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Abstract

We study a two-player zero-sum game (TPZSG) in which the row player aims to
maximize their payoff against an adversarial column player, under an unknown
payoff matrix estimated through bandit feedback. We propose and analyze two
algorithms: ETC-TPZSG, which directly applies Explore-Then-Commit (ETC) to
the TPZSG setting and ETC-TPZSG-AE, which improves upon it by incorporating
an action pair elimination (AE) strategy that leverages the ε-Nash Equilibrium
property to efficiently select the optimal action pair. Our objective is to demonstrate
the applicability of ETC in a TPZSG setting by focusing on learning pure strategy
Nash Equilibrium. A key contribution of our work is a derivation of instance-
dependent upper bounds on the expected regret for both algorithms, which has
received limited attention in the literature on zero-sum games. Particularly, after T
rounds, we achieve an instance-dependent regret upper bounds of O(∆ +

√
T ) for

ETC-TPZSG and O( log(T∆2)
∆ ) for ETC-TPZSG-AE, where ∆ denotes the subop-

timality gap. Therefore, our results indicate that ETC-based algorithms perform
effectively in adversarial game settings, achieving regret bounds comparable to
existing methods while providing insights through instance-dependent analysis.

1 Introduction

This paper focuses on finite two-player zero-sum games (TPZSGs), where two players interact in
an adversarial setting with strictly opposing objectives, as first analyzed in [31, 32]. These games
play a foundational role in game theory and online learning, capturing adversarial interactions in
various applications such as economic competition and adversarial machine learning. In such settings,
players repeatedly select actions from finite sets, with payoffs determined by a fixed but unknown
game matrix.

Studies on learning in games typically use either full information feedback where players observe
the opponent’s actions or the entire payoff matrix after each round or partial feedback, also called
bandit feedback, where each player observes only their own payoffs without access to the opponent’s
strategy or the full matrix [7]. In this paper, we study a TPZSG setting with bandit feedback, where
players observe each other’s actions, and propose two algorithms, ETC-TPZSG and ETC-TPZSG-AE,
which minimize regret by learning pure strategies for both players through balancing of exploration
and exploitation.

Several existing studies have advanced our understanding of how players learn to play optimally
in zero-sum games with bandit feedback. The variant of UCB algorithm for adversarial games
under bandit feedback have been analyzed using worst-case regret bounds in [27]. In particular,
worst-case analyses lead to all games as equally hard by ignoring the specific structure of the game.
Instance-dependent analysis adapts the regret guarantees to the specific properties of a game to
provide more practical performance guarantees. More recently, instance-dependent regret bounds
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have been investigated for the Tsallis-INF algorithm in TPZSGs [18]. However an understanding of
instance-dependent regret in TPZSGs under bandit feedback remains incomplete.

Contributions. This paper investigates the effectiveness of the Explore-Then-Commit (ETC) al-
gorithm and extensions in the context of TPZSGs. While ETC has been widely studied in standard
multi-armed bandit (MAB) problems, there has been no prior work specifically analyzing its perfor-
mance to adversarial game settings, which makes this the first work to provide its detailed analysis in
such a setting. A key motivation for studying ETC is its algorithmic simplicity allowing for a clear
structure.

In particular, we propose two algorithms that adapt the ETC approach to TPZSG setting and present
their instance-dependent regret analyses. The first one, ETC-TPZSG, follows the classical ETC
framework by uniformly selecting actions for a fixed number of steps and then committing to a
pure strategy, achieves an upper bound of Õ(∆ +

√
T ) . The second algorithm, ETC-TPZSG-AE,

incorporates an adaptive elimination approach, similar to [6], by sequentially eliminating actions
which, with high probability, are not part of an ε-Nash Equilibrium (ε-NE), gives us an upper
regret bound of O( log(T∆2)

∆ ). Intuitively, this design is expected to converge more rapidly to the
optimal strategy by efficiently reducing uncertainty and narrowing the action spaces of the players.
Consequently, despite the simplicity of ETC framework, our results demonstrate that ETC-based
approaches can be highly effective in adversarial settings. In both cases, the regret bounds depend on
a suitable ∆ notion, which varies depending on the type of the regret we are analyzing.

Paper structure. This paper is organized as follows. Section 2 reviews related work. Section 3
introduces preliminaries and formalizes the two-player zero-sum game (TPZSG) setting. In Section
4, we present the ETC in a TPZSG setting, ETC-TPZSG, and analyze its regret. Section 5 introduces
an elimination based algorithm, ETC-TPZSG-AE, that leverages the ε-NE property, and provides its
regret analysis. Section 6 offers empirical results validating their theoretical performances. Finally,
Section 7 discusses our conclusions and future research directions.

2 Related Work

The multi-armed bandit (MAB) problem, has been introduced by [30] and originally described by
[29], has been widely explored and has become a crucial framework for online decision-making
under uncertainty, as explored in works such as [3, 4, 5, 6, 8, 9]. The MAB problem models scenarios
in which a player must repeatedly choose from a set of actions to maximize their own rewards while
balancing exploration-exploitation tradeoff, has formalized by [19] and further explored in studies
such as [2, 21].

A central challenge is identifying the action with the highest expected reward while minimizing
suboptimal choices, requiring efficient exploration and statistical confidence. Several approaches
guarantee low error probabilities within finite trials, aiming to minimize regret [1, 16]. Since the
player has no prior knowledge of expected rewards, a dedicated exploration phase is essential, has
motivated numerous studies such as [10, 26].

The Explore-Then-Commit (ETC) algorithm, which has been introduced by [28], is one of the
fundamental approaches in the MAB setting. It explores each action a fixed number of times,
then commits to the best-performing action for the remaining rounds. Due to its simplicity and
effectiveness, variants of the ETC algorithm are widely used in various decision-making scenarios
[17, 34].

Zero-sum games, are a fundamental concept in game theory. They describe competitive scenarios
where one player’s gain exactly equals the other’s loss. First highlighted by [31, 32], their theory
and applications have been extensively explored [8, 12, 33]. The Minimax Theorem in [31, 32]
guarantees equilibrium existence in TPZSGs, but finding equilibria becomes significantly harder
when the payoff matrix is unknown [13, 14, 23, 35].

A more general concept are Nash Equilibria [24, 25]. While these are identical to the minimax
equilibria in TZPSGs, they are not as easy to compute in general games [14]. The concept of ε-Nash
Equilibrium provides an approximate solution where each player’s strategy is within an ε tolerance
level. [15] used the ε-NE concept to efficiently approximate equilibrium in two-player games.
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In a zero-sum game setting with bandit feedback, players engage in repeated interactions without full
knowledge of the payoff matrix, making it essential to estimate the unknown payoffs by previous
observations. Various approaches, such as UCB [27] and Tsallis-INF [18], have been proposed to
efficiently estimate the unknown payoff matrix while minimizing regret. Learning the game matrix is
crucial for converging to equilibrium strategies and ensuring optimal decision-making in adversarial
environments. [27] focuses on worst-case regret analysis, while [18] provides an instance-dependent
regret analysis which achieves an upper bound of O( log T

∆ ) in the case of a pure strategy equilibrium.
Additionally, [22] investigates instance-dependent sample complexity bounds for zero-sum games
under bandit feedback while [11] examines convergence rates to NE.

