) =1 p(Y=y|X=2x) = . ecto u(m(C(@).2)
0 otherwise.

Under p*, we have Y € C'(X) almost surely (since C'(x) is nonempty and we place all mass on a label in C'(z)). Hence
p* €  because the marginal coverage constraint

Pr YelCX)]=12>1-«
(X,Y)~p*

is satisfied. But under this distribution, the utility of 7 (C'(z)) is forced to be

min u(n(C()).1).

since Y is chosen (with probability 1) to be the worst-case label within C'(z). Thus, for this specific z, no matter how we
choose T, its achievable value is at most ming e () u(m(C(x)),y). Also,

min u(7(C(x)),y) < max min u(a,y),
yeC(zx) ( ( ( )) y) T a€A yeC(x) ( y)

Because x was arbitrary (among those with C(z) # ), repeating the same argument for each such x yields

inf v*(, < inf  max min u(a,y).
PEN (ﬂ— p) Tz C(x)#£D aejl(yEC(ac) ( y)

In other words, any policy 7 cannot achieve a value larger than the above infimum for the inner minimization in (7).

Part 2: Achievability by the max min policy. Next, we show that the policy

m™(C(z)) = arg max min u(a,y)

matches the upper bound from Part 1 and is thus minimax optimal. Consider any p € ().

Define
v(z) := max min u(a,y).
a€A yeC(x)

For those € X such that C(x) is empty put v(z) = max,ec 4 max,ecy u(a,y). We claim that with probability at least
1 — a, the policy ara (C(x)) achieves a utility at least v(z). Indeed, on the event {Y € C(X)} (which has probability at
least 1 — o by assumption), it holds that

u(aRA(C’(X)),Y) > yer%i&)u(aRA(C’(X)),y) = v(X).
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Thus, setting the target utility at each x to v(x) satisfies

(Xﬁ’/ng[u(aRA(C(X)),Y) > V(X)] > 1-a.

By definition of v*(-, -), this implies

v (aRA,p) > Ex-p [V(X)} = Ex~p {mgx yencl‘i&) u(a,y)} > m:érgi)#@ I;leaj(yénci&)u(a,y).

Since p € ) was arbitrary, we have shown

inf v*(agra, > inf  max min wu(a,y).
pEN ( RA p) T z:C(2)#£0 a€A yeC(z) ( Z/)

Comparing with the upper bound in Part 1 establishes that ag 4 attains the best possible (minimax) value. Hence

7(@) = ana(C(x)) = argmax min u(a.y)

solves the minimax problem (7).

B.2. Proof of Theorem 2.3

We give a constructive proof by showing how from each solution of RA-DPO we can construct a feasible solution of
RA-CPO without losing any utility, and vice versa. By applying this to the optimal solutions of both problems, we obtain
the result of the theorem.

(I) From RA-DPO to RA-CPO. Suppose we have an feasible solution (a(-), u()) to the RA-DPO problem. Consider a pair
(a(-),v(-)) suchthata : X — Aand v : X — [0, umax]. Here, we have uy,ax = maz, max, u(a,y), and as mentioned in
Section 2, since v is a utility certificate its value at any « should be less than wu,,x. Since (a, V) is a feasible solution of
RA-DPO, it satisfies the following:

Prxy [u(a(X),Y) > v(X)] >1—«a.

Define a prediction set
C(z) = {y | u(a(z),y) > V(x)} (18)
In words, C(z) is the set of labels y for which the utility u(a(z),y) is at least v(z). By definition, we have
Pr[Y € C(X) | X =z] =Pr[u(a(X),Y) > v(X) | X = z].

As a result, we have

Hence, C/(+) satisfies the marginal coverage constraint of RA-CPO.

Next, we will improve the prediction sets C' to new prediction sets C which satisfy the marginal guarantee but can potentially
have larger value under the objective of RA-CPO. The basic idea is to consider points € X such that C'(z) is empty and
augment an additional element to those empty sets. Recall that we defined umax := max,c 4 maxycy u(a,y). Hence, there
exists at least one (action, label) pair, which we call (@max, Ymax) Such that tmax = U(@max, Ymax)- Now, let us define

Xempty = {z € X : C(z) = 0},
where () denotes the empty set. We now update C(-) to C(-) as follows:
~if 2 € Xempty * C(2) = {Ymax
Sif ¢ Xopry © C(x) = O(x).
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Note that we have for any 2 € X that C(z) C C(z),. Hence, C(-) satisfies the marginal coverage guarantee as C(-) is
marginally valid.

