

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SIMULTANEOUSLY PERTURBED OPTIMISTIC GRADIENT METHODS FOR PAYOFF-BASED LEARNING IN GAMES

Anonymous authors

Paper under double-blind review

ABSTRACT

We examine the long-run behavior of learning in a repeated game where the agents operate in a low-information environment, only observing their realized payoffs at each stage. We study this problem in the context of monotone games with unconstrained action spaces, where standard gradient schemes may lead to cycles, even with perfect gradient information. To account for the fact that only a *single* payoff observation can be made at each iteration—and no gradient information is directly observable—we design and deploy a simultaneous perturbation gradient estimation method adapted to the challenges to the problem at hand, namely unbounded action spaces, gradients and rewards. In contrast to single-timescale approaches, we find that a two-timescale approach is much more effective at controlling the (unbounded) noise introduced by payoff-based gradient estimators in this setting. Owing to the introduction of a second timescale, we show that the proposed simultaneously perturbed optimistic (SPOG) algorithm converges to equilibrium with probability 1. In addition, by developing a new method to assess the rate of convergence of two-timescales stochastic approximation procedures, we show the sequence of play induced by SPOG converges at [an asymptotic](#) $\tilde{\mathcal{O}}(n^{-2/3})$ rate in strongly monotone games. To the the best of our knowledge, this is the first convergence rate result for games with unbounded action spaces, and it is faster than the sharpest known convergence rates for single-observation, payoff-based learning in strongly monotone games with bounded action spaces.

1 INTRODUCTION

Many large-scale systems involve the interaction of multiple autonomous decision makers. Examples of this include generative adversarial networks (GANs) (Goodfellow et al., 2014), distributed optimization in parallel computing, transportation networks (Vigneri et al., 2019), etc. In this setting, each agent must respond to the changing environment posed by the other agents’ actions, and the utility of each agent is determined by the actions of all players through a fixed underlying rule.

In a game-theoretical setting, first-order gradient methods might never stabilize in the long-run, resulting in cycles or even divergence of the sequence of play, even in simple, unconstrained bilinear min-max games (Daskalakis et al.). In fact, even optimistic gradient (OG) methods, which incorporate a recency bias, have been shown to exhibit trajectories of play that orbit an equilibrium, failing to converge [when feedback is contaminated with noise](#) (Hsieh et al., 2022). An example of this is illustrated in Figure 2d.

When each agent has a noise-contaminated estimate of their payoff gradient, a modification of the optimistic gradient method, known as OG+, results in last-iterate convergence of the sequence of play to a Nash equilibrium in monotone games (Hsieh et al., 2020; 2022). This modification involves a *learning rate separation*, whereby the extrapolation step is taken with a learning rate an order of magnitude larger than that of the update step. By following a policy that explores aggressively and updates conservatively, the gradient noise effectively becomes an order of magnitude smaller than the expected variation of payoffs, ultimately enabling convergence.

In a low-information environment, an agent might not have access to an estimate of their gradient. We instead consider that the only information available to each agent is the payoff they receive at

Algorithm	Actions	Monotone	Feedback	Convergence Rate	Type
AOG (Cai and Zheng, 2023)	Compact	Mere	Perfect FO	$\mathcal{O}(n^{-1})$ GAP	anytime
Dong et al. (2025)	Compact	Mere	1-Point ZO	$\mathcal{O}(n^{-1/4}) \ \cdot\ ^2$	asymptotic
MD (Bravo et al., 2018)	Compact	Strong	1-Point ZO	$\mathcal{O}(n^{-1/3}) \ \cdot\ ^2$	asymptotic
MD (Drusvyatskiy et al., 2022)	Compact	Strong	1-Point ZO	$\mathcal{O}(n^{-1/2}) \ \cdot\ ^2$	anytime
Tatarenko and Kamgarpour (2024a)	Compact	Strong VS	1-Point ZO 2-Point ZO	$\mathcal{O}(n^{-1/2}) \ \cdot\ ^2$ $\mathcal{O}(n^{-1}) \ \cdot\ ^2$	asymptotic asymptotic
GABP (Abe et al., 2025)	Compact	Mere	Perfect FO Stoch. FO	$\tilde{\mathcal{O}}(n^{-1})$ GAP $\tilde{\mathcal{O}}(n^{-1/7})$ GAP	anytime anytime
SPOG	Unbounded	Strong	1-Point ZO	$\tilde{\mathcal{O}}(n^{-2/3}) \ \cdot\ ^2$	asymptotic

Table 1: Rates of convergence for learning algorithms in monotone games. See Sections 2.1-2.3.

each stage of the game. A difficulty inherent to this payoff-based context is that agents must estimate their payoff gradient from a *single* payoff observation. Despite these difficulties, no-regret, *payoff-based* learning algorithms have been developed that guarantee last-iterate convergence in monotone games with constrained action spaces (Bravo et al., 2018; Tatarenko and Kamgarpour, 2024a).

Further challenges arise when learning in games with unbounded action spaces. Standard compactness arguments cannot be applied to establish the convergence of iterates. Furthermore concave payoff functions are in general unbounded and not Lipschitz, adding a further layer of variance to zeroth-order (ZO) gradient estimators.

Our contributions in the context of related work.

1. We develop a simultaneously perturbed optimistic gradient (SPOG) learning algorithm that combines the learning rate separation technique present from OG+ with a novel, thresholded single-observation payoff-based gradient estimator. We show that SPOG converges to a Nash equilibrium with probability 1 in a large class of monotone games.
2. We obtain an **asymptotic last-iterate** rate of convergence of rate of $\tilde{\mathcal{O}}(n^{-2/3})$ in strongly monotone games. This is, to the best of our knowledge, the first rate of convergence result for unconstrained games and exceeds the corresponding best rate for strongly monotone *constrained* games with one-point ZO feedback Tatarenko and Kamgarpour (2024a). By reusing previous payoff observations as a baseline reward in the gradient estimate, thereby reducing the variance, our algorithm exceeds the sharpest known convergence rate for one-point ZO algorithms (Shamir, 2013; Ba et al., 2025).
3. We develop and deploy a new analysis method for two-timescales stochastic approximation (Borkar, 1997; Doan, 2021) to control the convergence rate of our algorithm.

Closely related work, summarized in Table 1, is described in Section 2.3 once we have introduced the necessary preliminaries.

2 PRELIMINARIES

2.1 MONOTONE GAMES IN NORMAL FORM

We consider games with a finite number N of players and unconstrained continuous action spaces. Denote the set of players as $\mathcal{N} = \{1, \dots, N\}$. During play, each player $i \in \mathcal{N}$ simultaneously selects an *action* x_i from their action set $\mathcal{X}_i = \mathbb{R}^{D_i}$, resulting in a *joint action profile* $x = (x_i, x_{-i}) \equiv (x_1, \dots, x_N) \in \mathcal{X} \equiv \prod_{i \in \mathcal{N}} \mathcal{X}_i$. Each player receives a *reward*, with Player i receiving $u_i(x_i, x_{-i})$, where $u_i : \mathcal{X} \rightarrow \mathbb{R}$ is Player i 's *utility* function. Such a game is referred to as a *continuous game in normal form*. Write $v_i(x) := \nabla_{x_i} u_i(x_i; x_{-i})$ for the players' individual payoff gradients and define the game's *pseudo-gradient* operator $v : \mathbb{R}^D \rightarrow \mathbb{R}^D$ as $v(x) = (v_i(x))_{i \in \mathcal{N}}$ for all $x \in \mathcal{X}$.

Definition 2.1 (Monotonicity). For $\mu \geq 0$, a map $v : \mathcal{X} \rightarrow \mathcal{Y}$ is said to be μ -*monotone* over $\mathcal{X} \subset \mathbb{R}^D$ if the following inequality holds for all $x, x' \in \mathcal{X}$,

$$\langle v(x) - v(x'), x - x' \rangle \leq -\mu \|x - x'\|^2, \quad (\text{MON})$$

108 where $\|\cdot\|$ denotes the Euclidean norm. If $\mu > 0$ then v is *strongly monotone*, otherwise v is
 109 *merely monotone*. A game is said to be (strongly/merely) *monotone* if its pseudo-gradient v is
 110 (strongly/merely) *monotone* over its joint action space \mathcal{X} .
 111

112 Monotonicity has thus given rise to a rich class of games, containing all bilinear min-max games (an
 113 unconstrained analogue of finite two-player, zero-sum games), games that admit a concave potential,
 114 and is common in applications to generative models (Chavdarova et al., 2019; Kamalaruban et al.,
 115 2020). Throughout the rest of this paper, we restrict our study to *monotone* games.
 116

2.2 SOLUTION CONCEPTS

118 A widespread solution concept in the theory of games is the *Nash equilibrium* (Nash, 1951), a joint
 119 strategy profile from which no player can profit from deviating unilaterally. Formally,
 120

121 **Definition 2.2** (Nash Equilibrium). An action profile $x^* \in \mathcal{X}$ is said to be a *Nash equilibrium* if

$$122 \quad u_i(x_i^*; x_{-i}^*) \geq u_i(x_i; x_{-i}^*) \quad \text{for all } x_i \in \mathcal{X}_i, i \in \mathcal{N}. \quad (\text{NE})$$

124 Let \mathcal{X}_* denote the set of Nash equilibria of the game. By concavity of the players' payoff functions,
 125 \mathcal{X}_* coincides exactly with the zeros of the pseudo-gradient v , i.e. $\mathcal{X}_* = \{x \in \mathcal{X} : v(x) = 0\}$.
 126

Throughout we impose the following assumptions on the underlying game.

Assumption 1. There exists constants $L > 0$, $\mu \geq 0$ such that

- 129 (i) v is L -Lipschitz, that is, $\|v(x) - v(x')\| \leq L \|x - x'\|$ for all $x, x' \in \mathcal{X}$;
- 130 (ii) the game \mathcal{G} is μ -monotone;
- 131 (iii) the set \mathcal{X}_* is non-empty;
- 132 (iv) there exists a constant $G > 0$ satisfying $\|\nabla u_i(x)\| \leq G(1 + \|x\|)$ for all $x \in \mathcal{X}$.

134 Much of our analysis exploits the smoothness from Assumption 1(i) with iterative application of
 135 the monotonicity from Assumption 1(ii) to obtain last-iterate convergence guarantees. Our study
 136 concerns games with unconstrained action spaces, where in general Nash equilibria might not even
 137 exist; we avoid this difficult by imposing Assumption 1(iii) which is a standard assumption in this
 138 setting (Hsieh et al., 2022). The regularity Assumption 1(iv) is used to control the variance of our
 139 zeroth-order gradient estimate, which is necessary since the action spaces are unbounded.
 140

2.3 RELATED WORK

142 In this section we provide a detailed account of the related work, as summarized in Table 1. We
 143 distinguish between first order (FO) and zeroth-order (ZO) feedback schemes.

144 **First-Order Feedback.** Much of the literature on online learning in games assumes that players
 145 are able to obtain gradient information by querying a *first-order* oracle (Nesterov, 2013), that is a
 146 "black-box" feedback scheme that returns an estimate \hat{v}_i of Player i 's individual payoff gradient
 147 $v_i(x)$ at the current (joint) action profile $x = (x_i, x_{-i}) \in \mathcal{X}$. The oracle might be *perfect*, yielding
 148 $\hat{v}_i = v_i(x)$, or *stochastic* where the gradient is contaminated with some noise U_i .
 149

150 In constrained games with mere monotonicity ($\mu \geq 0$), Abe et al. (2025) develop a payoff per-
 151 turbation technique enabling last-iterate convergence **at anytime rates** of $\tilde{O}(n^{-1/7})$ for zero-mean
 152 bounded-variance additive noise, and at $\tilde{O}(n^{-1})$ with perfect gradient feedback. In the noiseless set-
 153 ting, the Accelerated Optimistic Gradient (AOG) converges with an optimal **anytime** rate $\mathcal{O}(n^{-1})$
 154 (Cai and Zheng, 2023).

155 **Zeroth-Order Feedback.** In our study we consider instead *zeroth-order*, or *payoff-based*, feedback.
 156 In this setting, the only information available to agent $i \in \mathcal{N}$ is the actual payoff $u_i(x_i, x_{-i})$ that
 157 they receive at each stage of the game. Each agent is unaware of the payoff received by other agents,
 158 the actions of other agents, or even the number of agents in the game.
 159

160 In this setting, agents must estimate their individual payoff gradient using only their observed payoff.
 161 Multi-point directional sampling techniques are an effective way to estimate a function's gradient
 162 (Kiefer and Wolfowitz, 1952; Flaxman et al., 2004), but require multiple queries of their payoff
 163 function. In general, this is not possible in a game theoretical setting, where a player's individual

162 payoff function might depend on the actions of *all* players, changing from one instance to the next
 163 as a result of the actions of other players.

164 Fortunately, techniques for estimating a function’s gradient from a single function evaluation exist;
 165 most notably *simultaneous perturbation stochastic approximation* (SPSA) (Spall, 1997; Flaxman
 166 et al., 2004), which we define in Section 2.4. In a game theoretical setting, online learning al-
 167 gorithms using SPSA (or similar) gradient estimators have yielded last-iterate convergence results
 168 in games with *constrained action spaces* (Bravo et al., 2018; Tatarenko and Kamgarpour, 2024b).
 169 Bravo et al. (2018) develop a variant of mirror descent (MD) which they show enjoys an *asymptotic*
 170 last-iterate convergence rate of $\mathcal{O}(n^{-1/3})$ in *strongly monotone* games. Tighter analysis by Drusvy-
 171 atskiy et al. (2022) reveals that this algorithm converges at an *anytime* rate of $\mathcal{O}(n^{-1/2})$, matching
 172 Tatarenko and Kamgarpour (2024a) who obtain this rate *asymptotically* in constrained games with
 173 a *strongly variationally stable* (VS) Nash equilibrium, a large class containing strongly monotone
 174 games. In games which are *merely monotone*, Dong et al. (2025) develop a doubly regularized vari-
 175 ant of mirror descent that converges at an *asymptotic* rate of $\mathcal{O}(n^{-1/4})$, however, to achieve this rate,
 176 their algorithm requires a game-dependent choice of regularizer. *Interestingly, we see the same rate*
 177 *appearing in the lower bound proved by Fiegel et al. (2025)* for two-player zero-sum matrix games,
 178 *which are *a fortiori* merely monotone.*

179 Unlike all of the works above where action spaces are assumed to be *compact*, we consider the
 180 problem of payoff-based learning in *unconstrained* monotone games. In this setting, there do not
 181 seem to be any theoretical convergence rate guarantees in the literature.

183 2.4 THE SPSA GRADIENT ESTIMATOR

185 We define the SPSA gradient estimator of Spall (1997) in detail. Suppose that players are estimating
 186 $v(z)$ at joint action profile $z = (z_1, \dots, z_N)$. For a *query radius* $\delta > 0$, each player $i \in \mathcal{N}$,

- 187 1. Samples a vector w_i from the unit sphere $\mathbb{S}^{D_i} \subset \mathbb{R}^{D_i}$ and plays $\tilde{z}_i = z_i + \delta w_i$.
- 188 2. Receives feedback $\hat{u}_i = u_i(\tilde{z}_i, \tilde{z}_{-i})$ and constructs the estimate $\hat{V}_i = \frac{D_i}{\delta} \hat{u}_i w_i$.

