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ABSTRACT

We examine the long-run behavior of learning in a repeated game where the agents
operate in a low-information environment, only observing their realized payoffs at
each stage. We study this problem in the context of monotone games with uncon-
strained action spaces, where standard gradient schemes may lead to cycles, even
with perfect gradient information. To account for the fact that only a single payoff
observation can be made at each iteration—and no gradient information is directly
observable—we design and deploy a simultaneous perturbation gradient estima-
tion method adapted to the challenges to the problem at hand, namely unbounded
action spaces, gradients and rewards. In contrast to single-timescale approaches,
we find that a two-timescale approach is much more effective at controlling the
(unbounded) noise introduced by payoff-based gradient estimators in this setting.
Owing to the introduction of a second timescale, we show that the proposed si-
multaneously perturbed optimistic (SPOG) algorithm converges to equilibrium
with probability 1. In addition, by developing a new method to assess the rate
of convergence of two-timescales stochastic approximation procedures, we show
the sequence of play induced by SPOG converges at an asymptotic Õ(n−2/3) rate
in strongly monotone games. To the the best of our knowledge, this is the first
convergence rate result for games with unbounded action spaces, and it is faster
than the sharpest known convergence rates for single-observation, payoff-based
learning in strongly monotone games with bounded action spaces.

1 INTRODUCTION

Many large-scale systems involve the interaction of multiple autonomous decision makers. Exam-
ples of this include generative adversarial networks (GANs) (Goodfellow et al., 2014), distributed
optimization in parallel computing, transportation networks (Vigneri et al., 2019), etc. In this set-
ting, each agent must respond to the changing environment posed by the other agents’ actions, and
the utility of each agent is determined by the actions of all players through a fixed underlying rule.

In a game-theoretical setting, first-order gradient methods might never stabilize in the long-run, re-
sulting in cycles or even divergence of the sequence of play, even in simple, unconstrained bilinear
min-max games (Daskalakis et al.). In fact, even optimistic gradient (OG) methods, which incorpo-
rate a recency bias, have been shown to exhibit trajectories of play that orbit an equilibrium, failing
to converge when feedback is contaminated with noise (Hsieh et al., 2022). An example of this is
illustrated in Figure 2d.

When each agent has a noise-contaminated estimate of their payoff gradient, a modification of the
optimistic gradient method, known as OG+, results in last-iterate convergence of the sequence of
play to a Nash equilibrium in monotone games (Hsieh et al., 2020; 2022). This modification involves
a learning rate separation, whereby the extrapolation step is taken with a learning rate an order of
magnitude larger than that of the update step. By following a policy that explores aggressively and
updates conservatively, the gradient noise effectively becomes an order of magnitude smaller than
the expected variation of payoffs, ultimately enabling convergence.

In a low-information environment, an agent might not have access to an estimate of their gradient.
We instead consider that the only information available to each agent is the payoff they receive at
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Algorithm Actions Monotone Feedback Convergence Rate Type
AOG (Cai and Zheng,
2023) Compact Mere Perfect FO O(n−1) GAP anytime

Dong et al. (2025) Compact Mere 1-Point ZO O(n−1/4) ∥·∥2 asymptotic
MD (Bravo et al., 2018) Compact Strong 1-Point ZO O(n−1/3) ∥·∥2 asymptotic
MD (Drusvyatskiy
et al., 2022) Compact Strong 1-Point ZO O(n−1/2) ∥·∥2 anytime

Tatarenko and Kamgar-
pour (2024a) Compact Strong VS 1-Point ZO O(n−1/2) ∥·∥2 asymptotic

2-Point ZO O(n−1) ∥·∥2 asymptotic
GABP (Abe et al.,
2025) Compact Mere Perfect FO Õ(n−1) GAP anytime

Stoch. FO Õ(n−1/7) GAP anytime
SPOG Unbounded Strong 1-Point ZO Õ(n−2/3) ∥·∥2 asymptotic

Table 1: Rates of convergence for learning algorithms in monotone games. See Sections 2.1-2.3.

each stage of the game. A difficulty inherent to this payoff-based context is that agents must estimate
their payoff gradient from a single payoff observation. Despite these difficulties, no-regret, payoff-
based learning algorithms have been developed that guarantee last-iterate convergence in monotone
games with constrained action spaces (Bravo et al., 2018; Tatarenko and Kamgarpour, 2024a).

Further challenges arise when learning in games with unbounded action spaces. Standard compact-
ness arguments cannot be applied to establish the convergence of iterates. Furthermore concave
payoff functions are in general unbounded and not Lipschitz, adding a further layer of variance to
zeroth-order (ZO) gradient estimators.

Our contributions in the context of related work.

1. We develop a simultaneously perturbed optimistic gradient (SPOG) learning algorithm that com-
bines the learning rate separation technique present from OG+ with a novel, thresholded single-
observation payoff-based gradient estimator. We show that SPOG converges to a Nash equilib-
rium with probability 1 in a large class of monotone games.

2. We obtain an asymptotic last-iterate rate of convergence of rate of Õ(n−2/3) in strongly mono-
tone games. This is, to the best of our knowledge, the first rate of convergence result for un-
constrained games and exceeds the corresponding best rate for strongly monotone constrained
games with one-point ZO feedback Tatarenko and Kamgarpour (2024a). By reusing previous
payoff observations as a baseline reward in the gradient estimate, thereby reducing the variance,
our algorithm exceeds the sharpest known convergence rate for one-point ZO algorithms (Shamir,
2013; Ba et al., 2025).

3. We develop and deploy a new analysis method for two-timescales stochastic approximation
(Borkar, 1997; Doan, 2021) to control the convergence rate of our algorithm.

Closely related work, summarized in Table 1, is described in Section 2.3 once we have introduced
the necessary preliminaries.

2 PRELIMINARIES

2.1 MONOTONE GAMES IN NORMAL FORM

We consider games with a finite number N of players and unconstrained continuous action spaces.
Denote the set of players as N = {1, . . . , N}. During play, each player i ∈ N simultane-
ously selects an action xi from their action set Xi = RDi , resulting in a joint action profile
x = (xi, x−i) ≡ (x1, . . . , xN ) ∈ X ≡

∏
i∈N Xi. Each player receives a reward, with Player i

receiving ui(xi, x−i), where ui : X → R is Player i’s utility function. Such a game is referred to as
a continuous game in normal form. Write vi(x) := ∇xi

ui(xi;x−i) for the players’ individual pay-
off gradients and define the game’s pseudo-gradient operator v : RD → RD as v(x) = (vi(x))i∈N
for all x ∈ X .
Definition 2.1 (Monotonicity). For µ ≥ 0, a map v : X → Y is said to be µ-monotone over
X ⊂ RD if the following inequality holds for all x, x′ ∈ X ,

⟨v(x)− v(x′), x− x′⟩ ≤ −µ ∥x− x′∥2 , (MON)
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where ∥·∥ denotes the Euclidean norm. If µ > 0 then v is strongly monotone, otherwise v is
merely monotone. A game is said to be (strongly/merely) monotone if its pseudo-gradient v is
(strongly/merely) monotone over its joint action space X .

Monotonicity has thus given rise to a rich class of games, containing all bilinear min-max games (an
unconstrained analogue of finite two-player, zero-sum games), games that admit a concave potential,
and is common in applications to generative models (Chavdarova et al., 2019; Kamalaruban et al.,
2020). Throughout the rest of this paper, we restrict our study to monotone games.

2.2 SOLUTION CONCEPTS

A widespread solution concept in the theory of games is the Nash equilibrium (Nash, 1951), a joint
strategy profile from which no player can profit from deviating unilaterally. Formally,
Definition 2.2 (Nash Equilibrium). An action profile x⋆ ∈ X is said to be a Nash equilibrium if

ui(x
⋆
i ;x

⋆
−i) ≥ ui(xi;x⋆−i) for all xi ∈ Xi, i ∈ N . (NE)

Let X⋆ denote the set of Nash equilibria of the game. By concavity of the players’ payoff functions,
X⋆ coincides exactly with the zeros of the pseudo-gradient v, i.e. X⋆ = {x ∈ X : v(x) = 0}.
Throughout we impose the following assumptions on the underlying game.
Assumption 1. There exists constants L > 0, µ ≥ 0 such that

(i) v is L-Lipschitz, that is, ∥v(x)− v(x′)∥ ≤ L ∥x− x′∥ for all x, x′ ∈ X ;
(ii) the game G is µ-monotone;

(iii) the set X⋆ is non-empty;
(iv) there exists a constant G > 0 satisfying ∥∇ui(x)∥ ≤ G(1 + ∥x∥) for all x ∈ X .

Much of our analysis exploits the smoothness from Assumption 1(i) with iterative application of
the monotonicity from Assumption 1(ii) to obtain last-iterate convergence guarantees. Our study
concerns games with unconstrained action spaces, where in general Nash equilibria might not even
exist; we avoid this difficult by imposing Assumption 1(iii) which is a standard assumption in this
setting (Hsieh et al., 2022). The regularity Assumption 1(iv) is used to control the variance of our
zeroth-order gradient estimate, which is necessary since the action spaces are unbounded.

2.3 RELATED WORK

In this section we provide a detailed account of the related work, as summarized in Table 1. We
distinguish between first order (FO) and zeroth-order (ZO) feedback schemes.

First-Order Feedback. Much of the literature on online learning in games assumes that players
are able to obtain gradient information by querying a first-order oracle (Nesterov, 2013), that is a
“black-box” feedback scheme that returns an estimate v̂i of Player i’s individual payoff gradient
vi(x) at the current (joint) action profile x = (xi, x−i) ∈ X . The oracle might be perfect, yielding
v̂i = vi(x), or stochastic where the gradient is contaminated with some noise Ui.

In constrained games with mere monotonicity (µ ≥ 0), Abe et al. (2025) develop a payoff per-
turbation technique enabling last-iterate convergence at anytime rates of Õ(n−1/7) for zero-mean
bounded-variance additive noise, and at Õ(n−1) with perfect gradient feedback. In the noiseless set-
ting, the Accelerated Optimistic Gradient (AOG) converges with an optimal anytime rate O(n−1)
(Cai and Zheng, 2023).

