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ABSTRACT

We examine the long-run behavior of learning in a repeated game where the agents
operate in a low-information environment, only observing their own realized pay-
offs at each stage. We study this problem in the context of monotone games with
unconstrained action spaces, where standard optimistic gradient schemes might
lead to cycles of play, even with perfect gradient information. To account for the
fact that only a single payoff observation can be made at each iteration—and no
gradient information is directly observable—we design and deploy a simultaneous
perturbation gradient estimation method adapted to the challenges to the problem
at hand, namely unbounded action spaces, gradients and rewards. In contrast to
single-timescale approaches, we find that a two-timescale approach is much more
effective at controlling the (unbounded) noise introduced by payoff-based gradi-
ent estimators in this setting. Owing to the introduction of a second timescale, we
show that the proposed simultaneously perturbed optimistic (SPOG) algorithm
converges to equilibrium with probability 1. In addition, by developing a new
method to assess the rate of convergence of two-timescales stochastic approxima-
tion procedures, we show the sequence of play induced by SPOG converges at a
rate of @(n_z/ 3) in strongly monotone games. To the the best of our knowledge,
this is the first convergence rate result for games with unbounded action spaces,
and it is faster than the sharpest known convergence rates for single-observation,
payoff-based learning in strongly monotone games with bounded action spaces.

1 INTRODUCTION

Many large-scale systems involve the interaction of multiple autonomous decision makers. Exam-
ples of this include generative adversarial networks (GANs) (Goodfellow et al., [2014), distributed
optimization in parallel computing, transportation networks (Vigneri et al., 2019), etc. In this set-
ting, each agent must respond to the changing environment posed by the other agents’ actions, and
the utility of each agent is determined by the actions of all players through a fixed underlying rule.

In a game-theoretical setting, first-order gradient methods might never stabilize in the long-run, re-
sulting in cycles or even divergence of the sequence of play, even in simple, unconstrained bilinear
min-max games (Daskalakis et al.). In fact, even optimistic gradient (OG) methods, which incorpo-
rate a recency bias, have been shown to exhibit trajectories of play that orbit an equilibrium, failing
to converge (Hsieh et al}[2022). An example of this is illustrated in Figure @

When each agent has a noise-contaminated estimate of their payoff gradient, a modification of the
optimistic gradient method, known as OG+, results in last-iterate convergence of the sequence of
play to a Nash equilibrium in monotone games (Hsieh et al.|[2020;2022). This modification involves
a learning rate separation, whereby the extrapolation step is taken with a learning rate an order of
magnitude larger than that of the update step. By following a policy that explores aggressively and
updates conservatively, the gradient noise effectively becomes an order of magnitude smaller than
the expected variation of payoffs, ultimately enabling convergence.

In a low-information environment, an agent might not have access to an estimate of their gradient.
We instead consider that the only information available to each agent is the payoff they receive at
each stage of the game. A difficulty inherent to this payoff-based context is that agents must estimate
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Table 1: Rates of convergence for learning algorithms in monotone games. See Sections

Algorithm - Actions Monotone | Feedback | Rate of Convergence
| AOG (Cai and Zheng, 2023) Compact Mere Perfect FO O(n~1) GAP
| Dong et al.| (2025) Compact Mere 1-Point ZO | O(n~1/%) last-iterate
MD (Bravo et al., 2018) Compact Strong 1-Point ZO | O(n~1/3) last-iterate
MD (Drusvyatskiy et al.,2022) | Compact Strong 1-Point ZO | O(n~'/?) last-iterate
Tatarenko and Kamgarpour: 1-Point ZO | O(n~1/2) last-iterate
(2024a) Compact | Strong VS 2-Point ZO | O(n~1!) last-iterate
Perfect FO O(n~1) GAP
GABP (Abe et al., 2025 C t M ~
{Abeeta : ompae “° | stoch.FO | O(n~VT) GAP
SPOG Unbounded |  Strong 1-Point ZO | O(n~?/3) last-iterate

their payoff gradient from a single payoff observation. Despite these difficulties, no-regret, payoff-
based learning algorithms have been developed that guarantee last-iterate convergence in monotone
games with constrained action spaces (Bravo et al., 2018; [Tatarenko and Kamgarpour, 2024a).

Further challenges arise when learning in games with unbounded action spaces. Standard compact-
ness arguments cannot be applied to establish the convergence of iterates. Furthermore concave
payoff functions are in general unbounded and not Lipschitz, adding a further layer of variance to
zeroth-order (ZO) gradient estimators.

Our contributions in the context of related work.

1. We develop a simultaneously perturbed optimistic gradient (SPOG) learning algorithm that com-
bines the learning rate separation technique present from OG+ with a novel, thresholded single-
observation payoff-based gradient estimator. We show that SPOG converges to a Nash equilib-
rium with probability 1 in a large class of monotone games.

2. We obtain a last-iterate rate of convergence of rate of @(nfz/ 3) in strongly monotone games.
This is, to the best of our knowledge, the first rate of convergence result for unconstrained games
and exceeds the corresponding best rate for strongly monotone constrained games with one-point
Z0 feedback Tatarenko and Kamgarpour| (2024a). By reusing previous payoff observations as a
baseline reward in the gradient estimate, thereby reducing the variance, our algorithm exceeds the
sharpest known convergence rate for one-point ZO algorithms (Shamir, [2013;Ba et al., 2025)).

3. We develop and deploy a new analysis method for two-timescales stochastic approximation
(Borkar} 1997 |Doan, [2021) to control the convergence rate of our algorithm.

Closely related work, summarized in Table[I] is described in Section [2.3]once we have introduced
the necessary preliminaries.

2 PRELIMINARIES

2.1 MONOTONE GAMES IN NORMAL FORM

We consider games with a finite number N of players and unconstrained continuous action spaces.
Denote the set of players as N' = {1,..., N}. During play, each player i € A simultaneously
selects an action x; from their action set X; = R%, resulting in a joint action profile x = (z;,x_;) =
(w1,...,7Nn) € X = [[;cp i Each player receives a reward, with Player 4 receiving u;(2;, 7—;),
where u; : X — R is Player ¢’s utility function. Such a game is referred to as a continuous game in
normal form. Write v;(z) = V,u;(x;; ;) for the players’ individual payoff gradients and define
the game’s pseudo-gradient operator v : R? — R? as v(x) = (v;(z))sen forall x € X.

Definition 2.1 (Monotonicity). For ;> 0,amap v : X — ) is said to be p-monotone over X C V
if the following inequality holds for all 2,2’ € X,

2
I

(v(z) —v(@),z —2") < —pllz = 2|7, (MON)
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where ||| denotes the Euclidean norm. If x4 > 0 then v is strongly monotone, otherwise v is
merely monotone. A game is said to be (strongly/merely) monotone if its pseudo-gradient v is
(strongly/merely) monotone over its joint action space X.

Following the work of |[Rosen| (1965), much of the literature on online learning in continuous games
has studied games that satisfy the monotonicity condition, or a similar such condition termed di-
agonal strict concavity. Many of the properties enjoyed by monotone games are similar to those
enjoyed by convex functions. Indeed, setting 2’ ;, = x_; in equation implies that for all
z,a € Xjyx_; € Xy,

(wi(zh; ) —vi(wg, x_y), o — x;) <O0.

Monotonicity has thus given rise to a rich class of games, containing all bilinear min-max games (an
unconstrained analogue of finite two-player, zero-sum games), games that admit a concave potential,
and is common in applications to generative models (Chavdarova et al., 2019} |Kamalaruban et al.,
2020). Throughout the rest of this paper, we restrict our study to monotone games.

2.2  SOLUTION CONCEPTS

A widespread solution concept in the theory of games is the Nash equilibrium (Nash,|1951), a joint
strategy profile from which no player can profit from deviating unilaterally. Formally,

Definition 2.2 (Nash Equilibrium). An action profile * € X is said to be a Nash equilibrium if
wi(zf; 2 ,) > ui(w;ar,) forallz; € Xy i e N. (NE)

—1

Let X, denote the set of Nash equilibria of the game. By concavity of the players’ payoff functions,
X, coincides exactly with the zeros of the pseudo-gradient v, i.e. X, = {z € X : v(z) = 0}.