190 As demonstrated in (Flaxman et al., 2004; Bravo et al., 2018), \hat{V}_i is an unbiased estimator of the
 191 gradient of a δ -smoothing $u_i^\delta(z)$ of u_i evaluated at z . In particular, $\|\nabla_i u_i - \nabla_i u_i^\delta\|_\infty = \mathcal{O}(\delta)$
 192 and the variance of \hat{V}_i is $\mathcal{O}(\delta_n^{-2})$. Since $\|\hat{V}_i\|$ is proportional to the payoff received, and concave
 193 payoff functions on *unbounded* action spaces are unbounded, we must contend with the fact that
 194 the variance of this estimator may explode. An important observation is that, for any predetermined
 195 $c_i \in \mathbb{R}$, the *adjusted* SPSA (SPSA+) estimate
 196

$$197 \quad V_i = \frac{D_i}{\delta} (\hat{u}_i - c_i) w_i \quad (\text{SPSA+})$$

199 has the same expectation as \hat{V}_i . A key idea is that if $c_i = u_i(\tilde{z}^-)$ is chosen to be a *previous* payoff
 200 observation, and $\|\tilde{z} - \tilde{z}^-\|$ is sufficiently small, then for u_i satisfying the regularity Assumption
 201 1(iv), the exploding variance from the factor of δ_n^{-2} can be controlled.

202 We will find it useful to express SPSA+ in the form $V_i = v_i(z) + \xi_i$ where $\xi_i = U_i + b_i$ with
 203 unbiased component $U_i = V_i - \mathbb{E}V_i$ and bias $b_i = \nabla_i u_i^\delta(z) - \nabla_i u_i(z)$.

205 2.5 OPTIMISTIC GRADIENT METHODS AND THE ROLE OF LEARNING RATE SEPARATION

207 It is well known that simply following a gradient ascent/descent policy can result in non-convergence
 208 in games. Itself a variant of the *extragradient* (EG) algorithm (Korpelevich, 1976), the *optimistic*
 209 *gradient* (OG) algorithm (Popov, 1980; Rakhlin and Sridharan, 2013) mitigates non-convergence
 210 phenomena in online learning in games. Agents prescribed to an OG scheme use past gradient
 211 information to make an informed “look-ahead”, extrapolation step, before taking an update step to
 212 update their strategy, as illustrated in Figure 1. Formally, assuming for the moment that players may
 213 query a stochastic *first-order* oracle \tilde{v} , the OG algorithm is defined by the sequence of iterates

$$214 \quad X_{n+1/2,i} = X_{n,i} + \gamma_{n-1} \tilde{v}_i(X_{n-1/2}), \quad (\text{OG})$$

$$215 \quad X_{n+1,i} = X_{n,i} + \gamma_n \tilde{v}_i(X_{n+1/2}),$$

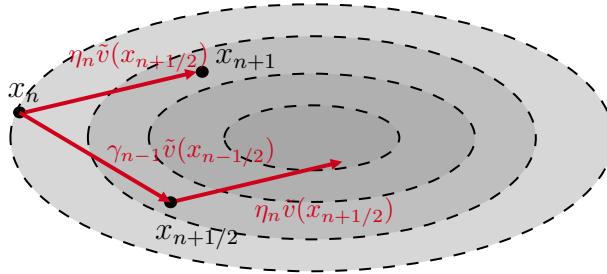


Figure 1: Optimistic Gradient with learning rate separation

where $\gamma_n > 0$ is a sequence of learning rates.

This technique stabilizes the learning dynamics when the agents have access to a *perfect* first-order oracle, yet can lead to divergent trajectories of play with a *stochastic* first-order oracle, even for simple two-player bilinear min-max games (Hsieh et al., 2022), illustrated in Figure 2d. To overcome this difficulty, Hsieh et al. (2022) introduce a *learning-rate separation* technique, which they term OG+, whereby the extrapolation step is taken with a learning rate that is asymptotically larger than that of the update step. Formally, the OG+ algorithm is defined by the sequence of iterates

$$\begin{aligned} X_{n+1/2,i} &= X_{n,i} + \gamma_{n-1} \tilde{v}_i(X_{n-1/2}), \\ X_{n+1,i} &= X_{n,i} + \eta_n \tilde{v}_i(X_{n+1/2}), \end{aligned} \quad (\text{OG+})$$

where $\gamma_n > \eta_n > 0$ are the respective learning rates for the extrapolation and update steps. Building on the intuition of Hsieh et al. (2022), when considering separated learning rates, the noise contaminating the gradient \tilde{v} is effectively controlled ensuring that it is an order of magnitude smaller than the expected variation of payoffs. This stabilizes the learning dynamics in the setting of unconstrained monotone games with *first-order feedback*, whereby the algorithm enjoys last-iterate convergence of $X_{n+1/2}$ to a Nash equilibrium and attains an expected regret of $\tilde{\mathcal{O}}(\sqrt{n})$ under additive noise model and $\mathcal{O}(1)$ under multiplicative noise models.

3 SIMULTANEOUSLY PERTURBED OPTIMISTIC GRADIENT

We are now in a position to introduce *Simultaneously Perturbed Optimistic Gradient* (SPOG), an optimistic gradient algorithm for payoff-based learning in continuous games. To that end, we begin by coupling OG+ with SPSA+, defined by the update rule, for each $i \in \mathcal{N}$,

$$\begin{aligned} Z_{n+1,i} &= X_{n,i} + \gamma_{n-1} V_{n,i}, \\ X_{n+1,i} &= X_{n,i} + \eta_n V_{n+1,i}, \end{aligned} \quad (\text{OG+SPSA})$$

where the *adjusted* (joint) SPSA+ estimator V_{n+1} , given by,

$$V_{n+1,i} = \frac{D_i}{\delta_n} (u_i(\tilde{Z}_n) - u_i(\tilde{Z}_{n-1})) W_{n,i}, \quad (1)$$

and where $\tilde{Z}_n = Z_n + \delta_n W_n$, and W_n is the joint perturbation for which each component $W_{n,i}$ is drawn independently of the other players and uniformly from the sphere \mathbb{S}^{D_i} .

In this scheme Z_n takes the place of the extrapolation step $X_{n+1/2}$ in OG+ and is the action profile at which the pseudo-gradient $v(Z_n)$ is to be estimated. However, the variance introduced by the adjusted SPSA estimator 1 grows unbounded, which makes the iterates of the resultant algorithm impractical to control. This motivates a two-timescales approach (Borkar, 1997) where the extrapolation step Z_n is updated with a larger learning parameter, effectively averaging across many gradient estimates and thereby controlling the variance of the SPSA estimator 1. The resulting update rule is:

$$\begin{aligned} Z_{n+1,i} &= Z_{n,i} + \alpha_n (X_{n,i} + \gamma V_{n+1,i} - Z_{n,i}), \\ X_{n+1,i} &= X_{n,i} + \beta_n V_{n+1,i}, \end{aligned} \quad (2)$$

where V_{n+1} is the *adjusted* (joint) SPSA estimator 1, $\gamma > 0$ is a fixed extrapolation parameter and $\alpha_n, \beta_n > 0$ with $\beta_n = o(\alpha_n)$ as $n \rightarrow \infty$ are the respective learning rates for the fast and slow

timescales. Owing to asymptotic difference in learning rates, we will refer to X_n as the *slow iterate*, Z_n as the *fast iterate*, which may be thought as a kind of ‘time-average’. The *realized action* is \tilde{Z}_n .

Following the intuition of Borkar (1997), if the fast-process Z_n converges for any fixed value of X_n to a unique limit point, then we can analyze the algorithm as though the fast-process is, at each stage, fully calibrated to the current value of the slow process. To make this formal, consider the ordinary differential equation corresponding to the fast-process Z_n as though the slow component is static at $X_n = x \in \mathcal{X}$, i.e.

$$\dot{z}(t) = x + \gamma v(z(t)) - z(t). \quad (\text{ODE})$$

The parameter $\gamma > 0$ is subsequently tuned so that this ODE has a unique fixed point.

Unfortunately, 2 does not converge. The remaining challenge is that on unconstrained domains, concave functions are, in general, unbounded and not globally Lipschitz. We circumvent this by projecting the iterates into slowly-expanding envelopes, thus introducing a *deterministic* bound on the size of the iterates at a given time.

With this in hand, we are ready to present *Simultaneously Perturbed Optimistic Gradient* (SPOG). Let $(X_n)_{n \geq 1}$ and $(Z_n)_{n \geq 1}$ be the sequence of iterates defined by the update rule, for each $i \in \mathcal{N}$,

$$\begin{aligned} Z_{n+1,i} &= \text{Proj}_{3R_{n+1}\mathbb{B}^{D_i}}[Z_{n,i} + \alpha_n(X_{n,i} + \gamma V_{n+1,i} - Z_{n,i})], \\ X_{n+1,i} &= \text{Proj}_{R_{n+1}\mathbb{B}^{D_i}}[X_{n,i} + \beta_n V_{n+1,i}], \end{aligned} \quad (\text{SPOG})$$

where the *adjusted* (joint) SPSA+ estimator V_{n+1} , given by 1. See Algorithm 1 for pseudocode.

In addition, we impose the following assumptions on the various parameter sequences introduced.

Assumption 2. The sequences $\alpha_n, \beta_n, \delta_n > 0$ are *decreasing*, $\frac{\beta_n}{\alpha_n}$ is decreasing and converges to 0 as $n \rightarrow \infty$ and $\frac{\delta_{n-1}}{\delta_n}$ is uniformly bounded; and $0 < \gamma < \min\{\frac{1}{2L}, \frac{1}{2G\sqrt{N}}\}$. In addition, $\alpha_n, \beta_n, \delta_n, R_n$ satisfy

$$\lim_{n \rightarrow \infty} \alpha_n = \lim_{n \rightarrow \infty} \beta_n = \lim_{n \rightarrow \infty} \delta_n = \lim_{n \rightarrow \infty} \frac{\alpha_{n-1}R_n}{\delta_n} = 0, \quad \lim_{n \rightarrow \infty} R_n = +\infty, \quad (3a)$$

$$\sum_{n=1}^{\infty} \alpha_n = +\infty, \quad \sum_{n=1}^{\infty} \beta_n = +\infty, \quad \sum_{n=1}^{\infty} \alpha_n \beta_n R_n^2 < \infty, \quad \sum_{n=1}^{\infty} \frac{\beta_n^3 R_n^2}{\alpha_n^2} < \infty, \quad \sum_{n=1}^{\infty} \beta_n \delta_n < \infty, \quad (3b)$$

In addition, we will sometimes restrict our study to parameter sequences of the following form.

Assumption 3. There exists constants $0 < a, b, d \leq 1$ and $\alpha, \beta, \delta, R > 0$ such that

$$\alpha_n = \frac{\alpha}{n^a}, \quad \beta_n = \frac{\beta}{n^b}, \quad \delta_n = \frac{\delta}{n^d} (\log n)^2, \quad \text{and} \quad R_n = R \log n. \quad (4)$$

Remark. Under Assumption 3, Assumption 2 is equivalent to the constants a, b, d satisfying the following inequalities: $0 < d \leq a < b < 1$, $a + b > 1$, $b + d > 1$ and $3b - 2a > 1$. We will show below that the *optimal* choice of a, b, d relative to the derived convergence guarantees in n is to set $a = d = \frac{2}{3}$ and $b = 1$ and is *game-independent*. In practice, SPOG should be initialized with these exponents (or close enough, as per the discussion following Lemma 3.1).

As such the only parameter that must be tuned to the underlying game is γ , which must be chosen to satisfy $0 < \gamma < \min\{\frac{1}{2L}, \frac{1}{2G\sqrt{N}}\}$. To circumvent this requirement, one might consider a variable γ approach, whereby $\gamma = \gamma_n$ converges to 0 on a third, even slower timescale. We opted for simplicity and avoided this extra layer of complication in our presentation of SPOG.

The parameter R_n is introduced in order to project the iterates into a slowly growing envelope which we combine with the regularity Assumption 1(iv) in order to control the variance of the *adjusted* SPSA estimator V_{n+1} . It is necessary for our analysis that we project fast- and slow-timescales into envelopes of different radii. The following estimate underpins much of our analysis.

Lemma 3.1. Under Assumptions 1-2, there exists a (deterministic) constant $C > 0$ such that, for sufficiently large n ,

$$\|V_{n+1}\| \leq CR_n. \quad (5)$$

324 **Algorithm 1** SPOG (player indices suppressed)

325

326 **Require:** learning rates $\alpha_n, \beta_n > 0$, query radius $\delta_n > 0$, parameter $\gamma > 0$

327 1: Choose $X, Z \in \mathcal{X}$, set $\tilde{u} \leftarrow 0$

328 2: **for** each stage $n = 1, 2, \dots$ **do**

329 3: draw W uniformly from \mathbb{S}^d

330 4: play $\tilde{Z} \leftarrow Z + \delta_n W$ {default: $\delta_n \propto 1/n^{2/3}$ }

331 5: set $\tilde{u}^- \leftarrow \tilde{u}$

332 6: receive $\tilde{u} = u(\tilde{Z})$

333 7: set $\tilde{v} \leftarrow (d/\delta_n)(\tilde{u} - \tilde{u}^-) \cdot W$ {default: $\alpha_n \propto 1/n^{2/3}$ }

334 8: update $Z \leftarrow \text{Proj}_{3R_{n+1}\mathbb{B}^d}[Z + \alpha_n(X + \gamma\tilde{v} - Z)]$ {default: $\beta_n \propto 1/n$ }

335 9: update $X \leftarrow \text{Proj}_{R_{n+1}\mathbb{B}^d}[X + \beta_n\tilde{v}]$ {default: $\beta_n \propto 1/n$ }

336 10: **end for**

337

338 *Remark.* Here $C > 0$ is any constant satisfying $C > 2(1 + 8DG\sqrt{N} \sup_{k \geq 1} \frac{\delta_{k-1}}{\delta_k})$. In the proof of

339 Lemma 3.1, we show that the upper bound 5 activates for all $n \geq n_1$, where

340

341
$$n_1 = \sup_{k \geq 1} \left\{ \frac{\alpha_{k-1} R_k}{\delta_k} > \frac{\min\{1, 2\sqrt{N}/\gamma\}}{16DGN} \right\}. \quad (6)$$

342

343

344 If SPOG is run with $a = d = \frac{2}{3}, b = 1$ as per Assumption 3, we have $\frac{\alpha_{k-1} R_k}{\delta_k} = \mathcal{O}(\frac{1}{\log n})$, so

345 the number of rounds until 5 binds may be exponential in D, G, N and γ . This is an artifact of the

346 logarithmic scaling factor in δ_n , and it can be avoided by taking

347

348
$$\alpha_n = \frac{\alpha}{n^{2/3}}, \quad \beta_n = \frac{\beta}{n}, \quad \delta_n = \frac{\delta}{n^{2/3-\epsilon}}, \quad \text{and} \quad R_n = R \log n. \quad (7)$$

349

350 where $\epsilon > 0$ is an arbitrary small constant. In this case, equation 5 binds after $n_1 =$

351 $\text{poly}(D, G, N, \gamma)$ iterations, at the cost of only a slight deterioration in the algorithm's convergence

352 rate. We discuss this issue in more detail right after the statement of Theorem 4.2.

