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Abstract—Classic tools for measuring energy intake, such as
food diaries and 24 hour recalls, are burdensome to use and
have significant measurement error. This hinders research and
interventions in obesity treatment and comorbidities such as
diabetes and heart disease. New tools are being developed to
automate the measurement of energy intake, such as wearable
devices like smartwatches. Towards this goal, several datasets
have been collected and made publicly available that include hand
motion. However, these datasets have been limited to the wrist
part of hand motion, and have only been collected in controlled
environments such as labs or cafeterias. In this work we describe
a new toolset that supports data collection from a smartwatch
and smart ring simultaneously, to be used in home, cafeteria, and
free-living environments, with real-time user feedback to assist
with energy intake estimation. This data collection is ongoing
and will eventually encompass 600 subjects. This paper describes
the toolset and preliminary results for 16 subjects, including
a comparison of smart ring versus smartwatch intake gesture
detection. The smart ring achieved an F1 score of 0.74 compared
to an F1 score of 0.8 from the smartwatch. Finally, we describe
the full set of experiments we intend to perform with the complete
dataset.

Index Terms—smart ring, motion sensor, wearable device,
gesture recognition, energy intake measurement

I. INTRODUCTION

Traditional tools to measure energy intake rely on self-
reporting tools such as logging frequency of food consump-
tion, food diaries, and 24-hour recalls of the foods consumed
during the day [1], [2]. However, self-reported methods have
a number of limitations, including high user and experimenter
burden, interference with natural eating habits, and decreased
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compliance over time [3], [4]. There is a strong consensus in
the research community that better tools are needed for en-
ergy intake measurement [5]. To address these shortcomings,
wearable devices are being developed to automatically detect
and measure consumption [6]. Examples including wrist-worn
devices that can measure intake gestures (bites) [7], eyeglass
and earpiece devices that can measure motions and sounds
associated with mastication (chews) [8], and throat-located
devices that can measure forces and sounds associated with
ingestion (swallows) [9].

This paper describes MealWatcher, a new toolset to collect
data for the development of smartwatch and smart ring devices
for measuring energy intake. We focus on wrist and hand-
located devices because of their preference in the general pop-
ulation; e.g. a survey of 96 subjects found that a smartwatch
was preferred over smart glasses or a necklace for monitoring
intake [6]. However, a smartwatch must be worn on the wrist
of the dominant hand because it is the hand most commonly
used for eating [10]. This goes against the cultural norm of
wearing a watch on the wrist of the non-dominant hand [11].
Rings do not have a strong cultural bias to be worn on the
non-dominant hand [12]. A main purpose of MealWatcher is
to enable simultaneous data collection from a smartwatch and
smart ring to compare accuracy for detecting intake gestures.

Table I lists all publicly available datasets containing hand
motion for the research of intake gesture detection [10], [13]–
[15]. Our new dataset will be the first to contain both wrist
and finger motion as recorded by a smartwatch and smart
ring worn at the same time during each meal. It will also be
the largest of its kind, and will be made freely and publicly
available upon the completion of its collection. We plan to
collect data from 600 total subjects, with half of them eating
a meal in a cafeteria setting and the other half eating a meal
in their own home. We are doing this because many previous
works have shown a decrease in accuracy in the recognition
of intake gestures as experiments progress from laboratory
to free-living environments [16]–[19]. One hypothesis is that
intake gestures in-the-wild exhibit more variability than intake
gestures captured under controlled conditions in laboratory
environments [20]. We therefore plan to train two sets of
classifiers, one on data collected in a cafeteria setting, and one
on data collected in private home settings. This will allow us



TABLE I
COMPARISON OF OUR NEW DATASET USING MEALWATCHER

(COLLECTION IN PROGRESS) VERSUS EXISTING PUBLIC DATASETS OF
HAND MOTION FOR INTAKE GESTURE RECOGNITION.