Next, we show that the RA-CPO objective under C/(-) is at least equal to the RA-DPO objective under (a(-),v(-)). Recall
that the RA-CPO objective evaluated at C(-) is

]Ex[max min  u(a,y)|.
a€A yel(X) ( y)

To bound this objective value, we consider two cases based on whether of not x belongs to Aoy pty -

Consider first the case = ¢ Xempty. By definition of C'(z) from (18), we have minycc(,) u(a(z),y) > v(zr). Hence, for
x ¢ Xempty, by noting that C'(z) # (), we have

max min u(a,y) > min u(a(z),y) > v(=).

a€A yeC(z) yeC(x)
Therefore, for # ¢ Xompty, by noting that C(z) = C(z), we have

max min u(a, = max min u(a, > v(x).
a€A yel(z) ( y) acA yeC(x) ( y) ()

Now, let’s consider the other case where & € Xempty. For this case, we not that as C'(2) = {Ymax }, and from the fact that
for any z € X we have v(z) < Umax, We can simply derive

max min u(a,y) = Umax > V().
acA yel(z)

Therefore, putting the two cases above together, we have proven

Ex [max min u(a,y)| > Ex[v(X)]
a€A yel(X)

Hence, we have constructed a feasible solution to RA-CPO, namely C (+), that achieves an objective value for RA-CPO
which is at least as big as the value of RA-DPO achieved by (a(-), v(-)). Thus, starting from an a solution of RA-DPO, we
have constructed a solution to RA-CPO with at least the same objective value.

(IT) From RA-CPO to RA-DPO. Conversely, suppose we have a feasible solution C'(-) to RA-CPO, which is marginally
valid, i.e.

Prly e C(X)] > 1 -«
Define a the action policy a(-) and utility certificate v/(-) as follows:

a(r) := argmax min u(a,y), and v(r) =max min u(a,y).
( ) gaG.A yel(z) ( y) ( ) acA yeC(x) ( y)

It is now easy to see that
Pr[u(a(X),Y) > U(X)] = Pr[Y € C(X)] >1—-a.

Moreover, by definition of v(z), we can easily deduce

Ex[v(X)] =Ex [gleajl( yencl‘l&) u(a,y)].

Thus, from a feasible solution of RA-CPO, we constructed a feasible solution to RA-DPO that attains the same objective
value, proving the equivalence in the other direction.

B.3. Proof of Proposition 3.1
Proof of Proposition 3.1. Fix any instance z € X and a coverage value ¢ € [0, 1]. Recall from (9) that
O(x,t) = glezﬁqquantilel_t[u(a,Y) | X = ;1:], a(z,t) = argrgleaj{quantilel_t[u(a, Y)| X = :z:]
We want to show that among all sets C' with Pr[Y € C' | X = z] > ¢, the set
Cla,t) = {y ey : u(a(z,t),y) > 0(z,t)}

maximizes the risk-averse utility vga (C') = max,ec 4 mingec u(a, y), and the maximum value is 6(z, t).
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Step 1: Any set C' with coverage > ¢ has risk-averse utility at most 6(x,t). Take an arbitrary set C' C ) satisfying
Pr[Y€C|X:x] > t.

Then for any action a € A,

minu(a,y) < quantile, ,[u(a,Y) | X =z].

yeC
(The reason is that with probability at least ¢, Y lies in C, and so the (1 — t)-quantile of u(a,Y") cannot be smaller than the
smallest utility on this event.) Taking the maximum over a yields

: < : _ 1 .
raneajczr!rggu(a,y) < raneaj(quantllelft[u(mY)\X z) 0(x,t)

Hence no set with coverage at least ¢ can achieve risk-averse utility larger than 0(x,t).

Step 2: The set C(z, ) attains coverage ¢ and achieves 0(z,t). Consider C(z,t) = {y : u(a(z,t),y) > 0(z,t)}. By
definition of the (1 — ¢)-quantile, we have

Prlu(a(z,t),Y) > O(z,t) | X =] > ¢,
which implies Pr[Y € C(x,t) | X = x] > t. Moreover, for every y € C(x,t), by construction
U(CL(I’, t)? y) > 0(I7 t)a

SO

' )y) > 0(x,t).
yerrcl}gt)U(a(w ).y) (z,t)

Thus
vra(C(z,t)) = max min u(a,y) > min u(a(z,t),y) > 6(z,t).