353 The proof of this Lemma and all following statements are detailed in the Appendix.

354

355 4 RESULTS AND ANALYSIS

356

357 4.1 STATEMENT OF MAIN RESULTS

358

359 Our first key result is that SPOG converges to a Nash equilibrium in all monotone games.

360 **Theorem 4.1.** Suppose that Assumptions 1-2 hold. Let $(X_n, Z_n)_{n \geq 1}$ be generated by SPOG. Then

361 X_n converges to a (possibly random) Nash equilibrium $x^* \in \mathcal{X}_*$ almost surely.

362

363 There are two main steps to proving Theorem 4.1. First, in Section 4.2 we estimate the rate of

364 convergence of the fast iterate Z_n to a perturbed Nash equilibrium characterized by the slow iterate.

365 In Section 4.3, we leverage the convergence of the fast iterate in order to analyze the asymptotic

366 convergence of the slow iterate X_n .

367 Under the additional assumption that the game is *strongly-monotone*, we obtain a rate of convergence

368 for the sequence X_n generated by SPOG to the game's (unique) Nash equilibrium:

369 **Theorem 4.2.** Suppose that Assumptions 1-3 hold, \mathcal{G} is μ -strongly monotone for some $\mu > 0$ and

370 that $\gamma < \frac{1}{4\mu}$. Let $x^* \in \mathcal{X}^*$ be the (unique) Nash equilibrium of the game. Let $(X_n, Z_n)_{n \geq 1}$ be

371 generated by SPOG. Then

372
$$\mathbb{E} \|X_n - x^*\|^2 = \tilde{\mathcal{O}}(n^{-f}), \quad (8)$$

373

374 where $f = \min\{d, a, 2b - 2a\} > 0$.

375 *Remark.* Under Assumption 3, the exponent $f = \min\{d, a, 2b - 2a\}$ is maximized when $a = \frac{2}{3}, b =$

376 $1, d = \frac{2}{3}$, yielding $f = 2/3$. Hence the best-possible rate guarantee in 8 is

377

$$\mathbb{E} \|X_n - x^*\|^2 = \tilde{\mathcal{O}}(n^{-2/3}). \quad (9)$$

This tuning has been chosen to optimize the dependence of the derived rate in n , and is asymptotic, as per the convergence rate guarantees of Bravo et al. (2018); Drusvyatskiy et al. (2022); Tatarenko and Kamgarpour (2024a); Amortila et al. (2024); Dong et al. (2025), upon which it improves (even though the cited results concern bounded domains). In the non-asymptotic regime, the worst-case constants in the $\tilde{\mathcal{O}}(1/n^{2/3})$ guarantee of equation 9 are determined by the precise time at which the variance bound of Lemma 3.1 activates, and equation 6 shows that these constants may carry an exponential dependence on D , G , N , and γ . Whether this is cause of concern or not depends on the size of the game (as captured by the product DGN), and the horizon of play n : if DGN is too large, it might be preferable to choose a more conservative tuning for the algorithm’s parameters a , b and d , as per equation 7 for some small $\epsilon > 0$ (e.g., $\epsilon = 1/60$). In this case, the relevant constants stemming from equation 6 would be $\text{poly}(D, G, N, \gamma)$ and the induced convergence rate guarantee would be $\mathbb{E} \|X_n - x^*\|^2 = \tilde{\mathcal{O}}(n^{-2/3+\epsilon})$ —e.g., $\tilde{\mathcal{O}}(1/n^{13/20})$ if $\epsilon = 1/60$.

Calibrating the “sweet spot” in this trade-off is heavily application-dependent, so it lies beyond the scope of our work. We only note that, even for $\epsilon > 0$, the rate guarantees of Theorem 4.2 exceed the best-known $\mathcal{O}(n^{-1/2})$ rates in the literature, either anytime (Drusvyatskiy et al., 2022) or asymptotic (Tatarenko and Kamgarpour, 2024a), and even though these best-known rates only concern *bounded* domains (where the algorithm’s exploration radius is bounded by default).

4.2 FAST-TIMESCALE ANALYSIS

In this section we establish, asymptotically, that the *fast iterate* Z_n of SPOG is calibrated to the fixed point $z^*(X_n)$ of the fast timescale mean field ODE at the current value of the *slow iterate* X_n .

Lemma 4.3. *For each fixed $x \in \mathbb{R}^D$, ODE has a unique globally attracting equilibrium $z^*(x)$. Furthermore $z^* : \mathbb{R}^D \rightarrow \mathbb{R}^D$ is Lipschitz, with Lipschitz constant $L_z = \frac{1}{1-\gamma L}$, and satisfies*

$$z^*(x) = x + \gamma v(z^*(x)). \quad (10)$$

With this result, we derive the convergence rate of the quantity $D_n := \frac{\beta_n}{\alpha_n} \|Z_n - z^*(X_n)\|^2$.

Proposition 4.4. *Suppose that Assumptions 1-2 hold. Let $(X_n, Z_n)_{n \geq 1}$ be generated by SPOG, then $D_n \rightarrow 0$ a.s. and in expectation as $n \rightarrow \infty$. If, in addition, the parameter sequences satisfy Assumption 3 then, for all $0 < \epsilon < \min\{b + d - a, 3b - 3a\}$,*

$$\mathbb{E} \left[\frac{\beta_n}{\alpha_n} \|Z_n - z^*(X_n)\|^2 \right] = \mathcal{O}(n^{-e+\epsilon}), \quad (11)$$

where $e = \min\{b + d - a, b, 3b - 3a\}$.

Sketch of Proof. Following Lyapunov’s method (Benaïm, 2006), we first obtain a descent inequality that provides theoretical insight into performance benefits obtained through learning rate separation:

$$\mathbb{E}_n D_{n+1} \leq [1 - (\frac{1}{2} + 2\gamma\mu)\alpha_n] D_n \quad (12a)$$

$$+ \frac{2\gamma\beta_n}{\delta_n} \|b_{n+1}\|^2 + 2[\gamma^2\alpha_n\beta_n + L_z^2 \frac{\beta_n^3}{\alpha_n^2}] \mathbb{E}_n \|V_{n+1}\|^2. \quad (12b)$$

The full statement and proof of this descent inequality is given in Lemma E.1. By tuning the learning parameter sequences $\alpha_n, \beta_n, \delta_n$ such that each of the error terms in 12 is controlled sufficiently, we can apply a stochastic approximation argument in order to establish the asymptotic convergence of D_n to zero. Moreover, owing to a contractive coefficient in 12a, we may apply Chung’s Lemma B.3 to yield the last-iterate rate of convergence for D_n . \square

4.3 SLOW-TIMESCALE ANALYSIS

In this section we establish the last-iterate convergence of the *slow iterate* X_n to a Nash equilibrium $x^* \in \mathcal{X}_*$ of the underlying game. First, we obtain the convergence of $\|X_n - x^*\|^2$ for any Nash equilibrium $x^* \in \mathcal{X}_*$ by a stochastic approximation argument. Our proof also yields a kind of *best-iterate*, or *stabilization guarantee* for the convergence of the *fast iterate* Z_n . Last-iterate convergence of X_n to an element of \mathcal{X}_* then follows as a consequence of a compactness argument.

432 **Proposition 4.5.** Suppose that Assumptions 1-3 hold. Let $x^* \in \mathcal{X}^*$. Let $(X_n, Z_n)_{n \geq 1}$ be generated
 433 by SPOG. Then $\|X_n - x^*\|^2$ converges to a finite random variable almost surely, and enjoys the
 434 stabilization guarantee $\sum_{n=1}^{\infty} \beta_n (\|v(Z_n)\|^2 + \|v(z^*(X_n))\|^2) < \infty$ a.s.
 435

436 *Sketch of Proof.* Following a similar method to the fast-timescale analysis of Section 4.2, we begin
 437 by obtaining a descent-inequality for the Euclidean distance $\|X_{n+1} - x^*\|^2$:
 438

$$439 \mathbb{E}_n \|X_{n+1} - x^*\|^2 \leq (1 - \mu\beta_n + \beta_n\delta_n) \|X_n - x^*\|^2 \quad (13a)$$

$$440 \quad + \frac{1}{\gamma} \left(\frac{2\gamma\mu}{1 - 4\mu\gamma} + \gamma^2 L^2 + 2 \right) \beta_n \|Z - z^*(X_n)\|^2 \quad (13b)$$

$$441 \quad + \frac{\beta_n}{\delta_n} \|b_{n+1}\|^2 + \beta_n^2 \mathbb{E}_n \|V_{n+1}\|^2 \quad (13c)$$

$$442 \quad - \frac{1}{2} \gamma \beta_n \|v(Z_n)\|^2 - \frac{1}{2} \gamma \beta_n \|v(z^*(X_n))\|^2. \quad (13d)$$

443 The full statement and proof of this descent inequality is given in Lemma E.3. Critical to our
 444 subsequent analysis is the control of the calibration error term for the fast iterate 13b. By isolating
 445 this term in the descent inequality 13 we can utilize the convergence rate for this term obtained in
 446 Proposition 4.4. Assumptions 2 on the learning rate parameters enable the fast iterate to become
 447 calibrated whilst also controlling the error terms in 13. \square
 448

452 5 EXPERIMENTS

453 In this section, we illustrate the last-iterate performance of SPOG with a comparison to OG+ in
 454 two simple two-player games, each with unique Nash equilibrium $x^* = (0, 0)$. We compare the
 455 performance SPOG with that of optimistic algorithms OG+ with *first-order* oracle (*additive* noise),
 456 as well OG+SPSA to serve as a zeroth-order comparator to SPOG, despite it not having theoretical
 457 convergence guarantees. We will compare the *update-step* of OG(+) x_n with the *slow-iterate* of
 458 SPOG X_n since these quantities are subject to theoretical convergence results Hsieh et al. (2020).
 459

461 5.1 STRONGLY MONOTONE EXAMPLE

462 We illustrate the rate results of Theorem 4.2 for strongly monotone games with the following:

$$463 \quad u_1(x_1, x_2) = -\frac{x_1^2}{2} - x_1 x_2, \quad u_2(x_1, x_2) = -\frac{x_2^2}{2} + x_1 x_2, \quad x_1, x_2 \in \mathbb{R}. \quad (14)$$

464 In Figure 2a, after an initial transient phase, the algorithms appear to enter an asymptotic phase
 465 marked by the asymptotic log-linearity of the norm-squared. Both zeroth-order algorithms SPOG &
 466 OG+SPSA appear to exhibit faster asymptotic convergence than the first-order algorithms OG(+).
 467

468 In Figure 2b trajectories of SPOG and OG+SPSA are noisy compared to those of OG(+). Unlike
 469 the instances of OG+ which query a noisy first-order oracle, each instance of SPOG cannot observe
 470 the gradient directly, instead having to estimate the gradient from payoff observations alone via an
 471 SPSA gradient estimator. Subsequently, SPOG makes random perturbations, producing this noise.
 472

474 5.2 MERELY MONOTONE EXAMPLE

475 We illustrate the convergence result of Theorem 4.1 with this example of a two-player zero-sum
 476 bilinear game (which is necessarily *merely monotone*):

$$477 \quad u_1(x_1, x_2) = x_1 x_2 = -u_2(x_1, x_2), \quad x_1, x_2 \in \mathbb{R}. \quad (15)$$

478 In Figures 2c-2d SPOG appears to exhibit asymptotic convergence than any of its comparators,
 479 including OG+ which enjoys first-order gradient feedback. In this merely monotone experiment
 480 OG (without learning rate separation) does not converge, with trajectories orbiting the equilibrium
 481 in Figure 2d, illustrating the utility of learning rate separation (Hsieh et al., 2020). Moreover, it
 482 is unclear from 10^6 iterations whether OG+SPSA converges, or instead leads to cycles of play.
 483 As alluded to in Section 2.4, the SPSA estimator 1 in OG+SPSA introduces large variance that is
 484 impractical to control, potentially leading to (at best) slow-, or non-convergence.
 485

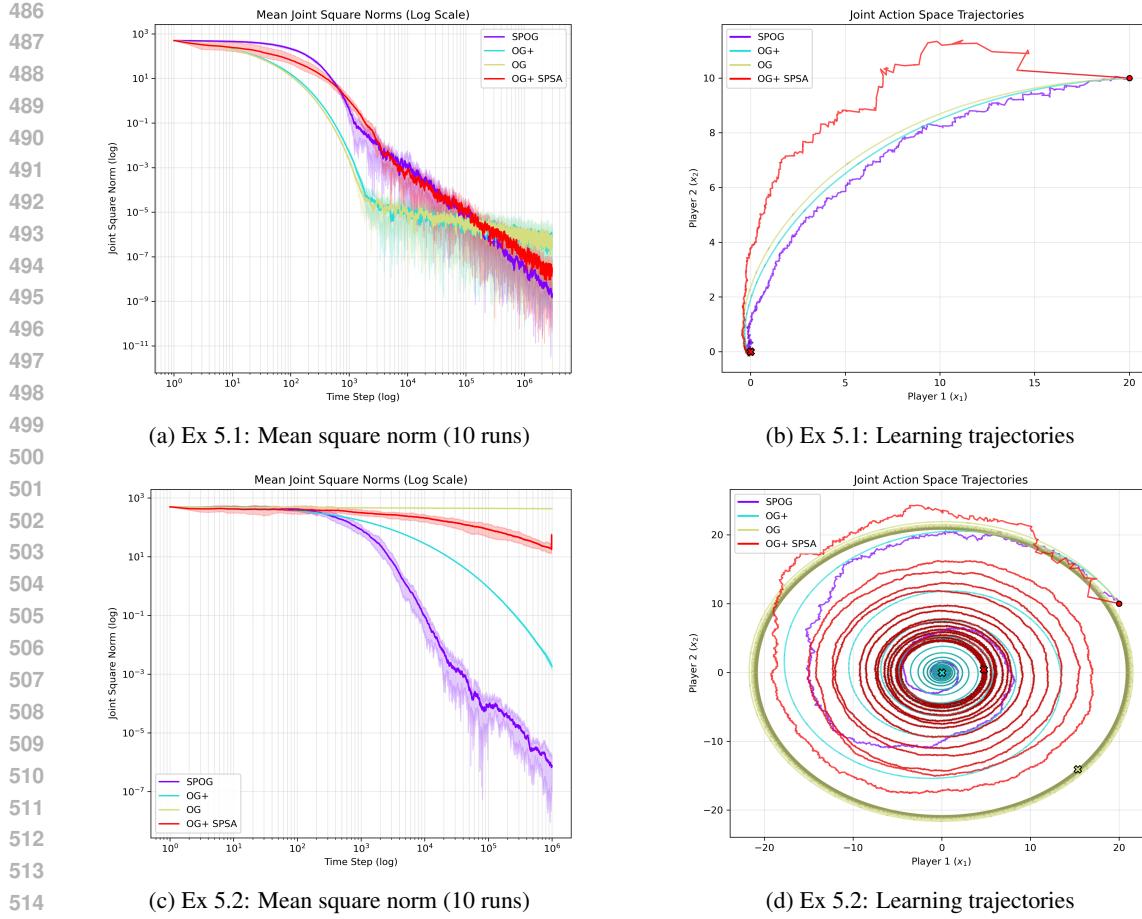


Figure 2: Distance to equilibrium in Example 5.1: SPOG vs OG+ vs OG vs OG+SPSA.