Dataset Hand Setting(s) Total Total
location(s) subjects meals

ACE [13] Both wrists Lab 7 13
Clemson [10] 1 wrist Cafeteria 276 276
OREBA [14] Both wrists Lab 100 100
FIC [15] 1 wrist Lab 12 21
This Work 1 wrist, 1 finger Home, cafeteria 600 600

to evaluate the effect of setting on intake gesture recognition
and help guide future research into the collection of training
data.

The novelty of this work can be summarized as follows:
• We describe a new dataset being collected that includes

finger motion from a smart ring and wrist motion from a
smartwatch, simultaneously recorded during meals.

• We describe methods to collect data in home and cafeteria
settings to support the development and comparison of
classifiers trained on data collected in different environ-
ments.

• We present MealWatcher, a toolset built to support this
data collection.

Finally, we report a preliminary experiment on data collected
from the first 16 subjects showing a comparison of intake
gesture recognition from finger motion compared to wrist
motion.

II. MEALWATCHER: A NEW TOOLSET

The MealWatcher toolset is designed and developed to
support several functions:

1) Collect motion data from a smart ring and smartwatch
simultaneously during meals.

2) Allow deployment in 3 different environments: cafeteria,
home, and free-living.

3) Collect brief survey data at the end of each meal to
determine if simple questions can provide enough nutri-
tion context about the beverages and foods consumed to
improve energy intake estimates.

To support these goals, we built a toolset consisting of several
components. Figure 1 shows an overview of our toolset. We
will first discuss the workflow of the participants and then
explain how the tools are used in that workflow.

A. Participant Workflow

The participant wears a smartwatch and smart ring which
are controlled through their smartphone from our MealWatcher
app while eating meals (see Figure 2). They can use their
phone for other activities while our app runs in the back-
ground. The phone uploads all data to Dropbox after each meal
for remote storage and retrieval by the research group. During
a single meal eaten in either a home (50% of participants)
or cafeteria (50%), the researchers train participants on how

Fig. 1. Overview of all hardware and software pieces used during data
collection.

Fig. 2. Smart ring, smartwatch, and smartphone used for recording data with
MealWatcher toolset.

to use MealWatcher. The meals are observed by 1-2 cameras
(GoPro) to video record these eating sessions from a com-
fortable distance (2 or more meters). During these observed
meals, participants clap after cameras are started and before
beginning to eat. These claps are later used to help synchronize
the sensor recording files with the video recordings. The video
recordings are then used for labeling the ground truth times
of bite and drink gestures.

Following this training session, each participant is instructed
to record meals for 4 days during everyday life (free-living
environment). There is no video recording of these meals.
Instead, this data will be used to evaluate energy intake
estimates from the devices. For ground truth of energy intake,
participants complete the ASA24 24-hour recall at the end of
each day, which generates an interview-driven list of meals
and food and beverages consumed in each meal [21]. The
participant can take before and after meal photos in Meal-
Watcher and then review these photos later to help complete
the ASA24. Finally, the participant is instructed to complete
a survey after every meal. The questions in the survey are
designed to obtain nutritional context that may help convert
intake gesture counts into estimates of energy intake (e.g. did
the meal include a caloric or non-caloric beverage).

B. Tools Overview

To support a diverse study population, we developed Meal-
Watcher to run in both the Android and Apple ecosystems.
The smartphone acts as a hub that communicates with both
the smartwatch and smart ring. Both the Android and Apple
smartphones have companion operating systems that run on



TABLE II
PROGRAMMING LANGUAGES AND IDES USED FOR DEVELOPMENT OF

SOFTWARE COMPONENTS.