Throughout we impose the following assumptions on the underlying game.
Assumption 1. There exists constants L > 0, u > 0 such that
(i) vis L-Lipschitz, thatis, [|v(z) — v(2')|| < L ||z — /|| for all z, 2" € X;
(ii) the game G is p-monotone;
(iii) the set X is non-empty;
(iv) there exists a constant G > 0 satisfying ||Vu;(z)|| < G(1 + ||z||) forall x € X.

Much of our analysis exploits the smoothness from Assumption [I[i) with iterative application of
the monotonicity from Assumption [I[ii) to obtain last-iterate convergence guarantees. Our study
concerns games with unconstrained action spaces, where in general Nash equilibria might not even
exist; we avoid this difficult by imposing Assumption [I|iii) which is a standard assumption in this
setting (Hsieh et al.| [2022). The regularity Assumption [I[iv) is used to control the variance of our
zeroth-order gradient estimate, which is necessary since the action spaces are unbounded.

2.3 RELATED WORK

In this section we provide a detailed account of the related work, as summarized in Table m We
distinguish between first order (FO) and zeroth-order (ZO) feedback schemes.

First-Order Feedback. Much of the literature on online learning in games assumes that players
are able to obtain gradient information by querying a first-order oracle (Nesterov, 2013)), that is a
“black-box” feedback scheme that returns an estimate ¥; of Player ¢’s individual payoff gradient
v;(z) at the current (joint) action profile z = (x;, z_;) € X. The oracle might be perfect, yielding
0; = v;(x), or stochastic where the gradient is contaminated with some noise Us.

In constrained games with mere monotonicity (. > 0),|Abe et al.[(2025) develop a payoff perturba-
tion technique enabling last-iterate convergence at rate O(n‘l/ 7) with zero-mean bounded-variance
additive noise, and at rate O(n_l) with perfect gradient feedback. In the noiseless setting, the
Accelerated Optimistic Gradient (AOG) converges at optimal rate O(n~!) (Cai and Zheng, [2023).

Zeroth-Order Feedback. In our study we consider instead zeroth-order, or payoff-based, feedback.
In this setting, the only information available to agent i € A is the actual payoff u;(z;, x_;) that
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they receive at each stage of the game. Each agent is unaware of the payoff received by other agents,
the actions of other agents, or even the number of agents in the game.

In this setting, agents must estimate their individual payoff gradient using only their observed payoff.
Multi-point directional sampling techniques are an effective way to estimate a function’s gradient
(Kiefer and Wolfowitz, [1952; Flaxman et al., [2004), but require multiple queries of their payoff
function. In general, this is not possible in a game theoretical setting, where a player’s individual
payoff function might depend on the actions of all players, changing from one instance to the next
as a result of the actions of other players.

Fortunately, techniques for estimating a function’s gradient from a single function evaluation exist;
most notably simultaneous perturbation stochastic approximation (SPSA) (Spall, [1997; |[Flaxman
et al.,[2004), which we define in Section[2.4] In a game theoretical setting, online learning algorithms
using SPSA (or similar) gradient estimators have yielded last-iterate convergence results in games
with constrained action spaces (Bravo et al.||2018]; Tatarenko and Kamgarpour, [2024b). [Bravo et al.
(2018) develop a variant of mirror descent (MD) which they show enjoys a last-iterate convergence
rate of (’)(nil/ 3) in strongly monotone games. Tighter analysis by Drusvyatskiy et al. (2022) reveals
that this algorithm converges at a rate of (’)(n_l/ 2), matching Tatarenko and Kamgarpour (2024a)
who obtain this rate in constrained games with a strongly variationally stable (VS) Nash equilibrium,
a large class containing strongly monotone games. In games which are merely monotone,|Dong et al.
(2025) develop a doubly regularized variant of mirror descent that converges at a rate of O(n~1/4),
however, to achieve this rate, their algorithm requires a game-dependent choice of regularizer.

2.4 THE SPSA GRADIENT ESTIMATOR

We define the SPSA gradient estimator of |Spall| (1997) in detail. Suppose that players are estimating
v(z) at joint action profile z = (21, ..., 2y ). For a query radius § > 0, each player i € N,

1. Samples a vector w; from the unit sphere S* C R% and plays %; = z; + dw;.

2. Receives feedback @; = w;(Z;, Z_;) and constructs the estimate V; = %ﬁiwi.

As demonstrated in (Flaxman et al., 2004} Bravo et al., |2018)), VZ is an unbiased estimator of the
gradient of a d-smoothing ul(z) of u; evaluated at z. In particular, ||V;u; — Viul|leo = O(6)
and the variance of V; is O(d;,2). Since ||V;| is proportional to the payoff received, and concave
payoff functions on unbounded action spaces are unbounded, we must contend with the fact that
the variance of this estimator may explode. An important observation is that, for any predetermined
¢; € R, the adjusted SPSA (SPSA+) estimate

has the same expectation as Vi A key idea is that if ¢; = u;(Z7) is chosen to be a previous payoff
observation, and ||Z — 27| is sufficiently small, then for u; satisfying the regularity Assumption
iV), the exploding variance from the factor of &, 2 can be controlled.

We will find it useful to express SPSA+: in the form V; = v;(2) + &; where §; = U, + b; with
unbiased component U; = V; — EV; and bias b; = Viuf (z) — Viui(2).

2.5 OPTIMISTIC GRADIENT METHODS AND THE ROLE OF LEARNING RATE SEPARATION

It is well known that simply following a gradient ascent/descent policy can result in non-convergence
in games. Itself a variant of the extragradient (EG) algorithm (Korpelevich, |1976)), the optimistic
gradient (OG) algorithm (Popovl, [1980; Rakhlin and Sridharan) 2013)) mitigates non-convergence
phenomena in online learning in games. Agents prescribed to an OG scheme use past gradient
information to make an informed “look-ahead”, extrapolation step, before taking an update step to
update their strategy, as illustrated in Figure[I] Formally, assuming for the moment that players may
query a stochastic first-order oracle v, the OG algorithm is defined by the sequence of iterates

Xnt1/2, =Xni + Yno10:(Xn—1/2),

N (0G)
XnJrl,i :an + 7nvi(Xn+1/2)7
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Figure 1: Optimistic Gradient with learning rate separation

where 7, > 0 is a sequence of learning rates.

This technique stabilizes the learning dynamics when the agents have access to a perfect first-order
oracle, yet can lead to divergent trajectories of play with a stochastic first-order oracle, even for sim-
ple two-player bilinear min-max games (Hsieh et al.| [2022), illustrated in Figure 2b] To overcome
this difficulty, Hsieh et al.| (2022) introduce a learning-rate separation technique, which they term
OG+, whereby the extrapolation step is taken with a learning rate that is asymptotically larger than
that of the update step. Formally, the OG+ algorithm is defined by the sequence of iterates

Xnt1/2,i =Xnji + Yno10i(Xn—1/2),

5 (0G+)
Xn+1,i =Ang + T]nvi(Xn+1/2)a

where 7,, > 1, > 0 are the respective learning rates for the extrapolation and update steps. Building
on the intuition of Hsieh et al.| (2022)), when considering separated learning rates, the noise contam-
inating the gradient v is effectively controlled ensuring that it is an order of magnitude smaller than
the expected variation of payoffs. This stabilizes the learning dynamics in the setting of uncon-
strained monotone games with first-order feedback, whereby the algorithm enjoys last-iterate con-
vergence of X,, /5 to a Nash equilibrium and attains an expected regret of O(y/n) under additive
noise model and O(1) under multiplicative noise models.

3 SIMULTANEOUSLY PERTURBED OPTIMISTIC GRADIENT

We are now in a position to introduce Simultaneously Perturbed Optimistic Gradient (SPOG), an
optimistic gradient algorithm for payoff-based learning in continuous games. To that end, we begin
by coupling [OG+H with [SPSA+] defined by the update rule, for each i € N,

Znt+1,i =Xpni + -1V,

OG+SPSA
Xn-‘rl,i —Ang + nnvn-‘rl,h ( )
where the adjusted (joint) estimator V,, 1, given by,
d - .
Vn+1,i = ?(uz(Zn) - ui(anl))Wn,h (1)
n

and where Zn = Zp + 6,W,, and W, is the joint perturbation for which each component W/, ; is
drawn independently of the other players and uniformly from the sphere S% .