6 DISCUSSION

We developed a single-observation payoff-based algorithm whose iterates converge to a Nash equilibrium in all unconstrained monotone games and we established a *last-iterate* rate of convergence of $\tilde{O}(1/n^{2/3})$ for the sequence of iterates in strongly monotone games. This rate exceeds the best known rate for a single-observation payoff-based algorithm in the constrained setting (Drusvyatskiy et al., 2022; Tarenko and Kamgarpour, 2024a). We note that this exceeds the optimal lower complexity bound of $\Omega(n^{-1/2})$ for one-point zeroth-order algorithms (Shamir, 2013; Ba et al., 2025). We believe that this discrepancy is the result of using an adjusted SPSA gradient estimate, **SPSA+**, as opposed to using the traditional SPSA estimate which has been assumed in the literature. Our adjusted SPSA estimator reuses previous payoff observations, effectively making use of two payoff queries. Nonetheless, we argue that SPOG remains within the category of “*single-shot zeroth-order*” learning algorithms as as *only one payoff observation is made at each iteration*.

Our algorithm employs a *learning-rate separation* technique (Hsieh et al., 2022) which we view as an instance of two-timescales stochastic approximation (Borkar, 1997). This technique is particularly useful in the zeroth-order framework, where the variance of the pseudo-gradient estimate grows to be unbounded. In effect, by averaging across many gradient estimates on a fast timescale, our algorithm controls the variance. In the unconstrained setting, first-order algorithms such as Hsieh et al. (2022) require that the noise contaminating gradient feedback has finite variance, thereby avoiding this problem altogether. In the analysis of payoff-based algorithm in *constrained* games (Bravo et al., 2018; Tarenko and Kamgarpour, 2024a) control of the variance relies on the compactness of the game’s action spaces. With neither option being available in monotone games with *unconstrained* action spaces, we believe the learning-rate separation is critical to the convergence of the iterates.

540 REFERENCES
541

542 I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
543 Y. Bengio. Generative adversarial nets. *Advances in Neural Information Processing Systems*, 27,
544 2014.

545 L. Vigneri, G. Paschos, and P. Mertikopoulos. Large-scale network utility maximization: Countering
546 exponential growth with exponentiated gradients. In *IEEE INFOCOM 2019-IEEE Conference on*
547 *Computer Communications*. IEEE, 2019.

548 C. Daskalakis, A. Ilyas, V. Syrgkanis, and H. Zeng. Training GANs with Optimism. *International*
549 *Conference on Learning Representations (ICLR 2018)*.

550 Y.G. Hsieh, K. Antonakopoulos, V. Cevher, and P. Mertikopoulos. No-regret learning in games
551 with noisy feedback: Faster rates and adaptivity via learning rate separation. *Advances in Neural*
552 *Information Processing Systems*, 35:6544–6556, 2022.

553 Y.G. Hsieh, F. Iutzeler, J. Malick, and P. Mertikopoulos. Explore aggressively, update conserva-
554 tively: Stochastic extragradient methods with variable stepsize scaling. *Advances in Neural In-*
555 *formation Processing Systems*, 33:16223–16234, 2020.

556 M. Bravo, D. Leslie, and P. Mertikopoulos. Bandit learning in concave N -person games. *Advances*
557 *in Neural Information Processing Systems*, 31, 2018.

558 T. Tatarenko and M. Kamgarpour. Convergence rate of learning a strongly variationally stable equi-
559 librium. In *2024 European Control Conference (ECC)*, pages 768–773. IEEE, 2024a.

560 Y. Cai and W. Zheng. Doubly optimal no-regret learning in monotone games. In *International*
561 *Conference on Machine Learning*, 2023.

562 Jing Dong, Baoxiang Wang, and Yaoliang Yu. Uncoupled and convergent learning in monotone
563 games under bandit feedback. *Advances in Neural Information Processing Systems*, 38, 2025.

564 D. Drusvyatskiy, M. Fazel, and L. J. Ratliff. Improved rates for derivative free gradient play in
565 strongly monotone games. In *61st Conference on Decision and Control (CDC)*, 2022.

566 K. Abe, M. Sakamoto, K. Ariu, and A. Iwasaki. Boosting Perturbed Gradient Ascent for Last-Iterate
567 Convergence in Games. In *The Thirteenth International Conference on Learning Representations*,
568 2025.

569 O. Shamir. On the complexity of bandit and derivative-free stochastic convex optimization. In
570 *Conference on Learning Theory*, 2013.

571 W. Ba, T. Lin, J. Zhang, and Z. Zhou. Doubly optimal no-regret online learning
572 in strongly monotone games with bandit feedback. *Operations Research, in press*.
573 <https://doi.org/10.1287/opre.2021.0445>, 2025.

574 V. S. Borkar. Stochastic approximation with two time scales. *Systems & Control Letters*, 29(5):
575 291–294, 1997.

576 T. T. Doan. Nonlinear two-time-scale stochastic approximation: Convergence and finite-time per-
577 formance. In *Learning for Dynamics and Control*, 2021.

578 T. Chavdarova, G. Gidel, F. Fleuret, and S. Lacoste-Julien. Reducing noise in GAN training with
579 variance reduced extragradient. *Advances in Neural Information Processing Systems*, 32, 2019.

580 P. Kamalaruban, Y.T. Huang, Y.P. Hsieh, P. Rolland, C. Shi, and V. Cevher. Robust reinforcement
581 learning via adversarial training with Langevin dynamics. *Advances in Neural Information Pro-*
582 *cessing Systems*, 33, 2020.

583 J. Nash. Non-cooperative games. *Annals of Mathematics*, 54(2):286–295, 1951.

584 Y. Nesterov. *Introductory lectures on convex optimization: A basic course*, volume 87. Springer
585 Science & Business Media, 2013.

594 J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression function. *The*
 595 *Annals of Mathematical Statistics*, 23(3):462–466, 1952.
 596

597 A. D. Flaxman, A. T. Kalai, and H. B. McMahan. Online convex optimization in the bandit setting:
 598 gradient descent without a gradient. *SODA '05: Proceedings of the 16th annual ACM-SIAM*
 599 *Symposium on Discrete Algorithms*, pages 385–394, 2004.

600 J. C. Spall. A one-measurement form of simultaneous perturbation stochastic approximation. *Auto-*
 601 *matica*, 33(1):109–112, 1997.
 602

603 T. Tatarenko and M. Kamgarpour. Payoff-based learning of Nash equilibria in merely monotone
 604 games. *IEEE Transactions on Control of Network Systems*, 2024b.
 605

606 Côme Fiegel, Pierre Menard, Tadashi Kozuno, Michal Valko, and Vianney Perchet. The harder path:
 607 Last iterate convergence for uncoupled learning in zero-sum games with bandit feedback. In *42nd*
 608 *International Conference on Machine Learning (ICML 2025)*, volume 267, 2025.

609 G. M Korpelevich. The extragradient method for finding saddle points and other problems. *Matecon*,
 610 12:747–756, 1976.
 611

612 L. D. Popov. A modification of the Arrow Hurwitz method of search for saddle points. *Matematich-*
 613 *eskie Zametki*, 28(5):777–784, 1980.
 614

615 S. Rakhlin and K. Sridharan. Optimization, learning, and games with predictable sequences. *Ad-*
 616 *vances in Neural Information Processing Systems*, 26, 2013.
 617

618 Philip Amortila, Dylan J Foster, Nan Jiang, Akshay Krishnamurthy, and Zak Mhammedi. Reinforce-
 619 ment learning under latent dynamics: Toward statistical and algorithmic modularity. *Advances in*
 620 *Neural Information Processing Systems*, 37:133007–133091, 2024.
 621

622 M. Benaïm. Dynamics of stochastic approximation algorithms. In *Seminaire de probabilités XXXIII*,
 623 pages 1–68. Springer, 2006.
 624

625 H. Robbins. A convergence theorem for nonnegative almost super-martingales and some applica-
 626 tions. *Optimization Methods in Statistics*, 223, 1975.
 627

628 B. T. Polyak. *Introduction to optimization*. New York, Optimization Software, 1987.
 629

630 K.L. Chung. On a stochastic approximation method. *The Annals of Mathematical Statistics*, 25(3):
 631 463–483, 1954.
 632

633 P. Agarwal, M. Jleli, and B. Samet. Fixed point theory in metric spaces. *Recent Advances and*
 634 *Applications*, 10:978–981, 2018.
 635

636 A NOTATION

637 We summarize our notation in Table 2.

638 B STOCHASTIC APPROXIMATION THEORY

639 We present a stochastic approximation theorem attributed to Robbins and Siegmund.

640 **Theorem B.1** (Robbins (1975)). *Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \dots$ be*
 641 *a sequence of sub- σ -fields of \mathcal{F} . Let $U_n, \beta, \xi_n, \zeta_n, n \in \mathbb{N}$ be non-negative \mathcal{F}_n -measurable random*
 642 *variables satisfying $\mathbb{E}[U_1] < \infty$ and*

$$643 \mathbb{E}[U_{n+1} | \mathcal{F}_n] \leq (1 + \beta_n)U_n + \xi_n - \zeta_n, \quad n = 1, 2, \dots$$

644 Suppose that $\sum_{n=1}^{\infty} \mathbb{E}[\beta_n] < +\infty$ and $\sum_{n=1}^{\infty} \mathbb{E}[\xi_n] < +\infty$. Then, U_n converges a.s. to a finite
 645 random variable and $\sum_{n=1}^{\infty} \zeta_n < \infty$ a.s.

646 Another theorem of stochastic approximation is the following, and is proven in Lemma 10 (page 49)
 647 of Polyak (1987)

Table 2: Notations

Symbol	Description
N	Number of players
\mathcal{N}	Set of player indices $\mathcal{N} = \{1, \dots, N\}$
\mathcal{X}_i	Strategy space for player i , $\mathcal{X}_i = \mathbb{R}^{D_i}$
D_i	Dimension of player i 's action space
\mathcal{X}	Joint strategy space: $\mathcal{X} = \prod_{i=1}^N \mathcal{X}_i$
d	Dimension of joint action space
u_i	Payoff function for player i
v_i	Individual payoff gradient for player i
x^*	Nash equilibrium
\mathcal{X}^*	Set of Nash equilibria
L	Lipschitz constant of $(v_i)_{i \in \mathcal{N}}$
μ	Monotonicity constant of $(v_i)_{i \in \mathcal{N}}$
G	Smoothness constant of full gradient $(\nabla u_i)_{i \in \mathcal{N}}$
$r\mathbb{B}^{D_i}$	D_i -dimensional ball of radius r , $r\mathbb{B}^{D_i} = \{p \in \mathbb{R}^{D_i} : \ p\ \leq r\}$
\mathbb{S}^{D_i}	D_i -dimensional unit sphere $\mathbb{S}^{D_i} = \{p \in \mathbb{R}^{D_i} : \ p\ = 1\}$
Z_n	Fast timescale iterate at time n
X_n	Slow timescale iterate at time n
\tilde{Z}_n	Realized joint action profile at time n
V_{n+1}	Adjusted joint SPSA estimator
δ_n	SPSA perturbation parameter
α_n	Fast-timescale learning rate
β_n	Slow-timescale learning rate
R_n	Radius feasible envelope $R_n = R \log n$
γ	Contraction parameter for fast timescale update
\mathcal{F}_n	σ -algebra generated by history of play $X_1, Z_1, W_1, \dots, X_n, Z_n, W_n$
\mathbb{E}_n	Expectation with respect to \mathcal{F}_n , $\mathbb{E}_n[\cdot] = \mathbb{E}[\cdot \mathcal{F}_n]$
$z^*(x)$	Fast-timescale ODE fixed point
L_z	Lipschitz constant of z^* , $L_z = \frac{1}{1-\gamma L}$

Theorem B.2. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \dots$ be a sequence of sub- σ -fields of \mathcal{F} . Let U_n, β, ξ_n , $n \in \mathbb{N}$ be non-negative \mathcal{F}_n -measurable random variables satisfying $\mathbb{E}[U_1] < \infty$ and

$$\mathbb{E}[U_{n+1} | \mathcal{F}_n] \leq (1 - \beta_n)U_n + \xi_n, \quad n = 1, 2, \dots$$

Suppose that $\sum_{n=1}^{\infty} \mathbb{E}[\beta_n] = +\infty$, $\sum_{n=1}^{\infty} \mathbb{E}[\xi_n] < +\infty$, $0 < \beta_n < 1$ and $\xi_n \geq 0$. Then, $U_n \rightarrow 0$ a.s. and $\mathbb{E}[U_n] \rightarrow 0$ as $n \rightarrow \infty$.

We will also make use of the following Lemma on numerical sequences when it comes to obtaining rates of convergence. This is often referred to and attributed to in the literature as Chung's Lemma (Chung, 1954).

Lemma B.3. [Chung's Lemma (Chung, 1954)] Let $(a_n)_{n \in \mathbb{N}}$ be a non-negative sequence satisfying

$$a_{n+1} \leq \left(1 - \frac{P}{n^p}\right) a_n + \frac{Q}{n^{p+q}},$$

where $0 < p \leq 1$, $q > 0$ and $P, Q > 0$ and assuming in addition that $P > q$ if $p = 1$. Then we have that

$$a_n \leq \frac{Q}{R} \frac{1}{n^q} + o\left(\frac{1}{n^q}\right),$$

with

$$R = \begin{cases} P & \text{if } p < 1, \\ P - q & \text{if } p = 1. \end{cases}$$

702 **C PROPERTIES OF THE GRADIENT ESTIMATE V_{n+1}**
 703

704 **C.1 PROOF OF LEMMA 3.1**
 705

706 *Proof of Lemma 3.1.* Let $(X_n, Z_n)_{n \geq 1}$ be generated by SPOG.