Device O/S Prog. Lang. IDE
Phone Android Java Android Studio
Phone iOS Swift XCode
Watch Wear OS Java Android Studio
Watch watchOS Swift XCode
Ring - Java, Swift Android Studio,

XCode
Cloud storage - Java, Swift,

C
Android Studio,
XCode,

(Dropbox) MSVC
Desktop/Laptop Windows C MSVC

smartwatches, and their application programming interfaces
(APIs) support integrated smartphone and smartwatch app de-
velopment. We used these to develop companion MealWatcher
watchOS and wearOS apps for recording the watch sensor
data. The smart ring we chose for this project is the Genki
Wave ring. It runs proprietary code on its microcontroller to
operate as a Bluetooth peripheral. The MealWatcher phone
app interacts with the ring by operating as a Bluetooth central
device on the smartphone. Genki provides their Wave API to
interface with their ring hardware. However, it only supports
Python programming and was only intended to connect their
ring hardware to desktop and laptop computers. We therefore
rewrote this library, porting it to both Java (Android) and
Swift (Apple). Additionally, we developed custom dashboard
software to record video and provide synchronized playback
and labeling of all data. The operating systems, programming
languages, and integrated development environments (IDEs)
used to develop all the software components are summarized
in Table II. It took our group 6 months to develop this
software and included 5 members working full-time on the
programming.

C. MealWatcher Phone and Watch Apps

The MealWatcher phone app design went through several
iterations during development and testing. A goal common
to all our designs was to simplify the number of operations
that a participant has to complete to operate everything. In
an ideal situation, a single button press could start and stop
recording on all devices. However, the smart ring requires
manually pressing a button to start a data streaming session,
and the Apple ecosystem does not allow the smartphone to
fully control smartwatch apps (the user must manually wake
the watch before a watch app can be started). During testing of
various designs, we found that users could be confused by the
various actions they needed to complete, especially if devices
struggled to communicate state conditions with each other. In
some cases, users would repeatedly try turning sensors on and
off from one device (the phone) instead of realizing the other
device was in a wrong state (the watch was asleep).

Therefore, we came up with a design we call “4 taps”. The
participant is instructed to perform 4 taps before starting and
after finishing each meal. Figure 3 shows the design, which

Fig. 3. MealWatcher’s 4-taps design, in which the user is asked to complete
4 actions before and after eating a meal. This interface requires the user to
interact with each of the devices (watch, ring, phone, camera).

emphasizes that the user should complete a series of 4 actions
before starting to eat a meal: (1) start watch sensors, (2) power
the ring, (3) start recording on the phone, and (4) take a
picture. As each action is completed, a check mark is placed
next to the instruction on the app. Moreover, there is further
feedback to ensure whether the watch and ring sensors have
started to record data or not with the green/red color of the
sensor status. Upon finishing a meal, the user is again asked
to execute 4 taps: (1) turn off the watch sensor by tapping a
button in the watch app, (2) stop the ring recording (the ring
automatically powers off in approximately 30 seconds), (3)
take an after-meal picture, and (4) complete the meal survey.

The user can take multiple before- and/or after-meal photos
if they choose to do so. This can be useful if a user consumes
multiple servings or wants to document multiple dishes in
different photos. These photos can be used by the participants
during completion of the ASA24. Also, the researcher can use
these photos to help assess if the participant is following the
workflow correctly.

There is also a settings section in MealWatcher, where a
unique participant ID (PID) will be set by the researcher,
which will generate filenames for all data recorded by the
participant and ensure user anonymity. Moreover, this section
allows the phone to be paired with a unique smart ring so that
multiple participants can operate in the same room. Finally,
we include some convenient actions in the settings, such as to
force-upload all current data to Dropbox. This function can be
helpful when cellular data or internet access are not available
during a meal and that data must be uploaded later.

The MealWatcher watch app has a home screen with a
single button that displays the current sensor status and can
be used to turn the recording on and off. This watch app is
needed to control and read the motion data on the watch using
the local sensors. Upon completing a recording, MealWatcher



transfers the saved data file to the phone. The phone and
watch operating systems handle device pairing and provide
an interface for the two devices.