In this scheme Z,, takes the place of the extrapolation step X, 11,2 in and is the action pro-
file at which the pseudo-gradient v(Z,,) is to be estimated. However, the variance introduced by
the adjusted SPSA estimator [1| grows unbounded, which makes the iterates of the resultant algo-
rithm impractical to control. This motivates a two-timescales approach (Borkar, [1997)) where the
extrapolation step Z,, is updated with a larger learning parameter, effectively averaging across many
gradient estimates and thereby controlling the variance of the SPSA estimator [} The resulting
update rule is:

Znt1,i =Zni + 0n(Xni +YVas1,i — Znyi),

2)
Xnt1,i =Xn,i + BnVati, (



Under review as a conference paper at ICLR 2026

where V;, 11 is the adjusted (joint) SPSA estimator [T} v > 0 is a fixed extrapolation parameter and
an, Bn > 0 with 3, = o(a,) as n — oo are the respective learning rates for the fast and slow
timescales. Owing to asymptotic difference in learning rates, we will refer to X, as the slow iterate,

Z., as the fast iterate, which may be thought as a kind of ‘time-average’. The realized action is Zn.

Following the intuition of Borkar| (1997)), if the fast-process Z,, converges for any fixed value of
X, to a unique limit point, then we can analyze the algorithm as though the fast-process is, at each
stage, fully calibrated to the current value of the slow process. To make this formal, consider the
ordinary differential equation corresponding to the fast-process Z,, as though the slow component is
staticat X,, = x € X, i.e.

2(t) =z +yu(z(t)) — 2(¢). (ODE)
The parameter v > 0 is subsequently tuned so that this ODE has a unique fixed point.

Unfortunately, [2| does not converge. The remaining challenge is that on unconstrained domains,
concave functions are, in general, unbounded and not globally Lipschitz. We circumvent this by
projecting the iterates into slowly-expanding envelopes, thus introducing a deterministic bound on
the size of the iterates at a given time.

With this in hand, we are ready to present Simultaneously Perturbed Optimistic Gradient (SPOG).
Let (X,,)n>1 and (Z,,),>1 be the sequence of iterates defined by the update rule, for each i € NV,

Zn-i—l,i - Prongn+1]B§di [Zn,i + an(X’rL,i + fYVrL-l-l,i - Zn,i)];

: (SPOG)
XnJrl,i = PrOJR"Jrl]Bdi, [Xn,z + ﬁnVn+1,i]7

where the adjusted (joint) estimator V, 1, given by [I] We present a pseudocode version in
Algorithm T

In addition, we impose the following assumptions on the various parameter sequences introduced.

Assumption 2. The sequences Oy By 0n > 0 are decreasing, Bu g decreasing and converges
’V

}. In addition,

n 1

to 0 as n — oo and
s Bryy Oy Ry satlsfy

is uniformly bounded; and 0 < v < min{57, =4~

n—1Rn .
lim o, = hm Brn = hm 0p = lim Gn—1tn _ 0, lim R, = o0, (3a)
n—oo n—oo 5n n—o00
Zan:'i_OOvZBn:'*'oov (3b)
> BSRQ
> anBuR; < oo, Z Zﬁné < o0, (3c)
n=1 n=1

In addition, we will sometimes restrict our study to parameter sequences of the following form.

Assumption 3. There exists constants 0 < a,b,d < 1 and «, 3,6, R > 0 such that

B

)
Qn=—, Bn=—3, Op= —d(logn)Q7 and R, = Rlogn. ()]
n n n
Remark. If Assumption [3| holds, then Assumption [2|is equivalent to the constants a, b, d satisfying
the following inequalities: 0 < d <a<b<1l,a+b>1,b+d>1and 3b—2a > 1

The parameter 12, is introduced in order to project the iterates into a slowly growing envelope which
we combine with the regularity Assumption [I(iv) in order to control the variance of the adjusted
SPSA estimator V,, ;. It is necessary for our analysis that we project fast- and slow-timescales into
envelopes of different radii. The following estimate underpins much of our analysis.

Lemma 3.1. Under Assumptions [I{2] there exists a (deterministic) constant C' > 0 such that, for

The proof of this Lemma and all following statements are detailed in the Appendix.
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Algorithm 1 SPOG (player indices suppressed)

Require: learning rates o, 3, > 0, query radius 6, > 0, parameter 7y € (0, min{}, ﬁ})
1: Choose X, Z € X,setu < 0
2: for each stagen =1,2,...do
3:  draw W uniformly from S¢
play Z < Z + 6, W
setu” < u
receive 4 = u(2)
set v < (d/oy)(a—a") - W
update Z < Projsp, . (2 + an(X + 70 — Z)]
9:  update X < Projp . pa[X + B,7]
10: end for

A A S

4 RESULTS AND ANALYSIS

4.1 STATEMENT OF MAIN RESULTS

Our first key result is that[SPOG| converges to a Nash equilibrium in all monotone games.

Theorem 4.1. Suppose that Assumptions|I2| hold. Let (X,,, Z,)n>1 be generated by Then
X, converges to a (possibly random) Nash equilibrium x* € X, almost surely.

There are two main steps to proving Theorem [4.1} First, in Section .2 we estimate the rate of
convergence of the fast iterate Z,, to a perturbed Nash equilibrium characterized by the slow iterate.
In Section we leverage the convergence of the fast iterate in order to analyze the asymptotic
convergence of the slow iterate X,.

Under the additional assumption that the game is strongly-monotone, we obtain a rate of convergence
for the sequence X,, generated by |SPOG]|to the game’s (unique) Nash equilibrium:

Theorem 4.2. Suppose that Assumptions[I}[3| hold, G is p-strongly monotone for some p > 0 and
that v < ﬁ. Let ©* € X* be the (unique) Nash equilibrium of the game. Let (X, Zy)n>1 be

generated by|SPOG| Then
E|X, —az*|* =0 (n7), (5)

where f = min{d, a,2b — 2a} > 0.
Remark. The best possible rate inis obtained by taking a = 2,b=1,d = 2 and yields

1
E|X, —a" | = O (n=2%)

In the setting of strongly-monotone games with payoff-based information, this last-iterate rate of
convergence in unconstrained games exceeds the best-known rate of convergence of O(n~1/?)
(Drusvyatskiy et al., [2022; [Tatarenko and Kamgarpour, [2024a)) for constrained games.

Remark. As is customary in this domain (e.g. |Bravo et al., 2018} Tatarenko and Kamgarpour, [2024a;
Amortila et al., 2024} [Dong et al.,|2025) we do not calculate the explicit constant bounding the rate
in (5). The constant depends on properties of the game and the choices of learning rate sequences,
but does not depend on n.

4.2 FAST-TIMESCALE ANALYSIS
In this section we establish, asymptotically, that the fast iterate Z,, of|SPOG]is calibrated to the fixed
point z*(X,,) of the fast timescale mean field at the current value of the slow iterate X,,.

Lemma 4.3. For each fixed v € R, has a unique globally attracting equilibrium z*(x).
Furthermore z* : R* — R? is Lipschitz, with Lipschitz constant L, = ﬁ, and satisfies

2 (x) = 2 + (2" () (6)
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Using this result, we derive the convergence rate of the time-rescaled quantity
Bn
Dy = Zy — 25 (X)) (7)
On

Proposition 4.4. Suppose that Assumptions hold. Let (X,,, Zp)n>1 be generated by
then D,, — 0 a.s. and in expectation as n — oo. If, in addition, the parameter sequences satisfy
AssumptiOnE]then, Sforall0 < e < min{b+d — a,3b— 3a},

E |2z, - (x| = 0 (), ®
where e = min{b+ d — a, b, 3b — 3a}.