3 Preliminaries

In this section, we define the basic concept of a TPZSG such as payoff matrix, the regret definitions
we focus on and the gaps ∆ that we use for the analysis.

In a TPZSG, the goals of the players are strictly opposed, which implies that any gain by one
player corresponds to an equal loss by the other. This framework provides a fundamental model for
adversarial interactions where strategic decision-making under competition is central. The outcome
of such a game is fully determined by the strategies chosen by both players and the goal of each
player is to maximize their own payoff while minimizing that of their opponent.

Notation. Throughout this paper, O(·) denotes an upper bound up to constant factors.

3.1 Two-Player Zero-Sum Games

In a two-player zero-sum game, consisting of a row (x) player and a column (y) player , the row
player aims to maximize their own payoff while the column player attempts to take an action to
minimize this payoff.

Sx and Sy are the action sets of the row player and column player, respectively. Thus, the action
space of the game is SA = Sx × Sy, so that the action pairs (i, j) ∈ SA where i ∈ Sx, j ∈ Sy. We
also define m = |Sx| as the number of actions for the row player, and l = |Sy| as the number of
actions for the column player, while finally N = ml = |SA| is the total number of action pairs. The
game itself is defined through a game matrix A, so that if the players choose the pair (i, j) then the
row player obtains a payoff of A(i, j) and the column player −A(i, j).

The row player has a strategy (i.e. a probability distribution) p to select an action i ∈ Sx, while the
column player selects an action j ∈ Sy according to a strategy q.
Definition 3.1. A pair of mixed strategies (p∗, q∗) is a Nash equilibrium (NE) if for all strategies p
and q, it satisfies

V ∗ ≥ p⊤Aq∗, V ∗ ≤ p∗⊤Aq (1)

where V ∗ = p∗⊤Aq∗ is the value of the game [24]. It means that p∗ and q∗ are optimal strategies
for row and column players, respectively.

There always exists an optimal mixed strategy for both players that guarantees the best possible
outcome by the Minimax Theorem [31, 32]. When a mixed strategy assigns a probability of one to a
single action and zero to all others, it is referred to as a pure strategy. In our setting, we focus on a
TPZSG where both players adopt pure strategies.
Definition 3.2 (Pure Nash Equilibria). A pair (i∗, j∗) is a pure NE if:

i∗ = argmax
i∈Sx

min
j∈Sy

A(i, j) and j∗ = argmin
j∈Sy

max
i∈Sx

A(i, j),

or equivalently

A(i, j∗) ≤ A(i∗, j∗) ≤ A(i∗, j), ∀i ∈ Sx, j ∈ Sy. (2)

The condition in (2) ensures that no player has an incentive to deviate to another action. We use
V ∗ = A(i∗, j∗) to denote the value of the game.
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3.2 Games with Bandit Feedback

The game proceeds in rounds. At time t, the row player draws an action it ∈ Sx from a strategy pt,
and the column player draws jt ∈ Sy from a strategy qt. The players then observe a noisy payoff
rt with expected value E[rt | it, jt] = A(it, jt), with the maximizing player obtaining rt and the
minimizing player −rt. We assume that both players observe each other’s action.

Since the algorithms do not know A, we use the notation Â(i, j) to denote the estimated payoff when
the action pair (i, j) is played. We express the action pair played in round t by (it, jt). After round t,
we estimate each entry of the estimated game matrix by computing the average payoff for each action
pair (i, j) as

Ât(i, j) =
1

nij,t

t∑
s=1

I{(is, js) = (i, j)}rs (3)

where nij,t is the number of times the action pair (i, j) played until round t, rs’s are independently
and identically distributed (iid) σ-subgaussian payoffs. We assume that the estimator is unbiased,
meaning that E[Â] = A.

3.3 Gap Notions

To quantify how close a chosen action pair is to the NE, we define suboptimality gaps based on
deviations from the equilibrium and the best responses of the players. These gaps capture the extent
to which each player could improve their outcome by deviating from their current strategy. For any
action i ∈ Sx, j ∈ Sy , we define the following suboptimality gaps:

∆max
ij = max

i′∈Sx

A(i′, j)−A(i, j) (4)

∆min
ij = A(i, j)− min

j′∈Sy

A(i, j′) (5)

∆ij = ∆max
ij +∆min

ij (6)

∆∗
ij = A(i∗, j∗)−A(i, j) = V ∗ −A(i, j) (7)

We note that ∆max
ij ≥ 0 and ∆min

ij ≥ 0, thus ∆ij ≥ 0 for any action pair (i, j). However, ∆∗
ij might

be negative.

Using the NE property in (2), for all i ∈ Sx and j ∈ Sy we can write the following:

A(i∗, j∗) ≤ A(i∗, j) ≤ max
i′∈Sx

A(i′, j) =⇒ A(i∗, j∗)−A(i, j) ≤ max
i′∈Sx

A(i′, j)−A(i, j) (8)

A(i∗, j∗) ≥ A(i, j∗) ≥ min
j′∈Sy

A(i, j′) =⇒ A(i∗, j∗)−A(i, j) ≥ min
j′∈Sy

A(i, j′)−A(i, j) (9)

Then, the inequality (8) implies that ∆∗
ij ≤ ∆max

ij and similarly from (9), we have ∆∗
ij ≥ −∆min

ij .
Therefore, we have −∆min

ij ≤ ∆∗
ij ≤ ∆max

ij . On the other hand, since ∆min
ij ≥ 0, we can write

∆∗
ij ≤ ∆max

ij +∆min
ij = ∆ij . (10)

3.4 Regret Notions

To characterize the performance of our algorithms, we consider several regret notions. Let begin with
the following formulations, which are the external regret of the max and min player respectively:

Rmax
T = max

i∈Sx

E
[ T∑

t=1

A(i, jt)−A(it, jt)
]

Rmin
T = max

j∈Sy

E
[ T∑

t=1

A(it, jt)−A(it, j)
]

where it and jt are the actions selected by the row and column player in round t, respectively. Rmax
T

represents the expected loss due to not selecting the best possible action of row player against column
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player’s action j while Rmin
T captures the expected regret from not choosing the column player’s best

action for a given action i.

We can now rewrite the regret definitions in terms of the suboptimality gaps:

Rmax
T =

∑
(i,j)∈SA

∆max
ij E[nij,T ], Rmin

T =
∑

(i,j)∈SA

∆min
ij E[nij,T ], (11)

where E[nij,T ] denotes the expected number of times the action pair (i, j) is played over T rounds.

In this paper, we analyze two regret notions. The external regret and the Nash regret.