D. Data dashboard

For reviewing and labeling the recorded meals, we have
developed a custom dashboard. It supports several functions,
including video playback with a plot of synchronized sensor
data. Figure 4 shows some examples. The vertical green bar
in each plot of sensor data shows the time currently displayed
in the video. Synchronization of the video and sensor data
is done by searching for a clap in the video and separately
finding the clap motion in the sensor data. Figure 4(a) shows
an example after synchronization has been completed. The
participant is asked to remain motionless for 3 seconds before
and after the clap to make it easier to find the clap motion.
We use frame-by-frame review of the video and sensor data
near the transition from rest to motion (starting the clap), and
from motion to rest (ending the clap), to obtain the highest
possible accuracy in synchronization.

The dashboard software also supports labeling of intake
gestures. Figure 4(b) shows an example. Note that the camera
was positioned about 2 m from the participants to facilitate
a comfortable experience. In figure 4(b), the video has been
digitally zoomed to a smaller window to provide a clearer
perspective on participant actions. The figure shows a moment
when intake is about to occur. The label associated with
this intake is graphed as a purple vertical line over the
sensor data. All intake gestures are manually labeled with
the hand(s) used (left, right, both), utensil used (hand, fork,
spoon, knife, chopsticks), dishware (plate, bowl, glass, cup),
and food/beverage items consumed during the intake gesture.
This list of food items is unique to each meal and is created
based upon information collected during a brief interview of
participants about their meals.

E. Data collection suitcase

Data collection is taking place in numerous locations. In the
cafeteria setting, we are setting up all equipment independently
each time we meet a group of 4 participants to train them.
We chose the cafeteria for a data collection site instead of a
laboratory setting to provide access to hundreds of different
types of food items and beverages. We loan smartwatches and
smart rings to the participants for the 4-day duration of their
free-living data collection, and break down the rest of our
equipment for return to our lab. In the home setting, we plan
to visit 80 unique homes, where the same process of equipment
setup, training, loan, and break down will be completed. We
therefore packaged all our equipment into several “data col-
lection suitcases”. Figure 5 shows an example. Each suitcase
contains 8 watches (4 Android, 4 Apple), 4 rings, 2 cameras,
and a laptop for data recording. It also contains watchbands of
various sizes (if needed), charging cables, and other support
items. These suitcases help us transport this large number of
small items needed for data collection.

III. PILOT EXPERIMENT: COMPARING FINGER VERSUS
WRIST MOTION FOR RECOGNIZING INTAKE GESTURES

In this section we show an experiment using our preliminary
data to compare wrist versus finger motion for detecting intake
gestures. This helps demonstrate how our new dataset expands
possible experiments beyond what current publicly available
datasets can support. We show a benchmark test of previously
published intake detectors on our pilot data. We also run these
same detectors on two large, publicly available intake detection
datasets with wrist motion data. These benchmark datasets
provide a reference for how our pilot data results compare to
public datasets used in current state-of-the-art models. While
the wrist motion data from our pilot data will be directly
comparable to these public database, the finger motion data is
a novelty to the pilot data, and comparisons to other datasets
provide insight into this new sensor modality.

A. Benchmark Datasets

We use two public datasets for benchmarking. We chose the
two largest because they best support training neural network
classifiers which can require a lot of training data. The first
dataset is the Clemson dataset, collected on 276 participants
in a public cafeteria setting. This dataset has a lot of variety,
with 374 different food and drink items eaten across the meals
with many different utensils. This dataset was recorded at 15
Hz using a custom, wrist mounted IMU device that tracked
the dominant hand of participants.