Sketch of Proof. Following Lyapunov’s method (Benaim) |2006), we first obtain a descent inequality
that provides theoretical insight into performance benefits obtained through learning rate separation:

1
]EnDn+1 S[l - (5 + QVU)an]Dn (9a)
2vBn 3
200 P 2B+ L2 Vi ob)

The full statement and proof of this descent inequality is given in Lemmal|E. 1

By tuning the learning parameter sequences a,, 3, d,, such that each of the error terms in equation[9)]
is controlled sufficiently, we can apply a stochastic approximation argument in order to establish the
asymptotic convergence of D, to zero. Moreover, owing to a contractive coefficient in equation [9a
we may apply Chung’s Lemma [B.3|to yield the last-iterate rate of convergence for D,,. O

4.3 SLOW-TIMESCALE ANALYSIS

In this section we establish the last-iterate convergence of the slow iterate X,, to a Nash equilibrium
x* € X, of the underlying game. First, we obtain the convergence of || X,, — x*||? for any Nash
equilibrium z* € &, by a stochastic approximation argument. Our proof also yields a kind of best?-
iterate, or stabilization guarantee for the convergence of the fast iterate Z,,. Last-iterate convergence
of X,, to an element of X, then follows as a consequence of a compactness argument.

Proposition 4.5. Suppose that Assumptionshold. Let x* € X*. Let (X, Zy,)n>1 be generated

by Then || X,, — 2*||* converges to a finite random variable almost surely, and enjoys the
stabilization guarantee

3" Ball[(Za)IP + (=" (X))*) < 00 as.
n=1

Sketch of Proof. Following a similar method to the fast-timescale analysis of Section[4.2] we begin

by obtaining a descent-inequality for the Euclidean distance || X, 41 — 2*||°:
B | X1 — o [|* < (1= B + Bndn) [ X0 — 27” (10a)
+ % (% +72L% + 2) B |12 — 2 (X)) (10b)
+ 22 o+ B2 Vo (100)
— 5B (ZI = S8 o (X)) (100

The full statement and proof of this descent inequality is given in Lemma[E.3]

Critical to our subsequent analysis is the control of the calibration error term for the fast iterate equa-
tion[I0b} By isolating this term in the descent inequality equation [I0] we can utilize the convergence
rate for this term obtained in Proposition[4.4] Assumptions[2]on the learning rate parameters enable
the fast iterate to become calibrated whilst also controlling the error terms in equation[10] O
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Figure 2: Distance to equilibrium when both players follow SPOG versus OG+ versus OG.

5 EXPERIMENTS

In this section, we will demonstrate the last-iterate convergence of and compare it to the
performance of We consider the following two-player zero-sum bilinear game:

ur (@1, 22) = 2122 = —u2(21,22) 1,22 € R. (11)

This game has a unique Nash equilibrium z* = (0, 0). We compare the performance of to the
performance of the optimistic gradient algorithms OG(+) (Hsieh et al.l [2022) with stochastic first-
order oracle with additive noise. We will compare the update-step of OG(+) x,, with the slow-iterate
of SPOG X, since these are the quantities about which convergence rates have been proved.

In Figure 2] trajectories of SPOG are noisy compared to those of OG+. This is because SPOG makes
random permutations to estimate the gradient from payoff observations, whereas OG+ requires noisy
first order oracle observations. Despite this, in our experiments, SPOG converges more quickly than
OG+. We include OG to illustrate the non-convergence without learning rate separation.

6 DISCUSSION

We developed a single-observation payoff-based algorithm whose iterates converge to a Nash equi-
librium in all unconstrained monotone games and we established a last-iterate rate of convergence
of (5(1 / n?/ 3) for the sequence of iterates in strongly monotone games. This rate exceeds the best
known rate for a single-observation payoff-based algorithm in the constrained setting (Drusvyatskiy
et al.,|2022; Tatarenko and Kamgarpour, |2024a). We note that this exceeds the optimal lower com-
plexity bound of Q(n~ 1 2) for one-point zeroth-order algorithms (Shamir,[2013;Ba et al.,|2025)) and
believe that this discrepancy is a result of using an adjusted SPSA gradient estimate, which reuses
previous payoff observations, effectively making use of two payoff queries for the price of one.

Our algorithm employs a learning-rate separation technique (Hsieh et al.l 2022) which we view as
an instance of two-timescales stochastic approximation (Borkar, [1997). This technique is particu-
larly useful in the zeroth-order framework, where the variance of the pseudo-gradient estimate grows
to be unbounded. In effect, by averaging across many gradient estimates on a fast timescale, our al-
gorithm controls the variance. In the unconstrained setting, first-order algorithms such as|Hsieh et al.
(2022) require that the noise contaminating gradient feedback has finite variance, thereby avoiding
this problem altogether. In the analysis of payoff-based algorithm in constrained games (Bravo et al.,
2018 | Tatarenko and Kamgarpour, 2024a)) control of the variance relies on the compactness of the
game’s action spaces. With neither option being available in monotone games with unconstrained
action spaces, we believe the learning-rate separation is critical to the convergence of the iterates.
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A  NOTATION

We summarize our notation in Table[2]

B STOCHASTIC APPROXIMATION THEORY

We present a stochastic approximation theorem attributed to Robbins and Siegmund.

Theorem B.1 (Robbins| (1975). Let (Q0, F,P) be a probability space and let F1 C Fo C ... be
a sequence of sub-o-fields of F. Let Uy, 3,&,,Cn, 1 € N be non-negative JF,-measurable random
variables satisfying E[U;] < oo and

Suppose that >~ | E[B,] < +oco and Y > | E[¢,] < +oc. Then, U, converges a.s. to a finite
random variable and ZZOZI Cn < 00 a.s.

Another theorem of stochastic approximation is the following, and is proven in Lemma 10 (page 49)
of |Polyak| (1987)

11
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Table 2: Notations

Symbol Description

N Number of players

N Set of player indices N' = {1,..., N}

X; Strategy space for player i, X; = R%

d; Dimension of player ¢’s action space

X Joint strategy space: X = Hfil X;

d Dimension of joint action space

Uu; Payoff function for player ¢

v; Individual payoff gradient for player ¢

x* Nash equilibrium

X~ Set of Nash equilibria

L Lipschitz constant of (v;);enr

L Monotonicity constant of (v;);cnr

G Smoothness constant of full gradient (Vu;);en

rBd d;-dimensional ball of radius r, rB% = {p € R% : ||p|| < r}
S d;-dimensional unit sphere S% = {p € R% : ||p| = 1}
Zn Fast timescale iterate at time n

X, Slow timescale iterate at time n

Zn, Realized joint action profile at time n

Vot1 Adjusted joint SPSA estimator

On SPSA perturbation parameter

Qan Fast-timescale learning rate

Bn Slow-timescale learning rate

R, Radius feasible envelope R,, = Rlogn

vy Contraction parameter for fast timescale update

Fn o-algebra generated by history of play X1, 2y, W1,..., X, Z,, W,
E, Expectation with respect to F,,, E,[-] = E[:|F,]

z2*(x) Fast-timescale fixed point

L, Lipschitz constant of z*, L, = ﬁ

Theorem B.2. Ler (2, F,IP) be a probability space and let F1 C Fo C ... be a sequence of sub-
o-fields of F. Let Uy, 3,&,, n € N be non-negative F,,-measurable random variables satisfying
E[U;] < oo and

]E[Un-&-ll]:n] < (1 - Bn)Un +€n» n = 1727 o

Suppose that >~ E[3,] = 400, Yo" | E[&,] < 400, 0 < B, < Lland &, > 0. Then, U, — 0
a.s. and E[U,] — 0asn — oo.

We will also make use of the following Lemma on numerical sequences when it comes to obtaining

rates of convergence. This is often referred to and attributed to in the literature as Chung’s Lemma
(Chung} [1954).

Lemma B.3. [Chung’s Lemma (Chung,|1954)] Let (a,,)nen be a non-negative sequence satisfying

< (1 L Q
nt+1 < Y an+m7

where 0 < p < 1,q > 0and P,Q > 0 and assuming in addition that P > q if p = 1. Then we have
that
Q1 1
n < 5— N
n = R nd +o nd

n_ P ifp <1,
- \P-q ifp=1

12
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C PROPERTIES OF THE GRADIENT ESTIMATE V,,

C.1 PROOF OF LEMMA[3.]]