Definition 3.3 (External regret). The (combined) external regret is given by the following:

RT = Rmax
T +Rmin

T =
∑

(i,j)∈SA

∆ijE[nij,T ] (12)

External regret quantifies how much worse the players have performed compared to their best actions
in hindsight. An alternative regret notion is the Nash regret, which measures the deviation of value
from the Nash equilibrium:

Definition 3.4 (Nash regret). The Nash regret is expressed as

R∗
T =

∑
(i,j)∈SA

∆∗
ijE[nij,T ]. (13)

The Nash regret, as defined here, can be negative, since the minimizing player might play suboptimally.
However, if we are able to bound the Nash regret for the maximizing player, then by symmetry, we
can also bound it for the minimizing player, thus effectively bounding its absolute value.

4 ETC-TPZSG Algorithm and Regret Analysis

In this section, we extend ETC algorithm to a two-person zero-sum game setting as ETC-TPZSG.
Each player selects action from their corresponding finite action sets, which are known. The game is
repeated over given time horizon T , and the true payoff matrix A is unknown to both players. Instead,
they receive observations of the payoffs based on their chosen actions, which are iid subgaussian
random variables.

Let k represent the number of times to explore each action pair (i, j) ∈ SA. During the exploration
phase, each player samples actions to estimate the expected payoffs, which enables us to construct
an empirical payoff matrix using the observed payoffs. Then, in commit phase, they play according
to the pure NE strategy derived from the estimated payoff matrix. After presenting the ETC-
TPZSG algorithm, finally, we analyze its expected regret, measuring the performance due to limited
information and suboptimal action pairs during the exploration phase.

As a result, the unknown payoff matrix is approximated by the ETC approach, as in [20] for a bandit
setting. The ETC algorithm consists of two phases: an exploration phase, where the player randomly
samples actions to gather information with given exploration time k, and a commit phase, where
the player selects the empirically best action based on the gathered data. Algorithm 1 presents the
implementation of ETC-TPZSG, where each player only observes the payoffs of the action pair they
choose during the exploration period, then in the committing phase the algorithm converges to an
optimal action pair which refers to the pure NE.

Applying ETC in a zero-sum game setting presents some challenges compared to the standard MAB
scenario. In bandit problems, after the exploration phase, a player simply commits to the arm with
the highest estimated reward, which is typically effective if exploration is sufficient. However, in
a zero-sum game with the pure NE, the objective is not to identify an action with high reward but
to find a possibly true NE. Inadequate exploration can lead to poor estimates of payoffs, making it
difficult to correctly identify such an equilibrium. In fact, due to inaccurate estimates, a pure NE
might not even appear to exist, even when one does in the true game. As a result, the design of ETC
approach in zero-sum game setting requires careful balancing of exploration phase.

5



Algorithm 1 ETC-TPZSG
1: Input:
2: SA: set of action pairs in the game matrix A ▷ SA includes action pairs (i, j)
3: m: number of actions for row player
4: l: number of actions for column player
5: k: exploration time
6: T : time horizon ▷ 1 ≤ mlk ≤ T
7: σ2: subgaussian variance factor
8: Initialize: Â = [0]m×l ▷ Â is estimated game matrix
9: In round t = 0, 1, 2, ...,mlk; ▷ Exploration Phase

10: Explore each action pair (i, j) in SA k times
11: Update Â using 3
12: In round t = mlk + 1,mlk + 2, ..., T ; ▷ Committing Phase
13: Play an equilibrium (i∗, j∗) satisfying the following property:

Â(i, j∗) ≤ Â(i∗, j∗) ≤ Â(i∗, j)

Theorem 4.1. The Nash regret of Algorithm 1, when interacting with σ-subgaussian payoffs, is upper
bounded as follows:

R∗
T ≤ k

∑
(i,j)∈SA

∆∗
ij + (T −Nk)

∑
(i,j)∈SA

∆∗
ij exp

(
−

k∆2
ij

16σ2

)
(14)

where k is the exploration time per action pair and N is the total number of action pairs.

We provide the proof in Appendix B. The regret comprises two main components, the exploration
phase and the loss due to misidentifying the NE. Thus, it is crucial to choose an appropriate exploration
time k that balances sufficient exploration and efficient exploitation. Choosing k too large leads to
unnecessary exploration while setting it too small increases the risk of making suboptimal decisions.
Hence, careful tuning of k is essential to minimize overall regret.

Let assume there are two action pairs (i1, j) and (i2, j) in the game such that row player has two
actions and column player has one action. In addition, let suppose the NE is at (i1, j). Then, we have
∆ = A(i1, j)−A(i2, j) and we can write the regret simply as

R∗
T ≤ k∆+ (T − 2k)∆ exp

(
− k∆2

16σ2

)
≤ k∆+ T∆exp

(
− k∆2

16σ2

)
. (15)

Taking the first derivative with respect to k and solve it, we get the following for the exploration time:

k = max
{
1,
⌈16σ2

∆2
ln

∆2T

16σ2

⌉}
(16)

If ∆ is known, we can easily find the necessary exploration time. Therefore, when we put it into the
regret bound, it becomes

R∗
T ≤ min

{
T∆,∆+

16σ2

∆

(
1 + max

{
0, ln

∆2T

16σ2

})}
(17)

where the first term T∆ is worst-case regret and for the other, we combine the regret we obtain in
(15) with the value of exploration time in (16). Then, focusing on max

{
0, ln ∆2T

16σ2

}
, we obtain that

∆ = 4σ√
T

is a critical point. If we put it in the regret bound (17), we have the following:

R∗
T ≤ ∆+ c

√
T

where c > 0 is a some constant. If ∆ ≤ 1, it becomes

R∗
T ≤ 1 + c

√
T . (18)

Bounds like (18) are referred to as instance-independent since it only depends on the time horizon
T not on the game instance. In the zero-sum game setting, our analysis shows that we get a regret
bound comparable to the standard bandit setting in [20], indicating that the ETC-based algorithm
performs effectively in adversarial environments and aligns with known results in the literature.
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5 ETC-TPZSG-AE Algorithm and Regret Analysis

If a pure NE exists at (i∗, j∗), then it must satisfy the condition given in (2). For the algorithm in the
section, we make use of the concept of ε-Nash Equilibrium (ε-NE), which approximately satisfies the
standard NE condition. Specifically, an ε-NE satisfies the NE conditions within a tolerance level ε,
making it a suitable criterion in learning settings where exact equilibrium identification is hard.