The second dataset is the OREBA Intake dataset, which
was collected in a lab with 2 to 4 people eating around a table
together. This dataset contains subsets; the first subset is the
OREBA-DIS which contained discrete portions served before
eating, and the second is the OREBA-SHA which had a shared
dish at the table from which all participants served themselves.
In this paper we use the OREBA-DIS due to its similarity
to the cafeteria setting matched by our pilot dataset and the
Clemson dataset. OREBA-DIS contains 100 meals from 100
different participants, who all ate the same meal provided in
the study. OREBA recorded both wrists using IMU devices
and recorded at 64 Hz. To provide equitable comparison to
other datasets, we are only using the dominant hand data in
OREBA in this study.

B. Detection Methods

We tested two different intake gesture detectors, one that
uses a heuristic algorithm and one that uses a neural network.
The heuristic-based classifier relies upon a single feature that
measures the roll of the wrist [22], which has been shown
to be locked to the roll of fingers on the same hand [12].
Therefore we anticipate it should do well on our finger
data without requiring retraining of the classifier. The neural
network classifier we chose is representative of state-of-the-art
for detecting intake gestures from wrist motion [23].

The heuristic algorithm uses a combination of rotation and
timing thresholds to detect the lifting of the wrist and rotation
of the hand toward the mouth and back to rest. The detector
first identifies a positive rotation of the wrist (e.g. rotating



(a) Clap gesture used for syncing (b) Labeling an intake gesture

Fig. 4. Our dashboard software for reviewing recorded data. The 6 signals plotted on the right side are accelerometer X, Y, Z and gyroscope X, Y, Z over
time. The vertical green bar in the sensor data is synchronized to the video display.

(a) suitcase (b) cameras, rings (c) watches
Fig. 5. Data collection suitcase used to deploy equipment in cafeteria and
home settings.

palms from facing downward to facing up) to identify a person
picking up food and bringing it to their mouth. The model
then look for a negative roll to identify the returning of the
wrist from the intake back to a neutral position. These roll
events must be spaced out by two time thresholds to prevent
excessive triggering of detections. Values used in the original
paper looked for rotations of greater than 10 deg/sec for each
direction, with start and ending of detections being spaced out
by 2 seconds and detections having a minimum spacing of 8
seconds. See [22] for pseudo-code and other details of how
this detector was created.

The second detector is a re-implementation of the CNN-
LSTM network in [23]. This model slides a 2 second window
across the data outputting the probability of the window being
an intake gesture, then post-processing these probabilities to
create detections. To create this CNN-LSTM detector, we
followed training parameters specified in the original paper.
All data was resampled with cubic interpolation to match the
original 64 Hz data rate for which this model architecture
was designed. The data passes through 4 convolution layers,
each with 128 filters and each successive layer increasing filter
sizes, with respective filter sizes for the layers being 1, 3, 5,
and 7. The model then flows into two LSTM layers, each with
64 memory units. All CNN layers use a ReLU activation and
all LSTM layers use hyperbolic tangent activation. Finally, the
model ends with a dense layer to produce a output targeting the
class for each input. An Adam optimizer and default learning
rate are used. See [23] for additional details.

Because this detector requires training, we trained a separate
version of the model for each of the two public datasets.

Both datasets are large and have sufficient data sizes to train.
We used an 80/20 training and testing split on both datasets.
When evaluating this detector on our pilot wrist data, we used
the OREBA-trained model and transformed our input data to
match the format of the OREBA dataset. This choice was
made since our pilot data is still small and would be prone
to overfitting. Since there is no large public ring dataset, we
used the same OREBA wrist trained model on our pilot finger
motion data.

C. Evaluation Metrics

To evaluate the detectors performance on our pilot dataset
and the benchmark datasets, we match the detections to
the ground truth intake gestures use the matching scheme
initially described in [22]. This method scans the area around
each detection, bounded from the preceding detection to the
succeeding detection, and matches the detection to the closest
unmatched ground truth. If each match counts as a true positive
(TP), and if there are no unmatched ground truths within the
scan window then the detection is marked as a false positive
(FP). After attempting to match each detection, any unmatched
ground truth intakes are marked as false negatives (FN).