Proof of Lemma[3.1] Let (X, Z,),>1 be generated by [SPOG
Fix i € N. Owing to the Mean Value Theorem, there exists a ¢,, € [0, 1] such that
wi(Zn) = wi(Zn-1) = (Vui(tZn + (1 = ) Zy—1), Zy — Zp—1). (12)

Applying the Cauchy-Schwartz inequality, and Assumption [I{iv) on the gradient Vu,, we arrive at
the following.

Vsl =5 es(Zn) = s Zo-o)
=SV ustn 2+ (1= ) Zar). Zo = Zoe)
<& (Tt Zo + (1= ) Za )| |20~ 2o
sdgn 1+ |[tnZ, + (1= tn)ZHH) ‘ Zn — Z’HH . (13)

Applying the triangle inequality to each of the norms, we have that equation [[3]implies

d;G
HV'rH-l,iH < 5 [1 + tnén + (1 - tn)6n—1 +in HZn” + (1 - tn) ||Zn—1|m5n + 671—1 + ||Zn - Zn—lu]
(14)

As a result of the projections in [SPOG, we have that ||Z, ;|| < 3R,, whence ||Z,| < 3V NR,.
Similarly, || Z,—1|| < 3V NR,,_;. Following Assumption , d,, is a decreasing sequence, and R, is
an increasing sequence, we obtain the following inequality from equation

d;G
Vi1l < 5

(14 6n-1+3VNR,) (2001 + | Zn — Zn1]|) (15)

n

Finally, by first setting BB,, = 3R,,B% for each m > 1, remark that Z,, = Projry. sr, s 25, and

Lp_1 € Hi 3R,_1B% C Hi 3R, B% = B,. By the non-expansiveness of the projection operator,
we have that

1Zn — Zn-1|l = |[Projs, Z;; — Projs, Zn-1||
<12, = Zn-ll
=an-1 | Xn-1— Zn-1+ V2l
<an—1[[Xn-1] + an-1[[Zn-1] + an—17 V4]
<dan_1VNR, +yan-1 |Val (16)
where the final inequality again follows from the projections in[SPOG] Combined with equation[T3]
we arrive at the following estimate:

d;G
s (140, + 3VNR,)(20, 1 + 4y 1VNR, +va,_1 ||[Val)

Vit <

Since \/d% +--+d2 <dy+---+d, = d,and i € N was chosen arbitrarily, we obtain the
following inequality for ||V, 41/,

da dG
Vasall < 5 (1+bna + 3VNR,)(26,_1 + 40,1V NR,) + v (40 + 3VNRy)an_1 |Vl
(17)

As a result of Assumption [2] there exists a finite (deterministic) ny such that for all n > ng, 1 +
6n_1 < VNR,,. Substituting this into equation and setting M = 4dGv/'N we arrive at the
following inequality for all n > ny,

yM

M
HVn+1|| < 7Rn(26n71 + 4an71\/ﬁRn) + S

; Ryt ||Vl - (18)

13
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dn

Following Assumption there exists a uniform bound A > 0 such that for all n, 5;1 < A. Hence
for all n > nyg,
n_1R2 n-1R
Vo]l < 2MAR, +4AMVN 20 4 g M 2L | (19)

an—1Ry

Owing to the Assumption [2| that =*=—= — 0 as n — oo, we have that there exists a finite (de-

terministic) n; > ng such that for all n > nq, O"”%:LR" < min{ 4M1\/N’ ﬁ} Hence, for all
n > mni,

1
Varill < CMA + 1) Ry + 5 [[Vall- (20)

As a result of equation [20] and the increasing property of R,,, we have that for all n > n;, and all
C>202MA+1),

1
WVall <CRpo1 = ||[Vagal| S CMA+1+ §C)Rn < CR,. (21)

In particular, since n4 is deterministic and finite and

@ A
HVn1H = \/(Sguz(an) - ui(Zn171)|2 (22)

is bounded by a deterministic constant, owing to the fact that each wu; is continuous and
Zny -1, Zny € [1;(3Ry, + 8,,)B%. Hence there exists a C > 2(2M A + 1) such that ||V,,, || <
CR,,, and the result follows by induction. O

D PROPERTIES OF THE FIXED POINT z*

D.1 PROOF OF LEMMA [4.3]

Proof of Lemma[-3} Fix x € R%. We begin by remarking that the function f,(z) = z + yv(2)
satisfies

[f2(21) = fa(22)ll = v [lv(21) — v(z2)[| AL |21 — 22| -
Since vL. < 1, the Banach fixed point theorem (Agarwal et al., 2018) implies the existence of a
unique fixed point z*(x) satisfying f.(2*(z)) = 2*(z). Such a fixed point is an equilibrium of the
ODE by construction.

We define a Lyapunov function L for the fixed 2 ODE as follows A(t) = 1 [2(t) — 2*(z)|. We
have that

B —s(0),20) - =)
= {4 y0(a(0)) — 2(0), 2(0) — 2 (@)
0l=(0) (= (@), 2(0) — 2 () — (=(0) — 2 (@), 2(0) — (@)
<~ 120~ = @I,

where the final inequality follows from the monotonicity of v. This shows that the Lyapunov
function L is strict and so the equilibrium z*(x) is globally stable.

Finally, we note that
2" (x) = x + yv(z*(x))

and so, for any x,, x5 € RY,

127 (1) = 2" (@) | = [[(21 = 22) + 7(v(z"(21)) — v("(22)))]
<llzy = @]+ [Jo(z" (1)) — v(z" (1))
<oy — ol + L [2" (1) — 2" (2],

14
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where the last line follows from the Lipschitz continuity of v. Rearranging, we obtain the Lipschitz
condition for z*,

127 (1) — 2" (w2)]| < 7 21— 22

1-—

D.2 FIXED POINT INCLUSION

The following Lemma concerns the image of the region [ [, RBY% under 2*.
Lemma D.1. Suppose that Assumptions[I{2| hold. For all R > 1 the following inclusion holds
(] rB*) C ] 3RB".
ieN ieN
Remark. This Lemma is the reason that in [SPOG]| project X ; into R,,B% and Zy into 3R, B%.

In our convergence analysis of [SPOG| we will consider the dlstance | Zn — = (X ) , which, as
a result of this lemma, is comparing two points in [[,_\ 3R, B . Hence we may apply the non-
expansiveness of the projection operator to extract X.

Proof. Let z € [[, RB%. We have that v;(z) = V,u;(z) forall z € R% and all i € . As aresult
of Assumption[Iiv) we have that

[o(z" ()]

Z [Viu; (2 ”]Rd

IA

Z IVai(z* (@)l

N
< ZGQ(l +[lz*(z)|)?
=GVN(1+||z*(2)]) (23)

Since z*(z) = = + yv(2*(x)), we may apply the triangle inequality to obtain that
2" @) < [zl + v [[o(z" ()]
<l +1GVN(L + [|2*(@)]))- (24)

where the final inequality follows from equation Rearranging the inequality equation 24] we
arrive at the following

GYN_ Ly
1—'yG\/N 1—7G\/N -

As a consequence of Assumption 2| we have that yGvV N < % Since the function ¥ —

12" (@)I| <

= is
increasing on the interval (0, ] we have that
WG\/N 1

+ ]l <1+ 2] .
— 'yG\/N 1-— WG\/N
Since we have assumed that 1 < R and ||z|| < R, we conclude ||z*(z)|| < 3R. Hence we have that
([ Len BB%) C 3RBY C [, 3RB%. O

l* @)l < 5

D.3 FIXED-POINT VARIATIONAL INEQUALITY

The following Lemma is a property of the underlying game and the fixed-point function z*. It will
feature in our analysis.

