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Abstract

Low-Rank Adaptation (LoRA) has emerged as an effective technique for reducing1

memory overhead in fine-tuning large language models. However, it often suffers2

from sub-optimal performance compared with full fine-tuning since the update is3

constrained in the low-rank space. Recent variants such as LoRA-Pro attempt to4

mitigate this by adjusting the gradients of the low-rank matrices to approximate the5

full gradient. However, LoRA-Pro’s solution is not unique, and different solutions6

can lead to significantly varying performance in ablation studies. Besides, to in-7

corporate momentum or adaptive optimization design, approaches like LoRA-Pro8

must first compute the equivalent gradient, causing a higher memory cost close to9

full fine-tuning. A key challenge remains in integrating momentum properly into10

the low-rank space with lower memory cost. In this work, we propose AltLoRA,11

an alternating projection method that avoids the difficulties in gradient approx-12

imation brought by the joint update design, meanwhile integrating momentum13

without higher memory complexity. Our theoretical analysis provides convergence14

guarantees and further shows that AltLoRA enables stable feature learning and15

robustness to transformation invariance. Extensive experiments across multiple16

tasks demonstrate that AltLoRA outperforms LoRA and its variants, narrowing the17

gap toward full fine-tuning while preserving superior memory efficiency.18

1 Introduction19

Low-Rank Adaptation (LoRA [25]) has emerged as a leading approach for parameter-efficient fine-20

tuning (PEFT)([24, 38, 35]) of large language models ([5, 51, 61, 40]). Building on prior work21

investigating the intrinsic dimensionality of neural networks ([2, 36]), LoRA assumes that fine-tuning22

updates can be effectively captured in a low-rank subspace. Specifically, for a pre-trained model23

with weight matrix W0 ∈ Rk×d, LoRA reparameterizes the weight update ∆W via a low-rank24

decomposition as W0 + ∆W = W0 + sBA, where B ∈ Rk×r, A ∈ Rr×d and s = α
r is a25

scaling factor. Here, r ≪ min(k, d) is the rank of the update. Thanks to its substantial memory26

and computational savings [25], LoRA has enabled scalable adaptation across diverse applications,27

including reinforcement learning from human feedback (RLHF) [57, 23], diffusion models [43, 77],28

and mixture-of-experts (MoE) architectures [67, 37].29

Despite its parameter efficiency, LoRA often underperforms full fine-tuning ([13, 25, 41, 71]). This30

gap has fueled growing interest in optimizing LoRA via hyperparameter tuning under stable feature31

learning [21, 20] and optimizers that preserve transformation invariance [79]. Formally, if we denote32

the loss function as L, full fine-tuning will utilize the full gradient∇WL ∈ Rk×d for backpropagation.33

In contrast, the gradients in LoRA for B and A are given by (∇WL)A⊤ and B⊤(∇WL), respectively34

(see Section 2). This reparameterization significantly alters the gradient flow during training [88] by35

restricting it to the low-rank space.36
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A promising direction to fill the gap between the gradient dynamics is to ensure that the equivalent37

gradient established by LoRA approximates the full gradient ([66, 65, 50]). However, two key38

challenges in the gradient approximation for low-rank adaptation remain unaddressed. First, LoRA-39

Pro [66] depends on an auxiliary variable that impacts the performance significantly. Depending on40

the choice of this variable, the evaluation score varies from 31.74 to 57.57 on the GSM8K datasets41

(see Appendix D.1 in [66]). Obtaining a unique solution requires solving a Sylvester equation,42

which introduces additional computational cost and relies on a non-standard assumption. Second, as43

LoRA-Pro accelerates the equivalent gradient with full-parameter learning, it requires a memory cost44

like full fine-tuning with space complexityO(kd) as shown in Table 1. In contrast, LoRA maintains a45

more efficient space complexity of O(kr + rd). Under such memory constraints, how to incorporate46

momentum properly within the low-rank structure is largely unexplored.47

In this paper, to close the performance gap between LoRA and full fine-tuning, we address the two key48

challenges outlined above and propose a novel PEFT method, AltLoRA, based on Alternating updates49

to the Low-Rank Adaptation. AltLoRA properly approximates the full gradient by alternately pro-50

jecting it onto low-rank subspaces and B. Building on this projection-based gradient approximation,51

we further introduce a new mechanism to optimize momentum effectively within the low-rank space,52

while strictly adhering to the memory constraints of LoRA [25]. Without allowing full-parameter53

learning, AltLoRA is the first work in the literature to properly optimize both gradient and momentum54

over the low-rank subspaces, while achieving stable feature learning and transformation invariance,55

as summarized in Table 1.

Table 1: Comparison with Existing Work

Methods Gradient Approximation Stable Feature Learning Transformation Invariance Time Complexity Space Complexity

LoRA [25] ✘ ✘ ✘ O(kr2 + dr2) O(kr + dr)
LoRA+ [21] ✘ ✔ ✘ O(kr2 + dr2) O(kr + dr)

ScaledAdam [81] ✘ ✔ ✘ O(kr2 + dr2) O(kr + dr)
LoRA-Rite [79] ✘ ✔ ✔ O(kr2 + dr2) O(kr + dr)
LoRA-Pro [66] ✔ ✔ ✔ O(kdr) O(kd)

AltLoRA ✔ ✔ ✔ O(kr2 + dr2) O(kr + dr)

56

Our main contributions are summarized as follows:57

• We propose AltLoRA, a novel PEFT method that efficiently approximates the full gradient58

via alternating projections onto the low-rank subspaces A and B. Moreover, we design59

a new momentum mechanism that operates within LoRA’s memory constraints, enabling60

effective optimization of momentum within the low-rank space.61

• Theoretically, we prove that AltLoRA ensures stable feature learning in the infinite-width62

neural network regime and, more generally, maintains transformation invariance, even63

when incorporating momentum. We also provide convergence guarantees for fine-tuning64

overparameterized two-layer ReLU networks.65

• Empirically, we show the effectiveness of AltLoRA through extensive experiments on tasks66

including natural language understanding, dialogue generation, mathematical reasoning, and67

code generation. AltLoRA consistently outperforms existing LoRA-based methods.68

2 Preliminary69

Let us first revisit the optimization paradigm of LoRA [25]. If we denote the loss function as L, i.e.,70

L(A,B) := L(W + sBA), we can derive the gradient w.r.t A and B as follows:71

∇AL :=
∂L

∂A
=

∂L

∂W

∂W

∂A
= sBT (∇WL), ∇BL :=

∂L

∂B
=

∂L

∂W

∂W

∂B
= s(∇WL)AT . (1)

Here, as the full gradient is multiplied by the low-rank matrices to constitute the gradient of LoRA, it72

implicitly compresses the full gradient into the low-rank spaces. Suppose we use gradient descent to73

update A and B, then the model parameter in the (t+ 1)-th iteration is:74

Wt+1 = W0 + sBt+1At+1

≈W0 + sBtAt − sη(∇Bt
L)At − sηBt(∇At

L)

= Wt − sη(∇Bt
L)At − sηBt(∇At

L).

(2)
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Here, we omit the term related to η2. Compared with the full gradient update −η∇WL, LoRA’s75

gradient can approximate the full gradient as long as sB(∇AL) + s(∇BL)A is close to∇WL. With76

a similar motivation, some previous work analyzes the approximation based on the Frobenius norm77

([65, 66, 50]). Noticeably, LoRA-Pro [66] achieves gradient approxiation by adjusting the gradients78

of matrices A and B based on the following solutions:79

gA =
1

s
(BTB)−1BT (∇WL) +XA, gB =

1

s
[I −B(BTB)−1BT ](∇WL)AT (AAT )−1 −BX,

(3)
where X ∈ Rr×r denotes an ancillary matrix and its selection is crucial and challenging for LoRA-80

Pro. As shown in their ablation studies, the selection of X would vary the performance of the81

evaluation significantly. Besides, to obtain a unique solution for X , LoRA-Pro imposes additional82

uncommon assumptions to solve a Sylvester equation. However, even selecting a unique X , the83

equivalent gradient(sBgA + sgBA) established by LoRA-Pro is independent of X , which implies84

that X is only used to distinct the gradient of A and B when jointly updating and doesn’t influence85

the model update. It motivates the development of a more efficient alternating and eliminates the86

influence of X . To circumvent the ambiguity and inefficiency introduced by this joint updating87

strategy, we propose an alternating update strategy that approximates the full gradient as long as88

sB(∇AL) or s(∇BL)A is close to ∇WL.89

Notation. Hereafter, we use the following notation to describe the asymptotic behavior as the width n90

grows. Given sequences cn ∈ R and dn ∈ R+, we write cn = O(dn), resp. cn = Ω(dn), to refer to91

cn < κdn, resp. cn > κdn, for some constant κ > 0. For vector and matrix sequences, the notation92

is applied entry-wise. Additionally, we use ⊙ and ⊘ to denote element-wise matrix multiplication93

and division, respectively. [P ] denotes the set of indices {1, · · · , P}.94

3 Methodology95

3.1 Alternately Approximating the Full Gradient via Low-Rank Adaptation96

We propose an alternating update scheme, where we update A first and then update B based on97

the new A. Define the low-rank modules as At and Bt at the t-th iteration, and the approximated98

gradients as ∇̃AL and ∇̃BL, respectively. We begin by obtaining the optimal scaling gradient of A99

by solving100

min
∇̃AtL

∥sBt(∇̃AtL)−∇WtL∥2F , (4)

where ∥ · ∥2F denotes the Frobenius norm squared—sum of squares of all entries in the matrix. Then101

by gradient descent, we can update A and the full model as102

At+1 ← At − η∇̃AtL, Wt+ 1
2
←Wt − ηBt(∇̃AtL), (5)

where we update the full model at (t+ 1/2)-th iteration to keep consistent with the joint update [66]103

(update A and B in one iteration). In our experiment, without any ambiguity, we treat the update A or104

B as a single step (see Algorithm 1). After doing backpropagation w.r.t A, the gradient of B doesn’t105

approximate the full gradient at time t since the full model has been update to the state of (t+ 1/2).106

Then we minimize the discrepancy between the full gradient at Wt+ 1
2

and the approximating gradient107

constructed by Bt as follow108

min
∇̃BtL

∥s(∇̃Bt
L)At+1 −∇W

t+1
2

L∥2F . (6)

Then by gradient descent, we can update B and the full model as109

Bt+1 ← Bt − η∇̃Bt
L, Wt+1 ←Wt+ 1

2
− η(∇̃Bt

L)At+1. (7)
The following theorem gives the closed-form solution of Problems (4) and (6).110

Theorem 1. Assume Bt ∈ Rk×r and At ∈ Rr×d are full rank for any t, i.e. rank(Bt) = rank(At) =111

r. Solving Problems (4) and (6) yields the unique closed-form solutions112

∇̃At
L =

1

s
(BT

t Bt)
−1BT

t (∇Wt
L) =

1

s2
(BT

t Bt)
−1∇At

L

∇̃Bt
L =

1

s

(
∇W

t+1
2

L
)
AT

t+1(At+1A
T
t+1)

−1 =
1

s2
∇Bt

L(At+1A
T
t+1)

−1,

(8)

where∇At
L and ∇Bt

L are the gradients of LoRA defined in Equation (1).113
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Theorem 1 shows that both problems admit unique optimal solutions for ∇̃AtL and ∇̃BtL, which114

only requires full rank. Therefore, it offers a new gradient approximation with less computational115

cost and promotes a more efficient updating strategy. Besides, instead of accessing the full gradient116

like full fine-tuning, the optimal gradient approximation only requires the standard gradient of A or117

B by backpropagation at each step and calculating the inverse of a small matrix with size r × r.118

Theorem 1 requires that the matrix Bt and At are full rank, but in the over-parameterized cases,119

the assumption is hard to achieve. To alleviate it, if we penalize the Frobenius norm of these two120

approximated gradients, i.e., weight decay, the condition can be eliminated (see Corollary 1). For121

simplicity, in the rest of the paper, we focus on the modified gradient in (8) for analysis. The122

closed-form solution in (8) yields the following full model update(with gradient descent)123

Wt+1 = Wt+ 1
2
− η(∇̃Bt

L)At+1

= Wt+ 1
2
− η(∇W

t+1
2

L)AT
t+1(At+1A

T
t+1)

−1At+1

= Wt − ηBt∇̃At
L− η(∇W

t+1
2

L)AT
t+1(At+1A

T
t+1)

−1At+1

= Wt − ηBt(B
T
t Bt)

−1BT
t (∇Wt

L)− η(∇W
t+1

2

L)AT
t+1(At+1A

T
t+1)

−1At+1

= Wt − ηProjc(Bt)(∇WtL)− η(∇W
t+1

2

L)Projr(At+1).