Zeroth-Order Feedback. In our study we consider instead zeroth-order, or payoff-based, feedback.
In this setting, the only information available to agent i ∈ N is the actual payoff ui(xi, x−i) that
they receive at each stage of the game. Each agent is unaware of the payoff received by other agents,
the actions of other agents, or even the number of agents in the game.

In this setting, agents must estimate their individual payoff gradient using only their observed payoff.
Multi-point directional sampling techniques are an effective way to estimate a function’s gradient
(Kiefer and Wolfowitz, 1952; Flaxman et al., 2004), but require multiple queries of their payoff
function. In general, this is not possible in a game theoretical setting, where a player’s individual
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payoff function might depend on the actions of all players, changing from one instance to the next
as a result of the actions of other players.

Fortunately, techniques for estimating a function’s gradient from a single function evaluation exist;
most notably simultaneous perturbation stochastic approximation (SPSA) (Spall, 1997; Flaxman
et al., 2004), which we define in Section 2.4. In a game theoretical setting, online learning al-
gorithms using SPSA (or similar) gradient estimators have yielded last-iterate convergence results
in games with constrained action spaces (Bravo et al., 2018; Tatarenko and Kamgarpour, 2024b).
Bravo et al. (2018) develop a variant of mirror descent (MD) which they show enjoys an asymptotic
last-iterate convergence rate of O(n−1/3) in strongly monotone games. Tighter analysis by Drusvy-
atskiy et al. (2022) reveals that this algorithm converges at an anytime rate of O(n−1/2), matching
Tatarenko and Kamgarpour (2024a) who obtain this rate asymptotically in constrained games with
a strongly variationally stable (VS) Nash equilibrium, a large class containing strongly monotone
games. In games which are merely monotone, Dong et al. (2025) develop a doubly regularized vari-
ant of mirror descent that converges at an asymptotic rate ofO(n−1/4), however, to achieve this rate,
their algorithm requires a game-dependent choice of regularizer. Interestingly, we see the same rate
appearing in the lower bound proved by Fiegel et al. (2025) for two-player zero-sum matrix games,
which are a fortiori merely monotone.

Unlike all of the works above where action spaces are assumed to be compact, we consider the
problem of payoff-based learning in unconstrained monotone games. In this setting, there do not
seem to be any theoretical convergence rate guarantees in the literature.

2.4 THE SPSA GRADIENT ESTIMATOR

We define the SPSA gradient estimator of Spall (1997) in detail. Suppose that players are estimating
v(z) at joint action profile z = (z1, . . . , zN ). For a query radius δ > 0, each player i ∈ N ,

1. Samples a vector wi from the unit sphere SDi ⊂ RDi and plays z̃i = zi + δwi.

2. Receives feedback ûi = ui(z̃i, z̃−i) and constructs the estimate V̂i = Di

δ ûiwi.

As demonstrated in (Flaxman et al., 2004; Bravo et al., 2018), V̂i is an unbiased estimator of the
gradient of a δ-smoothing uδi (z) of ui evaluated at z. In particular, ∥∇iui − ∇iuδi ∥∞ = O(δ)
and the variance of V̂i is O(δ−2

n ). Since ∥V̂i∥ is proportional to the payoff received, and concave
payoff functions on unbounded action spaces are unbounded, we must contend with the fact that
the variance of this estimator may explode. An important observation is that, for any predetermined
ci ∈ R, the adjusted SPSA (SPSA+) estimate

Vi =
Di

δ
(ûi − ci)wi (SPSA+)

has the same expectation as V̂n. A key idea is that if ci = ui(z̃
−) is chosen to be a previous payoff

observation, and ∥z̃ − z̃−∥ is sufficiently small, then for ui satisfying the regularity Assumption
1(iv), the exploding variance from the factor of δ−2

n can be controlled.

We will find it useful to express SPSA+ in the form Vi = vi(z) + ξi where ξi = Ui + bi with
unbiased component Ui = Vi − EVi and bias bi = ∇iuδi (z)−∇iui(z).

2.5 OPTIMISTIC GRADIENT METHODS AND THE ROLE OF LEARNING RATE SEPARATION

It is well known that simply following a gradient ascent/descent policy can result in non-convergence
in games. Itself a variant of the extragradient (EG) algorithm (Korpelevich, 1976), the optimistic
gradient (OG) algorithm (Popov, 1980; Rakhlin and Sridharan, 2013) mitigates non-convergence
phenomena in online learning in games. Agents prescribed to an OG scheme use past gradient
information to make an informed “look-ahead”, extrapolation step, before taking an update step to
update their strategy, as illustrated in Figure 1. Formally, assuming for the moment that players may
query a stochastic first-order oracle ṽ, the OG algorithm is defined by the sequence of iterates

Xn+1/2,i =Xn,i + γn−1ṽi(Xn−1/2),

Xn+1,i =Xn,i + γnṽi(Xn+1/2),
(OG)
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xn

γn−1ṽ(xn−1/2)

ηnṽ(xn+1/2)

ηnṽ(xn+1/2)

xn+1/2

xn+1

Figure 1: Optimistic Gradient with learning rate separation

where γn > 0 is a sequence of learning rates.

This technique stabilizes the learning dynamics when the agents have access to a perfect first-order
oracle, yet can lead to divergent trajectories of play with a stochastic first-order oracle, even for sim-
ple two-player bilinear min-max games (Hsieh et al., 2022), illustrated in Figure 2d. To overcome
this difficulty, Hsieh et al. (2022) introduce a learning-rate separation technique, which they term
OG+, whereby the extrapolation step is taken with a learning rate that is asymptotically larger than
that of the update step. Formally, the OG+ algorithm is defined by the sequence of iterates

Xn+1/2,i =Xn,i + γn−1ṽi(Xn−1/2),

Xn+1,i =Xn,i + ηnṽi(Xn+1/2),
(OG+)

where γn > ηn > 0 are the respective learning rates for the extrapolation and update steps. Building
on the intuition of Hsieh et al. (2022), when considering separated learning rates, the noise contam-
inating the gradient ṽ is effectively controlled ensuring that it is an order of magnitude smaller than
the expected variation of payoffs. This stabilizes the learning dynamics in the setting of uncon-
strained monotone games with first-order feedback, whereby the algorithm enjoys last-iterate con-
vergence of Xn+1/2 to a Nash equilibrium and attains an expected regret of Õ(

√
n) under additive

noise model and O(1) under multiplicative noise models.

3 SIMULTANEOUSLY PERTURBED OPTIMISTIC GRADIENT

We are now in a position to introduce Simultaneously Perturbed Optimistic Gradient (SPOG), an
optimistic gradient algorithm for payoff-based learning in continuous games. To that end, we begin
by coupling OG+ with SPSA+, defined by the update rule, for each i ∈ N ,

Zn+1,i =Xn,i + γn−1Vn,i,

Xn+1,i =Xn,i + ηnVn+1,i,
(OG+SPSA)

where the adjusted (joint) SPSA+ estimator Vn+1, given by,

Vn+1,i =
Di

δn
(ui(Z̃n)− ui(Z̃n−1))Wn,i, (1)

and where Z̃n = Zn + δnWn, and Wn is the joint perturbation for which each component Wn,i is
drawn independently of the other players and uniformly from the sphere SDi .

In this scheme Zn takes the place of the extrapolation step Xn+1/2 in OG+ and is the action pro-
file at which the pseudo-gradient v(Zn) is to be estimated. However, the variance introduced by
the adjusted SPSA estimator 1 grows unbounded, which makes the iterates of the resultant algo-
rithm impractical to control. This motivates a two-timescales approach (Borkar, 1997) where the
extrapolation step Zn is updated with a larger learning parameter, effectively averaging across many
gradient estimates and thereby controlling the variance of the SPSA estimator 1. The resulting
update rule is:

Zn+1,i =Zn,i + αn(Xn,i + γVn+1,i − Zn,i),
Xn+1,i =Xn,i + βnVn+1,i,

(2)

where Vn+1 is the adjusted (joint) SPSA estimator 1, γ > 0 is a fixed extrapolation parameter and
αn, βn > 0 with βn = o(αn) as n → ∞ are the respective learning rates for the fast and slow

5
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timescales. Owing to asymptotic difference in learning rates, we will refer to Xn as the slow iterate,
Zn as the fast iterate, which may be thought as a kind of ‘time-average’. The realized action is Z̃n.

Following the intuition of Borkar (1997), if the fast-process Zn converges for any fixed value of
Xn to a unique limit point, then we can analyze the algorithm as though the fast-process is, at each
stage, fully calibrated to the current value of the slow process. To make this formal, consider the
ordinary differential equation corresponding to the fast-process Zn as though the slow component is
static at Xn = x ∈ X , i.e.

ż(t) = x+ γv(z(t))− z(t). (ODE)

The parameter γ > 0 is subsequently tuned so that this ODE has a unique fixed point.

Unfortunately, 2 does not converge. The remaining challenge is that on unconstrained domains,
concave functions are, in general, unbounded and not globally Lipschitz. We circumvent this by
projecting the iterates into slowly-expanding envelopes, thus introducing a deterministic bound on
the size of the iterates at a given time.

With this in hand, we are ready to present Simultaneously Perturbed Optimistic Gradient (SPOG).
Let (Xn)n≥1 and (Zn)n≥1 be the sequence of iterates defined by the update rule, for each i ∈ N ,

Zn+1,i =Proj3Rn+1BDi [Zn,i + αn(Xn,i + γVn+1,i − Zn,i)],
Xn+1,i =ProjRn+1BDi [Xn,i + βnVn+1,i],

(SPOG)

where the adjusted (joint) SPSA+ estimator Vn+1, given by 1. See Algorithm 1 for pseudocode.

In addition, we impose the following assumptions on the various parameter sequences introduced.

Assumption 2. The sequences αn, βn, δn > 0 are decreasing, βn

αn
is decreasing and converges

to 0 as n → ∞ and δn−1

δn
is uniformly bounded; and 0 < γ < min{ 1

2L ,
1

2G
√
N
}. In addition,

αn, βn, δn, Rn satisfy

lim
n→∞

αn = lim
n→∞

βn = lim
n→∞

δn = lim
n→∞

αn−1Rn
δn

= 0, lim
n→∞

Rn = +∞, (3a)

∞∑
n=1

αn = +∞ ,

∞∑
n=1

βn = +∞,
∞∑
n=1

αnβnR
2
n <∞,

∞∑
n=1

β3
nR

2
n

α2
n

<∞,
∞∑
n=1

βnδn <∞, (3b)

In addition, we will sometimes restrict our study to parameter sequences of the following form.