15
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Lemma D.2. Suppose that Assumption[I| holds. Suppose that YL < 1 and that x* € X* is a Nash
equilibrium of the underlying game. If the game is strongly monotone, suppose in addition that
T < %. Then for all z,x € X the following holds:

1 2 1 1
()=o) < =Bl = oo (T2 4922 4 2) s - 2 @I - 1 o) P o @)
(25

Proof. Fix z,x € X. Writing x — 2* = (x — z) 4+ (2 — 2*), we have that
(v(z),2 —a") = (v(2), 2 — 2) + (v(2),2 — 27) (26)

We handle each of these terms separately.

First, we consider the term (v(z), z — z*. Since * € X™* is a Nash equilibrium, v(2z*) = 0. This,
combined with the y-monotonicity of the underlying game implies that
(0(2), 2 — %) = (0(z) = v(a*), 2 — 2*) < —pl|z —2*||°. @7)
Again, writing z — z* = (z — z) 4+ (z — z*), we expand the norm as follows:
%112 * 2 *
—pllz = oI = —pllw — 2t — )z — all® - 20z — a,0 - 2¥) 28)

An application of Young’s inequality for products implies that, for any € > 0

—2u{z —z,x —2") < %,qu—tz-i-euHx—x*HQ. (29)
Setting € = % in equation . we obtain that

—2ulz — x,x — ) §2u||z—x||2+%u||x—x*||2. (30)

Applying equation [30] to the inner product in equation 28] and using the result in equation 27} we
arrive at the following inequality

(v(2), 2 — 27) S—g\\x—z*\\+ullz—xll2- €20

For the term p ||z — :cHz, we express apply the definition of the fixed point z* to write © = z*(z) —
~vv(z*(x)). Subsequent application of Young’s inequality for products yields, for any 6 > 0,

I < A+ 0)pllz = 2 @)1* + (1 +07)7u [[o(z" ()]
(32

pllz —al* = |z = 2" (@) +y0(z* (2))

Setting ) = —

i, weobserve that 146" = - and 146 = 7. Hence equationbecomes

T dyp
2 o
T 1=y

pllz = all* = |z = 2% (@) = yo(z" (@) 2 = =* (@)1 + %v lo(z"(@)*.  (33)

Applying equation [33]to the right hand side of equation[3T] we arrive at the following inequality for
the Nash term of equation [26]

1
(v(2),2 —a”) < —% le — ™| + I = =*(@)II* + ivllv(?«*(m))llz- (34)

n
I —dyp

To handle the remaining term in equation[26] (v(z),z — z), we again write z = 2*(z) — yv(2*(z)).
Then

(v(2), 2 = 2) = (v(2), 27 (z) — 2 = yo(27(2))) = (v(2), 27 (2) = 2) = 7{v(2),v(z"(2))). (35)

By simply expanding the norm, we see that
1 N 1 1
—(w(=), 0(z" (@) =57 lo(=* (@) = v() I = 57 I = 57 o @)IP

1 1 1
<AL @) = 2l = 51 eI - Syl @I, 66
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where the inequality is a result of the Lipschitz continuity of v. To handle the remaining term of
equation33] (v(z), 2* () — z), we apply Young’s inequality for products, obtaining,

2 11 NN | 2 1 « 2
7l +5(1w) Iz =2 @)I" = 77 Ilv@I"+ Z llz = 2 @)

2
(37

Applying equation [36]and equation [37]to equation [33] we arrive at the following inequality

O -2 < (1224 ) = @I = oG - Sl @I o

Applying both equation [34] and equation [38]to equation [26] yields the desired result. O

E DERIVATION OF DESCENT INEQUALITIES

Lemma E.1 (Fast-Descent Inequality). Under Assumptions|[I}2]
Ep || Znt1 — 2 (Xns) [P < (1= (14 290 = y0n)an — (1= 29°L% = 70,) 07 + (1 + 2yp + 29°L7)ai)) || Z0 — 2% (X)) ||

Yl 2
+ (14 an)(v?aq + =) bl

1
+ ('y%zi(l + o)+ L2B2(1 + a)) Ep ||[Viga|? -

Proof. As a consequence of Young’s inequality for products, we have that for any 6,, > 0,
1Zn1 = 2 (X)) II* = 1201 = 2% (X)) + 2%(Xn) = 2% (X)) ||
1 *
S+ 02) [ Zur = 2 (X + (14 50 12 (Ka) = 2 (K)
n
(40)

We handle each of the terms in equation 40| separately. First, we remark that by the Lipchitz conti-
nuity of the fixed point z*,

* 2 2
12 (Xn41) = 2" (Xn)I” L2 | X1 = Xa
=I? ’

3 o
PrOJRn+1]Bd Xpi1—Xn

9 2
:LZ

Projg, . g Xni1 — Projg, . pe Xn
o 2
<L2||X541 — Xal|” = L2B2 Vs l? (41)

where we have used the fact that X,, € R,B? C R,LHIB%d, and that the projection operator is
non-expansive.

To handle the first term in equation we first remark that, as a result of Lemma 2*(X,) €
IL 3R,B% C[] i 3R, 1B%. Again applying the non-expansiveness of the projection operator, we
have that

2 o * 2
<127 == (X))
(42)
Next, we observe that, by rearranging the fixed point formula, X,, = 2*(X,,) — yv(2*(X,)). With
this in hand, we obtain the following:
ZvOL+1 —25(Xn) =Zn + an(Xn — Zn +7YVigr) — 2°(X0)
=Zn — 2" (Xn) + an[2"(Xn) — Zn — (2" (X)) + YVita]
=1 —an)(Zn — 2°(Xp)) — yanv(z*(Xn)) + v Vig1. (43)

2 . .
1 Zn+1 — 2" (Xn)|I” = HPrOJ3Rn+1Bd Zog1— PYOJ3R,,L+1]Bd 25 (Xn)
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Substituting equation @3] into equation [#2]and expanding the norm, we have that

H n+1 XH)H2 < H(l - an)(Zn - Z*(Xn)) - 'VanU(Z*(Xn»HQ (44a)
+ 270, {(1 — ap)(Zy — 25 (X5)) — yanv(2*(Xn)), Vag1) (44b)
+ ’7 an ||Vn+1H (44‘C)
We first expand the term equation 4
(1= an)(Zn — 2*(Xn)) — VOénU(Z*(Xn))H2 =(1 = an)? [ Zn — 2 (X)|? (452)
— 2yva, (1 — an)(v(z*(Xn)), Zn — 25(X5))
(45b)
+ 9202 |Ju(z* (X)) (45c¢)

Next for the inner product term equation [44b| writing V,,+1 = v(Z,,) + &,+1, we have that

2y, (1 — an)(Zn — 2% (X)) — yarv(2*(X5)), Vat1) =2van (1 — an)(v(Zy), Zn — z*(()‘t(g)))

+ 27an<€n+17 (1 - an)(Zn - Z*(Xn))

(46b)
_Q’Yn n< (Zn),’U(Z*(Xn)» (46¢)

We handle each of the terms in equation 6] separately. For equation f6al we sum with the inner
product term equation [45b]and apply the monotonicity property of the pseudo-gradient.

270 (1 = ap)(v(Zy) — v(2"(Xn)), Zn — 25 (Xp)) < —2ypan(l —an) |2, — Z*(Xn)HQ - (47)
For the inner product equation @6c} we apply the following identity
29202 0(Z), 0z (Xa)) = 7202 ([0(Z0) = (= (X)) = [o(Z0)I” = [0z (X))
(48)

We remark that the final term of equation 48] cancels out with the term equation[d5¢| In addition, the
first term of equation [48]satisfies the following inequality owing to the Lipchitz continuity of v

Vol 0(Zn) = v(* (X))|P < L0 (| Zn — 2 (X)) 49)

Combining equation[#3] equation [#6] equation 7] equation 48| and equation[#9] we have the follow-
ing inequality for equation [44]

1291 — z*(Xn)H2 < (1= an)? = 2vpan (1 — an) +¥°L%a2) | Z, — Z(X)|IP (50a)

+ 270 (Ent1, (1 — an)(Zn — 27(Xn)) — yanv(2"(Xn))) (50b)

— 7% ||v(Z,)|’ (50¢)

+ 720 Vol (50d)

Next we take the conditional expectation with respect to J,, in the inner product tern equation 50|
in order to extract the bias.