(9)

Interestingly, the proposed solution for gradient approximation in (8), is consistent with the literature124

work [59, 83, 73, 30, 42] called scaled gradient descent [46, 45] in low-rank matrix estimation [54].125

Therefore, the view of gradient approximation would provide a novel interpretation of applying scaled126

gradient descent within the broader context of low-rank matrix decomposition. As optimizing LoRA127

with momentum for acceleration is a standard way in the literature [8, 25, 21], we will discuss how to128

properly design momentum within the low-rank space inspired by gradient approximation.129

3.2 Proper Momentum Design within the Low-Rank Subspaces130

For LoRA [25] and its variants [21, 86] without allowing full-parameter learning, the parameterization131

restricts both the gradient and the momentum updates to low-rank subspaces as the memory cost is132

O(kr+ dr). As we have shown, the optimal gradient approximation under this constraint is obtained133

by projecting the full gradient onto the low-rank subspace. This insight naturally motivates the need134

to also align the momentum optimally within the same low-rank space, in order to fully leverage135

momentum-based acceleration under low-rank constraints.136

Since the momentum evolves throughout training, it is essential to dynamically optimize it. For137

simplicity, we focus on the optimization paradigm for B and develop our method inductively. Given138

the aligned momentum MB
t within the low-rank space At at time t, the alternating update strategy139

proceeds by updating A to At+1 and then aligning MB
t with the new low-rank space At+1. To this140

end, we first recover MB
t to the full-dimensional space, and then project it onto the new subspace141

spanned by At+1, like gradient approximation. The following theorem formalizes this key idea.142

Theorem 2. Assume At+1A
T
t+1 is full-rank, i.e., rank(At+1A

T
t+1) = r. If MB

t has aligned with the143

low-rank space At in the t-th iteration, by minimizing the following problem144

min
M̃B

t

∥MB
t At − M̃B

t At+1∥2F . (10)

We can find M̃B
t = MB

t AtA
T
t+1(At+1A

T
t+1)

−1, which makes the momentum aligned with the new145

low-rank space At+1 optimally.146

Theorem 2 shows that it’s only necessary to store two small matrices so that we can optimize147

momentum properly. Similar to Section 3.1, we can also remove the assumption of full rank here (see148

Corollary 2). In contrast to LoRA-Pro with full-parameter learning (Space Complexity O(kd)), we149

aim to strictly satisfy the space complexity O(kr + dr) for parameter efficiency and keep mentum150

adaptively aligned with the low-rank spaces as gradient approximation does.151

A similar notion of momentum design is explored in [18, 22], where down-projection and up-152

projection matrices are employed to transfer compressed gradients across low-rank spaces. In153

contrast, we derive the optimal alignment directly within the low-rank subspaces to preserve gradient154
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information. In Section 4.2, we theoretically demonstrate that aligning momentum with the low-155

rank space guarantees transformation invariance, whereas LoRA [25] and its variants [21, 86] have156

misaligned momentum undermining this robustness [79].157

After analyzing how to efficiently optimize both the gradient and momentum under limited resource158

constraints, we summarize our proposed algorithm, AltLoRA, in Algorithm 1. Unlike the joint update159

strategy, AltLoRA updates only one of the low-rank matrices, either A or B, at each step, based160

on the scaled gradient and momentum presented in Theorems 1 and 2. The number of trainable161

parameters at each step is reduced by half compared to the joint update. Designed as a practical PEFT162

method, AltLoRA can be seamlessly integrated into existing libraries such as Hugging Face [69] (see163

Appendix C.1 for implementation details). To further accelerate and stabilize the training paradigm of164

AltLoRA, we introduce AltLoRA+, an enhanced variant that naturally incorporates second-moment165

estimates similar to AdamW (see Algorithm 2 for details).166

Algorithm 1: AltLoRA: Gradient Approximation via Alternating Projection with Proper Momen-
tum Design under LoRA’s Memory Constraint

Input: Momentum states MA
0 , MB

0 ; scaling factor s = α
r ; learning rate η; momentum

coefficient β1; total steps T ; weight decay γ
Output: Final matrices AT and BT

for t = 0, . . . , T − 1 do
if t mod 2 = 0 then

Update A:
Only backpropagate w.r.t. At and obtain ∇AtL

∇̃At
L = 1

s2 (B
⊤
t Bt)

−1∇At
L

M̃A
t = (B⊤

t Bt)
−1BT

t Bt−1M
A
t−1

MA
t ← β1M̃

A
t + (1− β1)∇̃At

L
At+1 ← At − η(MA

t + γAt)

else
Update B:

Only backpropagate w.r.t. Bt and obtain ∇BtL

∇̃BtL = 1
s2∇BtL(At+1A

⊤
t+1)

−1

M̃B
t = MB

t−1AtA
⊤
t+1(At+1A

⊤
t+1)

−1

MB
t ← β1M̃

B
t + (1− β1)∇̃BtL

Bt+1 ← Bt − η(MB
t + γBt)

167

Time Complexity and Space Complexity. When r ≪ min{k, d}, the time and memory cost of168

AltLoRA and AltLoRA+ is similar to the standard LoRA and more efficient compared with LoRA-169

Pro. The additional computational cost takes O(r3) time, and since r is very small, this overhead is170

negligible when compared with the back-propagating time. In the experiment, we will show that the171

delay time compared with LoRA is mild even when the rank r increases. (see Table 3).172

4 Theoretical Analysis173

4.1 Stable Feature Learning174

Given the current trend of increasing model sizes ([76, 47, 75]), it raises a lot of attention to analyze175

the asymptotic training behavior of neural networks as the number of neurons approaches infinity176

([56, 19, 74]). There is a line of work in LoRA ([21, 20, 81]) considering the infinite-width NN setting.177

To achieve stable feature learning (see Definition 2 in Appendix D.1), they propose a fine-grained178

choice of hyperparameters in the original LoRA, like the learning rate [21], the initialization ([20]),179

and the optimizer ([81]). The core idea is that the update increment over the loss function or parameter180

should be of constant magnitude, which ensures that neither the NN predictions nor the increments181

explode or vanish as the NN size increases, thereby leading to stable training dynamics. First, we182

demonstrate that our method achieves stable feature learning on a toy model in Appendix D.1.1. We183

then prove that this stability extends to arbitrary LoRA ranks and holds for AltLoRA and AltLoRA+,184
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which we formalize in the theorem below. For clarity of presentation, we omit the scaling factor s in185

the subsequent theorems and analysis.186

Theorem 3 (Informal). Assume that, with the input x, BAx has dimension O(n). In Algorithm 1 or187

Algorithm 2, if we use the same learning rate η = O(1) to update A and B, it would achieves stable188

feature learning. Moreover, without momentum in AltLoRA or AltLoRA+, the model update achieves189

stable feature learning as well with190

Wt+1 = Wt − ηProjc(Bt)(∇Wt
L)− η(∇W

t+1
2

L)Projr(At+1), (11)

where
ηProjc(Bt)(∇WtL), η(∇W

t+1
2

L)Projr(At+1) ∈ O(1).

However, when doing joint update ([81]), the update will introduce additional across term191

η2(∇WtL)A
T
t (AtA

T
t )

−1(BT
t Bt)

−1BT
t (∇WtL) ∈ O(1). The across term is indeed the second192

order term w.r.t η, but it is same magnitude as η(∇WtL)Projr(At) and ηProjc(Bt)(∇WtL) in193

infinite-width NN setting.194

In Theorem 3, AltLoRA and AltLoRA+ achieve stable feature learning. Moreover, as the joint195

update would introduce the cross term with an unignorable magnitude (especially η is O(1) instead196

of O(1/n) in the toy model), joint update with scaled gradient descent ([81]) breaks the clean197

interpretation of projecting the full gradient onto low-rank subspaces and degrade the performance as198

our experiment studies show later.199

4.2 Transformation Invariance200

With the motivation that an optimizer should yield the same update to the full model regardless of the201

specific factorization, transformation invariance, as a sufficient condition for stable feature learning,202

is proposed by LoRA-RITE [79]. Here, we will prove that our designed gradient and momentum in203

Algorithm 1 would be inherently robust as transformation invariance.204

Definition 1. If there are two pairs of LoRA matrix (A1, B1), (A2, B2) can represent the same205

finetuned weight W = W0 +B1A1 = W0 +B2A2. An optimizer exhibits transformation invariance206

if its updates, (δA1, δB1) and (δA2, δB2) satisfy207

W0 + (B1 + δB1)(A1 + δA1) = W0 + (B2 + δB2)(A2 + δA2)

⇒ (B1 + δB1)(A1 + δA1) = (B2 + δB2)(A2 + δA2).
(12)

LoRA-RITE [79] notices that, after combining scaled gradient descent with element-wise Adam208

in [81], the ScaledAdam can’t preserve transformation invariance. As the momentum is optimized209

properly, we will analyze how AltLoRA keeps transformation invariance naturally, especially when210

incorporating momentum.211

Recall the definition of projection matrices in Equation (9): Projc(Bt) := Bt(B
T
t Bt)

−1BT
t (or212

Projr(At) := AT
t (AtA

T
t )

−1At). The following lemma provides insight into how Algorithm 1213

achieves transformation invariance.214

Lemma 1. If any two pairs of LoRA factors(A1, B1), (A2, B2) satisfying215

W = W0 +B1A1 = W0 +B2A2, (13)

then Projc(B1) = Projc(B2), P rojr(A1) = Projr(A2) .216

Even though the full model update can be decomposed into different pairs of low-rank adaptations,217

within each pair of LoRA factors, the column space of B (or the row space of A) is equivalent to the218

column space (or the row space) of the full model update. Therefore, the projection matrix would be219

preserved invariant over the pairs of low-rank adaptation.220

Theorem 4. AltLoRA in Algorithm 1 is transformation-invariant.221

Building on the insight from Lemma 1, we leverage the invariance of the projection matrix to the222

low-rank subspaces to approximate the full gradient via the gradient and moment information. As a223

result, with the goal of gradient approximation without full-parameter learning, our method achieves224

transformation invariance inherently. LoRA-RITE [79] is also aware of the equivalence of low-rank225
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spaces, but they do not notice or exploit the invariance of the projection matrix. Instead, they design226

an unmagnified gradient requiring polar decomposition at each iteration, which introduces additional227

computational overhead. In contrast, our method avoids polar decomposition, contributing to its228

superior efficiency (see Table 3). LoRA-Pro [66] also achieves transformation invariance but does so229

without adhering to LoRA’s memory constraint. AltLoRA in Algorithm 1, by comparison, strictly230

follows the memory budget of LoRA while preserving transformation invariance through a more231

efficient design. While Algorithm 2 does not currently maintain transformation invariance under232

second-order momentum, this opens an exciting avenue for future research. In Appendix D.2, we233

provide a detailed discussion on why extending our first-order momentum design to the second order234

poses fundamental challenges. Despite this, AltLoRA+ achieves substantial empirical gains over235