a€A yeC(w,t) yeC(w,t)
Combining both steps shows that C'(x, t) is an optimal choice among all sets with coverage at least ¢, and its risk-averse
utility equals 0(z, t). O
B.4. Proof of Theorem 3.2
We start from the reparametrization of RA-CPO given in (12):
maximize Ex [0(X,t(X))]

X —0,1] (Reparametrization of RA-CPO)
subject to: Ex [t(X)] > 1— o

We will further reparametrize this optimization problem and find equivalent relaxations. To do so, let us define
plx,t) =1t < t(z)]. (19)

Also, we will need to consider the derivative of the function 6(x, t) in terms of its second argument ¢. Since the function 6
can be discontinuous, we will have to consider its generalized derivative (i.e. consider delta functions). More precisely, let
6 (z,.) : R — R* where R* is the space of functionals on R, such that 6 (x,.) is the generalized derivative of 0(x,.). In
other words, for any real values a and b,

/b 6 (z,t)dt = 0(z,b) — 0(z, a).

We can just think of @ (z,t) as the derivative %0(9@, t). We can then rewrite the objective of our optimization problem as
1

Bx [0(X.6) = s + Bx | p(X.0)6' (X.0)dt
t=0
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where we used the fact that 6(z, 0) = uy,ax for any z € X by definition and 0(z,t) — 0(x,0) = fot 0'(z,t)dt. Similarly,
we can rewrite the constraint as,

1
Ex [t(X)] = Ex | Pl

Given the above notation and relations, we can write down the following equivalent reparametrization of
(Reparametrization of RA-CPO). The optimization variable here is the function p(x,t) which is a step function according
to (19). We further note that any such step function defined on the unit interval can be equivalently thought of as a
non-increasing function on the unit interval which only takes its value in the set {0, 1}. Hence we arrive at the following
integer program that is an equivalent reparametrization of (Reparametrization of RA-CPO) as well as the RA-CPO.

maximize / / (x,t)p (:c, t)dzdt
p(z,t)€{0,1} t 0
VzEX,te[0,1]
(Integer Program)
subject to: / / plx, t)dxdt > 1 — «
t 0

p(x,t) = non-increasing in ¢

We now consider a relaxation of the above integer program to the following convex program. As we will see later, this
relaxation becomes equivalent to the above integer program as every solution of the relaxed program would correspond to
a solution of the integer program. However, for now, let us focus on the following continuous relaxation whose variable
p(x,t) can take values in the interval [0, 1] (in contrast to the original integer program in which p could take its value only

in the set {0,1}):
1
maximize / / plx, t)p(x)0 (x,t)dxdt
=0

subject to: / / plx, t)dedt > 1 — « (Relaxed Program)
t 0

p(z,t) €[0,1] Vo e X tel0,1]
p(z,t) = non-increasing in ¢

Here, the “optimization variable” p(z, t) belongs to an infinite-dimensional space. Hence, in order to be fully rigorous, we
will need to use the duality theory developed for general linear spaces that are not necessarily finite-dimensional. For a
reader who is less familiar with infinite-dimensional spaces, what appears below is a direct extension of the duality theory
(i.e. writing the Lagrangian) for the usual linear programs in finite-dimensional spaces.

Let F be the set of all measurable function defined on X x [0, 1]. Note that F is a linear space. Let 2 be the set of all the
measurable functions on X’ x [0, 1] which are non-increasing in ¢ and are bounded between 0 and 1; Le.

Q={peFstp: X x][0,1] = [0,1];Vx € X : p(z,t) is non-increasing in ¢} (20)

Note that €2 is a convex set. We can then rewrite the (Relaxed Program) as follows:

1
maximize / / p(x, )p(z)0' (z,t)dzdt

subject to: / / plx,t)dzdt — (1 —a) >0
t 0
p e

Moreover, let us define the functional ' : F — R as
F(p) = / p(a, t)p(x)8' (z,t)dzdy, (1)
X x[0,1]
and also define the functional G : 7 — R as

G(p) = / ple, Op(x)dedt — (1 - o). 22)
X x[0,1]
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Using the above-defined notation, our program becomes:

maximize F'(p)
subject to:  G(p) >0
p €]

Note that the feasibility set of the above program is non-empty, as p(z,t) = 1 — a, for all (z,t) € X x [0, 1], is a feasible
point. We can now use the duality theory of convex programs in vector spaces (See Theorem 1, Section 8.3 of (Luenberger,
1969). Specifically, let OPT be the optimal value achievable in the above linear program. Then, there exists a scalar 5 > 0
such that the following holds:

OPT = sup {F(p) + BG(p)}, (23)
pPEQ

Here, note that /3 is the usual Lagrange multiplier.

