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ABSTRACT

To classify images, neural networks extract features from raw inputs and then sum
them up with fixed weights via the fully connected layer. However, the weights are
fixed despite the input types. Such fixed prior limits networks’ flexibility in adjust-
ing feature reliance, which in turn enables attackers to flip networks’ predictions
by corrupting the most brittle features whose value would change drastically by
minor perturbations. Inspired by the analysis, we replace the original fixed fully
connected layer by dynamically calculating the posterior weight for each feature
according to the input and connections between them. Also, a counterfactual base-
line is integrated to precisely characterize the credit of each feature’s contribution
to the robustness and generality of the model. We empirically demonstrate that the
proposed algorithm improves both standard and robust error against several strong
attacks across various major benchmarks. Finally, we theoretically prove the min-
imal structure requirement for our framework to improve adversarial robustness
in a fairly simple and natural setting.

1 INTRODUCTION

The vulnerability of deep neural networks to adversarial examples has recently drawn significant
attention. Previous works has explored the phenomenon from a wide range of aspects, such as em-
pirically or theoretically effective defense methods against adversarial examples|Zhang et al.|(2019),
potential causes of adversarial examples Bubeck et al.|(2019); [Illyas et al.[(2019), trade-off between
robustness and generality for robust models Raghunathan et al.|(2020); Carmon et al.|(2019);Zhang
et al| (2019). Despite the significant advances made in many aspects of robust machine learning,
the representations achieved by robust models are not interpretable. We cannot predict the outcome
of manipulations on them. Without a clear understanding and control of the representations’ inner
structure, it wouldn’t be possible to reliably avoid unpredictable model behaviors. For example,
in a scenario that sometimes requires high robustness but also sometimes requires high generality,
even the best existing robust models would fail. Current robust models can ensure overall generality
and robustness, but we wouldn’t know how the models balance the two for each sample, let alone
control and optimize model behavior according to the input and our desires. Since these neural rep-
resentations can be decomposed into a set of features, a natural starting point of controlling model
behavior is investigating these atomic features. How are features, or certain dimensions of neural
representations, influence model properties like robustness or generality? How can we control them
since a single feature is more interpretable and controllable compared to the whole representation?

As a starting point, we examine the representations of TRADES [Zhang et al.|(2019), which achieves
the best standard accuracy on robust accuracy on CIFAR10, by analyzing representations of samples
misclassified by it. The loss function of TRADES contains two parts where one part maximizes
standard accuracy and the other maximizes adversarial accuracy. Ideally, representations achieved
from this formulation are expected to have both useful and robust features that take care of standard
and adversarial accuracy. However, there’s a trade-off between the two targets. Namely, features
cannot have 100% robustness and 100% standard accuracy. Instead, the solution would sacrifice
some performance of one target for the other. The situation can be briefly viewed as the sum of
standard accuracy and robust accuracy are fixed, which makes the improvement of one part decreases
the other. So there have to be features that are consistent after perturbation, as well as features that
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Figure 1: Left: Possible representation structures under a loss optimizes both standard and adversar-
ial accuracy. The representations achieved from previous works usually look like the purple vector,
whose features are entangled together, neither very robust nor very useful.

Right: Each entry is the number of top features shared between the representations achieved after
the dog class received target attacks at the plane class, and those of representations achieved from
standard input of the column class.

are not robust but useful for generalization. As shown in Figure 1(Left), there are two cases for the
learned feature. (1)Useful features and consistent features are tangled together, both of moderate
performance, (2) features are of high robust scores but low useful score, (3) features are of low
robust scores but high useful score.

As a case study, we compare the feature scores of dogs before and after a targeted attack at the plane
class. Note that we only look into the misclassified samples. The whole representation is a 640
dimension vector. For a normal dog image, the dimension receives the highest score are 547, 361,
543, 388, 446. For the plane class, 566, 74, 331, 94, 137 are the top 5. However, after the targeted
attack, 74, 566, 94, 137, 446 dimensions of the dog encoding get the highest score. The top features
have much more overlapping with the plane compared to that with the dog. As shown in Figure 1
(Right), this phenomenon still happens in the top 60 features. This phenomenon indicates that the
features are not consistent enough since few of the original cat features get a score high enough,
giving no cues for the original ground-truth class. The observation can be empirically be attributed
to the fact that the loss functions of TRADES don’t put any constraint on the structure of robust
features. The form of solution probably looks similar to the left of Figure 1, where robust and useful
figures are entangled together. But they’re neither very robust nor useful. For example, the solution
avoids fur texture, which is highly useful but not very robust, and shapes which are robust but not
useful.