With these matches, we calculate recall, precision, and F1
score. Recall, or true positive rate, is the percentage of the
ground truths which are true positives, and is calculated using
Equation 1. Precision, or the positive predictive value, is
the percentage of detections which are true positives and is
calculated using Equation 2. F1 score is the harmonic mean of
these two values, and is the best single metric which balances
recall or precision, preventing a model from under predicting
to raise precision or over predicting to raise recall. Calculating
F1 score is shown in Equation 3.

TPR =
TP

TP + FN
(1)

PPV =
TP

TP + FP
(2)

F1 = 2× PPV × TPR

PPV + TPR
(3)

To achieve balanced results between true positive detections
and the absence of false positive detections, we have tuned
one threshold value in each of the detectors. For the Heuristic



Detector, we have adjusted the minimum time between pre-
dictions, with best results ranging from about 6-8 seconds.
For the CNN-LSTM Detector, we have tuned the minimum
threshold needed to trigger a detection.

IV. RESULTS

This section first describes the data we have collected to
date. We next describe results comparing two intake gesture
detectors on our new data compared to benchmark datasets.
Lastly, we describe preliminary comparisons of finger versus
wrist motion for recognizing intake gestures.

A. Dataset

Data is being collected under IRB2023-0146 at Clemson
University with sIRB oversight to The Miriam Hospital at
Brown University. The observed meal at the first site is
being recorded in a cafeteria setting, while the observed meal
at the second site is being recorded in home settings. All
subjects provided informed consent to collect data. Subjects
also provided informed consent to share videos collected in
a cafeteria setting, but videos collected in home settings will
remain confidential and only be used for labeling the times of
intake gestures in sensor motion data.

At the time of this writing, steady-state data collection is in
progress at the first site, and still undergoing internal testing
and refinement at the second site. A total of 16 subjects have
completed data collection. Each subject recorded one observed
meal in a cafeteria setting, and 182 total meals during free-
living (approximately 11 per subject).

In order to monitor the reliability of the data, we have
developed a custom software dashboard. The dashboard au-
tomatically groups all files of a meal (5 total) which helps us
to check whether a user completed all steps. We check if the
begin/end timestamps of the watch and ring sensor recordings
match the timestamps of the pre- and post-image files. In the
survey of the MealWatcher app, we ask a few questions related
to the quality of the data, specifically (a) whether the watch
and ring work correctly or not, and (b) whether the participant
was using their phone for other activities while recording the
meal (anticipating that this could interfere with data quality, for
example if the user accidentally closed the MealWatcher app).
By observing these pieces of information from the dashboard,
we can monitor the data quality.

Of the 16 observed meals, 2 had technical errors, and of the
182 free-living meals, 15 had technical errors and 14 had user
errors. Technical errors were due to lost Bluetooth connections
and app dozes (automated battery saving features built into
smartphones). User errors were due to subjects forgetting to
start a device before eating, or closing the MealWatcher app
during eating (e.g. one user self-reports accidentally closing
our app while switching to a web browser to watch a video
during eating). Based on a review of this first 2.5% of
the planned data to be collected, we have lightly refined
MealWatcher to assist subjects with collecting good data, such
as notifying them when Bluetooth connections are lost.

TABLE III
CHARACTERISTICS OF 1,141 TOTAL INTAKE GESTURES IN 14 OBSERVED

CAFETERIA MEALS.

Variable Observed values
Hand used 126 left hand, 995 right hand, 20 both hands
Utensil used 415 hand(s), 298 fork, 1 knife, 404 spoon, 23 chopsticks
Food ratio 1,036 food, 105 beverage
Food types 84, including banana, burger, carrots, chicken, french

fries, grapes, muffin, pasta, rice, and salad

TABLE IV
MODEL PERFORMANCE OF HEURISTIC DETECTOR [22] AND CNN-LSTM

DETECTOR [23] ON LARGE PUBLIC DATASETS AND ON OUR NEW PILOT
DATA.