By using (21), in order to solve the optimization in (23) we need to solve the following optimization (note that we change
inf to sup by applying a negative sign):

pPEQ

sup {/ p(x)p(z,t) (6'(x,t) + ) d:vdt} +B(1—a).
Ax[0,1]

We denote the optimal solution of the above optimization problem by pj; (2, t). From the above optimization problem, it is
clear that the optimal solution can be determined individually for every z € X'. We will use Lemma B.1, provided below, to
characterize the optimizer of the above optimization. From the lemma, and assuming that, almost surely for every x € X,
the maximizer of 6(z, t) 4+ St is unique over ¢, we obtain:

pi(x,t) = 1{t < t*(x)}, (24)
where

t*(x) = arg max / (0(x,t) + B) dt = arg max_{0(x, s)dt + Bs} = g(z, B).
s€[0,1] Ji—g s€[0,1]

And the value of /3 should then be chosen such that this optimal solution satisfies the coverage constraint.

We finally note that the optimal solution pg(z,t) given in (24) is integer valued. As a result, there is a zero relaxation gap
from the (Integer Program) to the (Relaxed Program).

Lemma B.1. Let 0 : [0,1] — R. Also, let Q be the set of all the integrable functions p : [0,1] — [0, 1] which are
non-decreasing. Consider the following optimization problem:

max /1 o' (t)p(t)dt,
0

pEQ

where 0 denotes the derivative of 0 with respect to t —i.e., (a) — 0(b) = ff 0'(t)dt. Then, the the of solutions of the above
optimization problem consists of functions p* such that

p*(t) € ConvexHull ({1[t <t*]; t'earg m[émi] G(t)}) )
telo,

is a solution to the above optimization problem. As a corollary, if 0 has a unique maximizer t*, then its corresponding
p*(t) = 1[t < t*] is the unique solution of the above optimization problem.

Proof. For every p € ) write using integration by parts:
1 1
/ p(t)0'(t)dt = p(1)6(1) — p(0)6(0) — / p'(t)0(t)dt
0 0
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Let us define 0y := maxe[o,1) 0(t). Since p(t) is a non-increasing function, we have

—/pﬁwma?—%w/dwﬁz%m@@—mm,
0 0

where the step (a) is obtained because —p(¢) is non-negative. As a result, we obtain

QApmamﬁsemAMM—pu»+mnmn—mmmm
= (Bmax — 0(0)) (p(0) — p(1)) + p(1) (B(1) — 6(0)

(b)
S gmax - 9(0)7

where step (b) is obtained since p(0), p(1) € [0,1] and (1) < Opyax.

Now, it it easy to see that if ¢* is such that 0(t*) = 0,,.x then both steps (a), (b) will be equality (instead of an inequality)
for the following function
pr(t) = 1[t < 1.

On the other hand, for step (a) to be tight we must have the following: For every point ¢ such that p’(¢) < 0, we have
6(t) = Omax. This shows that an optimal solution must be in the convex hull defined in the theorem, and hence, the result of
the theorem follows. The uniqueness also follows similarly. O

B.5. Proof of Theorem 4.1
‘We have:

Pr[YVyi1 € Crac(Xns1)] & Pr[Yoiy € C(Xnin; Bv.y)]

(
O(Xn+1; BYn+1)]]

S
S
(:) E|: 1 <Z 1[}/1 c C’(Xi;BYn+l)] —+ 1[)/n+1 S O(Xn+1;BKl+1)]):|
i=1

>1-a. (25)

where, (a) comes form the definition of the prediction set. (b) comes from the fact that
{ (X17 Y17 BYn+1)7 ceey (Xn7 Yn) BY’I’L+1>7 (X’I’L+l7 Yn+17 BYrHrl) }

are exchangeable, which is due to the fact that (i) the exchangeability of the original (n + 1) pairs {(X;,Y;)} U
{(Xn+1,Yn41)}, and (ii) the symmetric way in which Algorithm 1 assigns §, to each y € ). Finally, (c) follows
from the definition of Sy, ,.