Assumption 3. There exists constants 0 < a, b, d ≤ 1 and α, β, δ, R > 0 such that

αn =
α

na
, βn =

β

nb
, δn =

δ

nd
(log n)2, and Rn = R log n. (4)

Remark. Under Assumption 3, Assumption 2 is equivalent to the constants a, b, d satisfying the
following inequalities: 0 < d ≤ a < b < 1, a+ b > 1, b+ d > 1 and 3b− 2a > 1. We will show
below that the optimal choice of a, b, d relative to the derived convergence guarantees in n is to set
a = d = 2

3 and b = 1 and is game-independent. In practice, SPOG should be initialized with these
exponents (or close enough, as per the discussion following Lemma 3.1).

As such the only parameter that must be tuned to the underlying game is γ, which must be chosen to
satisfy 0 < γ < min{ 1

2L ,
1

2G
√
N
}. To circumvent this requirement, one might consider a variable γ

approach, whereby γ = γn converges to 0 on a third, even slower timescale. We opted for simplicity
and avoided this extra layer of complication in our presentation of SPOG.

The parameterRn is introduced in order to project the iterates into a slowly growing envelope which
we combine with the regularity Assumption 1(iv) in order to control the variance of the adjusted
SPSA estimator Vn+1. It is necessary for our analysis that we project fast- and slow-timescales into
envelopes of different radii. The following estimate underpins much of our analysis.

Lemma 3.1. Under Assumptions 1-2, there exists a (deterministic) constant C > 0 such that, for
sufficiently large n,

∥Vn+1∥ ≤ CRn. (5)

6
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Algorithm 1 SPOG (player indices suppressed)

Require: learning rates αn, βn > 0, query radius δn > 0, parameter γ > 0
1: Choose X,Z ∈ X , set ũ← 0
2: for each stage n = 1, 2, . . . do
3: draw W uniformly from Sd
4: play Z̃ ← Z + δnW {default: δn ∝ 1/n2/3}
5: set ũ− ← ũ
6: receive ũ = u(Z̃)
7: set ṽ ← (d/δn)(ũ− ũ−) ·W
8: update Z ← Proj3Rn+1Bd [Z + αn(X + γṽ − Z)] {default: αn ∝ 1/n2/3}
9: update X ← ProjRn+1Bd [X + βnṽ] {default: βn ∝ 1/n}

10: end for

Remark. Here C > 0 is any constant satisfying C > 2(1 + 8DG
√
N supk≥1

δk−1

δk
). In the proof of

Lemma 3.1, we show that the upper bound 5 activates for all n ≥ n1, where

n1 = sup
k≥1

{
αk−1Rk
δk

>
min{1, 2

√
N/γ}

16DGN

}
. (6)

If SPOG is run with a = d = 2
3 , b = 1 as per Assumption 3, we have αk−1Rk

δk
= O( 1

logn ), so
the number of rounds until 5 binds may be exponential in D,G,N and γ. This is an artifact of the
logarithmic scaling factor in δn, and it can be avoided by taking

αn =
α

n2/3
, βn =

β

n
, δn =

δ

n2/3−ϵ
, and Rn = R log n. (7)

where ϵ > 0 is an arbitrary small constant. In this case, equation 5 binds after n1 =
poly(D,G,N, γ) iterations, at the cost of only a slight deterioration in the algorithm’s convergence
rate. We discuss this issue in more detail right after the statement of Theorem 4.2.

The proof of this Lemma and all following statements are detailed in the Appendix.

4 RESULTS AND ANALYSIS

4.1 STATEMENT OF MAIN RESULTS

Our first key result is that SPOG converges to a Nash equilibrium in all monotone games.
Theorem 4.1. Suppose that Assumptions 1-2 hold. Let (Xn, Zn)n≥1 be generated by SPOG. Then
Xn converges to a (possibly random) Nash equilibrium x⋆ ∈ X⋆ almost surely.

There are two main steps to proving Theorem 4.1. First, in Section 4.2 we estimate the rate of
convergence of the fast iterate Zn to a perturbed Nash equilibrium characterized by the slow iterate.
In Section 4.3, we leverage the convergence of the fast iterate in order to analyze the asymptotic
convergence of the slow iterate Xn.

Under the additional assumption that the game is strongly-monotone, we obtain a rate of convergence
for the sequence Xn generated by SPOG to the game’s (unique) Nash equilibrium:
Theorem 4.2. Suppose that Assumptions 1-3 hold, G is µ-strongly monotone for some µ > 0 and
that γ < 1

4µ . Let x⋆ ∈ X ⋆ be the (unique) Nash equilibrium of the game. Let (Xn, Zn)n≥1 be
generated by SPOG. Then

E ∥Xn − x⋆∥2 = Õ
(
n−f

)
, (8)

where f = min{d, a, 2b− 2a} > 0.
Remark. Under Assumption 3, the exponent f = min{d, a, 2b−2a} is maximized when a = 2

3 , b =

1, d = 2
3 , yielding f = 2/3. Hence the best-possible rate guarantee in 8 is

E ∥Xn − x⋆∥2 = Õ
(
n−2/3

)
. (9)
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This tuning has been chosen to optimize the dependence of the derived rate in n, and is asymptotic,
as per the convergence rate guarantees of Bravo et al. (2018); Drusvyatskiy et al. (2022); Tatarenko
and Kamgarpour (2024a); Amortila et al. (2024); Dong et al. (2025), upon which it improves (even
though the cited results concern bounded domains). In the non-asymptotic regime, the worst-case
constants in the Õ(1/n2/3) guarantee of equation 9 are determined by the precise time at which the
variance bound of Lemma 3.1 activates, and equation 6 shows that these constants may carry an
exponential dependence on D, G, N , and γ. Whether this is cause of concern or not depends on
the size of the game (as captured by the product DGN ), and the horizon of play n: if DGN is too
large, it might be preferable to choose a more conservative tuning for the algorithm’s parameters a,
b and d, as per equation 7 for some small ϵ > 0 (e.g., ϵ = 1/60). In this case, the relevant constants
stemming from equation 6 would be poly(D,G,N, γ) and the induced convergence rate guarantee
would be E ∥Xn − x⋆∥2 = Õ

(
n−2/3+ϵ

)
—e.g., Õ(1/n13/20) if ϵ = 1/60.

Calibrating the “sweet spot” in this trade-off is heavily application-dependent, so it lies beyond the
scope of our work. We only note that, even for ϵ > 0, the rate guarantees of Theorem 4.2 exceed the
best-knownO(n−1/2) rates in the literature, either anytime (Drusvyatskiy et al., 2022) or asymptotic
(Tatarenko and Kamgarpour, 2024a), and even though these best-known rates only concern bounded
domains (where the algorithm’s exploration radius is bounded by default).

4.2 FAST-TIMESCALE ANALYSIS

In this section we establish, asymptotically, that the fast iterate Zn of SPOG is calibrated to the fixed
point z⋆(Xn) of the fast timescale mean field ODE at the current value of the slow iterate Xn.
Lemma 4.3. For each fixed x ∈ RD, ODE has a unique globally attracting equilibrium z⋆(x).
Furthermore z⋆ : RD → RD is Lipschitz, with Lipschitz constant Lz = 1

1−γL , and satisfies

z⋆(x) = x+ γv(z⋆(x)). (10)

With this result, we derive the convergence rate of the quantity Dn := βn

αn
∥Zn − z⋆(Xn)∥2 .

Proposition 4.4. Suppose that Assumptions 1-2 hold. Let (Xn, Zn)n≥1 be generated by SPOG,
then Dn → 0 a.s. and in expectation as n → ∞. If, in addition, the parameter sequences satisfy
Assumption 3 then, for all 0 < ϵ < min{b+ d− a, 3b− 3a},

E
[
βn
αn
∥Zn − z⋆(Xn)∥2

]
= O

(
n−e+ϵ

)
, (11)

where e = min{b+ d− a, b, 3b− 3a}.

Sketch of Proof. Following Lyapunov’s method (Benaı̈m, 2006), we first obtain a descent inequality
that provides theoretical insight into performance benefits obtained through learning rate separation:

EnDn+1 ≤[1− (
1

2
+ 2γµ)αn]Dn (12a)

+
2γβn
δn
∥bn+1∥2 + 2[γ2αnβn + L2

z

β3
n

α2
n

]En ∥Vn+1∥2 . (12b)

The full statement and proof of this descent inequality is given in Lemma E.1. By tuning the learning
parameter sequences αn, βn, δn such that each of the error terms in 12 is controlled sufficiently, we
can apply a stochastic approximation argument in order to establish the asymptotic convergence of
Dn to zero. Moreover, owing to a contractive coefficient in 12a, we may apply Chung’s Lemma B.3
to yield the last-iterate rate of convergence for Dn.

4.3 SLOW-TIMESCALE ANALYSIS

In this section we establish the last-iterate convergence of the slow iterate Xn to a Nash equilibrium
x⋆ ∈ X⋆ of the underlying game. First, we obtain the convergence of ∥Xn − x⋆∥2 for any Nash
equilibrium x⋆ ∈ X⋆ by a stochastic approximation argument. Our proof also yields a kind of best-
iterate, or stabilization guarantee for the convergence of the fast iterateZn. Last-iterate convergence
of Xn to an element of X⋆ then follows as a consequence of a compactness argument.

8
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Proposition 4.5. Suppose that Assumptions 1-3 hold. Let x⋆ ∈ X ⋆. Let (Xn, Zn)n≥1 be generated
by SPOG. Then ∥Xn − x⋆∥2 converges to a finite random variable almost surely, and enjoys the
stabilization guarantee

∑∞
n=1 βn(∥v(Zn)∥

2
+ ∥v(z⋆(Xn))∥2) <∞ a.s.