LoRA and its variants, demonstrating the practical strength of our approach even when we only keep236

the transformation-invariant up to the second momentum.237

4.3 Convergence Analysis238

Following [81], we provide a convergence analysis of AltLoRA (or AltLoRA+) without momentum239

within the over-parameterized two-layer ReLU NN tuning problem (see Appendix D.3). In Theorem240

7, we show that the convergence is independent of the condition number of the data matrix. In241

contrast to [81], we impose fewer assumptions to establish the convergence analysis. Notably, we242

don’t require the extended spectral initialization in Definition 7.3 [81]. In our experimental study,243

AltLoRA (AltLoRA+) can achieve superior performance with the variant of initialization used by244

LoRA and its variants (see Appendix E.3.2), which supports our insight empirically.245

5 Experimental Results246

This section empirically shows the effectiveness of our approach across various model architectures247

and datasets. Section 5.1 summarizes the experimental settings and results on supervised fine-tuning248

(SFT) benchmark tasks, and Section 5.2 provides details of the setup and results for natural language249

understanding tasks. Finally, ablation studies from multiple perspectives are presented in Section 5.3.250

The code for our project is available at https://anonymous.4open.science/r/AltLoRA-DB7C.251

5.1 Experiments on SFT of LLM: Natural Language Generation252

Training Details. We assess our methods on dialogue generation with the WizardLM dataset253

[72], mathematical reasoning with the MetaMathQA dataset [80], and code generation with the254

CodeFeedBack dataset [90] using the LLama-3.1-8B and Llama-3-8B models [17] (see Appedix255

E.1). We compare AltLoRA and AltLoRA+ with the pretrained model, full fine-tuning, LoRA256

[25], PisSSA[44], rsLoRA[31], LoRA+[21], DoRA[41], AdaLoRA[86], LoRA-GA[65], LoRA-Rite257

[79]and LoRA-Pro[66]. To ensure fair comparisons, we closely follow the experimental protocol258

established by [66]. Unless otherwise stated, we fine-tune models using default hyperparameters (if259

used): β1 = 0.9, β2 = 0.999, and zero weight decay. We adopt a cosine learning rate schedule with260

a warm-up ratio of 0.03. LoRA adapters are applied to {Q,K, V,O} layers. By default, we set the261

rank to r = 8 and the scaling factor to α = 32 for dialogue generation tasks, and r = 8, α = 16 for262

the mathematical reasoning and code generation tasks. We carefully grid search the learning rates 1.263

To obtain a reliable estimate of model performance, we perform three runs with different random264

seeds and report the average and standard deviation of the results.265

Evaluations. We evaluate the baselines similar to [66]. Specifically, for the dialogue generation266

task, we use the MT-Bench dataset [89] with GPT-4o, with scores ranging from 1 to 10. We report267

the score from the first turn as our metric. For the math task, we evaluate the model on the GSM8K268

test set [11] using the LLM Evaluation Harness [16], and we report the exact match accuracy. For the269

code generation task, we evaluate on the HumanEval dataset [6] and report the PASS@1 metric.270

Results. Table 2 presents our experimental results, which demonstrates AltLoRA superior perfor-271

mance. With a rank of 8, AltLoRA achieves noticeable improvement over the original LoRA: 0.5 on272

MT-bench, 8.38 on GSM8K and 3.1 on HumanEval using Llama-3.1-8B. Notably, AltLoRA achieves273

1See Appendix E.1 for details of learning rate grid search. We set the sequence length to 1024 and the macro
batch size to 4 for math and code tasks, and macro batch size to 8 for dialogue generation. All experiments are
conducted on NVIDIA A100 and NVIDIA A6000 GPUs.
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significantly higher scores on MT-Bench compared to LoRA-Pro and Full FT. In addition, AltLoRA+274

yields improvements over LoRA-Pro on both GSM8K and HumanEval, and AltLoRA+ obtains better275

performance in mathematical reasoning than Full FT. These further demonstrate the effectiveness of276

the new design gradient and momentum. The additional study on Llama-3-8B model (see Table 5 in277

Appendix E.1) also demonstrates a clear advantage over baseline methods.

Method MT-Bench GSM8K HumanEval

PreTrain 5.93±0.08 51.34±1.38 36.15±1.97
Full FT 6.31±0.04 73.31±0.32 50.81±1.10
LoRA 6.06±0.02 66.11±1.43 40.31±1.34

PiSSA 5.15±0.10 67.78±1.11 42.44±1.11
rsLoRA 6.10±0.06 68.12±0.44 43.91±1.44
LoRA+ 6.40±0.06 72.33±1.33 44.10±1.38

DoRA 6.08±0.03 68.33±0.88 42.13±1.31
AdaLoRA 6.08±0.05 72.63±1.45 42.21±2.66
LoRA-GA 6.00±0.09 70.33±0.91 42.01±1.21
LoRA-Pro 6.19±0.03 73.12±0.56 43.13±1.45
LoRA-Rite 6.10±0.01 74.10±0.31 43.12±0.51

AltLoRA 6.56±0.04 74.49±0.57 45.91±1.14
AltLoRA (rank=32) 6.39±0.04 73.24±0.29 46.87±1.49
AltLoRA (rank=128) 6.27±0.01 74.11±0.21 45.41±1.65

AltLoRA+ 6.16±0.02 76.91±0.31 50.10±1.35
AltLoRA+ (rank=32) 6.10 ±0.02 76.32±0.29 49.97±1.52
AltLoRA+ (rank=128) 6.07±0.03 77.08±0.83 49.77±1.58

Table 2: Comparison of different LoRA variants on MT-Bench, GSM8K, and HumanEval benchmarks
on Llama-3.1-8B-Base. Bold indicates the best result, underline represents the second-best one.

278

Table 3: Comparison of memory usage and training
time across different fine-tuning methods.

Method Memory Cost Training Time

Full FT > 48 GB 4h 23min
LoRA 22.26 GB 2h 13min
LoRA-Rite 25.39 GB 2h 44min
LoRA-Pro 40.12 GB 4h 5min

AltLoRA 22.56 GB 2h 34min
AltLoRA(rank=32) 23.11 GB 2h 41min
AltLoRA(rank=128) 25.11 GB 2h 52min

AltLoRA+ 23.16 GB 2h 38min
AltLoRA+(rank=32) 24.98 GB 2h 45min
AltLoRA+(rank=128) 27.76 GB 2h 56min

Memory and Time Consumptions. In279

Table 3, we also compare the memory280

cost and training time of our methods with281

Full FT, LoRA, LoRA-Rite and LoRA-282

Pro on Llama-3.1-8b mode. Without full-283

parameter learning, we have a compara-284

ble memory cost and training time close285

to LoRA. After taking a higher rank of286

LoRA, the memory cost and computation287

cost won’t increase significantly. However,288

as LoRA-Pro requires storing the full size289

first-order momentum and second-order290

momentum, it leads to an unignorable cost291

like Full FT. As LoRA-Rite incurs addi-292

tional calculations like polar decomposi-293

tion, it also increase the computation time.294

5.2 Experiments on Natural Language Understanding295

Training and Evaluation Details. We assess our methods natural language understanding on a296

subset of GLUE benchmark dataset with fine-tuning a T5-base[52] model. We compare AltLoRA and297

AltLoRA+ with the full fine-tuning, LoRA [25], PisSSA[44], rsLoRA[31], LoRA+[21], DoRA[41],298

AdaLoRA[86], LoRA-GA[65], and LoRA-Pro[66]. We fine-tune the T5-based model [52] with our299

methods and the baselines on a subset of GLUE datasets [63]: MNLI, SST2, CoLA, QNLI, and300

MRPC. We use the accuracy as the evaluation metric. To ensure fair comparison, all experiments are301

run three times with different random seeds, and we report the mean and standard deviation of the302

results. Due to space constraints, additional experimental details are provided in Appendix E.1.303

Results. As shown in Table 4, AltLoRA+ outperforms the baselines on average. In particular, it304

achieves the highest score on MRPC, the second-highest on CoLA, MNLI, and SST-2 datasets.305
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Table 4: Performance of fine-tuning T5-Base on 5 sub-tasks of the GLUE benchmark. Bold indicates
the best result, underline represents the second-best one, and * marks results reported from [65].

Method MNLI SST-2 CoLA QNLI MRPC Average

Full 86.29±0.01 93.97±0.06 80.87±0.05 93.02±0.03 86.89±0.13 88.21
LoRA 85.32±0.01 93.76±0.05 81.31±0.20 92.96±0.09 86.03±0.24 87.88

RSLoRA 85.23±0.01 93.96±0.06 81.21±0.14 93.12±0.09 86.27±0.24 87.96
DoRA 85.58±0.03 93.65±0.06 81.16±0.04 93.04±0.06 86.14±0.12 87.91
LoRA+ 85.32±0.06 93.92±0.11 81.21±0.06 92.97±0.03 86.25±0.16 87.93

PiSSA 85.87±0.04 93.84±0.06 81.90±0.05 93.16±0.09 86.64±0.12 88.28
LoRA-GA∗ 85.70±0.09 94.11±0.18 80.57±0.20 93.18±0.06 85.29±0.24 87.77

AdaLoRA 85.45±0.11 93.92±0.09 80.31±0.05 91.66±0.05 86.16±0.60 87.50
LoRA-Pro 85.70±0.11 93.92±0.10 78.42±0.03 93.15±0.03 86.54±0.50 87.55

AltLoRA 85.26±0.04 93.87±0.05 80.44±0.09 91.56±0.01 86.60±0.99 87.55
AltLoRA+ 85.81±0.03 94.03±0.12 81.44±0.30 92.99±0.03 87.25±1.12 88.30

5.3 Ablation Study306

Figure 1 presents an ablation study of the learning rate η and the scaling factor α for LoRA, AltLoRA307

and AltLoRA+, using the LLaMA 3.1-8B model on mathematical reasoning tasks. The results show308

that our proposed methods are robust in learning rate and the scaling factor with consistent superior309

performance. Moreover, it shows that α = 16 obtains overall better performance compared to α = 8310

and α = 32. The influence of increasing rank is reported in Table 2 (see Appendix E.3 of the results311

on Llama-3-8B model). Besides, studying the choice of hyperparameters, in Appendix E.3.2, we

Figure 1: Evaluation Accuracy of LoRA, AltLoRA and AltLoRA+ for various learning rate η and
scaling factor α combination on the GSM8K datasets using Llama-3.1-8B.