In contrast, humans don’t compromise feature usage to achieve both robustness and generality. Hu-
mans use both very robust features and very useful features instead of something between, but they
adaptively adjust the reliance on the two kinds of feature to ensure performance |Agrawal; Walsh &
Gluck! (2015). As an example, we illustrate this process in Figure 2. Before humans see a husky, fur
texture is enough for us to distinguish a husky from many other objects like a keyboard. Humans can
rely on it, along with some other features like the shape of eyes, in most cases with great accuracy.
However, given a wolf, where similar texture is also present, the texture feature would lead us to
the wrong prediction. We would learn to lower the weights of fur texture but rely on features like
shapes. But we only do this when we find a cue conflict, where features pointing to a different class.
We still rely on fur for husky when we find it’s safe to do so.

However, there are two major challenges in establishing such human-like adaptability. First, the
preliminary of adaptability for machines is a well-disentangled representation where each feature
has a clear influence on either robustness or usefulness. It’s neither effective nor interpretable to
work on entangled representations, which we will cover in more detail in Section 2.2. However,
controlling representation structures is by nature hard for neural models that are optimized end-to-
end. Second, the model has to understand the difference between examples, in terms of its risk
against robustness and adjusts the prediction strategy accordingly. Namely, the algorithm needs
to change its feature portfolio according to its judgment on the input type. which is nontrivial to
automate.

We resolve the aforementioned challenges by a natural combination of two ideas: a counterfactual
baseline that disentangles the representation, and a triple-head layer that dynamically calculates the
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Figure 2: Figure 2 (Top): Standard-trained models adopt both robust and non-robust features that can
distinguish Husky from other classes. Robust trained classifier would abandon non-robust features
like texture. Figure 2 (Middle) The face of the dog is missing. Though humans naturally seek extra
evidence as long as they do not contradict with the robust features present, e.g., the shape of ears.
Adversarially trained models abandon brittle features. The remaining features are not sufficient
to make solid predictions. Figure 2 (Bottom) Humans rely on features of various robustness and
usefulness with great adaptability according to the input type. If some cues indicate contradicting
classes, we would be more careful and rethink our prediction strategy.

posterior weights for each type of feature. The counterfactual baseline starts with the raw repre-
sentations achieved from a robust classifier. It then masks part of the features as counterfactual and
checks if the changes in loss match the counterfactual hypothesis. By doing so, it iteratively builds
disentangled representations. The triple-head layer consists of three parallel output layers trained
with different objectives that respectively take care of benign examples, adversarial examples, and
those of uncertain types. The reweighting function is activated depending on the consistency among
the predictions of the three heads. Through the cooperation of the three heads, our model can inter-
pretably and controllably ensure both standard and adversarial accuracy.

In summary, the contribution of this paper is fourfold: (1)An interpretable robust representation
method achieved by counterfactual manipulation; (2) A dynamic weighting mechanism, through
which our proposed model achieves the state-of-the-art performance across several major bench-
marks; (3) A theoretic analysis on how the number of cooperative features would affect the robust-
ness of neural networks; (4) A framework that can improve downstream image generation tasks.

1.1 RELATED WORK
1.1.1 TRADE-OFF BETWEEN ROBUSTNESS AND GENERALITY

Several works have attempted to study the existence of the tradeoff between generality and robust-
ness, as well as how to mitigate such tradeoft Raghunathan et al.| (2020);|Carmon et al.|(2019); Zhang|
let al| (2019). [Zhang et al|(2019) proposed a regularized loss which optimizes the trade-off between
robustness and accuracy. [Carmon et al (2019) proposed a semi-supervised method called robust
self-training(RST) to improve adversarial robustness, which enforces consistency on additional data
labeled by standard-trained models during adversarial training. Raghunathan et al.|(2020) attributed
the tradeoff to network overparameterization and proposed a RST approach to eliminate the tradeoff
in linear regression setting.