Sketch of Proof. Following a similar method to the fast-timescale analysis of Section 4.2, we begin
by obtaining a descent-inequality for the Euclidean distance ∥Xn+1 − x⋆∥2:

En ∥Xn+1 − x⋆∥2 ≤ (1− µβn + βnδn) ∥Xn − x⋆∥2 (13a)

+
1

γ

(
2γµ

1− 4µγ
+ γ2L2 + 2

)
βn ∥Z − z⋆(Xn)∥2 (13b)

+
βn
δn
∥bn+1∥2 + β2

nEn ∥Vn+1∥2 (13c)

− 1

2
γβn ∥v(Zn)∥2 −

1

2
γβn ∥v(z⋆(Xn))∥2 . (13d)

The full statement and proof of this descent inequality is given in Lemma E.3. Critical to our
subsequent analysis is the control of the calibration error term for the fast iterate 13b. By isolating
this term in the descent inequality 13 we can utilize the convergence rate for this term obtained in
Proposition 4.4. Assumptions 2 on the learning rate parameters enable the fast iterate to become
calibrated whilst also controlling the error terms in 13.

5 EXPERIMENTS

In this section, we illustrate the last-iterate performance of SPOG with a comparison to OG+ in
two simple two-player games, each with unique Nash equilibrium x⋆ = (0, 0). We compare the
performance SPOG with that of optimistic algorithms OG+ with first-order oracle (additive noise),
as well OG+SPSA to serve as a zeroth-order comparator to SPOG, despite it not having theoretical
convergence guarantees. We will compare the update-step of OG(+) xn with the slow-iterate of
SPOG Xn since these quantities are subject to theoretical convergence results Hsieh et al. (2020).

5.1 STRONGLY MONOTONE EXAMPLE

We illustrate the rate results of Theorem 4.2 for strongly monotone games with the following:

u1(x1, x2) = −
x21
2
− x1x2 , u2(x1, x2) = −

x22
2

+ x1x2, x1, x2 ∈ R. (14)

In Figure 2a, after an initial transient phase, the algorithms appear to enter an asymptotic phase
marked by the asymptotic log-linearity of the norm-squared. Both zeroth-order algorithms SPOG &
OG+SPSA appear to exhibit faster asymptotic convergence than the first-order algorithms OG(+).

In Figure 2b trajectories of SPOG and OG+SPSA are noisy compared to those of OG(+). Unlike
the instances of OG+ which query a noisy first-order oracle, each instance of SPOG cannot observe
the gradient directly, instead having to estimate the gradient from payoff observations alone via an
SPSA gradient estimator. Subsequently, SPOG makes random perturbations, producing this noise.

5.2 MERELY MONOTONE EXAMPLE

We illustrate the convergence result of Theorem 4.1 with this example of a two-player zero-sum
bilinear game (which is necessarily merely monotone):

u1(x1, x2) = x1x2 = −u2(x1, x2), x1, x2 ∈ R. (15)

In Figures 2c-2d SPOG appears to exhibit asymptotic convergence than any of its comparators,
including OG+ which enjoys first-order gradient feedback. In this merely monotone experiment
OG (without learning rate separation) does not converge, with trajectories orbiting the equilibrium
in Figure 2d, illustrating the utility of learning rate separation (Hsieh et al., 2020). Moreover, it
is unclear from 106 iterations whether OG+SPSA converges, or instead leads to cycles of play.
As alluded to in Section 2.4, the SPSA estimator 1 in OG+SPSA introduces large variance that is
impractical to control, potentially leading to (at best) slow-, or non-convergence.

9
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(a) Ex 5.1: Mean square norm (10 runs) (b) Ex 5.1: Learning trajectories

(c) Ex 5.2: Mean square norm (10 runs) (d) Ex 5.2: Learning trajectories

Figure 2: Distance to equilibrium in Example 5.1: SPOG vs OG+ vs OG vs OG+SPSA.

6 DISCUSSION

We developed a single-observation payoff-based algorithm whose iterates converge to a Nash equi-
librium in all unconstrained monotone games and we established a last-iterate rate of convergence
of Õ(1/n2/3) for the sequence of iterates in strongly monotone games. This rate exceeds the best
known rate for a single-observation payoff-based algorithm in the constrained setting (Drusvyatskiy
et al., 2022; Tatarenko and Kamgarpour, 2024a). We note that this exceeds the optimal lower com-
plexity bound of Ω(n−1/2) for one-point zeroth-order algorithms (Shamir, 2013; Ba et al., 2025).
We believe that this discrepancy is the result of using an adjusted SPSA gradient estimate, SPSA+,
as opposed to using the traditional SPSA estimate which has been assumed in the literature. Our
adjusted SPSA estimator reuses previous payoff observations, effectively making use of two payoff
queries. Nonetheless, we argue that SPOG remains within the category of “single-shot zeroth-
order” learning algorithms as as only one payoff observation is made at each iteration.

Our algorithm employs a learning-rate separation technique (Hsieh et al., 2022) which we view as
an instance of two-timescales stochastic approximation (Borkar, 1997). This technique is particu-
larly useful in the zeroth-order framework, where the variance of the pseudo-gradient estimate grows
to be unbounded. In effect, by averaging across many gradient estimates on a fast timescale, our al-
gorithm controls the variance. In the unconstrained setting, first-order algorithms such as Hsieh et al.
(2022) require that the noise contaminating gradient feedback has finite variance, thereby avoiding
this problem altogether. In the analysis of payoff-based algorithm in constrained games (Bravo et al.,
2018; Tatarenko and Kamgarpour, 2024a) control of the variance relies on the compactness of the
game’s action spaces. With neither option being available in monotone games with unconstrained
action spaces, we believe the learning-rate separation is critical to the convergence of the iterates.
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A NOTATION

We summarize our notation in Table 2.

B STOCHASTIC APPROXIMATION THEORY

We present a stochastic approximation theorem attributed to Robbins and Siegmund.
Theorem B.1 (Robbins (1975)). Let (Ω,F ,P) be a probability space and let F1 ⊂ F2 ⊂ . . . be
a sequence of sub-σ-fields of F . Let Un, β, ξn, ζn, n ∈ N be non-negative Fn-measurable random
variables satisfying E[U1] <∞ and

E[Un+1|Fn] ≤ (1 + βn)Un + ξn − ζn, n = 1, 2, . . .

Suppose that
∑∞
n=1 E[βn] < +∞ and

∑∞
n=1 E[ξn] < +∞. Then, Un converges a.s. to a finite

random variable and
∑∞
n=1 ζn <∞ a.s.

Another theorem of stochastic approximation is the following, and is proven in Lemma 10 (page 49)
of Polyak (1987)
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Table 2: Notations

Symbol Description
N Number of players
N Set of player indices N = {1, . . . , N}
Xi Strategy space for player i, Xi = RDi

Di Dimension of player i’s action space
X Joint strategy space: X =

∏N
i=1 Xi

d Dimension of joint action space
ui Payoff function for player i
vi Individual payoff gradient for player i
x⋆ Nash equilibrium
X ⋆ Set of Nash equilibria
L Lipschitz constant of (vi)i∈N
µ Monotonicity constant of (vi)i∈N
G Smoothness constant of full gradient (∇ui)i∈N
rBDi Di-dimensional ball of radius r, rBDi = {p ∈ RDi : ∥p∥ ≤ r}
SDi Di-dimensional unit sphere SDi = {p ∈ RDi : ∥p∥ = 1}
Zn Fast timescale iterate at time n
Xn Slow timescale iterate at time n
Z̃n Realized joint action profile at time n
Vn+1 Adjusted joint SPSA estimator
δn SPSA perturbation parameter
αn Fast-timescale learning rate
βn Slow-timescale learning rate
Rn Radius feasible envelope Rn = R log n
γ Contraction parameter for fast timescale update
Fn σ-algebra generated by history of play X1, Z1,W1, . . . , Xn, Zn,Wn

En Expectation with respect to Fn, En[·] = E[·|Fn]
z⋆(x) Fast-timescale ODE fixed point
Lz Lipschitz constant of z⋆, Lz = 1

1−γL

Theorem B.2. Let (Ω,F ,P) be a probability space and let F1 ⊂ F2 ⊂ . . . be a sequence of sub-
σ-fields of F . Let Un, β, ξn, n ∈ N be non-negative Fn-measurable random variables satisfying
E[U1] <∞ and

E[Un+1|Fn] ≤ (1− βn)Un + ξn, n = 1, 2, . . .

Suppose that
∑∞
n=1 E[βn] = +∞,

∑∞
n=1 E[ξn] < +∞, 0 < βn < 1 and ξn ≥ 0. Then, Un → 0

a.s. and E[Un]→ 0 as n→∞.

We will also make use of the following Lemma on numerical sequences when it comes to obtaining
rates of convergence. This is often referred to and attributed to in the literature as Chung’s Lemma
(Chung, 1954).

Lemma B.3. [Chung’s Lemma (Chung, 1954)] Let (an)n∈N be a non-negative sequence satisfying

an+1 ≤
(
1− P

np

)
an +

Q

np+q
,

where 0 < p ≤ 1, q > 0 and P,Q > 0 and assuming in addition that P > q if p = 1. Then we have
that

an ≤
Q

R

1

nq
+ o

(
1

nq

)
,

with

R =

{
P if p < 1,

P − q if p = 1.
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C PROPERTIES OF THE GRADIENT ESTIMATE Vn+1

C.1 PROOF OF LEMMA 3.1

Proof of Lemma 3.1. Let (Xn, Zn)n≥1 be generated by SPOG.

Fix i ∈ N . Owing to the Mean Value Theorem, there exists a tn ∈ [0, 1] such that

ui(Z̃n)− ui(Z̃n−1) = ⟨∇ui(tZ̃n + (1− t)Z̃n−1), Z̃n − Z̃n−1⟩. (16)

Applying the Cauchy-Schwartz inequality, and Assumption 1(iv) on the gradient ∇ui, we arrive at
the following.

∥Vn+1,i∥ =
Di

δn
|ui(Z̃n)− ui(Z̃n−1)|

=
Di

δn
|⟨∇ui(tnZ̃n + (1− tn)Z̃n−1), Z̃n − Z̃n−1⟩|

≤Di

δn

∥∥∥∇ui(tnZ̃n + (1− tn)Z̃n−1)
∥∥∥∥∥∥Z̃n − Z̃n−1

∥∥∥
≤DiG

δn

(
1 +

∥∥∥tnZ̃n + (1− tn)Z̃n−1

∥∥∥)∥∥∥Z̃n − Z̃n−1

∥∥∥ . (17)

Applying the triangle inequality to each of the norms, we have that equation 17 implies

∥Vn+1,i∥ ≤
DiG

δn
[1 + tnδn + (1− tn)δn−1 + tn ∥Zn∥+ (1− tn) ∥Zn−1∥][δn + δn−1 + ∥Zn − Zn−1∥]

(18)

As a result of the projections in SPOG, we have that ∥Zn,i∥ ≤ 3Rn, whence ∥Zn∥ ≤ 3
√
NRn.