707 Fix $i \in \mathcal{N}$. Owing to the Mean Value Theorem, there exists a $t_n \in [0, 1]$ such that

$$709 \quad u_i(\tilde{Z}_n) - u_i(\tilde{Z}_{n-1}) = \langle \nabla u_i(t\tilde{Z}_n + (1-t)\tilde{Z}_{n-1}), \tilde{Z}_n - \tilde{Z}_{n-1} \rangle. \quad (16)$$

710 Applying the Cauchy-Schwartz inequality, and Assumption 1(iv) on the gradient ∇u_i , we arrive at
 711 the following.

$$\begin{aligned} 712 \quad \|V_{n+1,i}\| &= \frac{D_i}{\delta_n} |u_i(\tilde{Z}_n) - u_i(\tilde{Z}_{n-1})| \\ 713 &= \frac{D_i}{\delta_n} |\langle \nabla u_i(t_n \tilde{Z}_n + (1-t_n) \tilde{Z}_{n-1}), \tilde{Z}_n - \tilde{Z}_{n-1} \rangle| \\ 714 &\leq \frac{D_i}{\delta_n} \|\nabla u_i(t_n \tilde{Z}_n + (1-t_n) \tilde{Z}_{n-1})\| \|\tilde{Z}_n - \tilde{Z}_{n-1}\| \\ 715 &\leq \frac{D_i G}{\delta_n} \left(1 + \|t_n \tilde{Z}_n + (1-t_n) \tilde{Z}_{n-1}\|\right) \|\tilde{Z}_n - \tilde{Z}_{n-1}\|. \end{aligned} \quad (17)$$

721 Applying the triangle inequality to each of the norms, we have that equation 17 implies

$$\begin{aligned} 722 \quad \|V_{n+1,i}\| &\leq \frac{D_i G}{\delta_n} [1 + t_n \delta_n + (1-t_n) \delta_{n-1} + t_n \|Z_n\| + (1-t_n) \|Z_{n-1}\|] [\delta_n + \delta_{n-1} + \|Z_n - Z_{n-1}\|] \\ 723 & \quad (18) \end{aligned}$$

726 As a result of the projections in SPOG, we have that $\|Z_{n,i}\| \leq 3R_n$, whence $\|Z_n\| \leq 3\sqrt{N}R_n$.
 727 Similarly, $\|Z_{n-1}\| \leq 3\sqrt{N}R_{n-1}$. Following Assumption 2, δ_n is a decreasing sequence, and R_n is
 728 an increasing sequence, we obtain the following inequality from equation 18:

$$729 \quad \|V_{n+1,i}\| \leq \frac{D_i G}{\delta_n} (1 + \delta_{n-1} + 3\sqrt{N}R_n) (2\delta_{n-1} + \|Z_n - Z_{n-1}\|) \quad (19)$$

732 Finally, by first setting $\mathcal{B}_m := 3R_m \mathbb{B}^{D_i}$ for each $m \geq 1$, remark that $Z_n = \text{Proj}_{\prod_i 3R_n \mathbb{B}^{D_i}} Z_n^o$, and
 733 $Z_{n-1} \in \prod_i 3R_{n-1} \mathbb{B}^{D_i} \subseteq \prod_i 3R_n \mathbb{B}^{D_i} = \mathcal{B}_n$. By the non-expansiveness of the projection operator,
 734 we have that

$$\begin{aligned} 735 \quad \|Z_n - Z_{n-1}\| &= \|\text{Proj}_{\mathcal{B}_n} Z_n^o - \text{Proj}_{\mathcal{B}_n} Z_{n-1}\| \\ 736 &\leq \|Z_n^o - Z_{n-1}\| \\ 737 &= \alpha_{n-1} \|X_{n-1} - Z_{n-1} + \gamma V_n\| \\ 738 &\leq \alpha_{n-1} \|X_{n-1}\| + \alpha_{n-1} \|Z_{n-1}\| + \alpha_{n-1} \gamma \|V_n\| \\ 739 &\leq 4\alpha_{n-1} \sqrt{N}R_n + \gamma \alpha_{n-1} \|V_n\| \end{aligned} \quad (20)$$

741 where the final inequality again follows from the projections in SPOG. Combined with equation 19,
 742 we arrive at the following estimate:

$$744 \quad \|V_{n+1,i}\| \leq \frac{D_i G}{\delta_n} (1 + \delta_{n-1} + 3\sqrt{N}R_n) (2\delta_{n-1} + 4\alpha_{n-1} \sqrt{N}R_n + \gamma \alpha_{n-1} \|V_n\|)$$

746 Since $\sqrt{D_1^2 + \dots + D_n^2} \leq D_1 + \dots + D_n = D$, and $i \in \mathcal{N}$ was chosen arbitrarily, we obtain the
 747 following inequality for $\|V_{n+1}\|$,

$$\begin{aligned} 748 \quad \|V_{n+1}\| &\leq \frac{DG}{\delta_n} (1 + \delta_{n-1} + 3\sqrt{N}R_n) (2\delta_{n-1} + 4\alpha_{n-1} \sqrt{N}R_n) + \gamma \frac{DG}{\delta_n} (1 + \delta_{n-1} + 3\sqrt{N}R_n) \alpha_{n-1} \|V_n\|. \\ 749 & \quad (21) \end{aligned}$$

751 As a result of Assumption 2, there exists a finite (deterministic) n_0 such that for all $n \geq n_0$, $1 +$
 752 $\delta_{n-1} < \sqrt{N}R_n$. Substituting this into equation 21 and setting $M := 4DG\sqrt{N}$ we arrive at the
 753 following inequality for all $n \geq n_0$,

$$755 \quad \|V_{n+1}\| \leq \frac{M}{\delta_n} R_n (2\delta_{n-1} + 4\alpha_{n-1} \sqrt{N}R_n) + \frac{\gamma M}{\delta_n} R_n \alpha_{n-1} \|V_n\|. \quad (22)$$

Following Assumption 2, there exists a uniform bound $\Delta > 0$ such that for all n , $\frac{\delta_{n-1}}{\delta_n} \leq \Delta$. Hence for all $n \geq n_0$,

$$\|V_{n+1}\| \leq 2M\Delta R_n + 4M\sqrt{N} \frac{\alpha_{n-1}R_n^2}{\delta_n} + \gamma M \frac{\alpha_{n-1}R_n}{\delta_n} \|V_n\|. \quad (23)$$

Owing to the Assumption 2 that $\frac{\alpha_{n-1}R_n}{\delta_n} \rightarrow 0$ as $n \rightarrow \infty$, we have that there exists a finite (deterministic) $n_1 \geq n_0$ such that for all $n \geq n_1$, $\frac{\alpha_{n-1}R_n}{\delta_n} \leq \min\{\frac{1}{4M\sqrt{N}}, \frac{1}{2\gamma M}\}$. Hence, for all $n \geq n_1$,

$$\|V_{n+1}\| \leq (2M\Delta + 1)R_n + \frac{1}{2} \|V_n\|. \quad (24)$$

As a result of equation 24 and the increasing property of R_n , we have that for all $n \geq n_1$, and all $C > 2(2M\Delta + 1)$,

$$\|V_n\| \leq CR_{n-1} \implies \|V_{n+1}\| \leq (2M\Delta + 1 + \frac{1}{2}C)R_n \leq CR_n. \quad (25)$$

In particular, since n_1 is deterministic and finite and

$$\|V_{n_1}\| = \sqrt{\frac{D_i^2}{\delta_{n_1}^2} |u_i(\tilde{Z}_{n_1}) - u_i(\tilde{Z}_{n_1-1})|^2} \quad (26)$$

is bounded by a deterministic constant, owing to the fact that each u_i is continuous and $\tilde{Z}_{n_1-1}, \tilde{Z}_{n_1} \in \prod_i (3R_{n_1} + \delta_{n_1}) \mathbb{B}^{D_i}$. Hence there exists a $C > 2(2M\Delta + 1)$ such that $\|V_{n_1}\| \leq CR_{n_1}$ and the result follows by induction. \square

D PROPERTIES OF THE FIXED POINT z^*

D.1 PROOF OF LEMMA 4.3

Proof of Lemma 4.3. Fix $x \in \mathbb{R}^D$. We begin by remarking that the function $f_x(z) = x + \gamma v(z)$ satisfies

$$\|f_x(z_1) - f_x(z_2)\| = \gamma \|v(z_1) - v(z_2)\| \leq \gamma L \|z_1 - z_2\|.$$

Since $\gamma L < 1$, the Banach fixed point theorem (Agarwal et al., 2018) implies the existence of a unique fixed point $z^*(x)$ satisfying $f_x(z^*(x)) = z^*(x)$. Such a fixed point is an equilibrium of the ODE by construction.

We define a Lyapunov function Λ for the fixed x ODE as follows $\Lambda(t) = \frac{1}{2} \|z(t) - z^*(x)\|$. We have that

$$\begin{aligned} \frac{d\Lambda(t)}{dt} &= \langle \dot{z}(t), z(t) - z^*(x) \rangle \\ &= \langle x + \gamma v(z(t)) - z(t), z(t) - z^*(x) \rangle \\ &= \gamma \langle v(z(t)) - v(z^*(x)), z(t) - z^*(x) \rangle - \langle z(t) - z^*(x), z(t) - z^*(x) \rangle \\ &\leq -\|z(t) - z^*(x)\|^2, \end{aligned}$$

where the final inequality follows from the monotonicity of v . This shows that the Lyapunov function Λ is strict and so the equilibrium $z^*(x)$ is globally stable.

Finally, we note that

$$z^*(x) = x + \gamma v(z^*(x))$$

and so, for any $x_1, x_2 \in \mathbb{R}^D$,

$$\begin{aligned} \|z^*(x_1) - z^*(x_2)\| &= \|(x_1 - x_2) + \gamma(v(z^*(x_1)) - v(z^*(x_2)))\| \\ &\leq \|x_1 - x_2\| + \gamma \|v(z^*(x_1)) - v(z^*(x_2))\| \\ &\leq \|x_1 - x_2\| + \gamma L \|z^*(x_1) - z^*(x_2)\|, \end{aligned}$$

where the last line follows from the Lipschitz continuity of v . Rearranging, we obtain the Lipschitz condition for z^* ,

$$\|z^*(x_1) - z^*(x_2)\| \leq \frac{1}{1 - \gamma L} \|x_1 - x_2\|.$$

\square

810 D.2 FIXED POINT INCLUSION
811812 The following Lemma concerns the image of the region $\prod_i R\mathbb{B}^{D_i}$ under z^* .
813814 **Lemma D.1.** *Suppose that Assumptions 1-2 hold. For all $R > 1$ the following inclusion holds*

815
$$z^*\left(\prod_{i \in \mathcal{N}} R\mathbb{B}^{D_i}\right) \subseteq \prod_{i \in \mathcal{N}} 3R\mathbb{B}^{D_i}.$$

816

817 *Remark.* This Lemma is the reason that in SPOG project $X_{n,i}^o$ into $R_n\mathbb{B}^{D_i}$ and $Z_{n,i}^o$ into $3R_n\mathbb{B}^{D_i}$.
818819 In our convergence analysis of SPOG we will consider the distance $\|Z_n - z^*(X_n)\|^2$, which, as a
820 result of this lemma, is comparing two points in $\prod_{i \in \mathcal{N}} 3R_n\mathbb{B}^{D_i}$. Hence we may apply the non-
821 expansiveness of the projection operator to extract X_n^o .
822823 *Proof.* Let $x \in \prod_i R\mathbb{B}^{D_i}$. We have that $v_i(z) = \nabla_i u_i(z)$ for all $z \in \mathbb{R}^{D_i}$ and all $i \in \mathcal{N}$. As a result
824 of Assumption 1(iv) we have that

825
$$\begin{aligned} \|v(z^*(x))\| &= \sqrt{\sum_{i=1}^N \|\nabla_i u_i(z^*(x))\|_{\mathbb{R}^{D_i}}^2} \\ 826 &\leq \sqrt{\sum_{i=1}^N \|\nabla u_i(z^*(x))\|_{\mathbb{R}^d}^2} \\ 827 &\leq \sqrt{\sum_{i=1}^N G^2(1 + \|z^*(x)\|)^2} \\ 828 &= G\sqrt{N}(1 + \|z^*(x)\|) \end{aligned} \tag{27}$$

829

830 Since $z^*(x) = x + \gamma v(z^*(x))$, we may apply the triangle inequality to obtain that
831

832
$$\begin{aligned} \|z^*(x)\| &\leq \|x\| + \gamma \|v(z^*(x))\| \\ 833 &\leq \|x\| + \gamma G\sqrt{N}(1 + \|z^*(x)\|). \end{aligned} \tag{28}$$

834

835 where the final inequality follows from equation 27. Rearranging the inequality equation 28, we
836 arrive at the following
837

838
$$\|z^*(x)\| \leq \frac{\gamma G\sqrt{N}}{1 - \gamma G\sqrt{N}} + \frac{1}{1 - \gamma G\sqrt{N}} \|x\|.$$

839

840 As a consequence of Assumption 2, we have that $\gamma G\sqrt{N} \leq \frac{1}{2}$. Since the function $\psi \mapsto \frac{1}{1-\psi}$ is
841 increasing on the interval $(0, \frac{1}{2}]$, we have that
842

843
$$\|z^*(x)\| \leq \frac{\gamma G\sqrt{N}}{1 - \gamma G\sqrt{N}} + \frac{1}{1 - \gamma G\sqrt{N}} \|x\| \leq 1 + 2\|x\|.$$

844

845 Since we have assumed that $1 \leq R$ and $\|x\| \leq R$, we conclude $\|z^*(x)\| \leq 3R$. Hence we have that
846 $z^*(\prod_{i \in \mathcal{N}} R\mathbb{B}^{D_i}) \subseteq 3R\mathbb{B}^d \subseteq \prod_{i \in \mathcal{N}} 3R\mathbb{B}^{D_i}$. \square
847848 D.3 FIXED-POINT VARIATIONAL INEQUALITY
849850 The following Lemma is a property of the underlying game and the fixed-point function z^* . It will
851 feature in our analysis.852 **Lemma D.2.** *Suppose that Assumption 1 holds. Suppose that $\gamma L < 1$ and that $x^* \in \mathcal{X}^*$ is a Nash
853 equilibrium of the underlying game. If the game is strongly monotone, suppose in addition that
854 $\gamma\mu < \frac{1}{4}$. Then for all $z, x \in \mathcal{X}$ the following holds:*

855
$$\langle v(z), x - x^* \rangle \leq -\frac{\mu}{2} \|x - x^*\|^2 + \frac{1}{2\gamma} \left(\frac{2\gamma\mu}{1 - 4\mu\gamma} + \gamma^2 L^2 + 2 \right) \|z - z^*(x)\|^2 - \frac{1}{4}\gamma \|v(z)\|^2 - \frac{1}{4}\gamma \|v(z^*(x))\|^2 \tag{29}$$

856

864 *Proof.* Fix $z, x \in \mathcal{X}$. Writing $x - x^* = (x - z) + (z - x^*)$, we have that

$$865 \quad \langle v(z), x - x^* \rangle = \langle v(z), x - z \rangle + \langle v(z), z - x^* \rangle \quad (30)$$

866 We handle each of these terms separately.

869 First, we consider the term $\langle v(z), z - x^* \rangle$. Since $x^* \in \mathcal{X}^*$ is a Nash equilibrium, $v(x^*) = 0$. This,
870 combined with the μ -monotonicity of the underlying game implies that

$$871 \quad \langle v(z), z - x^* \rangle = \langle v(z) - v(x^*), z - x^* \rangle \leq -\mu \|z - x^*\|^2. \quad (31)$$