En[27an<£n+lv (1 - an)(Zn - Z*(Xn)) - 'Yanv(Z*(Xn)»] :2’70%(1 - an)<bn+la Zn — Z*((S)l(n)»

- 272043; (bnt1,v(2"(Xn))-
(51b)

For equation [5Tb] we apply Young’s inequality for products, which implies that
2v°0;, (b1, 0(2* (X)) < 7205 [bnsi|” + 770 (=" (X)) (52)

Similarly, for equation[5Ta] an application of Young’s inequality for products implies

* * 1
27y (1 = an) (but1, Zn — 2°(X0)) <yan (1l — an)dn | Z, — 2 (Xn)||2 +yan (1 - an)(sf ||bn+1||2

On
<0ndn 12— 2 (X [P+ S5 b (532)
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Taking the conditional expectation and substituting equation [52] and equation [53]into equation [50]
we have that

En||Z841 — z*(Xn)H2 < (1= an)? = 2vpan (1 — an) + Y2 L0l + yandy) || Z, — (X))

(54a)
ap
+(y2al + 757) [ (54b)
n
+ %02 [[u(z* (X)) — 7202 [v(Z,)|° (54c)
+7202E,, ||[Vaga |- (54d)

We bound the term equation [54c|using the reverse triangle inequality,

* 2 2 * 2 * 2
v (" (X)) =g l(Za)I” < 7?aq [0(Zn) —v("(Xa))II” < 7*L2ag, | Z, — (Xsn)\l ~
(35)
This transforms equation [54]into the following

En ||ZZ+1 - Z*(Xn)HQ < ((1 —an)? = 2ypan(l = an) +29°L2aj, + 'Vanan) 1Zn — Z*(Xn)”Q

(56a)
70

+ (Yal + 77) brra]? (56b)

+ 722K, Vo] (56¢)

Let’s expand the coefficient of ||Z, — 2*(X,,)||* in equation

(1—an)? =2ypa, (1—an)+2v2 L2 +yan b, = 1—2(14+yu)ap +(1+2yu+27v* L) a2 +yandn

We set 0,, = 6y, for some constant 6y > 0. Then we expand oD

(14 6,) [(1 = an)? = 2ypan (1 — ap) + 29v° L2 + yand,] =1 — [2(1 +yp) — Oola,
+ (14 2y + 29°L? — 260 (1 + yp))a
+ 00(1 + 2yu + 292 L%
+ v 0, (1 + Gpary,)

By taking 6y = 1 we ensure that this coefficient is O(1 — (1 + 2vu) ).

Returning to equation 40| with 6,, = «,, we arrive at the descent inequality

En | Zn+1 — Z*(Xn-&-l)Hz < (1 — (14 2y —v0n)an — (1 = 29°L? — y6,)a, + (1 4+ 2yu + Q’YQLQ)CV?L) 1Zn — Z*(Xn)H2
Yon

+ (1 +an)(v%a; + 5 b1

1
+ (02004 )+ 282004 20 ) B Vol

n

O

We now use Lemma [E-T]in order to obtain an asymptotic descent inequality for the time-rescaled
. 2
quantity g—: | Z, — 25 (X0

Lemma E.2 (Time-Rescaled Fast Descent Inequality). Under Assumptions[I}2} for all n sufficiently
large,

n 1 n
En 2L | Zon — 2 (Xu) P < (1 L 2w>an.) Buyz = (x)I2 (600)
Qn 1 2 Qp
2 n
+ }5 s |12 (60b)
) 5 )
+2 (Vanfn + L35 ) En [Vt | (60c)
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Proof. As a consequence of Assumption[2} for sufficiently large n,
1
1— (14 2y —70,)an — (1 =22 L% —~8,) 02 + (14 2yu+ 272 L%)ad <1— (5 +2yu)a,. (61)

Similarly, for sufficiently large n, we have that

n 2 n
(14 an)(a + 52 < =20, (62
Finally,
1 2
202(14 o) + L2B2(1 + —) < 29%a2 + 2L§ﬂ—” (63)
(7% Qp

Applying these inequalities for each coefficient in the descent inequality of Lemma [ET} we have
that for sufficiently large n,

* 1 *
En | Znss — 2 (X2 < (1 e 2w>an.> 12, — (%)

2vau,
+ 2 g

2
2 (ani n Liﬂ") B [V

Rescaling by the factor 6 ”“

all n sufficiently large,

Bn N 1 Bn .
Enﬁ 1 Zns1 — 2 (Xn+1)||2 <({1- (* + 2yp) o . 1Zn — 2 (Xn)H2

n+
2vBn
+ = b

+ 2 <’72an5n +

- and applying Assumption I2 to the right hand side, we have that, for

Lﬁ) By (Vs |
za2 n n+1 .

n

O

We now utilize the identity of Lemma[D.2]in order to obtain a descent inequality for the slow process.

Lemma E.3 (Slow Descent Inequahty) Suppose Assumptions[I|2| hold and, if the game is stmngly
monotone, that vy < <. Let * € X* be a Nash equilibrium. For alln > ng .= inf{m > 1:2* €

R’HLB }

1 2
+ = (212 4 2) 8,112 — 2 (X)) (66b)
v \1—4py
ﬂ” an+1H (66¢)
9 1 . 9
5% lv(Zn)||” — 37Bn llo(z* (X))l (664d)
+ BB |Vt (66¢)

Proof. Suppose that * € X is a Nash equilibrium and suppose that n is sufficiently large so that
r* € R,B?. As a consequence of the non-expansiveness of the projection operator,

2
|Xns1 = "I = |[Projs, , o Xi11 — Projg, 50 07| (67)
2
<[ X =2 (68)
:HX —(E +ﬁn n+1||2 (69)
X = 21 + 280 Va1, X — %) + B2 VoI 70)
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Let us express the gradient estimate V,, 11 = v(Z,) + &,4+1. We may then take the conditional
expectation and expand the inner product term of equation[70]as follows:

En28n Vi1, Xo — 2*) = 28, (v(Zy), Xn — ) 4+ 260 (Enént1, Xn — ). (71)
For the bias term, we apply Young’s inequality for products,
Bn
2Bn<En§n+laXn - .Z‘*> < Bnén ||Xn - x*HQ + 57 ||bn-i-1H2 . (72)
For the remaining term, we may apply the result of Lemma D.2]in order to obtain

26H<U(Zﬂ)7Xn - I*> S - ,UJBn ||Xn - ‘T*HQ (733)

1 2
o1 (W FoPIE 4 z) BullZ -2 (X)P (T30)
v \1—4dpy

1 2 1 2
= 5B [0(Za) " = 57Bn lo(=" (Xn))] (73¢)
Taking the conditional expectation in equation and applying the inequalities equation and
O

equation [73] we arrive at the claimed descent inequality, equation [66]

F CONVERGENCE PROOFS

F.1 PROOF OF PROPOSITION [4.4]

Proof of Proposition[#-4] 'We have that ||b,41|| = O(d,,) as a property of the SPSA gradient esti-
mate. Moreover, Lemma [3.1|states that ||V,, 11| = O(R,,). With these estimates for the error terms,
we rewrite the descent inequality of in the following form:

B 1 Bn
Er, = 1 Zn41 — Z*(Xn+1)||2 <(1-=(5+2ywan | —1Zn — z*(Xn)||2 (742)
Q41 2 Qn,
3R2
+0 (Bub 4 anp, s+ P2 (74b)
an
As aresult of Assumption 2] we have that the conditions of Theorem [B.2]are satisfied, hence
B | Z, — 2*(X,)||> = 0 a.s. and in expectation. (75)
Qnp

Suppose, in addition, Assumption [3] holds. Taking the expectation in equation [74] we obtain the
following:

Br+1 2 1 o Bn 2
E Zpt1 — 2( X, <[(1—(=+2 — |E—=||Z,, — 2% (X, 76
O s = 2 Ko < (1= G+ 200 5 ) B2 120 - 01T 6w
(logn)*  (logn)*  (logn)?
+ o ( nb+d + na+b + n3b—2a (76b)

Since logn = O(n%e) for any € > 0, we have that equationimplies that for any € > 0, for all n
sufficiently large,

Br+1 2 1 o’ Bn 2
E a1 — 27 (X, <(1—-(=+2 — |E—=||Z,, — 2" (X, 77
P s = )P < (1 2 & ) B 12— 2 e
1
+O(ne+a_€> (77b)

where e + @ = min{b+ d,a + b, 3b — 2a}.