Heuristic detector CNN-LSTM detector
Dataset F1 PPV F1 PPV TPR
OREBA 0.811 0.829 0.794 0.804 0.767 0.848
Clemson 0.820 0.811 0.830 0.784 0.751 0.821

new (finger) 0.800 0.791 0.810 0.740 0.749 0.730
new (wrist) 0.811 0.808 0.814 0.801 0.807 0.794

In the 14 observed meals without technical error, we an-
notated 1,141 total intake gestures. Characteristics are sum-
marized in table III. The observed intake gestures exhibit
great variety including the hand used, food/beverage ratio,
utensil used, and food types. This can be contrasted against
other datasets. In OREBA, only two different fixed meal
choices were available to subjects, and only forks, knives
and spoons (no hands or chopsticks) were used as utensils,
in order to simplify data collection procedures [14]. The FIC
dataset had the same utensil limitations, although subjects were
free to choose their own foods [15]. The Clemson dataset
is the most similar to ours, with all eating characteristics
unconstrained and a broad range of food and beverage choices
[10]. The variety of characteristics in this early data gives us
confidence that food selections and eating styles are not being
prohibitively restricted by MealWatcher and our methods used
for data collection.

B. Intake Detection Performance

Result metrics for intake gesture detections can be found in
Table IV. The heuristic detector achieved similar performance
(appx 0.80 F1) on all 4 datasets. We believe this is because
the heuristic detector relies upon a single dominant feature,
roll of the wrist/hand/forearm, that can be measured equally
at the wrist and finger [12].

The CNN-LSTM detector achieved similar performance
(0.80 F1) on our new wrist motion data, when compared to
the two large public datasets (0.78 to 0.80 F1). The detector
achieved lower performance (0.74 F1) on our new finger
motion data. We believe this performance loss is because the
model was not trained on any finger data, but rather trying to
interpret the finger motion as wrist data.

The similarity of the watch pilot dataset to both public
datasets supports that the finished dataset could be used as a



TABLE V
COMPARISON OF DETECTIONS FROM WRIST VERSUS FINGER.

Dataset Heuristic Detection CNN-LSTM Detection
Both Sensors Agree 82.6 69.5
Watch Detects Only 9.6 19.5
Ring Detects Only 7.8 11.0

new benchmark for intake detection. The similar performance
indicates that the varied foods in the cafeteria would be of a
similar difficulty to foods in large, public datasets.

The similar performance of the ring pilot study to the wrist
motion in the heuristic detections shows that some motion used
to track intake (such as the rotation of the wrist) can still be
tracked through the motion of the finger. This provides promise
for potential uses of this new sensor location. And while the
performance of a neural network model in this preliminary
study demonstrates that models trained on wrist motion may
not find the same features in finger motion data, we believe that
these differences can be learned by a neural network once we
have sufficient finger motion data on which to train a model.

C. Finger versus Wrist

To evaluate the differences in wrist motion detections com-
pared to finger motion detections, we analyzed which intake
gestures were detected at both hand locations. This highlights
if certain intake gestures are better detected at the wrist
compared to the finger, or vice versa. Results of how the two
sensor locations agree or disagree in matching detections are
summarized in Table V. For the heuristic detector, 82.6% of
intake gestures were either found or missed by both detectors,
demonstrating a high rate of agreement. Additionally, the
remaining 17.2% of intake gestures that were found at one
sensor location only were evenly split between the finger and
the wrist, indicating that neither the finger nor the wrist motion
had a strong advantage over the other in detecting intake. This
high agreement demonstrate that some characteristics used to
identify intake, such as the roll used in the heuristic detection,
are clearly identifiable at both locations.