Under review as a conference paper at ICLR 2021

1.1.2 FEATURE ROBUSTNESS

Another line of work study the robustness of feature and its connection to model behavior. |Geirhos
et al.| (2019) found shape features are more robust compared to texture features while networks
tend to be biased toward textures instead shapes, which humans rely their judgement on. [Zhang
& Zhul (2019) similarly studied the bias of CNN and its influence on model behavior, where bias
towards global structures like shapes or edges make model robust to perturbation. |Ilyas et al.|(2019)
suggested that the robustness and generality of a model are decided by the robustness of features it
adopted, where robust and non-robust features inherently exist in data.

1.1.3 OVERFITTING IN DEEP LEARNING

Li et al| (2020) empirically studied the generalization drop of adversarially trained networks and
found early-stopping useful to alleviate such overfitting issue in adversarial training. [Schmidt et al.
(2018)) theoretically showed the sample complexity of robust models is much larger than that of
standard model and therefore require more data to train. (Chen et al. (2020); Min et al.| (2020)
showed that the generality of adversarially trained models can actually be hurt by more training
data, which challenged previous idea that more data can diminish the tradeoff between robustness
and generality.

2 APPROACH
Setup. We now describe the overall architecture and training paradigm for the proposed model.

2.1 ROBUST TRAINING: A REVISIT

We begin this section with an introduction to the robust training schema. Adversarially robust classi-
fiers are training using the robust optimization objective, where instead of minimizing the expected
loss L over the data:

E(zyyen[L(z,y)], (1)

we minimize the worst case loss over a specific perturbation set A:

E(s,y)en[mazseal(z + o,y)]. ?)

Typically, the set A captures imperceptible changes, such as small /;,, ; perturbations, the problem in
equation (2) can be solved using adversarial training. TRADES points out that the objective function
in equation (2) serves as an upper bound of the robust error R,.ob(f). In complex problem domains,
however, this objective function might not be tight as an upper bound of the robust error, and might
not capture the trade-off between natural and robust errors. Trades captures the trade-off between
natural and robust errors and suggest minimizing:

ming E{¢(f(X)Y) +mazx:ep(x,00(f(X)f(X)/A}. €)
for accuracy regularization for robustness

The first term encourages the natural error to be optimized by minimizing the difference between
f(X) and Y, while the second term encourages the robust error prediction to be optimized by keep-
ing prediction for x4, consistent with x. Our methods mainly optimize the features learned by
TRADES, making them more interpretable and robust.

2.2 THE COUNTER-FACTUAL BASELINE

Assuming we have already got two parts of features disentangled by robustness and accuracy. Then
the counter fact is: we only have the relative non-robust features, model robustness should be lower
than the fact. Formally we have the below formulation:

Rob[ ()] < Rob[frop(a) )

The above analysis sheds light on the algorithmic design of feature disentanglement. Given a train-
ing image x and its adversarial version z,4,, we first derive the whole representation f(xqq,) of
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Figure 3: Top: Factual representation Bottom: Mask the first K dimension of factual representation
with a binary mask to get the counter-factual representation.

Zqdy through forwarding propagation. To characterize the counter fact, we mask the first K features
of f(2.4v) using a binary mask, and the masked representation is treated as the relatively more
robust part of the feature(with relatively low accuracy). The counter-factual features should have
lower robust loss than the factual features, which can be formalized below:

l = KL[ (xadv>7f<m)]
O KL frob(Tadw ) f ()]

S

2.3 REWEIGHTING
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Figure 4: The triple-head model: all examples first go through trade-off head to compute robust
prediction, non-robust prediction and trade-off prediction. If robust prediction meets trade-off pre-
diction, then we use adversarial head to get final prediction. If non-robust prediction meets trade-off
prediction, then we use adversarial head to get final prediction. Otherwise, we use the prediction of
the trade-off head.