Based on this criterion, we introduce an elimination strategy in Algorithm 2, inspired by [6], to reduce
unnecessary exploration of clearly suboptimal action pairs. Specifically, action pairs that do not
satisfy the ε-NE property are eliminated from further play, which enables a more efficient learning
process by concentrating exploration on approximately optimal action pairs.
Definition 5.1. The action pair (i∗, j∗) is an ε-Nash Equilibrium (ε-NE) if the following condition
holds:

A(i, j∗)− ε ≤ A(i∗, j∗) ≤ A(i∗, j) + ε, ∀i ∈ Sx, j ∈ Sy. (19)

For the exploration time k of the algorithm, let just go back to the regret bound in (14) and assume
that there exists some ∆∗ and ∆ such that ∆∗ ≥ ∆∗

ij and ∆ ≤ ∆ij for all (i, j) ∈ SA. Then, when
we put them into the regret bound and take its derivative with respect to k, we obtain a similar result
as in (16); thus, as the exploration time, clearly we can use the following:

k =
⌈16σ2

∆2
ln
(∆2T

16σ2

)⌉
(20)

Since the true suboptimality gaps ∆ are unknown, the algorithm adopts a decreasing ∆ approach
across rounds. It is motivated by the intuition that the remaining action pairs become closer to the
true NE as suboptimal action pairs are progressively eliminated. Consequently, the suboptimality
gaps among the remaining action pairs are expected to decrease over time. In other words, as the
rounds progress, we expect that the players get closer to true NE, which means they tend to repeat
better action pairs more often. We can afford to use smaller ∆ values to explore action pairs near the
NE more thoroughly, since smaller ∆ leads to a longer exploration time k.

The algorithm schedules ∆ij across rounds using ∆̂t, which guides both exploration time and the
tolerance level for the ε-NE condition. When ∆̂t is large, action pairs are played fewer times and
more action pairs are kept during elimination. As ∆̂t decreases, the algorithm focuses exploration on
pairs closer to equilibrium, having already eliminated clearly suboptimal ones.

In order to perform updates over rounds, an initial estimate is required. When the payoffs are bounded
within a known interval, such as [0, 1], it is common practice to initialize the estimated suboptimality
gap ∆̂t with value 1, representing the maximum possible difference between arm rewards as in [6].
However, in our setting, the payoffs are assumed to be σ-subgaussian, which implies that there is no
strict upper bound on the suboptimality gaps, we only have ∆ij ≥ 0. Since no empirical estimates
are available at the initialization step, it is not feasible to use a bound for the expected value of the
maximum of σ-subgaussian random variables to guide the choice of ∆̂t. To address this, we initialize
∆̂t with 4σ, which provides a practical starting point for the analysis.

Moreover, we use ∆̂t = 2−t+2σ in each round t which takes values from 0 to
⌊
1
2 log2

T
e

⌋
. Regarding

∆ ≈
√
(16σ2/k) ln (∆2T/16σ2) from (20) so ln (∆2T/16σ2) ≥ 0, which gives us ∆ ≥

√
16σ2/T .

Then, using 2−t+2σ ≥
√
16σ2/T and after some calculations, we obtain t ≤ 1

2 log2 T . The division
by e is a technical adjustment, which makes the bound safer in the analysis; otherwise the number of
play would be zero in the last round.

If we assume that a unique pure NE exists in the game as before, a well estimated game matrix
Â should also exhibit the properties necessary to support the equilibrium. Specifically, Â must
satisfy the conditions required for the ε-NE in (19) to hold. Based on this principle, the Algorithm 2
systematically eliminates action pairs that fail to satisfy this condition, as such pairs cannot be near to
the equilibrium. By reducing the set of action pairs to include only the pairs that meet this criterion,
it ensures that the remaining action pairs are the only ones that could potentially be near the NE;
thus, it enables to focus on the most relevant action pairs. Consequently, we expect that the algorithm
converges to an accurate approximation of the NE, even in the presence of estimation errors in Â.
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Algorithm 2 ETC-TPZSG-AE
1: Input:
2: SA: set of action pairs in the game matrix A ▷ SA includes action pairs (i, j)
3: m: number of actions for row player
4: l: number of actions for column player
5: T : time horizon ▷ 1 ≤ ml ≪ T
6: σ2: subgaussian variance factor
7: Initialize: ∆̂0 = 4σ, S0 = SA and Â = [0]m×l ▷ Â is estimated game matrix
8: In round t = 0, 1, 2, ...,

⌊
1
2 log2

T
e

⌋
;

9: Action Pair Selection:
10: If |St| > 1 : ▷ Exploration Phase

11: Explore each action pair (i, j) in St kt =
⌈
16σ2

∆̂2
t

ln (
∆̂2

tT
16σ2 )

⌉
times

12: Update Â using (3).
13: Else: ▷ Committing Phase
14: Play with a unique action pair in St until step T
15: Action Pair Elimination:
16: Remove the action pairs (i, j) NOT satisfying the following for εt =

√
4σ2

kt
ln (

∆̂2
tT

16σ2 ) :

Â(i′, j)− εt ≤ Â(i, j) ≤ Â(i, j′) + εt,∀i′,∀j′

17: Update:
18: Reset St+1 by "Action Pair Elimination" step
19: ∆̂t+1 = ∆̂t

2 where ∆̂t = 2−t+2σ

Theorem 5.1. The Nash regret of Algorithm 2, interacting with σ-subgaussian payoffs, is upper
bounded by

R∗
T ≤

∑
(i,j)∈SA1

∆∗
ij

(
1 +

768σ2

∆2
ij

+
256σ2

∆2
ij

ln
( ∆2

ijT

256σ2

))
+

∑
(i,j)∈SA2

(
∆∗

ij

512σ2

λ2
+∆∗

ijT
)

(21)

where λ ≥
√

16σ2e
T and, SA1

= {(i, j) ∈ SA : ∆ij > λ} and SA2
= {(i, j) ∈ SA : 0 < ∆ij ≤ λ}

are two subsets of the action pairs.

Moreover, if we consider another regret approach in (12), we obtain the following regret bound.

Theorem 5.2. The external regret incurred by Algorithm 2 when interacting with σ-subgaussian
payoffs is bounded as following:

RT ≤
∑

(i,j)∈SA1

(
∆ij +

768σ2

∆ij
+

256σ2

∆ij
ln
( ∆2

ijT

256σ2

))
+

∑
(i,j)∈SA2

(512σ2

λ
+ λT

)
(22)

We simplify the regret bound to O( log(T∆2)
∆ ), as the logarithmic term dominates since by setting

λ =
√

16σ2e
T , we ensure that the term λT is bounded by

√
16σ2eT which is at most e

∆ij
when

∆ij ≤ λ. Our results are consistent with the regret bound derived by [6]. The proofs of the theorems
are provided in Appendix C.

In this section, we analyze two distinct regret formulations for Algorithm 2, Nash regret, defined in
(3.4), and external regret, defined in (3.3). The first, denoted by R∗

T , evaluates performance against
the NE, capturing the cumulative loss relative to the equilibrium strategy. In contrast, the regret
analysis by RT allows us to consider the losses of both players with respect to their individual best
responses at each round, providing a broader and more flexible notion of regret. By the inequality
∆ij∗ ≤ ∆ij for all action pairs, it follows that R∗

T ≤ RT . This outcome aligns with the interpretation
that the expected regret against the NE establishes a more specific comparison and thus, it naturally
provides a tighter upper bound on the expected regret.
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6 Experiments

In this section, we present a set of simulations to support our theoretical findings and demonstrate the
performance of the proposed algorithms. The experiments are conducted with fixed time horizons of
T = 103 and T = 104. Additional details are provided in Appendix D.