C. Utility function for medical experiment

Our results and findings in the medical experiment of section 5.1, can be reproduced with any other reasonable design of
utility function. The goal of that experiment is not to capture a precise characterization of difficulties and consequences
in medical decision making but rather to pinpoint the advantages of a risk averse calibration approach in sensitive tasks
like medical decision making. Of course, in real world scenarios, a more comprehensive approach is needed to define
a principled utility function that captures the interests of all the involving parties. That being said, for the sake of proof
of concept, we designed a utility matrix using the ChatGPT ol model by OpenAl. The following is an Al generated text
justifying the proposed utility matrix.

Clinical Justification of the Utility Matrix
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The utility matrix presented in Table 3 reflects the balance of benefits and harms associated with different medical actions
for each true clinical condition. Each utility value is determined based on standard clinical guidelines and evidence-based
practices, ensuring that the chosen actions optimize patient outcomes while minimizing potential risks.

Normal (No Disease)

* No Action =10
For a patient who is truly healthy, no intervention is optimal as it avoids unnecessary costs, side effects, and patient

anxiety. Unwarranted use of antibiotics or quarantine measures can lead to adverse effects and resource wastage
(NIHCE, 2015).

 Antibiotics = 2
Prescribing antibiotics to a healthy individual can contribute to antimicrobial resistance and cause side effects without
any clinical benefit (CDC, 2022).

¢ Quarantine = 2
Quarantining a healthy person imposes unnecessary social and psychological burdens without providing any medical
advantage (CDC, 2020).

¢ Testing = 4
While testing can confirm the absence of disease, routine testing in healthy individuals is often not cost-effective and
may lead to unnecessary follow-up procedures (of Radiology, 2023).

Pneumonia

* No Action=0
Untreated pneumonia can lead to rapid deterioration and increased mortality, making inaction highly detrimental
(Metlay et al., 2019).

 Antibiotics = 10
Timely administration of appropriate antibiotics is crucial for treating bacterial pneumonia, improving survival rates
and reducing complications (Metlay et al., 2019; WHO, 2021).

¢ Quarantine = 3
While some forms of pneumonia may be contagious, standard infection control measures are generally more beneficial
than full quarantine, especially when bacterial pneumonia is suspected (Metlay et al., 2019).

¢ Testing =7
Diagnostic tests such as chest imaging and sputum cultures are essential for confirming pneumonia and guiding
antibiotic therapy (Metlay et al., 2019).

COVID-19

* No Action =0
Ignoring a COVID-19 infection can result in severe disease progression and widespread transmission, making inaction
extremely harmful (CDC, 2020).

* Antibiotics =3
Since COVID-19 is viral, antibiotics are generally only useful if there is a suspected secondary bacterial infection
(WHO, 2020).

¢ Quarantine = 10
Quarantining individuals with COVID-19 is essential for controlling the spread of the virus and protecting public health
(CDC, 2020).

e Testing =8
Confirmatory testing is vital for diagnosing COVID-19 and guiding appropriate interventions, including quarantine and
specific therapies (CDC, 2020).
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True Label No Action Antibiotics Quarantine Testing

Normal 10 2 2 4
Pneumonia 0 10 3 7
COVID-19 0 3 10 8
Lung Opacity 1 4 4 10

Table 3. Utility matrix for the four-class chest X-ray task.

Lung Opacity

* No Action=1
Ignoring lung opacities can lead to missed diagnoses of serious conditions such as malignancies or tuberculosis, posing
significant risks (Rubin et al., 2020).

* Antibiotics = 4
Empirical antibiotic therapy may be beneficial if an infectious etiology is suspected, but it is not universally appropriate
and may lead to resistance (CDC, 2022; Metlay et al., 2019).

¢ Quarantine = 4

Quarantine may be necessary if the underlying cause of the opacity is contagious, but many causes do not require
isolation (CDC, 2022).

¢ Testing = 10
Comprehensive diagnostic evaluation is crucial for determining the exact cause of lung opacities, guiding targeted
treatment and preventing misdiagnosis (Rubin et al., 2020).

Key Takeaways

1. Benefit vs. Harm: The utility scores balance the potential benefits of medical interventions against their associated
risks and costs.

2. Disease-Specific Standard of Care: Treatments are aligned with established clinical guidelines specific to each
condition.

3. Avoidance of Unnecessary Interventions: The matrix discourages overtreatment in healthy individuals to prevent
adverse effects and resource wastage.

Overall, the utility matrix aligns with standard clinical guidelines by advocating for appropriate treatment of infections,
isolation of contagious diseases, thorough diagnostic evaluations for ambiguous findings, and avoiding unnecessary
interventions in healthy patients.
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