312
present additional ablation studies on the Llama 3.1-8B model as well. To evaluate the effectiveness313

of alternating strategies, we compare them against the joint update method. As the approaches of314

multiple LoRA modules, such as in the mixture of LoRA experts, has gained popularity [37, 70], we315

also assess the impact of varying the number of experts in LoRA layers. Finally, to further validate316

the robustness of our method with respect to initialization, as discussed in Section 4.3, we study317

different initialization strategies. These ablation studies collectively demonstrate that our method is318

robust to hyperparameter variations and is applicable to more complex model architectures.319

6 Conclusion320

We propose AltLoRA, a memory-efficient fine-tuning method that alternates updates of low-rank321

matrices to dynamically project both the gradient and momentum within low-rank subspaces. By322

leveraging an efficient closed-form gradient approximation and a principled momentum design,323

AltLoRA operates entirely under low-rank constraints while ensuring stable feature learning and324

transformation invariance without requiring full-parameter learning. Extensive experiments across325

diverse tasks demonstrate the superior performance of AltLoRA and its enhanced variant, AltLoRA+,326

over LoRA and its variants, narrowing the gap to full fine-tuning while retaining memory efficiency.327
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A Related Work582

Low-rank adaptation(LoRA)([25]) has been the subject of extensive research in foundation583

models([51, 5, 1, 33, 55, 61]), with numerous variations and improvements ([34, 28, 32, 78, 12,584

27, 91]). One line of research focuses on dynamically adjusting the LoRA rank during training. This585

includes DyLoRA[62], IncreLoRA[82], and AdaLoRA[86]. Another line of work involves enhancing586

LoRA performance through the addition of extra scaling matrices, which include DoRA[41] and587

DeepLoRA[78]. These directions are orthogonal to our work. Regarding the optimization of LoRA,588

we find that the following topics are close to our work.589

Stable Feature Learning Under the infinite-width NN setting([19, 56]), LoRA+([21]) finds that590

the standard LoRA is inefficient and they propose to use different learning rates for A and B. To591

provide a careful choice of hyperparameters for efficient use of LoRA, a line of work analyzes LoRA592

under efficient learning ([20, 81]). Noticeably, [81] introduces preconditioners under a Riemannian593

metric ([45]) and updates LoRA by using scaled gradients of A and B simultaneously. While their594

method aims to improve stability and efficiency, it is important to note that their goal is not to595

approximate the full gradient. This approach does not yield an optimal approximation to the full596

gradient update. Moreover, [79] proposes an adaptive matrix preconditioning method preserving597

transformation-invariant, a sufficient condition for stable feature learning.598

Approximation full-tuning or full gradient To fill the gap between LoRA and full fine-tuning, there599

are two lines of work with different motivations. The first class of work focuses on the initialization,600

like [66]. It proposes to make the initialization of LoRA align with the full-finetuning directly.601

However, after the first step, how difference between LoRA and full-tuning is unknown. The second602

line of work focuses on optimizing LoRA properly over the optimization trajectory([66, 50, 87]).603

Noticeably, [66] proposes to optimize the gradients of A and B together to approximate the full604

gradient. But the optimal approximation is hard to find under practical conditions and aligning605

momentum towards the full gradient requires storing a full-size matrix (k × d) in their algorithm.606

These challenges also exist in later work ([50]).607

Gradient Projection in LoRA Motivated by the view that LoRA updates can be viewed as performing608

random projection from the full gradient, F-LoRA([18]) achieves high-rank updates by resampling609

the projection matrices. There are also some approaches that propose training networks with low-rank610

factorized weights from scratch ([64, 32]). Random projection is also applied in Ga-LoRA([88]) and611

following work([39, 9]), but they need to access the full model and can’t store the low-rank adapter612

in the end. On the contrary, without full-parameter learning, we use gradient projection to keep the613

gradient best preserved in the low-rank spaces.614

Alternating Update To the best of our knowledge, we haven’t found the existing work of updat-615

ing LoRA alternately in the centralized setting, but in the decentralized setting, i.e., Federated616

Learning, we notice [7] used the alternating strategy to address the challenge of inaccurate model617

aggregation([68, 3, 58]) with computational and communication efficiency. Besides, in the centralized618

setting, [85] proposes to freeze A and update B, which would be regarded as a specific case of our619

work to do alternating minimization.620

Scaled Gradient Descent Our proposed methods are also closely related to scaled gradient de-621

scent(Scaled GD) in traditional low-rank matrix estimation under over-parameterization and ill-622

conditioning ([59, 60, 29, 46]). Notably, [59] shows that the scaled GD would keep the convergence623

independent of the condition number. Different variants of scaled GD have been proposed and studied624

in work ([73, 83, 10, 84]). For the alternating scaled GD, [30] finds that it would enable faster con-625

vergence with larger step sizes compared with scaled GD. And [42] provably shows that alternating626

scaled GD would achieve a linear convergence rate, starting from arbitrary random initialization.627

B The Proof and Details in Section 3628

In this section, we provide the formal proofs and detailed discussions supporting the results presented629

in Section 3. Specifically, Appendix B.1 presents the proof of Theorem 1, removes the full-rank630

assumption in Corollary 1 via weight decay. Appendix B.2 contains the proof of Theorem 2 and631

demonstrates how the full-rank assumption can similarly be relaxed using weight decay in Corollary 2.632
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B.1 The Proof in Section 3.1633

B.1.1 The Proof of Theorem 1634

Proof. The first-order condition of Problem (4) yields635

sBT
t (sBt∇̃AtL−∇WtL) = 0, (14)

where s is a positive scaling factor. Then we can reorganize it and obtain636

sBT
t Bt∇̃AtL = BT

t ∇WtL. (15)

As we assume the matrix B is full rank, it yields637

∇̃AtL =
1

s
(BT

t Bt)
−1BT

t (∇WtL). (16)

Furthermore, recalling the definition of the gradient of standard LoRA in (1), we obtain638

∇̃At
L =

1

s
(BT

t Bt)
−1BT

t (∇Wt
L) =

1

s2
(BT

t Bt)
−1∇At

L. (17)

Similarly, we can obtain the closed-form solution of ∇̃Bt
L in (8).639

B.1.2 Corollary 1 and Its Proof640

Corollary 1. For B ∈ Rk×r and A ∈ Rr×d , solving problems in (18)641

min
∇̃AtL

∥sBt(∇̃At
L)−∇Wt

L∥2F +
λ

2
∥s∇̃At

L∥2F

min
∇̃BtL

∥s(∇̃BtL)At+1 −∇W
t+1

2

L∥2F +
λ

2
∥s∇̃Bt

L∥2F ,
(18)

yields the unique closed-form solution642

∇̃AtL =
1

s
(BT

t Bt + λIr×r)
−1BT

t (∇WtL) =
1

s2
(BT

t Bt + λIr×r)
−1∇AtL,

∇̃BtL =
1

s
(∇W

t+1
2

L)AT
t+1(At+1A

T
t+1 + λIr×r)

−1 =
1

s2
∇BtL(At+1A

T
t+1 + λIr×r)

−1.

(19)

where Ir×r is the r × r identity matrix and λ > 0.643

Proof. For the first line problem in (18), the first-order condition yields644

sBT
t (sBt∇̃AtL−∇WtL) + λs2∇̃AtL = 0, (20)

where s is a positive scaling factor. Then we can reorganize it and obtain645

s(BT
t Bt + λI)∇̃AtL = BT

t ∇WtL. (21)

To keep (BT
t Bt + λI) invertible, we only require that λ isn’t too small and it yields646

∇̃At
L =

1

s
(BT

t Bt + λI)−1BT
t (∇Wt

L). (22)

Furthermore, recalling the definition of the gradient of standard LoRA in (1), we obtain647

∇̃At
L =

1

s
(BT

t Bt + λI)−1BT
t (∇Wt

L) =
1

s2
(BT

t Bt + λI)−1∇At
L. (23)

Similarly, we can obtain the closed-form solution of ∇̃BtL in (19). Noticeably, the result648

(∇W
t+1

2

L)AT
t+1 = ∇BtL holds with the fact that Wt+ 1

2
= W0 +BtAt+1.649

In Corollary 1, the hyperparameter λ can be small enough (1e−6 in our numerical studies) and we650

don’t tune the hyperparameter overall. For more discussion about the selection of λ in the over-651

parameterized setting for low-rank matrix estimation, please refer to APGD([42]), ScaledGD([73]),652

and NoisyPrecGD([84]).653
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B.2 Proof of Section 3.2654

B.2.1 Proof of Theorem 2655

Proof. The proof is similar to Theorem 1 thus we omit it here.656

B.2.2 Corollary 2 and Its Proof657

Corollary 2. If we assume MB
t has aligned with the full gradient in the t-th iteration, by minimizing658

the following problem659

min
M̃B

t

∥MB
t At − M̃B

t At+1∥2F +
λ

2
∥M̃A

t ∥2F , (24)

we can find the unique solution M̃B
t = MB

t AtA
T
t+1(At+1A

T
t+1 + λI)−1, which is the best approxi-660

mation of current full gradient.661

Proof. The proof is similar to Corollary 1 thus we omit it here.662

C Appendix for Algorithm 1663

C.1 The Implementing Details for Algorithm 1664

AltLoRA, as a novel PEFT method, can be seamlessly integrated into popular libraries such as665

Hugging Face Transformers [69]. The key engineering modifications are as follows:666

• Alternating Updates: To enable alternating optimization of LoRA parameters, we ex-667

tend the existing Transformer architecture by introducing a control argument within the668

training_step function. This argument identifies the current update phase and selec-669

tively disables gradient computation for parameters named "lora_A" or "lora_B", thereby670

facilitating an efficient alternating update mechanism.671

• Custom Optimizer Integration: Similar to prior LoRA variants that incorporate new672

optimizers [81, 66], AltLoRA can be easily adapted by implementing a new optimizer class.673

This allows flexible modification of the optimization dynamics tailored to the alternating674

update strategy. It would provide a broader impact to incorporate with other parameter-675

efficient structures, like MoE or RLHF, when using low-rank adaptation.676

C.2 AltLoRA+677

With the goal of approximating the full gradient under the memory constraint of standard LoRA, we678

propose AltLoRA in Algorithm 1 to properly optimize the training paradigm of LoRA. Furthermore,679

the ultimate goal is to fill the gap of performance between the existing parameter-efficient fine-tuning680

methods, like LoRA([25]), and the full model fine-tuning. Therefore, witnessing the success of681

incorporating the second momentum for accelerating and stabilizing the optimizing paradigm [25],682

we propose a variant of AltLoRA, called AltLoRA+ (see Algorithm 2) to help accelerate our optimizer683

with second momentum. The increasing memory cost for storing second momentum is O(kr + dr),684

so AltLoRA+ won’t require storing the full size matrix O(kd) like LoRA-Pro [66].685
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Algorithm 2: AltLoRA+: AltLoRA with Second Order Momentum

Input: Momentum states MA
0 , MB

0 , V A
0 and V B

0 , scaling factor s = α
r , learning rate η,

momentum coefficient β1 and β2, total number of steps T , weight decay coefficient γ,
and constant ϵ

Output: Final matrices AT and BT

for t = 0, . . . , T − 1 do
if t mod 2 = 0 then

Update A:
Only backpropagate w.r.t. At and obtain ∇At

L

∇̃At
L = 1

s2 (B
⊤
t Bt)

−1∇At
L

M̃A
t = (B⊤

t Bt)
−1B⊤

t Bt−1M
A
t−1

MA
t ← β1M̃

A
t + (1− β1)∇̃At

L

V A
t ← β2V

A
t−1 + (1− β2)(∇̃At

L⊙ ∇̃At
L)

At+1 ← At − η (MA
t ⊘ (

√
V A
t + ϵ) + γAt)

else
Update B:

Only backpropagate w.r.t. Bt and obtain ∇BtL

∇̃BtL = 1
s2∇BtL(At+1A

⊤
t+1)

−1

M̃B
t = MB

t−1AtA
⊤
t+1(At+1A

⊤
t+1)