Similarly, ∥Zn−1∥ ≤ 3
√
NRn−1. Following Assumption 2, δn is a decreasing sequence, and Rn is

an increasing sequence, we obtain the following inequality from equation 18:

∥Vn+1,i∥ ≤
DiG

δn
(1 + δn−1 + 3

√
NRn)(2δn−1 + ∥Zn − Zn−1∥) (19)

Finally, by first setting Bm := 3RmBDi for each m ≥ 1, remark that Zn = Proj∏
i 3RnBDi Z

o
n, and

Zn−1 ∈
∏
i 3Rn−1BDi ⊆

∏
i 3RnBDi = Bn. By the non-expansiveness of the projection operator,

we have that

∥Zn − Zn−1∥ =
∥∥ProjBn

Zon − ProjBn
Zn−1

∥∥
≤∥Zon − Zn−1∥
=αn−1 ∥Xn−1 − Zn−1 + γVn∥
≤αn−1 ∥Xn−1∥+ αn−1 ∥Zn−1∥+ αn−1γ ∥Vn∥
≤4αn−1

√
NRn + γαn−1 ∥Vn∥ (20)

where the final inequality again follows from the projections in SPOG. Combined with equation 19,
we arrive at the following estimate:

∥Vn+1,i∥ ≤
DiG

δn
(1 + δn−1 + 3

√
NRn)(2δn−1 + 4αn−1

√
NRn + γαn−1 ∥Vn∥)

Since
√
D2

1 + · · ·+D2
n ≤ D1 + · · · +Dn = D, and i ∈ N was chosen arbitrarily, we obtain the

following inequality for ∥Vn+1∥,

∥Vn+1∥ ≤
DG

δn
(1 + δn−1 + 3

√
NRn)(2δn−1 + 4αn−1

√
NRn) + γ

DG

δn
(1 + δn−1 + 3

√
NRn)αn−1 ∥Vn∥ .

(21)

As a result of Assumption 2, there exists a finite (deterministic) n0 such that for all n ≥ n0, 1 +
δn−1 <

√
NRn. Substituting this into equation 21 and setting M := 4DG

√
N we arrive at the

following inequality for all n ≥ n0,

∥Vn+1∥ ≤
M

δn
Rn(2δn−1 + 4αn−1

√
NRn) +

γM

δn
Rnαn−1 ∥Vn∥ . (22)
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Following Assumption 2, there exists a uniform bound ∆ > 0 such that for all n, δn−1

δn
≤ ∆. Hence

for all n ≥ n0,

∥Vn+1∥ ≤ 2M∆Rn + 4M
√
N
αn−1R

2
n

δn
+ γM

αn−1Rn
δn

∥Vn∥ . (23)

Owing to the Assumption 2 that αn−1Rn

δn
→ 0 as n → ∞, we have that there exists a finite (de-

terministic) n1 ≥ n0 such that for all n ≥ n1, αn−1Rn

δn
≤ min{ 1

4M
√
N
, 1
2γM }. Hence, for all

n ≥ n1,

∥Vn+1∥ ≤ (2M∆+ 1)Rn +
1

2
∥Vn∥ . (24)

As a result of equation 24 and the increasing property of Rn, we have that for all n ≥ n1, and all
C > 2(2M∆+ 1),

∥Vn∥ ≤ CRn−1 =⇒ ∥Vn+1∥ ≤ (2M∆+ 1 +
1

2
C)Rn ≤ CRn. (25)

In particular, since n1 is deterministic and finite and

∥Vn1∥ =

√
D2
i

δ2n1

|ui(Z̃n1)− ui(Z̃n1−1)|2 (26)

is bounded by a deterministic constant, owing to the fact that each ui is continuous and
Z̃n1−1, Z̃n1

,∈
∏
i(3Rn1

+ δn1
)BDi . Hence there exists a C > 2(2M∆ + 1) such that ∥Vn1

∥ ≤
CRn1

and the result follows by induction.

D PROPERTIES OF THE FIXED POINT z⋆

D.1 PROOF OF LEMMA 4.3

Proof of Lemma 4.3. Fix x ∈ RD. We begin by remarking that the function fx(z) = x + γv(z)
satisfies

∥fx(z1)− fx(z2)∥ = γ ∥v(z1)− v(z2)∥ ≤ γL ∥z1 − z2∥ .
Since γL < 1, the Banach fixed point theorem (Agarwal et al., 2018) implies the existence of a
unique fixed point z⋆(x) satisfying fx(z⋆(x)) = z⋆(x). Such a fixed point is an equilibrium of the
ODE by construction.

We define a Lyapunov function Λ for the fixed x ODE as follows Λ(t) = 1
2 ∥z(t)− z

⋆(x)∥. We
have that

dΛ(t)

dt
=⟨ż(t), z(t)− z⋆(x)⟩

=⟨x+ γv(z(t))− z(t), z(t)− z⋆(x)⟩
=γ⟨v(z(t))− v(z⋆(x)), z(t)− z⋆(x)⟩ − ⟨z(t)− z⋆(x), z(t)− z⋆(x)⟩
≤ − ∥z(t)− z⋆(x)∥2 ,

where the final inequality follows from the monotonicity of v. This shows that the Lyapunov
function Λ is strict and so the equilibrium z⋆(x) is globally stable.

Finally, we note that
z⋆(x) = x+ γv(z⋆(x))

and so, for any x1, x2 ∈ RD,
∥z⋆(x1)− z⋆(x2)∥ = ∥(x1 − x2) + γ(v(z⋆(x1))− v(z⋆(x2)))∥

≤∥x1 − x2∥+ γ ∥v(z⋆(x1))− v(z⋆(x1))∥
≤∥x1 − x2∥+ γL ∥z⋆(x1)− z⋆(x2)∥ ,

where the last line follows from the Lipschitz continuity of v. Rearranging, we obtain the Lipschitz
condition for z⋆,

∥z⋆(x1)− z⋆(x2)∥ ≤
1

1− γL
∥x1 − x2∥ .
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D.2 FIXED POINT INCLUSION

The following Lemma concerns the image of the region
∏
iRBDi under z⋆.

Lemma D.1. Suppose that Assumptions 1-2 hold. For all R > 1 the following inclusion holds

z⋆(
∏
i∈N

RBDi) ⊆
∏
i∈N

3RBDi .

Remark. This Lemma is the reason that in SPOG project Xo
n,i into RnBDi and Zon,i into 3RnBDi .

In our convergence analysis of SPOG we will consider the distance ∥Zn − z⋆(Xn)∥2, which, as a
result of this lemma, is comparing two points in

∏
i∈N 3RnBDi . Hence we may apply the non-

expansiveness of the projection operator to extract Xo
n.

Proof. Let x ∈
∏
iRBDi . We have that vi(z) = ∇iui(z) for all z ∈ RDi and all i ∈ N . As a result

of Assumption 1(iv) we have that

∥v(z⋆(x))∥ =

√√√√ N∑
i=1

∥∇iui(z⋆(x))∥2RDi

≤

√√√√ N∑
i=1

∥∇ui(z⋆(x))∥2Rd

≤

√√√√ N∑
i=1

G2(1 + ∥z⋆(x)∥)2

=G
√
N(1 + ∥z⋆(x)∥) (27)

Since z⋆(x) = x+ γv(z⋆(x)), we may apply the triangle inequality to obtain that

∥z⋆(x)∥ ≤∥x∥+ γ ∥v(z⋆(x))∥
≤∥x∥+ γG

√
N(1 + ∥z⋆(x)∥). (28)

where the final inequality follows from equation 27. Rearranging the inequality equation 28, we
arrive at the following

∥z⋆(x)∥ ≤ γG
√
N

1− γG
√
N

+
1

1− γG
√
N
∥x∥ .

As a consequence of Assumption 2, we have that γG
√
N ≤ 1

2 . Since the function ψ 7→ 1
1−ψ is

increasing on the interval (0, 12 ], we have that

∥z⋆(x)∥ ≤ γG
√
N

1− γG
√
N

+
1

1− γG
√
N
∥x∥ ≤ 1 + 2 ∥x∥ .

Since we have assumed that 1 ≤ R and ∥x∥ ≤ R, we conclude ∥z⋆(x)∥ ≤ 3R. Hence we have that
z⋆(

∏
i∈N RBDi) ⊆ 3RBd ⊆

∏
i∈N 3RBDi .

D.3 FIXED-POINT VARIATIONAL INEQUALITY

The following Lemma is a property of the underlying game and the fixed-point function z⋆. It will
feature in our analysis.
Lemma D.2. Suppose that Assumption 1 holds. Suppose that γL < 1 and that x⋆ ∈ X ⋆ is a Nash
equilibrium of the underlying game. If the game is strongly monotone, suppose in addition that
γµ < 1

4 . Then for all z, x ∈ X the following holds:

⟨v(z), x−x⋆⟩ ≤ −µ
2
∥x− x⋆∥2+ 1

2γ

(
2γµ

1− 4µγ
+ γ2L2 + 2

)
∥z − z⋆(x)∥2−1

4
γ ∥v(z)∥2−1

4
γ ∥v(z⋆(x))∥2

(29)
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Proof. Fix z, x ∈ X . Writing x− x⋆ = (x− z) + (z − x⋆), we have that
⟨v(z), x− x⋆⟩ = ⟨v(z), x− z⟩+ ⟨v(z), z − x⋆⟩ (30)

We handle each of these terms separately.