(a) The expected regret of ETC-
TPZSG with k in (16) and the upper
bound in (17)

(b) The cumulative regrets of
ETC-TPZSG, ETC-TPZSG-AE and
Tsallis-INF from [18]

(c) The theoretical regret bounds for
ETC-TPZSG, ETC-TPZSG-AE and
Tsallis-INF from [18]

Figure 1: Regret performance comparison of the algorithms

Figure 1a shows the expected regret bound, averaged over 105 simulation runs, of ETC-TPZSG using
k in (16) and the upper bound in (17). We consider a setting with N = 2, where the row player has
two actions, the column player has one, and the first row corresponds to the NE. The suboptimality
gap ∆ varies from 0 to 1 and the subgaussian parameter is set to σ = 0.5. The results align with the
bound in Theorem (4.1).

In Figure 1b, we compare ETC-TPZSG, ETC-TPZSG-AE, and Tsallis-INF [18], the only existing
method with instance-dependent bounds for TPZSGs, based on cumulative regret, computed as
the absolute difference between the game value and the payoff from the action played to avoid
negative values, averaged over 103 runs. The results show that ETC-TPZSG-AE achieves lower
regret than ETC-TPZSG, highlighting the effectiveness of its action pair elimination strategy. We use
a 2× 2 game matrix by Gaussian payoffs and k exploration rounds per action pair for ETC-TPZSG
is randomly selected from a predefined list. On the other hand, Figure 1c compares their theoretical
regret bounds (O(·) notation) for ∆ = 0.5, which aligns with the results in Figure 1b.

7 Discussion

We investigate a TPZSG with bandit feedback, where the payoff matrix is unknown and must be
learned through player interactions. This setting is challenging, as players must estimate payoffs
while making strategic decisions in an adversarial environment. We adopt the ETC algorithm due
to its simplicity, widespread use and lack of prior analysis in this context. We also integrate an
elimination based method, allowing the systematic removal of suboptimal action pairs, thereby
improving convergence to the equilibrium and reducing unnecessary exploration on suboptimal ones.
A key contribution of our work is the derivation of instance-dependent upper bounds on the expected
regret for both algorithms, which has received limited attention in the literature on zero-sum games.

While our study focuses on pure strategy learning in a zero-sum game with bandit feedback and
provides a theoretical expected regret bounds, several directions remain open for future study. One
interesting extension is to consider games where the equilibrium is mixed. While the algorithms
provided can be used to identify the support of the equilibrium, another approach should be used to
efficiently converge to a mixed equilibrium.

Finally, an important and relatively unexplored direction is fairness in zero-sum games. For example,
introducing mechanisms that ensure similar action pairs are explored equally can promote fairness in
strategy estimation. This type of fair play mechanism could be essential in TPZSG settings, thus it
can promote balanced exploration and improve overall strategy estimation. On the other hand, by
integrating fairness based algorithms or constraints, it may be possible to generate game environments
that ensure balanced opportunities for all players.
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A Subgaussian Properties

This section collects some supplementary results from [20] that are used repeatedly throughout
our proofs. These results concern standard properties of subgaussian random variables such as tail
inequalities. They are included here for completeness and easy reference since they play a critical
role in our analyses. The statements are not original, we include only the parts that are directly useful
for our purposes.

Theorem A.1 ([20, Theorem 5.3]). If X is σ-subgaussian random variable, for any ϵ ≥ 0,

P(X ≥ ϵ) ≤ exp
(
− ϵ2

2σ2

)
. (23)
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Lemma A.1 ([20, Lemma 5.4]). If X is σ-subgaussian and X1 and X2 are independent with σ1 and
σ2 subgaussian parameter, respectively, then we can write the followings:

(a) cX is |c|σ-subgaussian for all c ∈ R.

(b) X1 +X2 is
√
σ2
1 + σ2

2-subgaussian.

B Proof of Theorem 4.1

To analyze the Nash regret of the ETC-TPZSG algorithm, we begin by decomposing the total expected
regret into two phases: the exploration phase and the committing phase. During exploration, each
action pair is played a fixed number of times k to estimate their mean rewards, potentially incurring
regret if suboptimal action pairs are played. Once the algorithm commits to the empirically best
action pair, which is the pure NE, the regret accumulates only if this action pair is not the true optimal
one. Our goal is to bound the expected regret by quantifying the probability of committing to a
suboptimal action pair, which we can call it as a misidentified NE, based on the estimates of their
payoffs obtained during exploration phase.

Let (i′, j′) denote a misidentified NE, so we aim to identify an action pair (i′, j′), which appears
better than (i∗, j∗) based on the estimated matrix. To analyze the probability of playing with a
misidentified NE, we consider whether the following two events, E1 and E2, occur:

E1 : Â(i, j′) ≤ Â(i′, j′), E2 : Â(i′, j′) ≤ Â(i′, j), ∀i ∈ Sx,∀j ∈ Sy

and we want to find a bound for P(E1 ∩ E2) because these two conditions must be satisfied to
consider (i′.j′) as a NE.

Since the events E1 and E2 are not independent, we consider two different approaches to find an
upper bound for P(E1∩E2). We then select the approach that gives the tighter bound, as it provides a
more accurate estimate of this probability. The first approach uses the fact that P(E1 ∩ E2) ≤ P(E1)

and P(E1 ∩ E2) ≤ P(E2), which together imply P(E1 ∩ E2) ≤
√

P(E1)P(E2). Alternatively,
we can use the inequality P(E1 ∩ E2) ≤ min{P(E1),P(E2)}, which may provide a tighter bound
depending on the values of P(E1) and P(E2). The choice between these approaches depends on
which enables us the smaller upper bound.

Let us start by considering the first approach. We can write it as

P(E1 ∩ E2) = P(Â(i, j′) ≤ Â(i′, j′) ∧ Â(i′, j′) ≤ Â(i′, j),∀i, j) (24)

≤ P(Â(i, j′) ≤ Â(i′, j′) ∧ Â(i′, j′) ≤ Â(i′, j)) (25)

=

√
P(Â(i, j′) ≤ Â(i′, j′)) P(Â(i′, j′) ≤ Â(i′, j)) (26)

=

√
P(Â(i, j′)− Â(i′, j′) ≤ 0) P(Â(i′, j′)− Â(i′, j) ≤ 0) (27)

≤
√
P(Â(i, j′)− Â(i′, j′) ≤ ∆max

i′j′) P(Â(i′, j′)− Â(i′, j) ≤ ∆min
i′j′) (28)

≤

√
exp

(
−

k(∆max
i′j′)

2

4σ2

)
exp

(
−

k(∆min
i′j′)

2

4σ2

)
(29)

=

√
exp

(
−

k[(∆max
i′j′)

2 + (∆min
i′j′)

2]

4σ2

)
(30)

≤

√
exp

(
−

k(∆max
i′j′ +∆min

i′j′)
2

8σ2

)
(31)

=

√
exp

(
− k(∆i′j′)2

8σ2

)
(32)

= exp
(
− k(∆i′j′)

2

16σ2

)
(33)

where ∆max
i′j′ = maxi A(i, j′)−A(i′, j′), ∆min

i′j′ = A(i′, j′)−minj A(i′, j) and ∆i′j′ = ∆max
i′j′ +∆min

i′j′ .
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To get (26), we utilize the fact that the probability of the intersection of multiple events is at
most that of any individual event, that is, for any collection of events e1, e2, . . . , en, we have
P(e1∩e2∩· · ·∩en) ≤ P(ei) for all i ∈ 1, . . . , n. The inequality (28) holds since ∆max

i′j′ ≥ 0,∆min
i′j′ ≥ 0,

which are true from their definitions. For the step (29), we apply Theorem A.1 with
√
2σ2/k-

subgaussian random variable.