−1

MB
t ← β1M̃

B
t + (1− β1)∇̃BtL

V B
t ← β2V

B
t−1 + (1− β2)(∇̃BtL⊙ ∇̃BtL)

Bt+1 ← Bt − η (MB
t ⊘ (

√
V B
t + ϵ) + γBt)

686

D Proof and Details of Section 4687

In this section, we will start to analyze the training paradigm of AltLoRA in Algorithm 1 and688

AltLoRA+ in Algorithm 2. In Appendix D.1, we first give the formal definition of stable feature689

learning in Definition 2. Then we will analyze our methods without momentum on a toy model in690

Appendix D.1.1. Furthermore, in Appendix D.1.2, we provably show that AltLoRA or AltLoRA+691

with arbitrary LoRA ranks achieves stable feature learning in the infinite dimension NN setting. Then,692

in Appendix D.2, we provably show that AltLoRA would achieve transformation invariance. Finally,693

in Appendix D.3, within an over-parameterized two-layer ReLU NN tuning problem, we prove that694

AltLoRA or AltLoRA+ without momentum would converge linearly without the requirement of695

spectral initialization.696

D.1 Appendix for Section 4.1697

First, let’s recall the definition of stable feature learning below.698

Definition 2 (Stable Feature Learning (Definition A.1.[81])). Consider any general LoRA layer699

BAx with B ∈ Rk×r and A ∈ Rr×d being LoRA parameters. Denote ∆t = Wt − Wt−1 =700

BtAtx − Bt−1At−1x for fine-tuning step t. We say that LoRA mdoel achieves Stable Feature701

Learning when x, Ax, BAx ∈ O(1) for alll LoRA layers and ∆t ∈ O(1) for all fine-tuning step t.702

D.1.1 Analysis on A Toy Model703

Following LoRA+([21]), let’s consider the simple linear model first704

f(x) = (W + baT )x, (25)

where W ∈ R1×n is the pretrained model weight and b ∈ R, a ∈ Rn are trainable LoRA parameters.705

Consider the quadratic loss function L(a, b) = (f(x)− y)2/2 with some scalar label y. We adopt706

Gaussian initialization a ∼ Nn(0, σ
2In), b ∼ N (0, σ2

b ). Conventionally, baT is initialized at zero707

for LoRA, and we thus consider setting σ2
a = 0, σ2

b = O(1).708
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For simplicity, assume AltLoRA or AltLoRA+ without momentum updates with learning rate709

η = O(nc) for some c ∈ R. Since the training process involves only elementary algebraic operations,710

the quantities there should be of powers of n. If we treat updates A and B each time as a single711

iteration, in iteration t, the feature update is given by712

∆ft+1 : = ft+1(x)− ft(x)

=
(
bta

T
t − ηbt(∇̃at

L)T − η(∇̃btL)a
T
t+1

)
x− bta

T
t x

= −η(ft(x)− y)∥x∥2 − η(aTt+1x)
2(ft+ 1

2
(x)− y)∥at+1∥−2,

(26)

where ft+ 1
2
(x) := (W + bta

T
t+1)x. We denote δ1t = ηb2t (ft(x) − y)∥x∥2 , δ2t =713

η(aTt+1x)
2(ft+ 1

2
(x) − y). To achieve stable feature learning, it requires δ1t , δ

2
t ∈ O(1) and fur-714

ther ft(x) ∈ O(1) ∀t > 0. Thus, we have the below modified linear constraints.715 
c+ 1 = 0 (for δ1t = Θ(1)),

c+ 2γ[aTt+1x]− γ[∥at+1∥2] = 0 (for δ2t = Θ(1)),

γ[bt+1] + γ[aTt+1x] = 0 (for ft+1(x) = Θ(1)),

(27)

where, for the sake of notational clarity, we introduce new notation γ such that v = O(nγ[v]) captures716

the polynomial behavior for any v.717

Solving the equations in (27), we can derive c = −1. With η = O(n−1), we get γ[b1] = γ[b0] = 0718

and γ[aT1 x] = γ[ηb−1
0 y∥x∥2]. Recursively, we can derive bt, at, δ

1
t , δ

2
t ∈ O(1) for all t. Therefore,719

we obtain ft ∈ O(1) and ∆ft ∈ O(1). The above toy model illustrates that our proposed method720

achieve stable learning with learning rates for A and B of the same order of magnitude.721

D.1.2 Proof for Theorem 3722

In this part, we extend the analysis above to a general neural architecture with LoRA layers. We show723

that the conclusion from the analysis on the linear model hold for general neural architecture.724

Assumption 1 (Assumption 1 in [21]). We assume that the gradient processing step by AltLora in725

Algorithm 1 (or AltLoRA+ in Algorithm 2) satisfies gtA = O(n) for all t where gtA is the processed726

gradient of A by AltLoRA (or AltLoRA+) in t-th update.727

Lemma 2 (Lemma A.3. in [81]). For any matrix A ∈ Rm×n, where m being powers of n, such that728

A⊤A is invertible and γ[Aij ] = c for all (i, j), we have729

γ
[
(A⊤A)−1

]
= −γ[∥a∥2]

with a being any column of A.730

Now, we state the formal version of our Theorem 2.731

Theorem 5. Let gAt and gBt denote the processed gradient of A and B, respectively, in Algorithm 1732

or Algorithm 2. Assume Assumption 1 holds for the gradient processing of AltLoRA or AltLoRA+.733

And gAt and gBt ∈ O(1) after the gradient processed. Further assume BAx has dimension of O(n).734

Then the following results hold:735

736

(1) AltLoRA (AltLoRA+) achieves stable feature learning with η = O(1).737

738

(2) If we consider AltLoRA or AltLoRA+ without momentum, the update yields739

Wt+1 = Wt − ηProjc(Bt)(∇WtL)− η(∇W
t+1

2

L)Projr(At+1), (28)

where ηProjc(Bt)(∇WtL), η(∇W
t+1

2

L)Projr(At+1) ∈ O(1). However, when doing joint update,740

the update will introduce additional across term η2(∇WtL)A
T
t (AtA

T
t )

−1(BT
t Bt)

−1BT
t (∇WtL) ∈741

O(1). The across term is indeed the second order term w.r.t η, but it is same magnitude as742

ηProjc(Bt)(∇Wt
L) and η(∇Wt

L)Projr(A) in infinite-width NN setting.743
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Proof. (Part 1) First, we will prove AltLoRA (AltLoRA+) can achieve stable feature learning. The744

technical lemmas and assumptions used for proof are also well-adapted in [21, 81].745

We will alternately update A first then update B. If we treat update A frist then update B as a single746

iteration, it could yield the update of the full model W as747

∆t = BtAtx−Bt−1At−1x

= BtAtx−Bt−1Atx+Bt−1Atx−Bt−1At−1x

= (Bt −Bt−1)Atx+Bt−1(At −At−1)x

= −γgt−1
B (AtA

⊤
t )

−1Atx− γBt−1(B
⊤
t−1Bt−1)

γgt−1
A x.

(29)

Then we will denote these two parts of the update in the R.H.S of (29) as748

δt1 = ηBt−1(B
⊤
t−1Bt−1)

γgt−1
A x

δt2 = ηgt−1
B (AtA

⊤
t )

−1Atx.
(30)

Following Assumption 1, we know gt−1
A x ∈ O(n). Thus the conditions of δt1, δt2, Bt−1Atx ∈ O(x)749

are equivalent to750

γ[η] + γ[Bt−1] + γ[(B⊤
t−1Bt−1)

−1] + 1 = 0

γ[η] + γ[AtA
⊤
t ] + γ[Atx] = 0.

(31)

For gradient update, we have751

Atx = At−1x− η(B⊤
t−1Bt−1)

−1gt−1
A x

Bt = Bt−1 − ηgt−1
B (AtA

⊤
t )

−1.
(32)

thus we have752

⇒

 γ[Bt] = max
{
γ[Bt−1], γ[η] + γ[(B⊤

t−1Bt−1)
−1]

}
γ[Atx] = max

{
γ[At−1x], γ[η] + γ[(B⊤

t[1Bt−1)
−1] + 1

}
.

Note A1 = A0, the recursive argument of δ1t and δ2t ∈ O(1) is the same as [81]. Therefore, we753

find that AltLoRA or AltLoRA+ achieves stable feature learning with η = O(1). We can conclude754

that our algorithm would achieve stable feature learning with the same order of η in contrast to the755

standard LoRA ([21])756

(Part 2) When removing the momentum in our methods, under Assumption 1, it would achieve stable757

feature learning as Part 1 has proved. Then the update of the full model W is758

Wt+1 = Wt − ηProjc(Bt)(∇WtL)− η(∇W
t+1

2

L)Projr(At+1), (33)

where ηProjc(Bt)(∇Wt
L), η(∇W

t+1
2

L)Projr(At+1) ∈ O(1).759

However, when doing a joint update with scaled gradient descent ([81]), the update of the full model760

W is761

Wt+1 = Wt − ηProjc(Bt)(∇WtL)− η(∇WtL)Projr(At)

+ η2(∇Wt
L)AT

t (AtA
T
t )

−1(BT
t Bt)

−1BT
t (∇Wt

L)
(34)

where the additional cross term η2(∇WtL)A
T
t (AtA

T
t )

−1(BT
t Bt)

−1BT
t (∇WtL) is of order O(1).762

While this term is second-order with respect to η, it shares the same magnitude as the first-order763

terms ηProjc(Bt)(∇Wt
L) and η(∇WtL)Projr(At) under the infinite-width neural network setting.764

A straightforward explanation is that the embedding dimension contributes quadratically to the cross765

term’s effect, matching the overall scale of the first two terms.766
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D.2 Proof of Section 4.2767

First, let’s restate Lemma 1 again and prove it.768

Lemma 3. If any two pairs of LoRA factors(A1, B1), (A2, B2) satisfying769

W = W0 +B1A1 = W0 +B2A2, (35)

then770

Projc(B1) = Projc(B2)

Projr(A1) = Projr(A2)

(36)

where Projc(·) and Projr(·) is defined in (9).771

Proof. we know the column spaces of B1 and B2 are equivalent, as both of them span the column772

space of W −W0. Thus, the projection matrices to the column spaces of B1 and B2 are the same,773

i.e., Projc(B1) = Projc(B2), where Projc(·) is defined in (9). Similarly, the row spaces of A1 and774

A2 are equivalent. And the projection matrices to the column spaces of A1 AND A2 are the same,775

i.e., Projr(A1) = Projr(A2).776

Lemma 1 tells that if two pairs of low-rank adaptation would get the same full model update, the777

projection matrix would preserve invariant over the pairs of low-rank adaptation. Next, we will restate778

Theorem 4 here and start to prove the theorem.779

Theorem 6. In Algorithm 1, every term is consistent across all equivalent LoRA pairs. Consequently,780

Algorithm 1 is transformation-invariant.781

Proof. Now we will use an inductive argument to prove it. Let’s denote (B1,t, A1,t), (B2,t, A2,t) as782

two pairs of LoRA adaptation in the t-th interaction statisfying783

W0 +B1,tA1,t = W0 +B2,tA2,t. (37)

For the first pair (B1,t, A1,t), we denote M̃A
1,t and MA

1,t as the momentum used for A1,t in Algorithm784

1. Let’s assume, for the (t− 1)-th iteration, we have the equivalent decomposition785

B1,t−1A1,t−1 = B1,t−1, A1,t−1. (38)

Besides, we assume it is transformation invariance to (t− 1) iteration, then786

B1,t−2M
A
1,t−2 = B2,t−2M

A
2,t−2 (39)