First, we consider the term ⟨v(z), z − x⋆. Since x⋆ ∈ X ⋆ is a Nash equilibrium, v(x⋆) = 0. This,
combined with the µ-monotonicity of the underlying game implies that

⟨v(z), z − x⋆⟩ = ⟨v(z)− v(x⋆), z − x⋆⟩ ≤ −µ ∥z − x⋆∥2 . (31)
Again, writing z − x⋆ = (z − x) + (x− x⋆), we expand the norm as follows:

−µ ∥z − x⋆∥2 = −µ ∥x− x⋆∥ − µ ∥z − x∥2 − 2µ⟨z − x, x− x⋆⟩ (32)
An application of Young’s inequality for products implies that, for any ϵ > 0

−2µ⟨z − x, x− x⋆⟩ ≤ 1

ϵ
µ ∥z − x∥2 + ϵµ ∥x− x⋆∥2 . (33)

Setting ϵ = 1
2 in equation 33, we obtain that

−2µ⟨z − x, x− x⋆⟩ ≤ 2µ ∥z − x∥2 + 1

2
µ ∥x− x⋆∥2 . (34)

Applying equation 34 to the inner product in equation 32 and using the result in equation 31, we
arrive at the following inequality

⟨v(z), z − x⋆⟩ ≤ −µ
2
∥x− x⋆∥+ µ ∥z − x∥2 . (35)

For the term µ ∥z − x∥2, we express apply the definition of the fixed point z⋆ to write x = z⋆(x)−
γv(z⋆(x)). Subsequent application of Young’s inequality for products yields, for any θ > 0,

µ ∥z − x∥2 = ∥z − z⋆(x) + γv(z⋆(x))∥2 ≤ (1 + θ)µ ∥z − z⋆(x)∥2 + (1+ θ−1)γ2µ ∥v(z⋆(x))∥2 .
(36)

Setting θ = 4γµ
1−4γµ , we observe that 1+θ−1 = 1

4γµ and 1+θ = 1
1−4γµ . Hence equation 36 becomes

µ ∥z − x∥2 = ∥z − z⋆(x)− γv(z⋆(x))∥2 ≤ µ

1− 4γµ
∥z − z⋆(x)∥2 + 1

4
γ ∥v(z⋆(x))∥2 . (37)

Applying equation 37 to the right hand side of equation 35, we arrive at the following inequality for
the Nash term of equation 30

⟨v(z), z − x⋆⟩ ≤ −µ
2
∥x− x⋆∥+ µ

1− 4γµ
∥z − z⋆(x)∥2 + 1

4
γ ∥v(z⋆(x))∥2 . (38)

To handle the remaining term in equation 30, ⟨v(z), x− z⟩, we again write x = z⋆(x)− γv(z⋆(x)).
Then
⟨v(z), x− z⟩ = ⟨v(z), z⋆(x)− z − γv(z⋆(x))⟩ = ⟨v(z), z⋆(x)− z⟩ − γ⟨v(z), v(z⋆(x))⟩. (39)

By simply expanding the norm, we see that

−γ⟨v(z), v(z⋆(x))⟩ =1

2
γ ∥v(z⋆(x))− v(z)∥2 − 1

2
γ ∥v(z)∥2 − 1

2
γ ∥v(z⋆(x))∥2

≤1

2
γL2 ∥z⋆(x)− x∥2 − 1

2
γ ∥v(z)∥2 − 1

2
γ ∥v(z⋆(x))∥2 , (40)

where the inequality is a result of the Lipschitz continuity of v. To handle the remaining term of
equation 39, ⟨v(z), z⋆(x)− z⟩, we apply Young’s inequality for products, obtaining,

⟨v(z), z⋆(x)− z⟩ ≤ 1

2
· 1
2
γ ∥v(z)∥2 + 1

2

1(
1
2γ

) ∥z − z⋆(x)∥2 =
1

4
γ ∥v(z)∥2 + 1

γ
∥z − z⋆(x))∥2 .

(41)
Applying equation 40 and equation 41 to equation 39, we arrive at the following inequality

⟨v(z), x− z⟩ ≤
(
1

2
γL2 +

1

γ

)
∥z − z⋆(x)∥2 − 1

4
γ ∥v(z)∥2 − 1

2
γ ∥v(z⋆(x))∥2 . (42)

Applying both equation 38 and equation 42 to equation 30 yields the desired result.
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E DERIVATION OF DESCENT INEQUALITIES

Lemma E.1 (Fast-Descent Inequality). Under Assumptions 1-2,

En ∥Zn+1 − z⋆(Xn+1)∥2 ≤
(
1− (1 + 2γµ− γδn)αn − (1− 2γ2L2 − γδn)α2

n + (1 + 2γµ+ 2γ2L2)α3
n

)
∥Zn − z⋆(Xn)∥2

+ (1 + αn)(γ
2α2

n +
γαn
δn

) ∥bn+1∥2

+

(
γ2α2

n(1 + αn) + L2
zβ

2
n(1 +

1

αn
)

)
En ∥Vn+1∥2 .

Proof. As a consequence of Young’s inequality for products, we have that for any θn > 0,

∥Zn+1 − z⋆(Xn+1)∥2 = ∥Zn+1 − z⋆(Xn) + z⋆(Xn)− z⋆(Xn+1)∥2

≤(1 + θn) ∥Zn+1 − z⋆(Xn)∥2 + (1 +
1

θn
) ∥z⋆(Xn+1)− z⋆(Xn)∥2 .

(44)

We handle each of the terms in equation 44 separately. First, we remark that by the Lipchitz conti-
nuity of the fixed point z⋆,

∥z⋆(Xn+1)− z⋆(Xn)∥2 ≤L2
z ∥Xn+1 −Xn∥2

=L2
z

∥∥∥ProjRn+1Bd Xo
n+1 −Xn

∥∥∥2
=L2

z

∥∥∥ProjRn+1Bd Xo
n+1 − ProjRn+1Bd Xn

∥∥∥2
≤L2

z

∥∥Xo
n+1 −Xn

∥∥2 = L2
zβ

2
n ∥Vn+1∥2 , (45)

where we have used the fact that Xn ∈ RnBd ⊆ Rn+1Bd, and that the projection operator is
non-expansive.

To handle the first term in equation 44, we first remark that, as a result of Lemma D.1, z⋆(Xn) ∈∏
i 3RnBDi ⊆

∏
i 3Rn+1BDi . Again applying the non-expansiveness of the projection operator,

we have that

∥Zn+1 − z⋆(Xn)∥2 =
∥∥∥Proj3Rn+1Bd Zon+1 − Proj3Rn+1Bd z⋆(Xn)

∥∥∥2 ≤ ∥∥Zon+1 − z⋆(Xn)
∥∥2 .

(46)

Next, we observe that, by rearranging the fixed point formula, Xn = z⋆(Xn)− γv(z⋆(Xn)). With
this in hand, we obtain the following:

Zon+1 − z⋆(Xn) =Zn + αn(Xn − Zn + γVn+1)− z⋆(Xn)

=Zn − z⋆(Xn) + αn[z
⋆(Xn)− Zn − γv(z⋆(Xn)) + γVn+1]

=(1− αn)(Zn − z⋆(Xn))− γαnv(z⋆(Xn)) + γαnVn+1. (47)

Substituting equation 47 into equation 46 and expanding the norm, we have that∥∥Zon+1 − z⋆(Xn)
∥∥2 ≤∥(1− αn)(Zn − z⋆(Xn))− γαnv(z⋆(Xn))∥2 (48a)

+ 2γαn⟨(1− αn)(Zn − z⋆(Xn))− γαnv(z⋆(Xn)), Vn+1⟩ (48b)

+ γ2α2
n ∥Vn+1∥2 . (48c)

We first expand the term equation 48a

∥(1− αn)(Zn − z⋆(Xn))− γαnv(z⋆(Xn))∥2 =(1− αn)2 ∥Zn − z⋆(Xn)∥2 (49a)
− 2γαn(1− αn)⟨v(z⋆(Xn)), Zn − z⋆(Xn)⟩

(49b)

+ γ2α2
n ∥v(z⋆(Xn))∥2 (49c)
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Next for the inner product term equation 48b, writing Vn+1 = v(Zn) + ξn+1, we have that

2γαn⟨(1− αn)(Zn − z⋆(Xn))− γαnv(z⋆(Xn)), Vn+1⟩ =2γαn(1− αn)⟨v(Zn), Zn − z⋆(Xn)⟩
(50a)

+ 2γαn⟨ξn+1, (1− αn)(Zn − z⋆(Xn))− γαnv(z⋆(Xn))⟩
(50b)

− 2γ2nα
2
n⟨v(Zn), v(z⋆(Xn))⟩. (50c)

We handle each of the terms in equation 50 separately. For equation 50a, we sum with the inner
product term equation 49b and apply the monotonicity property of the pseudo-gradient.

2γαn(1− αn)⟨v(Zn)− v(z⋆(Xn)), Zn − z⋆(Xn)⟩ ≤ −2γµαn(1− αn) ∥Zn − z⋆(Xn)∥2 . (51)

For the inner product equation 50c, we apply the following identity

−2γ2nα2
n⟨v(Zn), v(z⋆(Xn)) = γ2α2

n

(
∥v(Zn)− v(z⋆(Xn))∥2 − ∥v(Zn)∥2 − ∥v(z⋆(X))∥2

)
(52)

We remark that the final term of equation 52 cancels out with the term equation 49c. In addition, the
first term of equation 52 satisfies the following inequality owing to the Lipchitz continuity of v

γ2α2
n ∥v(Zn)− v(z⋆(Xn))∥2 ≤ γ2L2α2

n ∥Zn − z⋆(Xn)∥2 . (53)

Combining equation 49, equation 50, equation 51 equation 52 and equation 53, we have the follow-
ing inequality for equation 48∥∥Zon+1 − z⋆(Xn)

∥∥2 ≤ (
(1− αn)2 − 2γµαn(1− αn) + γ2L2α2

n

)
∥Zn − z⋆(Xn)∥2 (54a)

+ 2γαn⟨ξn+1, (1− αn)(Zn − z⋆(Xn))− γαnv(z⋆(Xn))⟩ (54b)

− γ2α2
n ∥v(Zn)∥

2 (54c)

+ γ2α2
n ∥Vn+1∥2 . (54d)

Next we take the conditional expectation with respect to Fn in the inner product tern equation 54b
in order to extract the bias.