873 Again, writing $z - x^* = (z - x) + (x - x^*)$, we expand the norm as follows:

$$874 \quad -\mu \|z - x^*\|^2 = -\mu \|x - x^*\|^2 - \mu \|z - x\|^2 - 2\mu \langle z - x, x - x^* \rangle \quad (32)$$

875 An application of Young's inequality for products implies that, for any $\epsilon > 0$

$$877 \quad -2\mu \langle z - x, x - x^* \rangle \leq \frac{1}{\epsilon} \mu \|z - x\|^2 + \epsilon \mu \|x - x^*\|^2. \quad (33)$$

879 Setting $\epsilon = \frac{1}{2}$ in equation 33, we obtain that

$$880 \quad -2\mu \langle z - x, x - x^* \rangle \leq 2\mu \|z - x\|^2 + \frac{1}{2} \mu \|x - x^*\|^2. \quad (34)$$

882 Applying equation 34 to the inner product in equation 32 and using the result in equation 31, we
883 arrive at the following inequality

$$884 \quad \langle v(z), z - x^* \rangle \leq -\frac{\mu}{2} \|x - x^*\|^2 + \mu \|z - x\|^2. \quad (35)$$

886 For the term $\mu \|z - x\|^2$, we express apply the definition of the fixed point z^* to write $x = z^*(x) -$
887 $\gamma v(z^*(x))$. Subsequent application of Young's inequality for products yields, for any $\theta > 0$,

$$888 \quad \mu \|z - x\|^2 = \|z - z^*(x) + \gamma v(z^*(x))\|^2 \leq (1 + \theta) \mu \|z - z^*(x)\|^2 + (1 + \theta^{-1}) \gamma^2 \mu \|v(z^*(x))\|^2. \quad (36)$$

890 Setting $\theta = \frac{4\gamma\mu}{1-4\gamma\mu}$, we observe that $1 + \theta^{-1} = \frac{1}{4\gamma\mu}$ and $1 + \theta = \frac{1}{1-4\gamma\mu}$. Hence equation 36 becomes

$$892 \quad \mu \|z - x\|^2 = \|z - z^*(x) - \gamma v(z^*(x))\|^2 \leq \frac{\mu}{1-4\gamma\mu} \|z - z^*(x)\|^2 + \frac{1}{4} \gamma \|v(z^*(x))\|^2. \quad (37)$$

895 Applying equation 37 to the right hand side of equation 35, we arrive at the following inequality for
896 the Nash term of equation 30

$$898 \quad \langle v(z), z - x^* \rangle \leq -\frac{\mu}{2} \|x - x^*\|^2 + \frac{\mu}{1-4\gamma\mu} \|z - z^*(x)\|^2 + \frac{1}{4} \gamma \|v(z^*(x))\|^2. \quad (38)$$

900 To handle the remaining term in equation 30, $\langle v(z), x - z \rangle$, we again write $x = z^*(x) - \gamma v(z^*(x))$.
901 Then

$$903 \quad \langle v(z), x - z \rangle = \langle v(z), z^*(x) - z - \gamma v(z^*(x)) \rangle = \langle v(z), z^*(x) - z \rangle - \gamma \langle v(z), v(z^*(x)) \rangle. \quad (39)$$

904 By simply expanding the norm, we see that

$$905 \quad \begin{aligned} -\gamma \langle v(z), v(z^*(x)) \rangle &= \frac{1}{2} \gamma \|v(z^*(x)) - v(z)\|^2 - \frac{1}{2} \gamma \|v(z)\|^2 - \frac{1}{2} \gamma \|v(z^*(x))\|^2 \\ 906 &\leq \frac{1}{2} \gamma L^2 \|z^*(x) - x\|^2 - \frac{1}{2} \gamma \|v(z)\|^2 - \frac{1}{2} \gamma \|v(z^*(x))\|^2, \end{aligned} \quad (40)$$

909 where the inequality is a result of the Lipschitz continuity of v . To handle the remaining term of
910 equation 39, $\langle v(z), z^*(x) - z \rangle$, we apply Young's inequality for products, obtaining,

$$911 \quad \langle v(z), z^*(x) - z \rangle \leq \frac{1}{2} \cdot \frac{1}{2} \gamma \|v(z)\|^2 + \frac{1}{2} \frac{1}{(\frac{1}{2} \gamma)} \|z - z^*(x)\|^2 = \frac{1}{4} \gamma \|v(z)\|^2 + \frac{1}{\gamma} \|z - z^*(x)\|^2. \quad (41)$$

914 Applying equation 40 and equation 41 to equation 39, we arrive at the following inequality

$$916 \quad \langle v(z), x - z \rangle \leq \left(\frac{1}{2} \gamma L^2 + \frac{1}{\gamma} \right) \|z - z^*(x)\|^2 - \frac{1}{4} \gamma \|v(z)\|^2 - \frac{1}{2} \gamma \|v(z^*(x))\|^2. \quad (42)$$

917 Applying both equation 38 and equation 42 to equation 30 yields the desired result. \square

918 **E DERIVATION OF DESCENT INEQUALITIES**
 919

920 **Lemma E.1** (Fast-Descent Inequality). *Under Assumptions 1-2,*

$$\begin{aligned}
 922 \quad \mathbb{E}_n \|Z_{n+1} - z^*(X_{n+1})\|^2 &\leq (1 - (1 + 2\gamma\mu - \gamma\delta_n)\alpha_n - (1 - 2\gamma^2 L^2 - \gamma\delta_n)\alpha_n^2 + (1 + 2\gamma\mu + 2\gamma^2 L^2)\alpha_n^3) \|Z_n - z^*(X_n)\|^2 \\
 923 \quad &\quad + (1 + \alpha_n)(\gamma^2\alpha_n^2 + \frac{\gamma\alpha_n}{\delta_n}) \|b_{n+1}\|^2 \\
 924 \quad &\quad + \left(\gamma^2\alpha_n^2(1 + \alpha_n) + L_z^2\beta_n^2(1 + \frac{1}{\alpha_n}) \right) \mathbb{E}_n \|V_{n+1}\|^2.
 \end{aligned}$$

925 *Proof.* As a consequence of Young's inequality for products, we have that for any $\theta_n > 0$,

$$\begin{aligned}
 930 \quad \|Z_{n+1} - z^*(X_{n+1})\|^2 &= \|Z_{n+1} - z^*(X_n) + z^*(X_n) - z^*(X_{n+1})\|^2 \\
 931 \quad &\leq (1 + \theta_n) \|Z_{n+1} - z^*(X_n)\|^2 + (1 + \frac{1}{\theta_n}) \|z^*(X_{n+1}) - z^*(X_n)\|^2.
 \end{aligned} \tag{44}$$

934 We handle each of the terms in equation 44 separately. First, we remark that by the Lipschitz continuity of the fixed point z^* ,

$$\begin{aligned}
 937 \quad \|z^*(X_{n+1}) - z^*(X_n)\|^2 &\leq L_z^2 \|X_{n+1} - X_n\|^2 \\
 938 \quad &= L_z^2 \left\| \text{Proj}_{R_{n+1}\mathbb{B}^d} X_{n+1}^o - X_n \right\|^2 \\
 939 \quad &= L_z^2 \left\| \text{Proj}_{R_{n+1}\mathbb{B}^d} X_{n+1}^o - \text{Proj}_{R_{n+1}\mathbb{B}^d} X_n \right\|^2 \\
 940 \quad &\leq L_z^2 \|X_{n+1}^o - X_n\|^2 = L_z^2 \beta_n^2 \|V_{n+1}\|^2,
 \end{aligned} \tag{45}$$

944 where we have used the fact that $X_n \in R_n\mathbb{B}^d \subseteq R_{n+1}\mathbb{B}^d$, and that the projection operator is
 945 non-expansive.

947 To handle the first term in equation 44, we first remark that, as a result of Lemma D.1, $z^*(X_n) \in$
 948 $\prod_i 3R_n\mathbb{B}^{D_i} \subseteq \prod_i 3R_{n+1}\mathbb{B}^{D_i}$. Again applying the non-expansiveness of the projection operator,
 949 we have that

$$\|Z_{n+1} - z^*(X_n)\|^2 = \left\| \text{Proj}_{3R_{n+1}\mathbb{B}^d} Z_{n+1}^o - \text{Proj}_{3R_{n+1}\mathbb{B}^d} z^*(X_n) \right\|^2 \leq \|Z_{n+1}^o - z^*(X_n)\|^2. \tag{46}$$

954 Next, we observe that, by rearranging the fixed point formula, $X_n = z^*(X_n) - \gamma v(z^*(X_n))$. With
 955 this in hand, we obtain the following:

$$\begin{aligned}
 956 \quad Z_{n+1}^o - z^*(X_n) &= Z_n + \alpha_n(X_n - Z_n + \gamma V_{n+1}) - z^*(X_n) \\
 957 \quad &= Z_n - z^*(X_n) + \alpha_n[z^*(X_n) - Z_n - \gamma v(z^*(X_n)) + \gamma V_{n+1}] \\
 958 \quad &= (1 - \alpha_n)(Z_n - z^*(X_n)) - \gamma \alpha_n v(z^*(X_n)) + \gamma \alpha_n V_{n+1}.
 \end{aligned} \tag{47}$$

960 Substituting equation 47 into equation 46 and expanding the norm, we have that

$$\|Z_{n+1}^o - z^*(X_n)\|^2 \leq \|(1 - \alpha_n)(Z_n - z^*(X_n)) - \gamma \alpha_n v(z^*(X_n))\|^2 \tag{48a}$$

$$+ 2\gamma \alpha_n \langle (1 - \alpha_n)(Z_n - z^*(X_n)) - \gamma \alpha_n v(z^*(X_n)), V_{n+1} \rangle \tag{48b}$$

$$+ \gamma^2 \alpha_n^2 \|V_{n+1}\|^2. \tag{48c}$$

966 We first expand the term equation 48a

$$\|(1 - \alpha_n)(Z_n - z^*(X_n)) - \gamma \alpha_n v(z^*(X_n))\|^2 = (1 - \alpha_n)^2 \|Z_n - z^*(X_n)\|^2 \tag{49a}$$

$$- 2\gamma \alpha_n (1 - \alpha_n) \langle v(z^*(X_n)), Z_n - z^*(X_n) \rangle \tag{49b}$$

$$+ \gamma^2 \alpha_n^2 \|v(z^*(X_n))\|^2 \tag{49c}$$

972 Next for the inner product term equation 48b, writing $V_{n+1} = v(Z_n) + \xi_{n+1}$, we have that
 973

$$974 \quad 2\gamma\alpha_n \langle (1 - \alpha_n)(Z_n - z^*(X_n)) - \gamma\alpha_n v(z^*(X_n)), V_{n+1} \rangle = 2\gamma\alpha_n (1 - \alpha_n) \langle v(Z_n), Z_n - z^*(X_n) \rangle \quad (50a)$$

$$976 \quad + 2\gamma\alpha_n \langle \xi_{n+1}, (1 - \alpha_n)(Z_n - z^*(X_n)) - \gamma\alpha_n v(z^*(X_n)) \rangle \quad (50b)$$

$$978 \quad - 2\gamma_n^2 \alpha_n^2 \langle v(Z_n), v(z^*(X_n)) \rangle. \quad (50c)$$

980 We handle each of the terms in equation 50 separately. For equation 50a, we sum with the inner
 981 product term equation 49b and apply the monotonicity property of the pseudo-gradient.

$$982 \quad 2\gamma\alpha_n (1 - \alpha_n) \langle v(Z_n) - v(z^*(X_n)), Z_n - z^*(X_n) \rangle \leq -2\gamma\mu\alpha_n (1 - \alpha_n) \|Z_n - z^*(X_n)\|^2. \quad (51)$$

984 For the inner product equation 50c, we apply the following identity

$$986 \quad -2\gamma_n^2 \alpha_n^2 \langle v(Z_n), v(z^*(X_n)) \rangle = \gamma^2 \alpha_n^2 \left(\|v(Z_n) - v(z^*(X_n))\|^2 - \|v(Z_n)\|^2 - \|v(z^*(X_n))\|^2 \right) \quad (52)$$

988 We remark that the final term of equation 52 cancels out with the term equation 49c. In addition, the
 989 first term of equation 52 satisfies the following inequality owing to the Lipchitz continuity of v

$$990 \quad \gamma^2 \alpha_n^2 \|v(Z_n) - v(z^*(X_n))\|^2 \leq \gamma^2 L^2 \alpha_n^2 \|Z_n - z^*(X_n)\|^2. \quad (53)$$

992 Combining equation 49, equation 50, equation 51 equation 52 and equation 53, we have the following
 993 inequality for equation 48

$$995 \quad \|Z_{n+1}^o - z^*(X_n)\|^2 \leq ((1 - \alpha_n)^2 - 2\gamma\mu\alpha_n (1 - \alpha_n) + \gamma^2 L^2 \alpha_n^2) \|Z_n - z^*(X_n)\|^2 \quad (54a)$$

$$996 \quad + 2\gamma\alpha_n \langle \xi_{n+1}, (1 - \alpha_n)(Z_n - z^*(X_n)) - \gamma\alpha_n v(z^*(X_n)) \rangle \quad (54b)$$

$$997 \quad - \gamma^2 \alpha_n^2 \|v(Z_n)\|^2 \quad (54c)$$

$$999 \quad + \gamma^2 \alpha_n^2 \|V_{n+1}\|^2. \quad (54d)$$

1000 Next we take the conditional expectation with respect to \mathcal{F}_n in the inner product tern equation 54b
 1001 in order to extract the bias.

$$1003 \quad \mathbb{E}_n [2\gamma\alpha_n \langle \xi_{n+1}, (1 - \alpha_n)(Z_n - z^*(X_n)) - \gamma\alpha_n v(z^*(X_n)) \rangle] = 2\gamma\alpha_n (1 - \alpha_n) \langle b_{n+1}, Z_n - z^*(X_n) \rangle \quad (55a)$$

$$1005 \quad - 2\gamma^2 \alpha_n^2 \langle b_{n+1}, v(z^*(X_n)) \rangle. \quad (55b)$$

1008 For equation 55b, we apply Young's inequality for products, which implies that

$$1009 \quad 2\gamma^2 \alpha_n^2 \langle b_{n+1}, v(z^*(X_n)) \rangle \leq \gamma^2 \alpha_n^2 \|b_{n+1}\|^2 + \gamma^2 \alpha_n^2 \|v(z^*(X_n))\|^2. \quad (56)$$