At this point, we need to show that the differences Â(i, j)− Â(x, y) are
√
2σ2/k-subgaussian where

(i, j) and (x, y) are any action pairs in SA. To establish this, we utilize Lemma A.1, which provides
key properties of subgaussian random variables. Specifically, both Â(i, j) and Â(x, y) are

√
σ2/k-

subgaussian as the average payoffs are computed by the equation (3) and during exploration phase,
each action pair is played k times. By the lemma, the difference of two independent subgaussian
random variables with parameters

√
σ2/k is subgaussian with parameter

√
2σ2/k, which follows

that Â(i, j)− Â(x, y) is
√
2σ2/k-subgaussian for any action pairs (i, j) and (x, y).

Then, to get the last inequality (31), we observe that

∆2
i′j′

2
=

(∆max
i′j′ +∆min

i′j′)
2

2
≤ (∆max

i′j′)
2 + (∆min

i′j′)
2

where the inequality follows from the fact that (∆max
i′j′ −∆min

i′j′)
2 ≥ 0.

As we mention before, there is an alternative approach to bound P(E1 ∩ E2), which means to find a
bound for the probability of a misidentified NE. It involves an inequality based on the minimum of
the individual probabilities. Similarly, let follow this:

P(E1 ∩ E2) = P(Â(i, j′) ≤ Â(i′, j′) ∧ Â(i′, j′) ≤ Â(i′, j),∀i, j) (34)

≤ P(Â(i, j′) ≤ Â(i′, j′) ∧ Â(i′, j′) ≤ Â(i′, j)) (35)

= min{P(Â(i, j′) ≤ Â(i′, j′)),P(Â(i′, j′) ≤ Â(i′, j))} (36)

= min{P(Â(i, j′)− Â(i′, j′) ≤ 0) P(Â(i′, j′)− Â(i′, j) ≤ 0)} (37)

≤ min{P(Â(i, j′)− Â(i′, j′) ≤ ∆max
i′j′),P(Â(i′j′)− Â(i′j) ≤ ∆min

i′j′)} (38)

≤ min
{
exp

(
−

k(∆max
i′j′)

2

4σ2

)
, exp

(
−

k(∆min
i′j′)

2

4σ2

)}
(39)

= exp
(
−

kmax{(∆max
i′j′)

2, (∆min
i′j′)

2}
4σ2

)
(40)

≤ exp
(
−

k[(∆max
i′j′)

2 + (∆min
i′j′)

2]

8σ2

)
(41)

≤ exp
(
−

k(∆max
i′j′ +∆min

i′j′)
2

16σ2

)
(42)

≤ exp
(
−

k∆2
i′j′

16σ2

)
(43)

where to get the inequality (41), we use the following:

max{(∆max
i′j′)

2, (∆min
i′j′)

2} ≥
(∆max

i′j′)
2 + (∆min

i′j′)
2

2
(44)

If we assume that their maximum is ∆max
i′j′ , then it will imply (∆max

i′j′)
2 ≥ (∆min

i′j′)
2. Similarly,

if max{(∆max
i′j′)

2, (∆min
i′j′)

2} = (∆min
i′j′)

2, it will give us (∆min
i′j′)

2 ≥ (∆max
i′j′)

2. They are true by
assumptions, then, (44) holds.

Thus, both approaches provide the same upper bound for the probability of misidentified NE. In the
regret analysis, we will focus on the loss due to playing with suboptimal (or not true NE) action pairs.
Thus, after T times playing, 1 ≤ Nk ≤ T where N = ml as the number of action pairs, we can
write the Nash regret as

R∗
T =

∑
(i,j)∈SA

∆∗
ijE[nij,T ]

13



where E[nij,T ] is the expected number of playing the action pair (i, j). We already know that each
action pair (i, j) ∈ SA is played at least k times for exploration. After the exploration step, we
will consider playing the misidentified NE (i′, j′) instead of real one (i∗, j∗) because we expect
the players to select NE action pair as optimal after exploration phase. Since we already have the
probability of playing a misidentified NE from (33) or (43), we can write

E[nij,T ] ≤ k + (T −Nk) exp
(
−

k∆2
ij

16σ2

)
.

Hence, the proof is concluded.

□

C Proof of Theorem 5.1

According to the algorithm,
√

16σ2e
T is a critical value for ∆̂t since it takes this value in the last

round. In this way, let define a threshold parameter as λ ≥
√

16σ2e
T , which gives us two subsets of

actions pairs such that SA1
= {(i, j) ∈ SA : ∆ij > λ} and SA2

= {(i, j) ∈ SA : 0 < ∆ij ≤ λ}.
Since ∆∗

ij ≤ ∆ij ensures the bounds are preserved, it makes sense to use these action pair sets in the
analysis. Thus, we can write the Nash regret as

R∗
T =

∑
(i,j)∈SA1

∆∗
ijE[nij,T ] +

∑
(i,j)∈SA2

∆∗
ijE[nij,T ]

where ∆∗
ij = A(i∗, j∗)−A(i, j). and nij,T is the total number of times to play action pair (i, j) by

time T .

To analyze the Nash regret of the ETC-TPZSG-AE algorithm, it is essential to consider various
scenarios that may lead to suboptimal outcomes. Each of these scenarios contributes to the total Nash
regret, as they either involve the incorrect elimination of the optimal action pair or the unnecessary
selection of suboptimal pairs. The former results in discarding the optimal strategy because of
insufficient evidence, while the latter leads to spend more time with action pairs that are unlikely to
be part of any near optimal equilibrium.

The algorithm employs a scheduling mechanism for ∆ij , where ∆̂t is halved in each round. This
approach is necessary because the true values of ∆ij are unknown to the players. We use ∆̂t

to determine both the exploration time and the tolerance level in the ε-NE property. Specifically,
when ∆̂t is large, the algorithm plays each action pair fewer times and keeps more pairs during
the elimination step, since the threshold for elimination is relatively loose. As ∆̂t decreases, the
algorithm allocates more exploration to action pairs that are closer to being part of a NE, because
those that are clearly suboptimal have already been eliminated. This adaptive process enables more
precise identification of near-optimal strategies by ε-NE condition while minimizing regret.