En[2γαn⟨ξn+1, (1− αn)(Zn − z⋆(Xn))− γαnv(z⋆(Xn))⟩] =2γαn(1− αn)⟨bn+1, Zn − z⋆(Xn)⟩
(55a)

− 2γ2α2
n⟨bn+1, v(z

⋆(Xn)⟩.
(55b)

For equation 55b, we apply Young’s inequality for products, which implies that

2γ2α2
n⟨bn+1, v(z

⋆(Xn)⟩ ≤ γ2α2
n ∥bn+1∥2 + γ2α2

n ∥v(z⋆(Xn))∥2 . (56)

Similarly, for equation 55a, an application of Young’s inequality for products implies

2γαn(1− αn)⟨bn+1, Zn − z⋆(Xn)⟩ ≤γαn(1− αn)δn ∥Zn − z⋆(Xn)∥2 + γαn(1− αn)
1

δn
∥bn+1∥2

≤γαnδn ∥Zn − z⋆(Xn)∥2 +
γαn
δn
∥bn+1∥2 . (57a)

Taking the conditional expectation and substituting equation 56 and equation 57 into equation 54,
we have that

En
∥∥Zon+1 − z⋆(Xn)

∥∥2 ≤ (
(1− αn)2 − 2γµαn(1− αn) + γ2L2α2

n + γαnδn
)
∥Zn − z⋆(Xn)∥2

(58a)

+ (γ2α2
n +

γαn
δn

) ∥bn+1∥2 (58b)

+ γ2α2
n ∥v(z⋆(Xn))∥2 − γ2α2

n ∥v(Zn)∥
2 (58c)

+ γ2α2
nEn ∥Vn+1∥2 . (58d)
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We bound the term equation 58c using the reverse triangle inequality,

γ2α2
n ∥v(z⋆(Xn))∥2−γ2α2

n ∥v(Zn)∥
2 ≤ γ2α2

n ∥v(Zn)− v(z⋆(Xn))∥2 ≤ γ2L2α2
n ∥Zn − z⋆(Xn)∥2 .

(59)
This transforms equation 58 into the following

En
∥∥Zon+1 − z⋆(Xn)

∥∥2 ≤ (
(1− αn)2 − 2γµαn(1− αn) + 2γ2L2α2

n + γαnδn
)
∥Zn − z⋆(Xn)∥2

(60a)

+ (γ2α2
n +

γαn
δn

) ∥bn+1∥2 (60b)

+ γ2α2
nEn ∥Vn+1∥2 . (60c)

Let’s expand the coefficient of ∥Zn − z⋆(Xn)∥2 in equation 60

(1−αn)2−2γµαn(1−αn)+2γ2L2α2
n+γαnδn = 1−2(1+γµ)αn+(1+2γµ+2γ2L2)α2

n+γαnδn
(61)

We set θn = θ0αn for some constant θ0 > 0. Then we expand

(1 + θn)
[
(1− αn)2 − 2γµαn(1− αn) + 2γ2L2α2

n + γαnδn
]
=1− [2(1 + γµ)− θ0]αn
+ (1 + 2γµ+ 2γ2L2 − 2θ0(1 + γµ))α2

n

+ θ0(1 + 2γµ+ 2γ2L2)α3
n

+ γαnδn(1 + θ0αn)

By taking θ0 = 1 we ensure that this coefficient is O(1− (1 + 2γµ)αn).

Returning to equation 44, with θn = αn, we arrive at the descent inequality

En ∥Zn+1 − z⋆(Xn+1)∥2 ≤
(
1− (1 + 2γµ− γδn)αn − (1− 2γ2L2 − γδn)α2

n + (1 + 2γµ+ 2γ2L2)α3
n

)
∥Zn − z⋆(Xn)∥2

+ (1 + αn)(γ
2α2

n +
γαn
δn

) ∥bn+1∥2

+

(
γ2α2

n(1 + αn) + L2
zβ

2
n(1 +

1

αn
)

)
En ∥Vn+1∥2 .

We now use Lemma E.1 in order to obtain an asymptotic descent inequality for the time-rescaled
quantity βn

αn
∥Zn − z⋆(Xn)∥2.

Lemma E.2 (Time-Rescaled Fast Descent Inequality). Under Assumptions 1-2, for all n sufficiently
large,

En
βn+1

αn+1
∥Zn+1 − z⋆(Xn+1)∥2 ≤

(
1− (

1

2
+ 2γµ)αn.

)
βn
αn
∥Zn − z⋆(Xn)∥2 (64a)

+
2γβn
δn
∥bn+1∥2 (64b)

+ 2

(
γ2αnβn + L2

z

β3
n

α2
n

)
En ∥Vn+1∥2 . (64c)

Proof. As a consequence of Assumption 2, for sufficiently large n,

1−(1+2γµ−γδn)αn−(1−2γ2L2−γδn)α2
n+(1+2γµ+2γ2L2)α3

n ≤ 1−(
1

2
+2γµ)αn. (65)

Similarly, for sufficiently large n, we have that

(1 + αn)(γ
2α2

n +
γαn
δn

) ≤ 2γαn
δn

. (66)
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Finally,

γ2α2
n(1 + αn) + L2

zβ
2
n(1 +

1

αn
) ≤ 2γ2α2

n + 2L2
z

β2
n

αn
(67)

Applying these inequalities for each coefficient in the descent inequality of Lemma E.1, we have
that for sufficiently large n,

En ∥Zn+1 − z⋆(Xn+1)∥2 ≤
(
1− (

1

2
+ 2γµ)αn.

)
∥Zn − z⋆(Xn)∥2

+
2γαn
δn
∥bn+1∥2

+ 2

(
γ2α2

n + L2
z

β2
n

αn

)
En ∥Vn+1∥2 .

Rescaling by the factor βn+1

αn+1
and applying Assumption 2.2 to the right hand side, we have that, for

all n sufficiently large,

En
βn+1

αn+1
∥Zn+1 − z⋆(Xn+1)∥2 ≤

(
1− (

1

2
+ 2γµ)αn.

)
βn
αn
∥Zn − z⋆(Xn)∥2

+
2γβn
δn
∥bn+1∥2

+ 2

(
γ2αnβn + L2

z

β3
n

α2
n

)
En ∥Vn+1∥2 .

We now utilize the identity of Lemma D.2 in order to obtain a descent inequality for the slow process.
Lemma E.3 (Slow Descent Inequality). Suppose Assumptions 1-2 hold and, if the game is strongly
monotone, that γµ < 1

4 . Let x⋆ ∈ X ⋆ be a Nash equilibrium. For all n ≥ n0 := inf{m ≥ 1 : x⋆ ∈
RmBd},

En ∥Xn+1 − x⋆∥2 ≤ (1− µβn + βnδn) ∥Xn − x⋆∥2 (70a)

+
1

γ

(
2γµ

1− 4µγ
+ γ2L2 + 2

)
βn ∥Z − z⋆(Xn)∥2 (70b)

+
βn
δn
∥bn+1∥2 (70c)

− 1

2
γβn ∥v(Zn)∥2 −

1

2
γβn ∥v(z⋆(Xn))∥2 (70d)

+ β2
nEn ∥Vn+1∥2 . (70e)

Proof. Suppose that x⋆ ∈ X ⋆ is a Nash equilibrium and suppose that n is sufficiently large so that
x⋆ ∈ RnBd. As a consequence of the non-expansiveness of the projection operator,

∥Xn+1 − x⋆∥2 =
∥∥∥ProjRn+1Bd Xo

n+1 − ProjRn+1Bd x⋆
∥∥∥2 (71)

≤
∥∥Xo

n+1 − x⋆
∥∥2 (72)

= ∥Xn − x⋆ + βnVn+1∥2 (73)

= ∥Xn − x⋆∥2 + 2βn⟨Vn+1, Xn − x⋆⟩+ β2
n ∥Vn+1∥2 . (74)

Let us express the gradient estimate Vn+1 = v(Zn) + ξn+1. We may then take the conditional
expectation and expand the inner product term of equation 74 as follows:

En2βn⟨Vn+1, Xn − x⋆⟩ = 2βn⟨v(Zn), Xn − x⋆⟩+ 2βn⟨Enξn+1, Xn − x⋆⟩. (75)

For the bias term, we apply Young’s inequality for products,

2βn⟨Enξn+1, Xn − x⋆⟩ ≤ βnδn ∥Xn − x⋆∥2 +
βn
δn
∥bn+1∥2 . (76)
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For the remaining term, we may apply the result of Lemma D.2 in order to obtain

2βn⟨v(Zn), Xn − x⋆⟩ ≤ − µβn ∥Xn − x⋆∥2 (77a)

+
1

γ

(
2γµ

1− 4µγ
+ γ2L2 + 2

)
βn ∥Z − z⋆(Xn)∥2 (77b)

− 1

2
γβn ∥v(Zn)∥2 −

1

2
γβn ∥v(z⋆(Xn))∥2 (77c)

Taking the conditional expectation in equation 74 and applying the inequalities equation 76 and
equation 77, we arrive at the claimed descent inequality, equation 70

F CONVERGENCE PROOFS

F.1 PROOF OF PROPOSITION 4.4

Proof of Proposition 4.4. We have that ∥bn+1∥ = O(δn) as a property of the SPSA gradient esti-
mate. Moreover, Lemma 3.1 states that ∥Vn+1∥ = O(Rn). With these estimates for the error terms,
we rewrite the descent inequality of E.2 in the following form:

En
βn+1

αn+1
∥Zn+1 − z⋆(Xn+1)∥2 ≤

(
1− (

1

2
+ 2γµ)αn

)
βn
αn
∥Zn − z⋆(Xn)∥2 (78a)

+O
(
βnδn + αnβnR

2
n +

β3
nR

2
n

α2
n

)
(78b)

As a result of Assumption 2, we have that the conditions of Theorem B.2 are satisfied, hence
βn
αn
∥Zn − z⋆(Xn)∥2 → 0 a.s. and in expectation. (79)

Suppose, in addition, Assumption 3 holds. Taking the expectation in equation 78, we obtain the
following:

E
βn+1

αn+1
∥Zn+1 − z⋆(Xn+1)∥2 ≤

(
1− (

1

2
+ 2γµ)

α

na

)
E
βn
αn
∥Zn − z⋆(Xn)∥2 (80a)

+O
(
(logn)2

nb+d
+

(log n)2

na+b
+

(log n)2

n3b−2a

)
(80b)