MB
1,t−2A1,t−2 = MB

1,t−2A1,t−2, (40)

which implies that the historical information is invariant over the pairs of (B1, A1) and (B2, A2).787

Then for the t-th iteration, we need to prove788

B1,t−1M
A
1,t−1 = B2,t−1M

A
2,t−1 (41)

MB
1,t−1A1,t−1 = MB

2,t−1A2,t−1, (42)

holds as well, and the update is transformation-invariant B1,tA1,t = B2,tA2,t.789

First, we will focus on the update of A and prove B1,t−1M
A
1,t−1 = B2,t−1M

A
2,t−1. Recalling the790

definition of MA
1,t is the cumulative gradient to the time t in Algorithm 1 , it yields791

B1,t−1M
A
1,t−1

= B1,t−1

(
β1(B

⊤
1,t−1B1,t−1)

−1BT
1,t−1B1,t−2M

A
1,t−2 + (1− β1)

1

s2
(B⊤

1,t−1B1,t−1)
−1∇A1,t−1L

)
= β1Projc(B1,t−1)B1,t−2M

A
1,t−2 + (1− β1)

1

s2
B1,t−1(B

⊤
1,t−1B1,t−1)

−1∇A1,t−1
L

= β1Projc(B1,t−1)B1,t−2M
A
1,t−2 + (1− β1)

1

s
Projc(B1,t−1)∇W1,t−1L,

(43)
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where the last line uses the results in (1) and W1,t−1 := W0 + B1,t−1A1,t−1. Next, under the792

assumption for induction in (41) and Lemma 1, it yields793

B1,t−1M
A
1,t−1 = β1Projc(B1,t−1)B1,t−2M

A
1,t−2 + (1− β1)

1

s
Projc(B1,t−1)∇W1,t−1

L

= β1Projc(B2,t−1)B2,t−2M
A
2,t−2 + (1− β1)

1

s
Projc(B2,t−1)∇W2,t−1

L

= B2,t−1M
A
2,t−1.

(44)

After updating A, we can find the update of the full model as794

B1,t−1A1,t = B1,t−1(A1,t−1 − ηMA
1,t−1)

= B1,t−1A1,t−1 − ηB1,t−1M
A
1,t−1

= B2,t−1A2,t−1 − ηB2,t−1M
A
2,t−1

= B2,t−1A2,t,

(45)

where the second-to-last line uses the results (38) in (t− 1)-th iteration and the results in (44). Again,795

reapplying Lemma 1, we can find that Projc(A1,t) = Projc(A2,t).796

Up to now, we have shown that the update of A is transformation-invariant and B1,t−1M
A
1,t−1 =797

B1,t−1M
A
1,t−1. With a similar argument, we can prove MB

1,t−1A1,t−1 = MB
1,t−1A1,t−1 and798

B1,tA1,t = B2,tA2,t. Therefore, with the inductive argument, we prove the update of Algorithm 1 is799

transformation-invariant.800

In contrast to the prior work [79], our analysis centers on Lemma 1 to establish the proof of Theorem 4.801

Leveraging the alternating update strategy in Algorithm 1, we analyze the contributions of A and B802

to the full model update separately, allowing us to rigorously demonstrate transformation invariance.803

In comparison, [79] adopts a joint update of A and B, which introduces a cross term δBδA that is804

ignored in their analysis, resulting in an inexact form of transformation invariance. Our alternating805

approach provides a principled direction toward achieving exact transformation invariance.806

Discussion With our newly designed momentum mechanism, the first-order momentum terms807

remain consistent across all equivalent LoRA pairs, thereby ensuring that AltLoRA is robust to808

transformation invariance. In contrast, AltLoRA+ does not preserve this invariance. Motivated by this809

observation, we further attempt to design a second-order momentum mechanism that aligns optimally810

within the low-rank space under memory constraints. Although the second-order momentum terms811

are individually consistent across equivalent LoRA pairs, their combination with the first-order812

momentum leads to inconsistencies, ultimately breaking transformation invariance. To address this813

issue, employing unscaled gradients and momentum, as demonstrated by LoRA-Rite [79], could be a814

viable solution. However, as this approach diverges from our primary focus, we leave it for future815

work.816

D.3 Convergence Analysis817

D.3.1 Set Up818

Following the previous work ([81]), we provide a convergence analysis of the proposed algorithm819

within the over-parameterized two-layer ReLU NN tuning problem. For a data matrix X ∈ Rn×d820

and and any arbitrary vector u, we consider a set of diagonal matrices {diag([Xu ≥ 0]) | u ∈ Rd},821

which take value 1 or 0 along the diagonals that indicate the set of possible arrangement activation822

patterns for the ReLU activation. Let the distinct elements of this set be denoted as D1, . . . , DP823

(see [81] for more details). The constant P corresponds to the total number of partitions of Rd by824

hyperplanes passing through the origin that are also perpendicular to the rows of X [49]. Intuitively,825

P can be regarded as the number of possible ReLU activation patterns associated with X . [49]826

explains that a two-layer ReLU problem shares the same optimal objective with the convex problem827

min
Wi i∈[P ]

1

2

∥∥∥∥∥
P∑
i=1

DiXWi − Y

∥∥∥∥∥
2

F

. (46)
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As we focus on fine-tuning, given a pretrained model with model weights {Wi}Pi=1, we can do828

low-rank adaptation and rewrite the problem (46) as829

min
Ai,Bi,i=1,···P

1

2

∥∥∥∥∥
P∑
i=1

DiX(Wi +BiAi)− Y

∥∥∥∥∥
2

F

, (47)

where X ∈ Rn×d, Ai ∈ Rr×c, Bi ∈ Rd×r and Y ∈ Rn×c. We consider the response model830

Y =
∑P

i DiX(Wi +B⋆
i A

⋆
i ). We define X⋆ :=

∑P
i B⋆

i A
⋆
i are fixed and unknown matrices. Let’s831

denote σr(·) as the r-th largest singular value. First let’s introduce the definition of Restricted832

Isometry Property (RIP).833

Definition 3. (Restricted Isometry Property, [53]) The matric C ∈ Rn×d is said to satisfy Restricted834

Isometry Property(RIP) with parameters (r, δr) if there exists constants 0 ≤ δr ≤ 1, for any matrices835

M ∈ Rd×c with rank r, the below holds836

(1− δr)∥M∥2F ≤ ∥CM∥2F ≤ (1 + δr)∥M∥2F . (48)

RIP is a widely used condition in the filed of compressed sensing ([42, 15, 53, 73]), which states837

that the operator C approximately preserves distances between low-rank matrices. In the absence of838

noise, we can establish a direct relationship between the loss function and the recovery error. If we839

denote Ci := DiX , Problem (47) is equivalent to the problem below up to a change of labels840

min
Ai,Bi,i=1,···P

Lc(B,A) :=
1

2

∥∥∥∥∥
P∑
i

Ci(BiAi −X⋆)

∥∥∥∥∥
2

F

, (49)

where B = {B1, · · · , BP } and A = {A1, · · · , AP }.841

Notation Inspired by the previous work [42, 83, 84], we introduce two local norms and their842

corresponding dual norms for a matrix W ∈ Rk×r843

PAi
t
:= Ai

t(A
i
t)

T , ∥W∥P
Ai

t

:= ∥WP
1
2

Ai
t
∥F , ∥W∥P⋆

Ai
t

:= ∥WP
− 1

2

Ai
t
∥F ,

PBi
t
:= (Bi

t)
TBi

t, ∥W∥P
Bi

t

:= ∥WP
1
2

Bi
t
∥F , ∥W∥P⋆

Ai
t

:= ∥WP
− 1

2

Bi
t
∥F .

(50)

Here, we assume Ai
t and Bi

t are of full rank r for any i. If they aren’t of full rank, we can replace844

them with the Moore-Penrose inverse([4]). Now we are ready to establish the convergence analysis.845

D.3.2 Useful Lemma846

For the t-th iteration, let’s denote Bt = {B1
t , · · · , BP

t } and At = {A1
t , · · · , AP

t }. If we apply847

AltLoRA or AltLoRA+ without momentum for Problem (49), for any i ∈ [P ], the alternating update848

rule as we proposed can be written as849

Ai
t+1 ← Ai

t − η(Bi
t(B

i
t)

T )−1∇Ai
t
Lc(Bt,At)

Bi
t+1 ← Bi

t − η∇Bi
t
Lc(Bt,At+1)((A

i
t+1)

TAi
t+1)

−1.
(51)

First, we will list some assumptions used in our analysis.850

Assumption 2. Suppose that Ci = DiX obeys the r-RIP with a constant δr for each i.851

Assumption 3. Suppose that ∥CT
i Cj∥2 := ∥XTDT

i DjX∥2 ≤ 1+δr
P (P−1)852

Assumption 2 and 3 also adopt in [81] to analyze their optimizer for LoRA. For matrix X with i.i.d853

Gaussian entriesN (0, 1/d∥Di∥0), DiX satisfies RIP for a constant δr when ∥Di∥0 is on the order of854

r(d+ c)/(dδ2r). Note ∥XTDT
i DjX∥2 ≤ ∥XTX∥2 for all (i, j)′s. Thus bounding ∥XTDT

i DjX∥2855

amounts to bounding the largest singular value of the empirical covariance.856

Lemma 4. For a given i ∈ [P ], the gradient of Problem (49) are857

∇Ai
t
L(B,A) =

P∑
j

(Bi
t)

T (Ci)
TCj(B

j
tA

j
t −X⋆)

∇Bi
t
L(B,A) =

P∑
j

(Ci)
TCj(B

j
tA

j
t+1 −X⋆)(A

j
t+1)

T .

(52)
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Proof. For any given i and t, it yields858

∇Ai
t
L(B,A) =

∂

∂Ai
t

1

2

∥∥∥∥∥∥
P∑
j

Cj(BjAj −X⋆)

∥∥∥∥∥∥
2

F

 =

P∑
j

(Bi
t)

T (Ci)
TCj(B

j
tA

j
t −X⋆). (53)

Similarly, we can derive the∇Bi
t
L(B,A) as shown in (52).859

Lemma 5. Suppose Assumption 2 and 3 holds, then we have860

Lc(Bt,At+1) ≤ Lc(Bt,At)− c1 max
i

∥∥∥∇Ai
t
Lc(Bt,At)

∥∥∥2
P⋆

Bi
t

Lc(Bt+1,At+1) ≤ Lc(Bt,At+1)− c1 max
i

∥∥∥∇Bi
t
Lc(Bt,At+1)

∥∥∥2
P⋆

Ai
t+1

,
(54)

where c1 = P (η − η2(1+δr+
1
P )

2 ).861

Proof. Using the update rule in (51), we have862

Lc(Bt,At+1) =
1

2

∥∥∥∥∥
P∑
i

Ci(B
i
tA

i
t+1 −X⋆)

∥∥∥∥∥
2

F

=
1

2

∥∥∥∥∥
P∑
i

Ci

(
Bi

t

(
Ai

t − η((Bi
t)

TBi
t)

−1∇Ai
t
Lc(Bt,At)

)
−X⋆

)∥∥∥∥∥
2

F

=
1

2

∥∥∥∥∥
P∑
i

Ci(B
i
tA

i
t −X⋆)

∥∥∥∥∥
2

F

+
η2

2

∥∥∥∥∥
P∑
i

CiB
i
t((B

i
t)

TBi
t)

−1∇Ai
t
Lc(Bt,At)