1011 Similarly, for equation 55a, an application of Young's inequality for products implies

$$1013 \quad 2\gamma\alpha_n (1 - \alpha_n) \langle b_{n+1}, Z_n - z^*(X_n) \rangle \leq \gamma\alpha_n (1 - \alpha_n) \delta_n \|Z_n - z^*(X_n)\|^2 + \gamma\alpha_n (1 - \alpha_n) \frac{1}{\delta_n} \|b_{n+1}\|^2$$

$$1014 \quad \leq \gamma\alpha_n \delta_n \|Z_n - z^*(X_n)\|^2 + \frac{\gamma\alpha_n}{\delta_n} \|b_{n+1}\|^2. \quad (57a)$$

1017 Taking the conditional expectation and substituting equation 56 and equation 57 into equation 54,
 1018 we have that

$$1019 \quad \mathbb{E}_n \|Z_{n+1}^o - z^*(X_n)\|^2 \leq ((1 - \alpha_n)^2 - 2\gamma\mu\alpha_n (1 - \alpha_n) + \gamma^2 L^2 \alpha_n^2 + \gamma\alpha_n \delta_n) \|Z_n - z^*(X_n)\|^2 \quad (58a)$$

$$1022 \quad + (\gamma^2 \alpha_n^2 + \frac{\gamma\alpha_n}{\delta_n}) \|b_{n+1}\|^2 \quad (58b)$$

$$1024 \quad + \gamma^2 \alpha_n^2 \|v(z^*(X_n))\|^2 - \gamma^2 \alpha_n^2 \|v(Z_n)\|^2 \quad (58c)$$

$$1025 \quad + \gamma^2 \alpha_n^2 \mathbb{E}_n \|V_{n+1}\|^2. \quad (58d)$$

1026 We bound the term equation 58c using the reverse triangle inequality,
1027

$$1028 \gamma^2 \alpha_n^2 \|v(z^*(X_n))\|^2 - \gamma^2 \alpha_n^2 \|v(Z_n)\|^2 \leq \gamma^2 \alpha_n^2 \|v(Z_n) - v(z^*(X_n))\|^2 \leq \gamma^2 L^2 \alpha_n^2 \|Z_n - z^*(X_n)\|^2. \quad (59)$$

1030 This transforms equation 58 into the following

$$1031 \mathbb{E}_n \|Z_{n+1}^o - z^*(X_n)\|^2 \leq ((1 - \alpha_n)^2 - 2\gamma\mu\alpha_n(1 - \alpha_n) + 2\gamma^2 L^2 \alpha_n^2 + \gamma\alpha_n\delta_n) \|Z_n - z^*(X_n)\|^2 \quad (60a)$$

$$1034 + (\gamma^2 \alpha_n^2 + \frac{\gamma\alpha_n}{\delta_n}) \|b_{n+1}\|^2 \quad (60b)$$

$$1036 + \gamma^2 \alpha_n^2 \mathbb{E}_n \|V_{n+1}\|^2. \quad (60c)$$

1038 Let's expand the coefficient of $\|Z_n - z^*(X_n)\|^2$ in equation 60

$$1040 (1 - \alpha_n)^2 - 2\gamma\mu\alpha_n(1 - \alpha_n) + 2\gamma^2 L^2 \alpha_n^2 + \gamma\alpha_n\delta_n = 1 - 2(1 + \gamma\mu)\alpha_n + (1 + 2\gamma\mu + 2\gamma^2 L^2)\alpha_n^2 + \gamma\alpha_n\delta_n \quad (61)$$

1041 We set $\theta_n = \theta_0\alpha_n$ for some constant $\theta_0 > 0$. Then we expand

$$1043 (1 + \theta_n) [(1 - \alpha_n)^2 - 2\gamma\mu\alpha_n(1 - \alpha_n) + 2\gamma^2 L^2 \alpha_n^2 + \gamma\alpha_n\delta_n] = 1 - [2(1 + \gamma\mu) - \theta_0]\alpha_n \\ 1044 + (1 + 2\gamma\mu + 2\gamma^2 L^2 - 2\theta_0(1 + \gamma\mu))\alpha_n^2 \\ 1045 + \theta_0(1 + 2\gamma\mu + 2\gamma^2 L^2)\alpha_n^3 \\ 1046 + \gamma\alpha_n\delta_n(1 + \theta_0\alpha_n)$$

1047 By taking $\theta_0 = 1$ we ensure that this coefficient is $\mathcal{O}(1 - (1 + 2\gamma\mu)\alpha_n)$.

1050 Returning to equation 44, with $\theta_n = \alpha_n$, we arrive at the descent inequality

$$1053 \mathbb{E}_n \|Z_{n+1} - z^*(X_{n+1})\|^2 \leq (1 - (1 + 2\gamma\mu - \gamma\delta_n)\alpha_n - (1 - 2\gamma^2 L^2 - \gamma\delta_n)\alpha_n^2 + (1 + 2\gamma\mu + 2\gamma^2 L^2)\alpha_n^3) \|Z_n - z^*(X_n)\|^2 \\ 1054 + (1 + \alpha_n)(\gamma^2 \alpha_n^2 + \frac{\gamma\alpha_n}{\delta_n}) \|b_{n+1}\|^2 \\ 1055 + \left(\gamma^2 \alpha_n^2 (1 + \alpha_n) + L_z^2 \beta_n^2 (1 + \frac{1}{\alpha_n}) \right) \mathbb{E}_n \|V_{n+1}\|^2.$$

1058 \square

1060 We now use Lemma E.1 in order to obtain an asymptotic descent inequality for the time-rescaled
1061 quantity $\frac{\beta_n}{\alpha_n} \|Z_n - z^*(X_n)\|^2$.

1063 **Lemma E.2** (Time-Rescaled Fast Descent Inequality). *Under Assumptions 1-2, for all n sufficiently
1064 large,*

$$1066 \mathbb{E}_n \frac{\beta_{n+1}}{\alpha_{n+1}} \|Z_{n+1} - z^*(X_{n+1})\|^2 \leq \left(1 - \left(\frac{1}{2} + 2\gamma\mu \right) \alpha_n \cdot \right) \frac{\beta_n}{\alpha_n} \|Z_n - z^*(X_n)\|^2 \quad (64a)$$

$$1068 + \frac{2\gamma\beta_n}{\delta_n} \|b_{n+1}\|^2 \quad (64b)$$

$$1070 + 2 \left(\gamma^2 \alpha_n \beta_n + L_z^2 \frac{\beta_n^3}{\alpha_n^2} \right) \mathbb{E}_n \|V_{n+1}\|^2. \quad (64c)$$

1073 *Proof.* As a consequence of Assumption 2, for sufficiently large n ,

$$1075 1 - (1 + 2\gamma\mu - \gamma\delta_n)\alpha_n - (1 - 2\gamma^2 L^2 - \gamma\delta_n)\alpha_n^2 + (1 + 2\gamma\mu + 2\gamma^2 L^2)\alpha_n^3 \leq 1 - \left(\frac{1}{2} + 2\gamma\mu \right) \alpha_n. \quad (65)$$

1077 Similarly, for sufficiently large n , we have that

$$1079 (1 + \alpha_n)(\gamma^2 \alpha_n^2 + \frac{\gamma\alpha_n}{\delta_n}) \leq \frac{2\gamma\alpha_n}{\delta_n}. \quad (66)$$

1080 Finally,

$$1081 \quad \gamma^2 \alpha_n^2 (1 + \alpha_n) + L_z^2 \beta_n^2 (1 + \frac{1}{\alpha_n}) \leq 2\gamma^2 \alpha_n^2 + 2L_z^2 \frac{\beta_n^2}{\alpha_n} \quad (67)$$

1082 Applying these inequalities for each coefficient in the descent inequality of Lemma E.1, we have
1083 that for sufficiently large n ,

$$1084 \quad \mathbb{E}_n \|Z_{n+1} - z^*(X_{n+1})\|^2 \leq \left(1 - \left(\frac{1}{2} + 2\gamma\mu\right)\alpha_n\right) \|Z_n - z^*(X_n)\|^2 \\ 1085 \quad + \frac{2\gamma\alpha_n}{\delta_n} \|b_{n+1}\|^2 \\ 1086 \quad + 2 \left(\gamma^2 \alpha_n^2 + L_z^2 \frac{\beta_n^2}{\alpha_n}\right) \mathbb{E}_n \|V_{n+1}\|^2.$$

1087 Rescaling by the factor $\frac{\beta_{n+1}}{\alpha_{n+1}}$ and applying Assumption 2.2 to the right hand side, we have that, for
1088 all n sufficiently large,

$$1089 \quad \mathbb{E}_n \frac{\beta_{n+1}}{\alpha_{n+1}} \|Z_{n+1} - z^*(X_{n+1})\|^2 \leq \left(1 - \left(\frac{1}{2} + 2\gamma\mu\right)\alpha_n\right) \frac{\beta_n}{\alpha_n} \|Z_n - z^*(X_n)\|^2 \\ 1090 \quad + \frac{2\gamma\beta_n}{\delta_n} \|b_{n+1}\|^2 \\ 1091 \quad + 2 \left(\gamma^2 \alpha_n \beta_n + L_z^2 \frac{\beta_n^3}{\alpha_n^2}\right) \mathbb{E}_n \|V_{n+1}\|^2.$$

1092 \square

1093 We now utilize the identity of Lemma D.2 in order to obtain a descent inequality for the slow process.

1094 **Lemma E.3** (Slow Descent Inequality). *Suppose Assumptions 1-2 hold and, if the game is strongly
1095 monotone, that $\gamma\mu < \frac{1}{4}$. Let $x^* \in \mathcal{X}^*$ be a Nash equilibrium. For all $n \geq n_0 := \inf\{m \geq 1 : x^* \in$
1096 $R_m \mathbb{B}^d\}$,*

$$1097 \quad \mathbb{E}_n \|X_{n+1} - x^*\|^2 \leq (1 - \mu\beta_n + \beta_n\delta_n) \|X_n - x^*\|^2 \quad (70a)$$

$$1098 \quad + \frac{1}{\gamma} \left(\frac{2\gamma\mu}{1 - 4\mu\gamma} + \gamma^2 L^2 + 2 \right) \beta_n \|Z_n - z^*(X_n)\|^2 \quad (70b)$$

$$1099 \quad + \frac{\beta_n}{\delta_n} \|b_{n+1}\|^2 \quad (70c)$$

$$1100 \quad - \frac{1}{2} \gamma \beta_n \|v(Z_n)\|^2 - \frac{1}{2} \gamma \beta_n \|v(z^*(X_n))\|^2 \quad (70d)$$

$$1101 \quad + \beta_n^2 \mathbb{E}_n \|V_{n+1}\|^2. \quad (70e)$$

1102 *Proof.* Suppose that $x^* \in \mathcal{X}^*$ is a Nash equilibrium and suppose that n is sufficiently large so that
1103 $x^* \in R_n \mathbb{B}^d$. As a consequence of the non-expansiveness of the projection operator,

$$1104 \quad \|X_{n+1} - x^*\|^2 = \left\| \text{Proj}_{R_{n+1} \mathbb{B}^d} X_{n+1}^o - \text{Proj}_{R_{n+1} \mathbb{B}^d} x^* \right\|^2 \quad (71)$$

$$1105 \quad \leq \|X_{n+1}^o - x^*\|^2 \quad (72)$$

$$1106 \quad = \|X_n - x^* + \beta_n V_{n+1}\|^2 \quad (73)$$

$$1107 \quad = \|X_n - x^*\|^2 + 2\beta_n \langle V_{n+1}, X_n - x^* \rangle + \beta_n^2 \|V_{n+1}\|^2. \quad (74)$$

1108 Let us express the gradient estimate $V_{n+1} = v(Z_n) + \xi_{n+1}$. We may then take the conditional
1109 expectation and expand the inner product term of equation 74 as follows:

$$1110 \quad \mathbb{E}_n 2\beta_n \langle V_{n+1}, X_n - x^* \rangle = 2\beta_n \langle v(Z_n), X_n - x^* \rangle + 2\beta_n \langle \mathbb{E}_n \xi_{n+1}, X_n - x^* \rangle. \quad (75)$$

1111 For the bias term, we apply Young's inequality for products,

$$1112 \quad 2\beta_n \langle \mathbb{E}_n \xi_{n+1}, X_n - x^* \rangle \leq \beta_n \delta_n \|X_n - x^*\|^2 + \frac{\beta_n}{\delta_n} \|b_{n+1}\|^2. \quad (76)$$

1134 For the remaining term, we may apply the result of Lemma D.2 in order to obtain
 1135

$$1136 \quad 2\beta_n \langle v(Z_n), X_n - x^* \rangle \leq -\mu\beta_n \|X_n - x^*\|^2 \quad (77a)$$

$$1137 \quad + \frac{1}{\gamma} \left(\frac{2\gamma\mu}{1-4\mu\gamma} + \gamma^2 L^2 + 2 \right) \beta_n \|Z - z^*(X_n)\|^2 \quad (77b)$$

$$1139 \quad - \frac{1}{2}\gamma\beta_n \|v(Z_n)\|^2 - \frac{1}{2}\gamma\beta_n \|v(z^*(X_n))\|^2 \quad (77c)$$

1141 Taking the conditional expectation in equation 74 and applying the inequalities equation 76 and
 1142 equation 77, we arrive at the claimed descent inequality, equation 70 \square
 1143

1144 F CONVERGENCE PROOFS

1146 F.1 PROOF OF PROPOSITION 4.4

1148 *Proof of Proposition 4.4.* We have that $\|b_{n+1}\| = \mathcal{O}(\delta_n)$ as a property of the SPSA gradient esti-
 1149 mate. Moreover, Lemma 3.1 states that $\|V_{n+1}\| = \mathcal{O}(R_n)$. With these estimates for the error terms,
 1150 we rewrite the descent inequality of E.2 in the following form:

$$1151 \quad \mathbb{E}_n \frac{\beta_{n+1}}{\alpha_{n+1}} \|Z_{n+1} - z^*(X_{n+1})\|^2 \leq \left(1 - \left(\frac{1}{2} + 2\gamma\mu \right) \alpha_n \right) \frac{\beta_n}{\alpha_n} \|Z_n - z^*(X_n)\|^2 \quad (78a)$$

$$1154 \quad + \mathcal{O} \left(\beta_n \delta_n + \alpha_n \beta_n R_n^2 + \frac{\beta_n^3 R_n^2}{\alpha_n^2} \right) \quad (78b)$$

1155 As a result of Assumption 2, we have that the conditions of Theorem B.2 are satisfied, hence
 1156

$$1157 \quad \frac{\beta_n}{\alpha_n} \|Z_n - z^*(X_n)\|^2 \rightarrow 0 \text{ a.s. and in expectation.} \quad (79)$$

1159 Suppose, in addition, Assumption 3 holds. Taking the expectation in equation 78, we obtain the
 1160 following:
 1161

$$1162 \quad \mathbb{E} \frac{\beta_{n+1}}{\alpha_{n+1}} \|Z_{n+1} - z^*(X_{n+1})\|^2 \leq \left(1 - \left(\frac{1}{2} + 2\gamma\mu \right) \frac{\alpha}{n^a} \right) \mathbb{E} \frac{\beta_n}{\alpha_n} \|Z_n - z^*(X_n)\|^2 \quad (80a)$$

$$1164 \quad + \mathcal{O} \left(\frac{(\log n)^2}{n^{b+d}} + \frac{(\log n)^2}{n^{a+b}} + \frac{(\log n)^2}{n^{3b-2a}} \right) \quad (80b)$$