For each suboptimal action pair (i, j), let tij = min{t : ∆̂t < ∆ij/2} refer to the earliest round
such that ∆̂t < ∆ij/2. Using the fact that ∆̂t+1 = ∆̂t

2 and the definition of tij , we can write the
following:

1

∆̂tij

≤ 4

∆ij
<

1

∆̂tij+1

(45)

For simplicity of notation, we write Â instead of Ât for the estimated payoff matrix in round t
throughout this section. Since we already include additional terms such as εt that refers to the
tolerance level in round t, it is clear enough which round is being referenced.

We now analyze the regret contributions by considering the following cases:
Case C.1. A suboptimal action pair (i, j) is not eliminated in round tij or earlier while the optimal
action pair is in the set Stij .

Since neither some suboptimal nor the optimal action pair is not eliminated, the algorithm fails to
discard suboptimal choices. It might converge to an incorrect solution without eliminating suboptimal
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actions, but since it still maintains the optimal action pair within the action pair selection set. The
regret contribution of this case comes from the fact that the algorithm spends time with a worse
choice when a better one is already available.

Let explain briefly in which situations the algorithm eliminates or keep an action pair. For action
pair (i, j), if ε-NE property does not hold in round t = tij which implies that at least one of the
inequalities fails, then it will be eliminated in round tij .

Furthermore, we have εtij =

√
4σ2

ktij
ln
( ∆̂2

tij
T

16σ2

)
≤ ∆̂tij

2 = ∆̂tij+1 <
∆ij

4 . In other words, if there

exist i′ ∈ Sx or j′ ∈ Sy , such that one of the following is true:

I1 : Â(i′, j)− Â(i, j) > εtij , I2 : Â(i, j)− Â(i, j′) > εtij ,

then (i, j) is eliminated. The inequality I1 indicates that there exists an alternative action i′ for the
row player that offers a higher payoff than action i against the column action j. Similarly, I2 implies
that there exists a better action j′ for the column player than action j when playing against the row
action i. If either I1 or I2 holds, the action pair (i, j) cannot be a part of the NE, as at least one player
has an incentive to deviate. Hence, (i, j) is not a NE with high probability.

On the other hand, to keep an action pair (i, j) the following events must both hold:

E1 : Â(i′, j)− εt ≤ Â(i, j),∀i′ ∈ Sx, E2 : Â(i, j) ≤ Â(i, j′) + εt,∀j′ ∈ Sy (46)
To calculate the probability of keeping an action pair (i, j), denoted by P(E1 ∩ E2), we begin by
analyzing the event E1. Specifically, for an action pair (i, j) which is not a NE, i.e. there exists at
least one i′ such that A(i′, j) > A(i, j), the probability of E1 can be expressed as follows:

P(E1) = P(Â(i′, j)− Â(i, j) ≤ εt,∀i′ ∈ Sx) (47)

≤ P(Â(i′, j)− Â(i, j) ≤ εt) (48)

≤ exp

(
−

4σ2

kt
ln
(

∆̂2
tT

16σ2

)
4σ2

kt

)
(49)

=
16σ2

∆̂2
tT

(50)

where εt =

√
4σ2

kt
ln
(

∆̂2
tT

16σ2

)
. To derive inequality (48), we use the fact that the probability of the

intersection of multiple events is always less than or equal to the probability of any of individual
events. Specifically, since we have m actions in Sx, for any collection of events e1, e2, · · · , em, it
holds that P(e1 ∩ e2 ∩ · · · ∩ em) ≤ P(ei) for all i = 1, 2, · · · ,m. In the last inequality (49), we apply
Theorem A.1 with

√
2σ2/kt-subgaussian random variable. The subgaussian parameter is derived by

using Lemma A.1 and we note that each action pair is played kt times.

Similarly, in order to calculate the probability of the event E2, we can write

P(E2) = P(Â(i, j)− Â(i, j′) ≤ εt,∀j′ ∈ Sy) ≤
16σ2

∆̂2
tT

. (51)

Therefore, we have the probability of keeping an action pair (i, j) in any round t as

P(E1 ∩ E2) ≤ min{P(E1),P(E2)} =
16σ2

∆̂2
tT

. (52)

It means that the probability that a suboptimal action pair (i, j) is not eliminated in round tij or
before is bounded by 16σ2

∆̂2
tij

T
. Then, the regret contribution is simply bounded by a worst case which

is T∆∗
ij for any suboptimal action pair (i, j) ∈ SA1

.

Hence, using the probability of keeping a suboptimal action pair and summing up over all action
pairs, we can write their regret contribution as∑

(i,j)∈SA1

∆∗
ijT

16σ2

∆̂2
tijT

≤
∑

(i,j)∈SA1

∆∗
ij

256σ2

∆2
ij

(53)
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where we apply inequality (45) to bound it.

Here, we note that we do not need to consider the action pairs in SA2
because, by the design of the

algorithm, the gap ∆̂t is guaranteed to be at least around λ in the corresponding rounds. If the optimal
action pair remains in the game, then all suboptimal action pairs should have already been eliminated
by the last round or earlier. This means that suboptimal choices are progressively discarded over time
as the algorithm learns. As a result, after all the rounds have been played, only one action pair should
remain since we consider the case the optimal action pair (i∗, j∗) remain in the game in addition to
elimination of suboptimal ones. This final pair is expected to correspond to the pure NE, representing
the best choice for both players with no incentive to change their actions.

Case C.2. A suboptimal action pair (i, j) is eliminated in round tij or earlier with the optimal action
pair in Stij .

It enables us to bound the number of times it is played. Once a suboptimal action pair is eliminated
and the optimal action pair (i∗, j∗) remains in the game, it no longer contributes to the regret in next
rounds. This is because regret arises only when a suboptimal action is chosen instead of the optimal
one.

On the other hand, we note that there is no need to consider the action pairs (i, j) ∈ SA2
because we

handle the elimination of suboptimal pairs before the final round. Thus, using (45), each action pair

(i, j) is played at most ktij times such that ktij =
⌈
16σ2

∆̂2
tij

ln (
∆̂2

tij
T

16σ2 )
⌉
≤
⌈
256σ2

∆2
ij

ln
(

∆2
ijT

256σ2

)⌉
.

Then, the regret contribution is expressed by∑
(i,j)∈SA1

∆∗
ij

⌈256σ2

∆2
ij

ln
( ∆2

ijT

256σ2

)⌉
≤

∑
(i,j)∈SA1

∆∗
ij

(
1 +

256σ2

∆2
ij

ln
( ∆2

ijT

256σ2

))
(54)

=
∑

(i,j)∈SA1

∆∗
ij +∆∗

ij

256σ2

∆2
ij

ln
( ∆2

ijT

256σ2

)
(55)

(56)

Case C.3. The optimal action pair (i∗, j∗) is eliminated by some suboptimal one (i, j) in round t∗
such that tij ≥ t∗.

It leads to a misidentification of the NE, implying that an action pair (i, j) should be better than the
optimal one based on the current estimates. By ε-NE property, clearly we have

Â(i∗, j)− εt∗ ≤ Â(i, j) ≤ Â(i, j∗) + εt∗ .