∥∥∥∥∥
2

2︸ ︷︷ ︸
T1

− η

〈
P∑
i

Ci(B
i
tA

i
t −X⋆),

P∑
i

CiB
i
t((B

i
t)

TBi
t)

−1∇Ai
t
Lc(Bt,At)

〉
︸ ︷︷ ︸

T2

(55)

For T1, recalling Lemma 4, then we have863

T1 ≤
η2

2

P∑
i

∥CiB
i
t((B

i
t)

TBi
t)

−1∇Ai
t
Lc(Bt,At)∥2F

+
η2

2

∑
i ̸=j

〈
CiB

i
t((B

i
t)

TBi
t)

−1∇Ai
t
Lc(Bt,At), CjB

j
t ((B

j
t )

TBj
t )

−1∇Aj
t
Lc(Bt,At)

〉
(a)
≤ η2(1 + δr)

2
P max

i
∥∇Ai

t
Lc(Bt,At)∥2P⋆

Bi
t

+
η2

2
max
i ̸=j
∥CT

i Cj∥2P (P − 1)max
i
∥∇Ai

t
Lc(Bt,At)∥2P

Bi
t

(b)
≤

η2(1 + δr +
1
P )

2
P max

i
∥∇Ai

t
Lc(Bt,At)∥2P

Bi
t

,

(56)

where (a) uses Cauchy Inequality, Assumption 2 and the fact that ∥Bi
t((B

i
t)

TBi
t)

− 1
2 ∥22 = 1, (b) uses864

the assumption that maxi̸=j ∥CT
j Cj∥2 ≤ (1+δr)

P (P−1) .865
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For T2, using Lemma 4 again, we have866

T2 = η

〈
P∑
j

Cj(B
j
tA

j
t −X⋆),

P∑
j

CjB
j
t ((B

j
t )

TBj
t )

−1∇Aj
t
Lc(Bt,At)

〉

= η

P∑
j

〈
P∑
i

Ci(B
i
tA

i
t −X⋆), CjB

j
t ((B

j
t )

TBj
t )

−1∇Aj
t
Lc(Bt,At)

〉

= η

P∑
i

∥∥∥∇Ai
t
Lc(Bt,At)

∥∥∥2
P⋆

Bi
t

≤ ηP max
i
∥∇Ai

t
Lc(Bt,At)∥2P

Bi
t

.

(57)

To sum up, it yields867

Lc(Bt,At+1) ≤ Lc(Bt,At)−
(
η −

η2(1 + δr +
1
P )

2

)
P max

i

∥∥∥∇Ai
t
Lc(Bt,At)

∥∥∥2
P⋆

Bi
t

. (58)

Similarly, we can induce868

Lc(Bt+1,At+1) ≤ Lc(Bt,At+1)−
(
η −

η2(1 + δr +
1
P )

2

)
P max

i

∥∥∥∇Bi
t
Lc(Bt,At+1)

∥∥∥2
P⋆

Ai
t+1

.

(59)

869

Lemma 6. Suppose Assumption 2 holds, then, for any i ∈ [P ], we have870

∥∇Ai
t
Lc(Bt,At)∥2P⋆

Bi
t

≥ 2(1− δr)Lc(Bt,At)

∥∇Bi
t
Lc(Bt,At+1)∥2P⋆

Ai
t+1

≥ 2(1− δr)Lc(Bt,At+1).
(60)

Proof. See Lemma 6 in [42] for the detailed proof.871

Theorem 7. Assume for any i ∈ [p] the matrix Ci = DiX satisfies the rank r-RIP with constant δr872

(Assumption 2) and 0 ≤ η ≤ 1
1+δr+

1
P

, then AltLoRA or AltLoRA+ without momentum solves the873

over-parameterized problem leads to874

Lc(Bt+1,At+1) ≤ (1− ηc)
2Lc(Bt,At) (61)

and875 ∥∥∥∥∥
P∑
i

Bi
tA

i
t −X⋆

∥∥∥∥∥
2

F

≤ 1 + δr
1− δr

(1− ηc)
2t

∥∥∥∥∥
P∑
i

Bi
0A

i
0 −X⋆

∥∥∥∥∥
2

F

, (62)

where ηc = 2P (1− δr)
(
η − η2(1+δr+

1
P )

2

)
.876

Proof.

Lc(Bt+1,At+1) ≤ Lc(Bt,At+1)−
(
η −

η2(1 + δr +
1
P )

2

)
P max

i

∥∥∥∇Bi
t
Lc(Bt,At+1)

∥∥∥2
P⋆

Ai
t+1

≤ Lc(Bt,At+1)−
(
η −

η2(1 + δr +
1
P )

2

)
2P (1− δr)Lc(Bt,At+1)

≤
(
1− 2P (1− δr)

(
η −

η2(1 + δr +
1
P )

2

))
Lc(Bt,At+1)

≤ (1− ηc)
2
Lc(Bt,At),

(63)
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where we apply Lemma 5 and 6 and ηc = 2P (1 − δr)
(
η − η2(1+δr+

1
P )

2

)
. Moreover, under877

Assumption 2, we have878 ∥∥∥∥∥
P∑
i

Bi
tA

i
t −X⋆

∥∥∥∥∥
2

F

≤ 1 + δr
1− δr

(1− ηc)
2t

∥∥∥∥∥
P∑
i

Bi
0A

i
0 −X⋆

∥∥∥∥∥
2

F

. (64)

879

E Appendix for Expirments880

E.1 Details and Results for Supervised Fine-tuning881

For the experimental setup, we follow the configuration used in LoRA-Pro [66] and summarize the882

key description here. As the experiments involve randomness from initialization and optimization, all883

results are averaged over three different random seeds.884

Dialogue Generation Task We fine-tune large language models on a 52k subset of the WizardLM885

dataset [72] and evaluate it using the MT-Bench dataset [89]. GPT-4o is used to asses the quality of886

the model’s response and we report the first-turn score as the metric.887

Math Task We fine-tuning large language models on a 100k sample from the MetaMathQA dataset888

[80]. The model is then evaluated on the GSM8K test set [11], and we report the accuracy as the889

metric.890

Coding Task We fine-tuning large language models on a 100k subset of the CodeFeedBack dataset891

[90] and test it on the HumanEval dataset [6], reporting the PASS@1 metric.892

For the choice of learning rate, we perform grid search for LoRA, its variants, and AltLoRA+ over893

1e-5, 4e-5, 1e-4. Since AltLoRA does not use second-moment estimates, we conduct an extended894

grid search over 1e-2, 1e-3, 1e-4, 4e-5, 1e-5. We observe that AltLoRA performs better with higher895

learning rates, and therefore report results using 1e-2, 1e-3, 1e-4 in the main evaluation. We set the896

iteration number to be 1 and the max step is 3000 for each experiment.897

E.2 Additional Results898

In Table 5, we compare our method with existing approaches across the three tasks described on899

Llama-3-8B model. Our method further bridges the performance gap between LoRA and full900

fine-tuning.901

Method MT-Bench GSM8K HumanEval

PreTrain 5.63 49.96± 0.38 34.76±0.37
LoRA 6.20 62.11±0.13 37.71±0.12

AltLoRA 6.05 64.39±0.23 40.81±0.47
AltLoRA+ 6.34 67.38±0.13 43.81±0.31

Table 5: Comparison of different LoRA variants on MT-
Bench, GSM8K, and HumanEval benchmarks (accuracy
in %) on Llama-3-8B-Base.

E.3 Additional Ablation Study902

We conduct additional ablation studies to further demonstrate the practical effectiveness of our903

proposed methods. In Appendix E.3.1, we evaluate the performance of our methods under varying904

hyperparameter settings on the LLaMA 3-8B model. Furthermore, in Appendix E.3.2, beyond the905

learning rate, scaling factor α, and rank examined in Table 1, we perform comprehensive ablation906

studies for both AltLoRA and AltLoRA+ on the LLaMA 3.1-8B model.907
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E.3.1 Additional Ablation Study for Llama-3-8B Model908

We further conduct ablation studies on the LLaMA 3-8B model to evaluate the robustness of our909

method under varying hyperparameter settings. As shown in Figure 2, we compare the performance910

of LoRA, AltLoRA, and AltLoRA+ on the GSM8K dataset across different learning rates and scaling911

factors α ∈ {8, 16, 32}. AltLoRA+ consistently outperforms the baselines across all configurations,912

demonstrating both higher accuracy and stronger robustness to hyperparameter variation. We also913

have that all methods have better performance using α = 16.914

Figure 2: Evaluation Accuracy of LoRA, AltLoRA and AltLoRA+ for various learning rateη and
scaling factor α combination on the GSM9K using Llama-3-8B.

E.3.2 Additional Ablation Study for Llama 3.1-8B Model915

Ablation study on the updating strategy In Table 6, in contrast to joint update with scaled gradient916

descent [81], AltLoRA can optimally approximates the full gradient with alternating update and obtain917

better performance in evaluation. Interestingly, we find that the alternating update scheme—where918

matrix B is updated before A—consistently yields better performance. One possible explanation919

is that, under the standard initialization where B is set to zero, updating A first does not lead to920

meaningful descent.921

GSM8K LoRA AltLoRA AltLoRA+
Alternating (A first) 66.11 74.49 76.91
Alternating (B first) 67.66 76.31 76.97
Joint Update 66.43 74.21 76.56

Table 6: Performance comparison of LoRA, AltLoRA and AltLoRA+ on the GSM8K and Llama 3.1
8B with different updating strategies.

Ablation study on the number of LoRAs As low-rank adaptation comes to be a popular parameter-922

efficient technique for fine-tuning, it’s well applied to more complicated scenarios ([43, 77, 57, 23,923

70]). Notably, a very significant application is to improve the structure of the mixture of experts924

with parameter efficiency([70, 37]), handling multiple tasks simultaneously ([48, 26]) and addressing925

catastrophic forgetting ([14]). Following the work ([70]), we explore the performance as the number of926

LoRAs varies and utilize the gating balancing loss. Additionally, we compare AltLoRA and standard927

LoRA on the GSM8K dataset using the Llama 3.1-8B model(see Table 7). In our experiments, the928

number of LoRA experts is set to {1, 4, 8}, and the entropy regularization weight is 0.0001. We929

observe that increasing the number of LoRA experts enhances the capacity of the language model,930

leading to improved performance.931
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Expert Num LoRA AdaLoRA LoRA+ AltLoRA AltLoRA+
1 66.11 72.63 72.33 74.49 76.91
4 67.43 71.71 71.27 75.01 77.33
8 67.89 70.34 71.44 75.33 76.94

Table 7: Comparison of the mixture of experts model, with different expert
numbers on GSM8K and Llama 3.1-8B-Base

Ablation Study on Initialization. To further validate the robustness of our method with respect932

to initialization, as discussed in Section 4.3, we conduct an ablation study using different initializa-933

tion strategies. "Gaussian" refers to the standard random initialization used in the original LoRA934

framework [25]. "Kaiming" denotes the widely adopted Kaiming initialization, which is designed935

to maintain variance stability across layers. "Spectral" represents an initialization strategy based on936

spectral decomposition, where we perform singular value decomposition (SVD) on the pretrained937

weight matrix and construct the low-rank components using the top-r singular vectors, like the938

initialization proposed in [88]. In Table 8, we can see that with different initialization strategies, our939

method would achieve a superior performance over the standard LoRA. Without spectral initialization,940

using Kaiming initialization for A and setting B to be zero would achieve the best performance.941

Besides, to ensure the initial update of BA is zero, one of the matrices must be initialized to zero.942