Since the objective function of our model is to find the equilibrium between robustness and accuracy,
the weights for combining the disentangled features in the fully connective layer should not biased
towards either part. The trade-off is a waste of high accuracy of the non-robust part with high
accuracy when it comes to benign example, and high robustness of the robust part when it comes to
adversarial example. A natural idea to solve this is to dynamically calculate the posterior weight for
each type of feature according to the example type: the model puts more weight on the robust part if
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the input is probably adversarial, and more weight on the non-robust part if the input is benign. The
above process can be implemented by replacing the original fully connective layer with a triple-head
layer. Head one, denoted as headyrqdeor » represents the head biased towards neither feature, which
is the head learned using benign data and adversarial data. The loss of the head can be formalized
as follows:

fl (SC) = headtradeoff (f(x))a (6)

0$Stradeoff = mingE[f1(x),Y] + maxKL(f1(x), f1(2")), 2" € B(z,e€). (7

Head two, denoted as headpenign, represents the head biased towards non-robust features in order
to gain high accuracy on the benign images. The head is trained using only benign data. The loss of
the head can be formalized as follows:

fQ(x) = headbenign(f(x))v (8)
losSpenign = mansE(fa(x),Y). &)

Head three, denoted as head, 4., represents the head biased towards robust features in order to gain
high robustness on the perturbed images. The head is trained using only adversarial data. The loss
of the head can be formalized as follows:

fa(x) = headya, (f(2)), (10)

108Sqdy = MANFMAT4e B(z,0) K L(f3(2), f3(z')). (11)

We employ a multi-task learning approach for the joint learning of embeddings for the three heads.
At the inference stage, the heady,qdeos f 1s used as a pointer to decide whether to use the robust head
or the non-robust head. For a given input x, we first get its feature representation f(z). Then we
calculate the feature score of the robust part, rob( f(x)), and non-robust part, nr(f(z)) and draw the
prediction from

Ypred = argmaz(rob(f(x)) +nr(f(z))) (12)
Ypred,o, = argmaz(rob(f(x)) (13)
Ypred,, = argma:c(nr(f(x)) (14)

If the three predictions point to the same class, it means we encounter a benign example, and we
use the headyenign for prediction. If the ypreq and Ypreq,,, point to the same class, it means we
encounter an adversarial example, and we use the head,q, for prediction. We use the headiradeot f
to process the other cases since we cannot judge the sample type.

2.4 IMPLEMENTATION

We use d = 128 as the dimension of robust features. We train the model by minimizing the losses
in a multi-task learning way.

loss = losstradeoff + lossbenign + lassadv + losscounter (15)

3 EXPERIMENTS

CIFAR-10 Setup We use wide residual network WRN-34-10, the same as TRADES. We set per-
turbation e = 0.031, perturbation step size n = 0.007, number of iterations K = 10, and run 200
epochs on the training set.

MNIST Setup We use the CNN architecture with four convolutional layers, followed by three fully-
connected layers. We set perturbation ¢ = 0.3, perturbation step size 771 = 0.01, number of iterations
K = 40, learning rate 172 = 0.01 , and run 100 epochs on the training set.
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3.1 INTERPRETABILITY

We first show our model’s accuracy and robustness using each part alone to confirm the claimed
disentangle structure on CIFAR-10. We also demonstrate the feature activation of the ground truth
class of each part when the attack succeeds.

Shown in Tablel, the robust part surpass the non-robust part and the baseline in robustness, while
it’s inferior to the other parts in accuracy by a remarkable margin. Also, when evaluated on the
false-classified set after adversarial attacks, the robust part shows higher similarity to the embedding
of the ground truth than the target class, compared with the completely dissimilar situation of the
baseline model and the non-robust part.

This validates the nice disentanglement and Interpretability of our learned feature representation.
We also include the results under SVHN. The gap between our model and the baseline methods gets
further enlarged across all metrics as shown in Table 1.