As a consequence of the summability constraints of Assumption [2| we have that min{b + d —
a,b,3b — 3a} > 0. Hence, if we set 0 < ¢ < min{b + d — a,b,3b — 3a}, then we have that
e — ¢ > 0. An application of Chung’s lemma[B.3](noting that @ < 1) implies that

ne—s

., . 1
Ei— 1Zy — 2" (X)|IP = O ( ) : (78)
O
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F.2 PROOF OF PROPOSITION [4.3]

Proof of Proposition We begin by showing that the positive terms in the descent inequality
equation [66] of Lemma are finite in series. First, we apply Proposition 4.4]in order to obtain the
following estimate for any 0 < € < min{b+ d — a,b, 3b — 3a} and sufficiently large n

8.8 12, - = I?] = 0 (i ). @9

neta—e
where e + a — e = min{b+ d,a + b,3b — 2a} — e.

As a consequence of the summability conditions of Assumption [2} we have that min{b + d,a +
b,3b —2a} > 1 and so we may set 0 < e < min{b+d—1,a+b—1,3b— 2a — 1}. In which case,
we have that e + @ — € > 1. Hence we have that

> B.E [Hzn - z*(Xn)ﬂ < +oc. (80)

n=1
It is the case that ||b,+1] = O(,,). Hence g—“ [brs1]]® = O(6,8,), which is finite in series owing
to Assumption[2]
Similarly, as a consequence of Lemma [3.1, we have that 82K, |[V,o1|®> = O(B2R2). Since
Bn = o(ay,) and by Assumption o anBnRZ < oo, we have that > 2 | B2R2 < oo and
B2E,, ||Viy1||” is finite in series.

With each of the positive terms in the descent inequality equation [66] of Lemma are finite in
series, applying the stochastic approximation theorem of Robbins-Seigmund we have that
[ X, — *||* converges almost surely to finite random variable, and that the negative terms satisfy

o0

3570 IZIP + 578 (=" (X)) < o0 as. @D

n=1

In particular, since 220:1 B, = +00, it must be the case that

tim inf (Jo(Z,) |2 + [[o(z* (X)) = 0. (82)

F.3 PROOF OF THEOREM [4.1]

Proof of Theorem1) Let ny, be a sequence satisfying ||v(Z,, )||>+ ||2* (X, )||* — 0. In particular
we note that

v(Zy,) = 0 and v(z*(X,,)) — 0.
Let * € X*. The almost sure convergence of || X,,, — *|| implies that X,,, is almost surely
bounded. In particular there exists a subsequence X, K, converging to a limit 2o, € R?. For the sake

of notation, we will adopt the convention that the subsubsequence ny, corresponds to an increasing
function w : N — N. By Proposition 4]

| Zeony = 2 (Xum))|| = 0 as.

Expanding z*, by the fixed point equation, we have that X,y = 2*(Xyn)) — 70(2*(Xy(ny)). An
application of the triangle inequality yields that

1Zomy) = Xom || < [1Zowm) = 2" Kol +7 [0 (Ko@) = 0 as.
This implies that Z,,(,;) — T« a.8. and by the continuity of v,
V(Too) = nh_)rr;o V(Zy(n)) = 0.
This is precisely that o, € A'™*. Taking * = x, the almost sure convergence of ||.X,, — z|| to a

finite random variable and the convergence of the subsequence HXw(n) — Zoo H to zero, implies that
the entire sequence X,, = T, € X* a.s.
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F.4 PROOF OF THEOREM [4.2]

Proof of Theorem For all n sufficiently large, as a consequence of Assumption 2}

1

Taking the expectation in the descent inequality [66] we have that for all n sufficiently large,

1
X1 - o7 < (1 usn ) ELX — | (340
1/ 2
+ = ( TR rpy 2) BuE|Z — 25 (Xn)|I? (84b)
I —dpy
+ O (Bnbn + B2R2) . (84c)

We apply Proposition in order to obtain the following estimate for any 0 < € < min{b + d —
1,a+b—1,3b — 2a — 1} and for sufficiently large n,

1
E (12, - (617 =0 (s ). (85)

where € + a — e = min{b+d, a + b, 3b — 2a} — e. Since the parameter sequences take the form of
Assumption[3} we may rewrite [84]as follows:

E|Xpp —2*|° < (1 - 5“) E|X, —z*|? (86a)
(logn)?  (logn)? 1
+ o ( nb+d + n2b + neta—e : (86b)

Again, noting that logn = O(née), we have that, for all n sufficiently large,

E|| Xt — 2| < (1 - /8“) E| X, — 2*| (87a)

1 1 1
+0 (nb+d6 + n2b—e + ne+ae) : (87b)
Let f := min{d, b,a — b}. Noting that e + a — b = min{d, a, 2b — 2a}, we have that
f = IIliIl{d7 a, 2b — 2a}. (88)

We may choose 0 < ¢ < min{a, 2b — 2a,3b — 2a — 1,a + b — 1} so that both the following hold:
e+a—e>1land f — e > 0. This enables us to rewrite equation [§7|in the following form

Bl - o[ < (1= 25 ) EILX, - o (39)
o L 90
+ oy (90)
and an Application of Chung’s Lemma [B.3]yields that
1
E||Xn—x*2§(’)( = ) 1)
n €
Since € > 0 can be taken to be arbitrarily small, we have that
~ (1
E X, — 2| o( f) ©2)
n
as claimed. O
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G EXPERIMENTAL SETTING FOR SECTION

The experiments in Section [5] were conducted in macOS 14.5 with Apple M2 Max and 32GB of
RAM.

In Figure[2)is a log-log graph comparing the average norm of the iterates, averaged over 10 instances
with random seeds. The shaded region corresponds to the 25-75 percentile of the ensemble. In each
instance, we initialize the game with action o = (10, 20). The parameter sequences are tuned as
follows:

* Y= %’ Qp = (505?,n)0.663 ﬂn = 101[())2,”, 571, = (1()1(())(3?”)0'66 and Rn =100 log(n + 1),

D5 o = (88 =01

* (0G): v = 0.1(547)°.

In keeping with Theorem and Remark we choose a = d = 0.66 =~ %, b = 1 in order to
approximate the best-rate attained through our analysis. In addition, in order to prevent the parameter
sequences from decaying too quickly, we opt to translate n and rescale the parameter sequences, as
above; this ensures the trajectories of the iterates are sufficiently long. The parameters for OG+
with additive noise reflect the constraints stated in the last-iterate convergence result in |Hsieh et al.
(2022). The parameters for OG are taken from a similar experiment in Hsieh et al.|(2022).

In terms of noise models for OG and we consider a normal A/(0, 0.2) distribution on the noise
&n41 Which is additive, that is, 0,41 ; = vi(:vw_%) +&pg,i fori=1,2.

H SUPPORTING LEMMAS

We state the following Lemma concerning inner product spaces, which we frequently make use of
and refer to as Young’s inequality.

Lemma H.1. Let (R, (-,-)) be an inner product space with induced norm ||-||. For any 0 > 0, and
any xz,y € R%, the following hold:

(i) ) .
<Y 2, 1 2
(.0} < 5 Nl + o ol
(ii)
1
I+l < (14 0) ol + (1 + 5) g1l

Proof. We exploit the bi-linearity of the inner product to write

Y
T,y) = \/éx,— . 93
(w9) = (VBr, ) ©3)
Expanding the norm, we next observe that
y | 1 Y
0<||Voz— | <8z += 2—2\/5:10,— 94
H 7l = ll” + 5 llyll™ = 2( \/§> (94)

Rearranging equation 04 and applying equation[93] we arrive at the claimed result (i).

We see that (i) = (ii) when the expand the following inner product

2 2 2
[z +yll™ = llzlI” + [lylI” + 2{z, y).
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