The CNN-LSTM detector had lower agreement, with only
69.5% of intake gestures being detected or missed by both
the finger and the wrist data. When looking at the remaining
30.0% of gestures that were found at one sensor location
only, the wrist had almost double the amount of detections
(19.5% versus 11.0%), showing a stronger performance at the
wrist compared to the finger. This disparity between finger
and wrist detections for the neural network detection indicates
that there are some features found in the wrist motion the
model has learned which are absent in the finger motion.
This distinction does not necessarily mean that wrist motion
is better for detecting intake. Rather it highlights that there are
some characteristics which distinguish wrist and finger motion
during intake, and these differences can be used by models.
With a large finger motion dataset to learn from, it is possible
that a model could perform better using characteristics distinct
to finger motion.

V. DISCUSSION

In this paper we described MealWatcher, a new toolset
designed to support collecting data to build automated tools
for measuring energy intake. It enables simultaneous recording
of finger and wrist motion and can be used in cafeteria, home,
and free-living environments. It allows users to take before
and after photos of their meals. It implements a survey to ask
questions about the meal; the survey contents can be easily
modified. MealWatcher is currently being used to collect data
from 600 participants, with 16 complete at the time of this
writing. Preliminary results indicate that MealWatcher sup-
ports collecting natural eating behaviors, and that a smart ring
detects intake gestures at near equal accuracy to a smartwatch.

In the future, we plan to study several questions. First,
after sufficient data is collected, we will train new neural
network classifiers on finger motion to retest their accuracy.
This will allow for a more fair comparison between smart ring
and smartwatch devices. Second, we will train new classifiers
on data collected in home settings versus classifiers trained
on data collected in a cafeteria setting. This will allow us
to evaluate the effect of environment, and specifically to
determine if a cafeteria setting provides enough variability in
eating behaviors to generalize to home settings. Third, we will
evaluate the accuracy of energy intake estimation from both
devices (per meal) by comparing their results to those obtained
from ASA24 hour recalls. We do not have video recordings of
the free-living meals and thus cannot evaluate the accuracy of
intake gesture detectors. However, by combining the detected
count of intake gestures with estimates of kilocalories per bite
and kilocalories per drink, we can calcualte a total energy
intake for the meal, and compare that against the ASA24
measurement for the same meal. This will give us arruacy
estimates of the entire toolset.

Energy intake (EI) estimation is the ultimate goal (measure)
of this area of research [24]. Previous work [25] has shown
that EI can be calculated as the product of total intake gesture
count and a scale factor called kilocalories per bite (KPB).
This calculation assumes an average amount of kilocalories is
consumed in each bolus. Demographic variables affect KPB,
most notable gender, with females averaging 11 KPB and
males averaging 17 KPB [26]. Age, height, and weight also
have a modest impact on KPB [27]. The data collected by
MealWatcher will continue to advance the science of these
calculations. First, we will develop new classifiers capable of
recognizing bite and drink gestures independently [28]. This
will allow us to test formulas using the product of KPB and
bite gestures plus the sum of KPD (kilocalories per drink)
and drink gestures. Second, we will explore the impact of
modifying KPB and KPD according to responses from the
brief survey administered at the end of each meal concerning
food and beverage content and secondary activities.

Dietary composition, secondary activities, and restricted
food consumption can all have an impact on total energy
intake [29]–[34]. Therefore, these survey questions are in-
tended to determine dietary composition indicators, such as



fat, vegetables and sugar, whether participants were involved
in other activities while eating, and to assess their eating
pace. For example, if a user responds that they consumed a
noncaloric beverage, then their KPD could be modified to zero.
Therefore, we plan to explore the effect of the answers to these
survey questions as modifiers upon KPD and KPB. The most
impactful questions will be used to build a final classification
model for future use.

When the planned data collection is complete, we will
make of it publicly and freely available. It will be the largest
dataset of its kind and will support the study of many research
questions beyond those outlined here. We will also make all
our code open source, publicly and freely available. We spent
a great deal of effort designing and testing the MealWatcher
toolset to support this data collection, and we thank the dozens
of anonymous testers that have participated.
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