Robustness Accuracy
Robust part 61.5 80.7
Non-robust | g 14 $8.64
part
Baseline 55.4 84.9

Table 1: Accuracy and robustness of each part of our model alone compared to TRADES on Cifar-10

3.2 PERFORMANCE AGAINST ADVERSARIAL ATTACKS

We test our model with a reweighting module under the white-box attack, which is the most difficult
threat model and no effective defense exists yet. The model of Hendrycks et al.|(2019) is based on
ImageNet adversarial pretraining and is less directly comparable to ours due to the differences in
external data and training methods. Finally, we perform standard self-training using the unlabeled
data, which offers a moderate 0.4% improvement in standard accuracy over the intermediate model
but is not adversarially robust.

PGD C&W No Attack
Ours 63.1 65.4 914
TRADES 554 65.0 84.9
Adv Pre-training | 57.7 - 87.1
Madry 45.8 47.8 87.3

Table 2: Accuracy and robustness of each part of our model alone compared to TRADES on Cifar-10

3.3 EXPLAINABLE IMAGE GENERATIVE MODEL

Figure 5: \.J H‘u‘ ﬁ ﬁ

7
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Many of the modern image generative models, such as WGAN, BIGGAN etc. , can produce high-
quality novel images from datasets at one hand, while on the other hand, can be tricky to train and
often require intense computation.

As a side application, we show how the learned disentangled classifier can directly synthesizing
realistic natural images, in an explainable and data-efficient way, without any special training or
auxiliary networks. Fig 7 shows the general idea. Our model undergoes two-stage optimization
during the generation process: 1) an early stage of robust feature generation. 2) a later stage of
non-robust feature generation.

Formally, for a trained classifier to generate a sample of class y, we sample a seed from G, and
minimize the loss L of label y by adding small adjustment to x through gradient descent. The
progress is like the reverse procedure of adversarial attack.

T = argminjy g, |, <£(@,y), v ~ Gy, (16)
At stage one, we only use the robust part of the classifier. The purpose of this is to generate robust
features of the target class first, such as shapes of ears or faces of a dog in Figure 5. We can observe
from the second row of Figure 5, a well-recognizable sketchy dog with fine-grained contour has
already been generated at the end of stage one. At state two, we only use the non-robust part of the
classifier aiming to complement the missing non-robust details. We can find out that delicate fur
texture and pupils are added at this stage. The progress draws an analogy between human visual
imagination and generative model: when it comes to the word ‘dog’, a silhouette of a dog first
emerges to most people’s mind, and then with other cues such as ‘white dog’, ‘husky’, more details
are added to the silhouette, making the image more precise. Figure 5 Right demonstrates samples
produced using our methods.

4 A THEORETIC ANALYSIS OF FRAMEWORK DESIGN

How Many Heads Do We Need? During our experiments, we empirically assume three three heads
can cover all the cases. In this section, we discuss the theoretic lower bound of the number of heads.
Setup. Suppose S is a test set consists of N samples. The attacker would draw a sample from S to
attack. P = {p; } is the set of robust accuracy of each head. n is the number of heads. Our goal is
to find the smallest n so that for any sample attacked in S, there are more heads correctly predict the
sample than those do wrongly. Given an input A, let z; represents whether the i,h head make the
right prediction.

S 1, wp. p prediction is correct a7
“ 10, wp. I-p prediction is false
1 (17%)2*7@
Pr(z < %E[x]) <e T 2 ) (18)
‘ (1= 55)% % np
Pr(more heads predict wrong) < |5 * —+. (19)
If we would like constrain the attacker’s success rate lower e,
1— )2 xnp
S| « —% <e (20)
2109@
n>——-7 (21)
p(l—3;)?

1|
So the lower bound of n is %{“z.
p(1—355)
5 CONCLUSION

We present a multi-task learning approach that can dynamically adjust feature dependence according
to input types to interpretably ensure robustness and generality. A counter-factual approach is pro-
posed for constructing well disentangled feature representations to make such dynamic reweighting
available and interpretable. A triple-head structure is proposed to dynamically decide the feature
weights by comparing the predictions of all the heads. The proposed framework shows superior-
ity over state-of-the-art models across several benchmarks and proven to be useful for downstream
generation tasks.
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