However, it is not enough to keep a suboptimal action pair (i, j). On the other hand, we note that if
the optimal action pair (i∗, j∗) is eliminated in round t∗, it must fail to satisfy ε-NE property as the
following:

Â(i, j∗)− Â(i∗, j∗) > εt∗ or/and Â(i∗, j∗)− Â(i∗, j) > εt∗ .

That is, under the estimated payoff matrix Â, there exists an action i that is estimated to yield a higher
payoff than i∗ for the row player, and an action j that is estimated to be more favorable than j∗ for
the column player.

The optimal action pair can only be eliminated by a suboptimal action pair (i, j) in round t∗ such
that tij ≥ t∗ since action pair (i, j) must remain under consideration at the elimination round of the
optimal action pair. This condition also implies that ∆̂tij ≤ ∆̂t∗ because of the decreasing behavior
of ∆̂t across rounds in the algorithm. Moreover, it is important to note that the algorithm keeps this
action pair (i, j) for at least one additional round following the elimination of the optimal pair as it
is identified as a NE. We further observe that all action pairs (i, j) with tij < t∗ have already been
eliminated in round tij or earlier, which we already consider this condition in the previous case.

On the other hand, for the action pairs in SA2
, we assume that ∆̂t < λ

2 , which implies that a
suboptimal action pair remains in the game until the final round. This scenario emphasizes the regret
contribution when the estimated suboptimality gap ∆̂t becomes sufficiently small, a case represented
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by the action pairs in SA2 . Consequently, these suboptimal action pairs contribute to the overall regret
and the analysis accounts for their effect to establish accurate performance guarantees.

If the algorithm keeps a suboptimal action pair (i, j) up to round t∗, the events specified in (46) must
hold with parameter εt∗ . Consequently, by applying (52), the probability of keeping a suboptimal
action pair can be bounded by 4Nσ2

∆̂2
t∗T

. Thus, we can write the regret contribution of this case as

∑
(i,j)∈SA

∆∗
ijT

16σ2

∆̂2
t∗T

<
∑

(i,j)∈SA

∆∗
ijT

16σ2

∆̂2
tij+1T

(57)

=
∑

(i,j)∈SA

∆∗
ijT

64σ2

∆̂2
tijT

(58)

≤
∑

(i,j)∈SA1

∆∗
ij

512σ2

∆2
ij

+
∑

(i,j)∈SA2

∆∗
ij

512σ2

λ2
(59)

where ∆̂t+1 = ∆̂t

2 and we apply (45). We use ∆̂t+1 because the optimal action pair might be
eliminated at some round t∗ such that t∗ ∈ [0,maxij tij ]. This implies that the optimal action pair
can be eliminated by any (i, j) no later than the last round that (i, j) remains in the game. However,
we must keep (i, j) at least until the next round, since it is not removed in round t∗ and is selected as
a misidentified NE.

Case C.4. A suboptimal action pair (i, j) in the set SA2 remains in the game as a unique action pair
in Stij .

This implies that a suboptimal action pair is played during the committing phase of Algorithm 2 up
to step T . Thus, we need to account for an additional regret contribution term given by∑

(i,j)∈SA2

∆∗
ijT. (60)

This regret contribution accounts for scenarios where the algorithm may eliminate all action pairs
except one. If the remaining action pair is suboptimal, the algorithm will continue to play with
this action pair for the remaining rounds. Since the action pair selection persists up to time step T ,
resulting in the additional term in the regret bound.

We note that ∆∗
ij ≤ ∆ij , which ensures that the regret does not grow excessively, and this relationship

allows us to analyze the regret in terms of the defined action sets. As a result, if we sum these regret
contributions as mentioned, we can conclude the proof.

□

C.1 Proof of Theorem 5.2

We consider the regret approach consisting of the losses of both players by comparing their best
choices to the action played. This regret measures how much worse a player performs compared to
their optimal strategy if they had known the opponent’s behavior in advance. Clearly we can write
the followings:

RT =
∑

(i,j)∈SA

∆max
ij E[nij,T ] +

∑
(i,j)∈SA

∆min
ij E[nij,T ]

=
∑

(i,j)∈SA

∆ijE[nij,T ]

=
∑

(i,j)∈SA1

∆ijE[nij,T ] +
∑

(i,j)∈SA2

∆ijE[nij,T ]

This implies that the term involving ∆max
ij characterizes the regret incurred by the maximizing player,

whereas the loss of the minimizing player is determined using ∆min
ij . In particular, we utilize the same

underlying algorithm, which maintains the same uniform playing strategy and elimination strategy
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throughout the process. This consistency allows us to to leverage many elements of the previous
regret analysis. Consequently, we can apply the same case scenarios from the proof of Theorem 5.1
as the elimination of action pairs follows the same strategy and the selection process of action pairs
remains the same across rounds.

Although our current analysis involves a different notion of regret, consisting of ∆ij , this does not
affect the underlying structure of the regret analysis. This ensures that the previous theoretical bounds
can be extended by using ∆ij instead of ∆∗

ij and we apply ∆∗
ij ≤ ∆ij and ∆ij ≤ λ for the action

pairs in SA2 , then the result follows.

□

D Experimental Details

In this section, we present additional experiments to compare the performances of the algorithms
based on their theoretical bounds and cumulative regret. To calculate the cumulative regret, we use
the absolute difference between the value of the game and the payoff of the action played as the regret
might otherwise be negative.

In Figure 1b, we compare the performance of the ETC-TPZSG, ETC-TPZSG-AE and Tsallis-
INF [18] algorithms. In each run, the exploration time k for each action pair in ETC-TPZSG is
randomly selected from a predefined list ranging from 100 to 2500 in increments of 100. The total
number of rounds is set to T = 104. On the other hand, each run uses a new game matrix with
a unique pure NE which is generated using Gaussian payoffs with mean zero, standard deviation
σ selected from the list [0.25, 0.5, 0.75, 1]. Varying σ not only changes the payoff distribution but
also affects the exploration time and the tolerance parameter ε used in the elimination phase of
ETC-TPZSG-AE. The cumulative regret is averaged over 103 simulation runs. As observed, the
ETC-TPZSG-AE algorithm consistently outperforms ETC-TPZSG, demonstrating the effectiveness
of its elimination strategy in reducing cumulative regret, while Tsallis-INF perform better when
compared to ETC-based algorithms. Notably, the ETC-based algorithms offer the advantage of
conceptual and implementational simplicity.

Figure 2: Theoretical expected regret bound comparison between ETC-TPZSG, ETC-TPZSG-AE
and Tsallis-INF from [18] using different ∆ values

On the other hand, Figure 2 compares the theoretical expected regret bounds (in O(·) notation) of
the algorithms across different values of the suboptimality gap ∆. The results show that Tsallis-INF
tends to perform better when ∆ is large while the ETC-TPZSG-AE algorithm achieves lower regret
for smaller values of ∆.
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