Since log n = O(n 1
2 ϵ) for any ϵ > 0, we have that equation 80 implies that for any ϵ > 0, for all n

sufficiently large,

E
βn+1

αn+1
∥Zn+1 − z⋆(Xn+1)∥2 ≤

(
1− (

1

2
+ 2γµ)

α

na

)
E
βn
αn
∥Zn − z⋆(Xn)∥2 (81a)

+O
(

1

ne+a−ϵ

)
(81b)

where e+ a = min{b+ d, a+ b, 3b− 2a}.
As a consequence of the summability constraints of Assumption 2, we have that min{b + d −
a, b, 3b − 3a} > 0. Hence, if we set 0 < ϵ < min{b + d − a, b, 3b − 3a}, then we have that
e− ϵ > 0. An application of Chung’s lemma B.3 (noting that a < 1) implies that

E
βn
αn
∥Zn − z⋆(Xn)∥2 = O

(
1

ne−ϵ

)
. (82)

F.2 PROOF OF PROPOSITION 4.5

Proof of Proposition 4.5. We begin by showing that the positive terms in the descent inequality
equation 70 of Lemma E.3 are finite in series. First, we apply Proposition 4.4 in order to obtain the
following estimate for any 0 < ϵ < min{b+ d− a, b, 3b− 3a} and sufficiently large n

βnE
[
∥Zn − z⋆(Xn)∥2

]
= O

(
1

ne+a−ϵ

)
, (83)
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where e+ a− ϵ = min{b+ d, a+ b, 3b− 2a} − ϵ.
As a consequence of the summability conditions of Assumption 2, we have that min{b + d, a +
b, 3b− 2a} > 1 and so we may set 0 < ϵ < min{b+ d− 1, a+ b− 1, 3b− 2a− 1}. In which case,
we have that e+ a− ϵ > 1. Hence we have that

∞∑
n=1

βnE
[
∥Zn − z⋆(Xn)∥2

]
< +∞. (84)

It is the case that ∥bn+1∥ = O(δn). Hence βn

δn
∥bn+1∥2 = O(δnβn), which is finite in series owing

to Assumption 2.

Similarly, as a consequence of Lemma 3.1, we have that β2
nEn ∥Vn+1∥2 = O(β2

nR
2
n). Since

βn = o(αn) and by Assumption 2,
∑∞
n=1 αnβnR

2
n < ∞, we have that

∑∞
n=1 β

2
nR

2
n < ∞ and

β2
nEn ∥Vn+1∥2 is finite in series.

With each of the positive terms in the descent inequality equation 70 of Lemma E.3 are finite in
series, applying the stochastic approximation theorem of Robbins-Seigmund B.1, we have that
∥Xn − x⋆∥2 converges almost surely to finite random variable, and that the negative terms satisfy

∞∑
n=1

(
1

2
γβn ∥v(Zn)∥2 +

1

2
γβn ∥v(z⋆(Xn))∥2) <∞ a.s. (85)

In particular, since
∑∞
n=1 βn = +∞, it must be the case that

lim inf
n→∞

(∥v(Zn)∥2 + ∥v(z⋆(Xn))∥2) = 0. (86)

F.3 PROOF OF THEOREM 4.1

Proof of Theorem 4.1. Let nk be a sequence satisfying ∥v(Znk
)∥2+∥z⋆(Xnk

)∥2 → 0. In particular
we note that

v(Znk
)→ 0 and v(z⋆(Xnk

))→ 0.

Let x⋆ ∈ X ⋆. The almost sure convergence of ∥Xnk
− x⋆∥ implies that Xnk

is almost surely
bounded. In particular there exists a subsequence Xnkj

converging to a limit x∞ ∈ RD. For
the sake of notation, we will adopt the convention that the subsubsequence nkj corresponds to an
increasing function ω : N→ N. By Proposition 4.4,∥∥Zω(n) − z⋆(Xω(n))

∥∥→ 0 a.s.

Expanding z⋆, by the fixed point equation, we have that Xω(n) = z⋆(Xω(n))− γv(z⋆(Xω(n))). An
application of the triangle inequality yields that∥∥Zω(n) −Xω(n)

∥∥ ≤ ∥∥Zω(n) − z⋆(Xω(n))
∥∥+ γ

∥∥v(z⋆(Xω(n)))
∥∥→ 0 a.s.

This implies that Zω(n) → x∞ a.s. and by the continuity of v,

v(x∞) = lim
n→∞

v(Zω(n)) = 0.

This is precisely that x∞ ∈ X ⋆. Taking x⋆ = x∞, the almost sure convergence of ∥Xn − x∞∥ to a
finite random variable and the convergence of the subsequence

∥∥Xω(n) − x∞
∥∥ to zero, implies that

the entire sequence Xn → x∞ ∈ X ⋆ a.s.

F.4 PROOF OF THEOREM 4.2

Proof of Theorem 4.2. For all n sufficiently large, as a consequence of Assumption 2,

1− µβn + δnβn ≤ 1− 1

2
µβn. (87)
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Taking the expectation in the descent inequality 70, we have that for all n sufficiently large,

E ∥Xn+1 − x⋆∥2 ≤
(
1− 1

2
µβn

)
E ∥Xn − x⋆∥2 (88a)

+
1

γ

(
2γµ

1− 4µγ
+ γ2L2 + 2

)
βnE ∥Z − z⋆(Xn)∥2 (88b)

+O
(
βnδn + β2

nR
2
n

)
. (88c)

We apply Proposition 4.4 in order to obtain the following estimate for any 0 < ϵ < min{b + d −
1, a+ b− 1, 3b− 2a− 1} and for sufficiently large n,

βnE
[
∥Zn − z⋆(Xn)∥2

]
= O

(
1

ne+a−ϵ

)
, (89)

where e+ a− ϵ = min{b+ d, a+ b, 3b− 2a} − ϵ. Since the parameter sequences take the form of
Assumption 3, we may rewrite 88 as follows:

E ∥Xn+1 − x⋆∥2 ≤
(
1− βµ

2nb

)
E ∥Xn − x⋆∥2 (90a)

+O
(
(log n)2

nb+d
+

(logn)2

n2b
+

1

ne+a−ϵ

)
. (90b)

Again, noting that log n = O(n 1
2 ϵ), we have that, for all n sufficiently large,

E ∥Xn+1 − x⋆∥2 ≤
(
1− βµ

2nb

)
E ∥Xn − x⋆∥2 (91a)

+O
(

1

nb+d−ϵ
+

1

n2b−ϵ
+

1

ne+a−ϵ

)
. (91b)

Let f := min{d, b, a− b}. Noting that e+ a− b = min{d, a, 2b− 2a}, we have that

f = min{d, a, 2b− 2a}. (92)

We may choose 0 < ϵ < min{a, 2b− 2a, 3b− 2a− 1, a+ b− 1} so that both the following hold:
e+ a− ϵ > 1 and f − ϵ > 0. This enables us to rewrite equation 91 in the following form

E ∥Xn+1 − x⋆∥2 ≤
(
1− βµ

2nb

)
E ∥Xn − x⋆∥2 (93)

+O
(

1

nf+b−ϵ

)
, (94)

and an Application of Chung’s Lemma B.3 yields that

E ∥Xn − x⋆∥2 ≤ O
(

1

nf−ϵ

)
, (95)

Since ϵ > 0 can be taken to be arbitrarily small, we have that

E ∥Xn − x⋆∥2 ≤ Õ
(

1

nf

)
, (96)

as claimed.

G EXPERIMENTAL SETTING FOR SECTION 5

The experiments in Section 5 were conducted in macOS 14.5 with Apple M2 Max and 32GB of
RAM.

In Figure 2c is a log-log graph comparing the average norm of the iterates, averaged over 10 in-
stances with random seeds. The shaded region corresponds to the 25-75 percentile of the ensemble.
In each instance, we initialize the game with action x0 = (10, 20). The parameter sequences are
tuned as follows:
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• SPOG: γ = 1
2 , αn = ( 50

50+n )
0.66, βn = 100

100+n , δn = ( 1000
1000+n )

0.66 and Rn = 100 log(n+ 1),

• OG+: γn = 0.1( 1000
n+1000 )

0.25, ηn = 0.1( 1
n+1 )

0.5,

• OG+SPSA: γ = ( 50
50+n )

0.66, η = 100
100+n and δn = ( 1000

1000+n )
0.66.

• (OG): γn = 0.1( 1
n+1 )

0.5.

In keeping with Theorem 4.2 and Remark 4.1, we choose a = d = 0.66 ≈ 2
3 , b = 1 in order to

approximate the best-rate attained through our analysis. In addition, in order to prevent the parameter
sequences from decaying too quickly, we opt to translate n and rescale the parameter sequences, as
above; this ensures the trajectories of the iterates are sufficiently long. The parameters for OG+
with additive noise reflect the constraints stated in the last-iterate convergence result in Hsieh et al.
(2022). The parameters for OG are taken from a similar experiment in Hsieh et al. (2022).

In terms of noise models for OG and OG+, we consider a normalN (0, 0.2) distribution on the noise
ξn+1 which is additive, that is, v̂n+1,i = vi(xn+ 1

2
) + ξn+1,i for i = 1, 2.

H SUPPORTING LEMMAS

We state the following Lemma concerning inner product spaces, which we frequently make use of
and refer to as Young’s inequality.
Lemma H.1. Let (RD, ⟨·, ·⟩) be an inner product space with induced norm ∥·∥. For any θ > 0, and
any x, y ∈ RD, the following hold:

(i)

⟨x, y⟩ ≤ θ

2
∥x∥2 + 1

2θ
∥y∥2 ,

(ii)

∥x+ y∥2 ≤ (1 + θ) ∥x∥2 + (1 +
1

θ
) ∥y∥2 .

Proof. We exploit the bi-linearity of the inner product to write

⟨x, y⟩ = ⟨
√
θx,

y√
θ
⟩. (97)

Expanding the norm, we next observe that

0 ≤
∥∥∥∥√θx− y√

θ

∥∥∥∥2 ≤ θ ∥x∥2 + 1

θ
∥y∥2 − 2⟨

√
θx,

y√
θ
⟩ (98)

Rearranging equation 98 and applying equation 97, we arrive at the claimed result (i).

We see that (i) =⇒ (ii) when the expand the following inner product

∥x+ y∥2 = ∥x∥2 + ∥y∥2 + 2⟨x, y⟩.
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