1166 Since $\log n = \mathcal{O}(n^{\frac{1}{2}\epsilon})$ for any $\epsilon > 0$, we have that equation 80 implies that for any $\epsilon > 0$, for all n
 1167 sufficiently large,
 1168

$$1169 \quad \mathbb{E} \frac{\beta_{n+1}}{\alpha_{n+1}} \|Z_{n+1} - z^*(X_{n+1})\|^2 \leq \left(1 - \left(\frac{1}{2} + 2\gamma\mu \right) \frac{\alpha}{n^a} \right) \mathbb{E} \frac{\beta_n}{\alpha_n} \|Z_n - z^*(X_n)\|^2 \quad (81a)$$

$$1171 \quad + \mathcal{O} \left(\frac{1}{n^{e+a-\epsilon}} \right) \quad (81b)$$

1173 where $e + a = \min\{b + d, a + b, 3b - 2a\}$.
 1174

1175 As a consequence of the summability constraints of Assumption 2, we have that $\min\{b + d - a, b, 3b - 3a\} > 0$. Hence, if we set $0 < \epsilon < \min\{b + d - a, b, 3b - 3a\}$, then we have that
 1176 $e - \epsilon > 0$. An application of Chung's lemma B.3 (noting that $a < 1$) implies that
 1177

$$1178 \quad \mathbb{E} \frac{\beta_n}{\alpha_n} \|Z_n - z^*(X_n)\|^2 = \mathcal{O} \left(\frac{1}{n^{e-\epsilon}} \right). \quad (82)$$

1180 \square

1182 F.2 PROOF OF PROPOSITION 4.5

1184 *Proof of Proposition 4.5.* We begin by showing that the positive terms in the descent inequality
 1185 equation 70 of Lemma E.3 are finite in series. First, we apply Proposition 4.4 in order to obtain the
 1186 following estimate for any $0 < \epsilon < \min\{b + d - a, b, 3b - 3a\}$ and sufficiently large n

$$1187 \quad \beta_n \mathbb{E} \left[\|Z_n - z^*(X_n)\|^2 \right] = \mathcal{O} \left(\frac{1}{n^{e+a-\epsilon}} \right), \quad (83)$$

1188 where $e + a - \epsilon = \min\{b + d, a + b, 3b - 2a\} - \epsilon$.
 1189

1190 As a consequence of the summability conditions of Assumption 2, we have that $\min\{b + d, a +$
 1191 $b, 3b - 2a\} > 1$ and so we may set $0 < \epsilon < \min\{b + d - 1, a + b - 1, 3b - 2a - 1\}$. In which case,
 1192 we have that $e + a - \epsilon > 1$. Hence we have that

$$1193 \sum_{n=1}^{\infty} \beta_n \mathbb{E} \left[\|Z_n - z^*(X_n)\|^2 \right] < +\infty. \quad (84)$$

1196 It is the case that $\|b_{n+1}\| = \mathcal{O}(\delta_n)$. Hence $\frac{\beta_n}{\delta_n} \|b_{n+1}\|^2 = \mathcal{O}(\delta_n \beta_n)$, which is finite in series owing
 1197 to Assumption 2.

1198 Similarly, as a consequence of Lemma 3.1, we have that $\beta_n^2 \mathbb{E}_n \|V_{n+1}\|^2 = \mathcal{O}(\beta_n^2 R_n^2)$. Since
 1199 $\beta_n = o(\alpha_n)$ and by Assumption 2, $\sum_{n=1}^{\infty} \alpha_n \beta_n R_n^2 < \infty$, we have that $\sum_{n=1}^{\infty} \beta_n^2 R_n^2 < \infty$ and
 1200 $\beta_n^2 \mathbb{E}_n \|V_{n+1}\|^2$ is finite in series.

1203 With each of the positive terms in the descent inequality equation 70 of Lemma E.3 are finite in
 1204 series, applying the stochastic approximation theorem of Robbins-Seigmund B.1, we have that
 1205 $\|X_n - x^*\|^2$ converges almost surely to finite random variable, and that the negative terms satisfy

$$1207 \sum_{n=1}^{\infty} \left(\frac{1}{2} \gamma \beta_n \|v(Z_n)\|^2 + \frac{1}{2} \gamma \beta_n \|v(z^*(X_n))\|^2 \right) < \infty \text{ a.s.} \quad (85)$$

1210 In particular, since $\sum_{n=1}^{\infty} \beta_n = +\infty$, it must be the case that

$$1211 \liminf_{n \rightarrow \infty} (\|v(Z_n)\|^2 + \|v(z^*(X_n))\|^2) = 0. \quad (86)$$

1213 \square

1215 F.3 PROOF OF THEOREM 4.1

1217 *Proof of Theorem 4.1.* Let n_k be a sequence satisfying $\|v(Z_{n_k})\|^2 + \|z^*(X_{n_k})\|^2 \rightarrow 0$. In particular
 1218 we note that

$$1219 v(Z_{n_k}) \rightarrow 0 \text{ and } v(z^*(X_{n_k})) \rightarrow 0.$$

1220 Let $x^* \in \mathcal{X}^*$. The almost sure convergence of $\|X_{n_k} - x^*\|$ implies that X_{n_k} is almost surely
 1221 bounded. In particular there exists a subsequence $X_{n_{k_j}}$ converging to a limit $x_\infty \in \mathbb{R}^D$. For
 1222 the sake of notation, we will adopt the convention that the subsubsequence n_{k_j} corresponds to an
 1223 increasing function $\omega : \mathbb{N} \rightarrow \mathbb{N}$. By Proposition 4.4,

$$1225 \|Z_{\omega(n)} - z^*(X_{\omega(n)})\| \rightarrow 0 \text{ a.s.}$$

1226 Expanding z^* , by the fixed point equation, we have that $X_{\omega(n)} = z^*(X_{\omega(n)}) - \gamma v(z^*(X_{\omega(n)}))$. An
 1227 application of the triangle inequality yields that

$$1229 \|Z_{\omega(n)} - X_{\omega(n)}\| \leq \|Z_{\omega(n)} - z^*(X_{\omega(n)})\| + \gamma \|v(z^*(X_{\omega(n)}))\| \rightarrow 0 \text{ a.s.}$$

1230 This implies that $Z_{\omega(n)} \rightarrow x_\infty$ a.s. and by the continuity of v ,

$$1232 v(x_\infty) = \lim_{n \rightarrow \infty} v(Z_{\omega(n)}) = 0.$$

1234 This is precisely that $x_\infty \in \mathcal{X}^*$. Taking $x^* = x_\infty$, the almost sure convergence of $\|X_n - x_\infty\|$ to a
 1235 finite random variable and the convergence of the subsequence $\|X_{\omega(n)} - x_\infty\|$ to zero, implies that
 1236 the entire sequence $X_n \rightarrow x_\infty \in \mathcal{X}^*$ a.s. \square

1238 F.4 PROOF OF THEOREM 4.2

1239 *Proof of Theorem 4.2.* For all n sufficiently large, as a consequence of Assumption 2,

$$1241 1 - \mu \beta_n + \delta_n \beta_n \leq 1 - \frac{1}{2} \mu \beta_n. \quad (87)$$

1242 Taking the expectation in the descent inequality 70, we have that for all n sufficiently large,
 1243

$$1244 \mathbb{E} \|X_{n+1} - x^*\|^2 \leq \left(1 - \frac{1}{2}\mu\beta_n\right) \mathbb{E} \|X_n - x^*\|^2 \quad (88a)$$

$$1246 + \frac{1}{\gamma} \left(\frac{2\gamma\mu}{1-4\mu\gamma} + \gamma^2 L^2 + 2 \right) \beta_n \mathbb{E} \|Z - z^*(X_n)\|^2 \quad (88b)$$

$$1248 + \mathcal{O}(\beta_n \delta_n + \beta_n^2 R_n^2). \quad (88c)$$

1250 We apply Proposition 4.4 in order to obtain the following estimate for any $0 < \epsilon < \min\{b+d-1, a+b-1, 3b-2a-1\}$ and for sufficiently large n ,
 1251

$$1252 \beta_n \mathbb{E} [\|Z_n - z^*(X_n)\|^2] = \mathcal{O}\left(\frac{1}{n^{e+a-\epsilon}}\right), \quad (89)$$

1255 where $e+a-\epsilon = \min\{b+d, a+b, 3b-2a\} - \epsilon$. Since the parameter sequences take the form of
 1256 Assumption 3, we may rewrite 88 as follows:

$$1257 \mathbb{E} \|X_{n+1} - x^*\|^2 \leq \left(1 - \frac{\beta\mu}{2n^b}\right) \mathbb{E} \|X_n - x^*\|^2 \quad (90a)$$

$$1260 + \mathcal{O}\left(\frac{(\log n)^2}{n^{b+d}} + \frac{(\log n)^2}{n^{2b}} + \frac{1}{n^{e+a-\epsilon}}\right). \quad (90b)$$

1262 Again, noting that $\log n = \mathcal{O}(n^{\frac{1}{2}\epsilon})$, we have that, for all n sufficiently large,
 1263

$$1264 \mathbb{E} \|X_{n+1} - x^*\|^2 \leq \left(1 - \frac{\beta\mu}{2n^b}\right) \mathbb{E} \|X_n - x^*\|^2 \quad (91a)$$

$$1266 + \mathcal{O}\left(\frac{1}{n^{b+d-\epsilon}} + \frac{1}{n^{2b-\epsilon}} + \frac{1}{n^{e+a-\epsilon}}\right). \quad (91b)$$

1268 Let $f := \min\{d, b, a-b\}$. Noting that $e+a-b = \min\{d, a, 2b-2a\}$, we have that
 1269

$$1270 f = \min\{d, a, 2b-2a\}. \quad (92)$$

1271 We may choose $0 < \epsilon < \min\{a, 2b-2a, 3b-2a-1, a+b-1\}$ so that both the following hold:
 1272 $e+a-\epsilon > 1$ and $f-\epsilon > 0$. This enables us to rewrite equation 91 in the following form
 1273

$$1274 \mathbb{E} \|X_{n+1} - x^*\|^2 \leq \left(1 - \frac{\beta\mu}{2n^b}\right) \mathbb{E} \|X_n - x^*\|^2 \quad (93)$$

$$1276 + \mathcal{O}\left(\frac{1}{n^{f+b-\epsilon}}\right), \quad (94)$$

1278 and an Application of Chung's Lemma B.3 yields that
 1279

$$1280 \mathbb{E} \|X_n - x^*\|^2 \leq \mathcal{O}\left(\frac{1}{n^{f-\epsilon}}\right), \quad (95)$$

1282 Since $\epsilon > 0$ can be taken to be arbitrarily small, we have that
 1283

$$1284 \mathbb{E} \|X_n - x^*\|^2 \leq \tilde{\mathcal{O}}\left(\frac{1}{n^f}\right), \quad (96)$$

1286 as claimed. □
 1287

1288 G EXPERIMENTAL SETTING FOR SECTION 5

1290 The experiments in Section 5 were conducted in macOS 14.5 with Apple M2 Max and 32GB of
 1291 RAM.
 1292

1293 In Figure 2c is a log-log graph comparing the average norm of the iterates, averaged over 10 in-
 1294 stances with random seeds. The shaded region corresponds to the 25-75 percentile of the ensemble.
 1295 In each instance, we initialize the game with action $x_0 = (10, 20)$. The parameter sequences are
 1296 tuned as follows:

- 1296 • SPOG: $\gamma = \frac{1}{2}$, $\alpha_n = (\frac{50}{50+n})^{0.66}$, $\beta_n = \frac{100}{100+n}$, $\delta_n = (\frac{1000}{1000+n})^{0.66}$ and $R_n = 100 \log(n+1)$,
- 1297 • OG+: $\gamma_n = 0.1(\frac{1000}{n+1000})^{0.25}$, $\eta_n = 0.1(\frac{1}{n+1})^{0.5}$,
- 1298 • OG+SPSA: $\gamma = (\frac{50}{50+n})^{0.66}$, $\eta = \frac{100}{100+n}$ and $\delta_n = (\frac{1000}{1000+n})^{0.66}$.
- 1300 • (OG): $\gamma_n = 0.1(\frac{1}{n+1})^{0.5}$.

1302 In keeping with Theorem 4.2 and Remark 4.1, we choose $a = d = 0.66 \approx \frac{2}{3}$, $b = 1$ in order to
 1303 approximate the best-rate attained through our analysis. In addition, in order to prevent the parameter
 1304 sequences from decaying too quickly, we opt to translate n and rescale the parameter sequences, as
 1305 above; this ensures the trajectories of the iterates are sufficiently long. The parameters for OG+
 1306 with additive noise reflect the constraints stated in the last-iterate convergence result in Hsieh et al.
 1307 (2022). The parameters for OG are taken from a similar experiment in Hsieh et al. (2022).

1309 In terms of noise models for OG and OG+, we consider a normal $\mathcal{N}(0, 0.2)$ distribution on the noise
 1310 ξ_{n+1} which is *additive*, that is, $\hat{v}_{n+1,i} = v_i(x_{n+\frac{1}{2}}) + \xi_{n+1,i}$ for $i = 1, 2$.

1312 H SUPPORTING LEMMAS

1314 We state the following Lemma concerning inner product spaces, which we frequently make use of
 1315 and refer to as Young’s inequality.

1316 **Lemma H.1.** *Let $(\mathbb{R}^D, \langle \cdot, \cdot \rangle)$ be an inner product space with induced norm $\|\cdot\|$. For any $\theta > 0$, and*
 1317 *any $x, y \in \mathbb{R}^D$, the following hold:*

1319 (i)

$$1320 \quad \langle x, y \rangle \leq \frac{\theta}{2} \|x\|^2 + \frac{1}{2\theta} \|y\|^2,$$

1322 (ii)

$$1323 \quad \|x + y\|^2 \leq (1 + \theta) \|x\|^2 + (1 + \frac{1}{\theta}) \|y\|^2.$$

1326 *Proof.* We exploit the bi-linearity of the inner product to write

$$1328 \quad \langle x, y \rangle = \langle \sqrt{\theta}x, \frac{y}{\sqrt{\theta}} \rangle. \quad (97)$$

1330 Expanding the norm, we next observe that

$$1332 \quad 0 \leq \left\| \sqrt{\theta}x - \frac{y}{\sqrt{\theta}} \right\|^2 \leq \theta \|x\|^2 + \frac{1}{\theta} \|y\|^2 - 2\langle \sqrt{\theta}x, \frac{y}{\sqrt{\theta}} \rangle \quad (98)$$

1334 Rearranging equation 98 and applying equation 97, we arrive at the claimed result (i).

1335 We see that (i) \implies (ii) when we expand the following inner product

$$1337 \quad \|x + y\|^2 = \|x\|^2 + \|y\|^2 + 2\langle x, y \rangle.$$

1339 \square

1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349