Notably, setting B = 0 while using a small initialization for A yields better performance compared943

to the reverse setup. This finding is consistent with observations in existing literature [20].944

Initialization Strategy LoRA AltLoRA AltLoRA+
A B

Gaussian zero 66.37 73.13 76.87
zero Gaussian 66.18 72.13 76.50

Kaiming zero 65.11 74.49 76.91
zero Kaiming 67.10 74.03 76.88

Spectral zero 67.63 74.67 76.60
zero Spectral 67.10 74.61 76.37

Table 8: Comparison of the initialization strategies on GSM8K and Llama 3.1-8B-Base
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NeurIPS Paper Checklist945

1. Claims946

Question: Do the main claims made in the abstract and introduction accurately reflect the947

paper’s contributions and scope?948

Answer: [Yes]949

Justification: We have summarized our contribution at the end of the introduction.950

Guidelines:951

• The answer NA means that the abstract and introduction do not include the claims952

made in the paper.953

• The abstract and/or introduction should clearly state the claims made, including the954

contributions made in the paper and important assumptions and limitations. A No or955

NA answer to this question will not be perceived well by the reviewers.956

• The claims made should match theoretical and experimental results, and reflect how957

much the results can be expected to generalize to other settings.958

• It is fine to include aspirational goals as motivation as long as it is clear that these goals959

are not attained by the paper.960

2. Limitations961

Question: Does the paper discuss the limitations of the work performed by the authors?962

Answer: [Yes]963

Justification: In Section 3.1 and 3.2, we discuss how to reduce the assumption of full-rank964

with weight decay, which makes our theory applicable in practice. As our algorithm involves965

the matrix inverse, we discuss the computational cost in the experimental study (see Section966

5.1).967

Guidelines:968

• The answer NA means that the paper has no limitation while the answer No means that969

the paper has limitations, but those are not discussed in the paper.970

• The authors are encouraged to create a separate "Limitations" section in their paper.971

• The paper should point out any strong assumptions and how robust the results are to972

violations of these assumptions (e.g., independence assumptions, noiseless settings,973

model well-specification, asymptotic approximations only holding locally). The authors974

should reflect on how these assumptions might be violated in practice and what the975

implications would be.976

• The authors should reflect on the scope of the claims made, e.g., if the approach was977

only tested on a few datasets or with a few runs. In general, empirical results often978

depend on implicit assumptions, which should be articulated.979

• The authors should reflect on the factors that influence the performance of the approach.980

For example, a facial recognition algorithm may perform poorly when image resolution981

is low or images are taken in low lighting. Or a speech-to-text system might not be982

used reliably to provide closed captions for online lectures because it fails to handle983

technical jargon.984

• The authors should discuss the computational efficiency of the proposed algorithms985

and how they scale with dataset size.986

• If applicable, the authors should discuss possible limitations of their approach to987

address problems of privacy and fairness.988

• While the authors might fear that complete honesty about limitations might be used by989

reviewers as grounds for rejection, a worse outcome might be that reviewers discover990

limitations that aren’t acknowledged in the paper. The authors should use their best991

judgment and recognize that individual actions in favor of transparency play an impor-992

tant role in developing norms that preserve the integrity of the community. Reviewers993

will be specifically instructed to not penalize honesty concerning limitations.994

3. Theory assumptions and proofs995

Question: For each theoretical result, does the paper provide the full set of assumptions and996

a complete (and correct) proof?997
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Answer: [Yes]998

Justification: Due to the page limitation of the main paper, we put the proof Section 3999

and 4 into Appendix B and D, respectively. For clarity, we summarize the key steps for1000

establishing the proof at the begining of Appendix B and D.1001

Guidelines:1002

• The answer NA means that the paper does not include theoretical results.1003

• All the theorems, formulas, and proofs in the paper should be numbered and cross-1004

referenced.1005

• All assumptions should be clearly stated or referenced in the statement of any theorems.1006

• The proofs can either appear in the main paper or the supplemental material, but if1007

they appear in the supplemental material, the authors are encouraged to provide a short1008

proof sketch to provide intuition.1009

• Inversely, any informal proof provided in the core of the paper should be complemented1010

by formal proofs provided in appendix or supplemental material.1011

• Theorems and Lemmas that the proof relies upon should be properly referenced.1012

4. Experimental result reproducibility1013

Question: Does the paper fully disclose all the information needed to reproduce the main ex-1014

perimental results of the paper to the extent that it affects the main claims and/or conclusions1015

of the paper (regardless of whether the code and data are provided or not)?1016

Answer: [Yes]1017

Justification: In Section 5, we discuss the experimental setup, like hyperparameter choices1018

and datasets, and provide the link to our code repository.1019

Guidelines:1020

• The answer NA means that the paper does not include experiments.1021

• If the paper includes experiments, a No answer to this question will not be perceived1022

well by the reviewers: Making the paper reproducible is important, regardless of1023

whether the code and data are provided or not.1024

• If the contribution is a dataset and/or model, the authors should describe the steps taken1025

to make their results reproducible or verifiable.1026

• Depending on the contribution, reproducibility can be accomplished in various ways.1027

For example, if the contribution is a novel architecture, describing the architecture fully1028

might suffice, or if the contribution is a specific model and empirical evaluation, it may1029

be necessary to either make it possible for others to replicate the model with the same1030

dataset, or provide access to the model. In general. releasing code and data is often1031

one good way to accomplish this, but reproducibility can also be provided via detailed1032

instructions for how to replicate the results, access to a hosted model (e.g., in the case1033

of a large language model), releasing of a model checkpoint, or other means that are1034

appropriate to the research performed.1035

• While NeurIPS does not require releasing code, the conference does require all submis-1036

sions to provide some reasonable avenue for reproducibility, which may depend on the1037

nature of the contribution. For example1038

(a) If the contribution is primarily a new algorithm, the paper should make it clear how1039

to reproduce that algorithm.1040

(b) If the contribution is primarily a new model architecture, the paper should describe1041

the architecture clearly and fully.1042

(c) If the contribution is a new model (e.g., a large language model), then there should1043

either be a way to access this model for reproducing the results or a way to reproduce1044

the model (e.g., with an open-source dataset or instructions for how to construct1045

the dataset).1046

(d) We recognize that reproducibility may be tricky in some cases, in which case1047

authors are welcome to describe the particular way they provide for reproducibility.1048

In the case of closed-source models, it may be that access to the model is limited in1049

some way (e.g., to registered users), but it should be possible for other researchers1050

to have some path to reproducing or verifying the results.1051
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5. Open access to data and code1052

Question: Does the paper provide open access to the data and code, with sufficient instruc-1053

tions to faithfully reproduce the main experimental results, as described in supplemental1054

material?1055

Answer: [Yes]1056

Justification: We have already provided the link to our code repository in Section 5.1057
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• While we encourage the release of code and data, we understand that this might not be1062

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1063

including code, unless this is central to the contribution (e.g., for a new open-source1064

benchmark).1065

• The instructions should contain the exact command and environment needed to run to1066
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//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1068

• The authors should provide instructions on data access and preparation, including how1069

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1070

• The authors should provide scripts to reproduce all experimental results for the new1071

proposed method and baselines. If only a subset of experiments are reproducible, they1072

should state which ones are omitted from the script and why.1073

• At submission time, to preserve anonymity, the authors should release anonymized1074

versions (if applicable).1075

• Providing as much information as possible in supplemental material (appended to the1076

paper) is recommended, but including URLs to data and code is permitted.1077

6. Experimental setting/details1078

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1079

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1080

results?1081

Answer: [Yes]1082

Justification: We present the experimental setup for training and evaluation in the main text.1083

Additional details about the datasets used for each task are provided in Appendix E.1.1084

Guidelines:1085

• The answer NA means that the paper does not include experiments.1086

• The experimental setting should be presented in the core of the paper to a level of detail1087

that is necessary to appreciate the results and make sense of them.1088

• The full details can be provided either with the code, in appendix, or as supplemental1089

material.1090

7. Experiment statistical significance1091

Question: Does the paper report error bars suitably and correctly defined or other appropriate1092

information about the statistical significance of the experiments?1093

Answer:[Yes]1094

Justification: We report the evaluation score with mean and standard error for each experi-1095

ment. The randomness of our experiment is discussed in Appendix E.1.1096

Guidelines:1097

• The answer NA means that the paper does not include experiments.1098

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1099

dence intervals, or statistical significance tests, at least for the experiments that support1100

the main claims of the paper.1101
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• The factors of variability that the error bars are capturing should be clearly stated (for1102

example, train/test split, initialization, random drawing of some parameter, or overall1103

run with given experimental conditions).1104

• The method for calculating the error bars should be explained (closed form formula,1105
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• It is OK to report 1-sigma error bars, but one should state it. The authors should1110

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1111

of Normality of errors is not verified.1112

• For asymmetric distributions, the authors should be careful not to show in tables or1113

figures symmetric error bars that would yield results that are out of range (e.g. negative1114

error rates).1115

• If error bars are reported in tables or plots, The authors should explain in the text how1116

they were calculated and reference the corresponding figures or tables in the text.1117

8. Experiments compute resources1118

Question: For each experiment, does the paper provide sufficient information on the com-1119

puter resources (type of compute workers, memory, time of execution) needed to reproduce1120

the experiments?1121

Answer: [Yes]1122

Justification: See Experiment Setup in Section 5.1 and 5.2.1123

Guidelines:1124

• The answer NA means that the paper does not include experiments.1125

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1126

or cloud provider, including relevant memory and storage.1127

• The paper should provide the amount of compute required for each of the individual1128

experimental runs as well as estimate the total compute.1129

• The paper should disclose whether the full research project required more compute1130

than the experiments reported in the paper (e.g., preliminary or failed experiments that1131

didn’t make it into the paper).1132

9. Code of ethics1133

Question: Does the research conducted in the paper conform, in every respect, with the1134

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1135

Answer:[Yes]1136

Justification: We keep the code to preserve anonymity.1137

Guidelines:1138

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1139

• If the authors answer No, they should explain the special circumstances that require a1140

deviation from the Code of Ethics.1141

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1142

eration due to laws or regulations in their jurisdiction).1143

10. Broader impacts1144

Question: Does the paper discuss both potential positive societal impacts and negative1145

societal impacts of the work performed?1146

Answer: [Yes]1147
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• If the authors answer NA or No, they should explain why their work has no societal1153

impact or why the paper does not address societal impact.1154

• Examples of negative societal impacts include potential malicious or unintended uses1155

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1156

(e.g., deployment of technologies that could make decisions that unfairly impact specific1157

groups), privacy considerations, and security considerations.1158
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being used as intended and functioning correctly, harms that could arise when the1167

technology is being used as intended but gives incorrect results, and harms following1168

from (intentional or unintentional) misuse of the technology.1169
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strategies (e.g., gated release of models, providing defenses in addition to attacks,1171
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feedback over time, improving the efficiency and accessibility of ML).1173

11. Safeguards1174

Question: Does the paper describe safeguards that have been put in place for responsible1175

release of data or models that have a high risk for misuse (e.g., pretrained language models,1176

image generators, or scraped datasets)?1177

Answer: [NA]1178

Justification: Our paper poses no such risks.1179
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• The answer NA means that the paper poses no such risks.1181

• Released models that have a high risk for misuse or dual-use should be released with1182
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faith effort.1190
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• Depending on the country in which research is conducted, IRB approval (or equivalent)1258

may be required for any human subjects research. If you obtained IRB approval, you1259

should clearly state this in the paper.1260

• We recognize that the procedures for this may vary significantly between institutions1261
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