
Under review as a conference paper at ICLR 2022

SPIKING GRAPH CONVOLUTIONAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Convolutional Networks (GCNs) achieve an impressive performance due to
the remarkable representation ability in learning the graph information. However,
GCNs, when implemented on a deep network, require expensive computation
power, which makes them difficult to be deployed on battery-powered devices.
In contrast, Spiking Neural Networks (SNNs), which perform a bio-fidelity infer-
ence process, offer an energy-efficient neural architecture. In this work, we pro-
pose SpikingGCN, an end-to-end framework that aims to integrate the embedding
of GCNs with the biofidelity characteristics of SNNs. In particular, the original
graph data are encoded into spike trains based on the incorporation of graph con-
volution. We further model biological information processing by utilizing a fully
connected layer combined with neuron nodes. In a wide range of scenarios, in-
cluding citation networks, image graph classification, and recommender systems,
our experimental results show that the proposed method could gain competitive
performance against state-of-art (SOTA) approaches. Furthermore, we show that
SpikingGCN on a neuromorphic chip can bring a clear advantage of energy effi-
ciency into graph data analysis, which demonstrates its great potential to construct
environment-friendly machine learning models.

1 INTRODUCTION

Graph Neural Networks (GNNs), especially those using convolutional methods, have become a pop-
ular computational model for graph data analysis as the high-performance computing systems blos-
som during the last decade (Chen et al., 2020). One of the well-known methods in GNNs is Graph
Convolutional Networks (GCNs) (Kipf & Welling, 2016), which learn a high-order approximation
of a spectral graph by using convolutional layers followed by a nonlinear activation function to make
the final prediction. GCNs inherit the primary characteristics from deep learning models, where the
complex structure makes training and testing these networks computationally expensive, leading to
signficant power consumption. It has been reported that the computation resources consumed for
deep learning have grown 300, 000-fold from 2012 to 2018 (Anthony et al., 2020). The high energy
consumption, when further coupled with sophisticated theoretical analysis and blurred biological
interpretability of the network, has resulted in a revival of effort in developing novel energy-efficient
neural architectures and physical hardware.

Inspired by the brain-like computing process, Spiking Neural Networks (SNNs) formalize the event-
or clock-driven signals as inference for a set of parameters to update the neuron nodes (Brette et al.,
2007). Different from conventional deep learning models that communicate information using con-
tinuous decimal values, SNNs perform inexpensive computation by transmitting the input into dis-
crete spike trains. Such a bio-fidelity method can perform a more intuitive and simpler inference
and model training than traditional networks (Maass, 1997). Another distinctive merit of SNNs is
the intrinsic power efficiency on the neuromorphic hardware, which is capable of running 1 million
neurons and 256 million synapses with only 70 mW energy cost (Merolla et al., 2014). Nevertheless,
employing SNNs as an energy-efficient architecture to process graph data as effectively as GCNs
still faces some fundamental challenges.

Challenges: (i) Spike representation. Despite the promising results achieved on common tasks
(e.g., image classification), SNN models are not trivially portable to non-Euclidean domains, such
as graphs. Given the graph datasets widely used in many applications (e.g., citation networks and
social networks), how to extract the graph structure and transfer the graph data into spike trains poses
a novel challenge. (ii) Model generalization. GCNs can be extended to diverse circumstances by
using deeper layers. Thus, it is essential to further extend the SNNs to a wider scope of applications
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where graphs are applicable. (iii) Energy efficiency. Except for the common metrics like accuracy
or prediction loss in artificial neural networks (ANNs), the energy efficiency of SNNs on the neu-
romorphic chips is an important characteristic to be considered. However, neuromorphic chips are
not as advanced as contemporary GPUs, and the lack of uniform standards also impacts the energy
estimation on different platforms.

To tackle these fundamental challenges, we introduce Spiking Graph Neural Network (Spiking-
GCN): an end-to-end framework that can properly encode graphs and make a prediction for non-
trivial graph datasets that arise in diverse domains. To our best knowledge, SpikingGCN is the
first-ever SNN designed for node classification in graph data, and it can also be extended into more
complex neural network structures. Overall, our main contribution is threefold: (i) We propose
SpikingGCN, the first end-to-end model for node classification in SNNs, without any pre-training
and conversion. The graph data is transformed into spike trains by a spike encoder. These generated
spikes are used to predict the classification results. (ii) We show that the basic model inspired by
GCNs can effectively merge the convolutional features into spikes and achieve competitive predic-
tive performance. In addition, we further evaluate the performance of our model for active learning
and energy efficient settings; (iii) We extend our framework to enable more complex network struc-
tures for different tasks, including image graph classification and rating predictions in recommender
systems. The extensibility of the proposed model also opens the gate to perform SNN-based infer-
ence and training in various kinds of graph-based data.

2 RELATED WORK
Spiking neural networks. The fundamental SNN architecture includes the encoder, spiking neu-
rons, and interconnecting synapses with trainable parameters (Tavanaei et al., 2019). These proce-
dures contribute to the substantial integrate-and-fire (IF) process in SNNs: any coming spikes lead
to the change of the membrane potential in the neuron nodes; once membrane potentials reach the
threshold voltage, the neuron nodes fire spikes and transmit the messages into their next nodes.

Some studies have developed the methodology along with a function to approximate the non-
differentiable IF process (Jin et al., 2018; Zhang et al., 2020). Although gradient descent and error
back-propagation is directly applicable for SNNs in that way, a learning phase strongly related to
ANNs still causes a heavy burden on the computation. Another approach to alleviate the difficulty
of training in SNNs is using an ANN-to-SNN conversion by using the pre-trained neuron weights.
Kim et al. (2020) take advantage of the weights of pre-trained ANNs to construct a spiking architec-
ture for object recognition or detection. Although those conversions can be successfully performed,
multiple operators of already trained ANNs are not fully compatible with SNNs (Rueckauer et al.,
2017). As a result, SNNs constructed from a fully automatic conversion of arbitrary pre-trained
ANNs are not able to achieve a comparable prediction performance.

Graph neural networks. Unlike a standard neural network, GNNs need to form a state that can
extract the representation of a node from its neighborhood with an arbitrary graph (Liu et al., 2020b).
In particular, GNNs utilize extracted node attributes and labels in graph networks to train model
parameters for a specific task, such as citation networks, social networks, protein-protein interac-
tions (PPIs), and so on. GAT (Veličković et al., 2017) has shown that capturing the weight via an
end-to-end neural network can make more important nodes receive larger weights. In order to in-
creasingly improve the accuracy and reduce the complexity of GCNs, the extended derivatives SGC
(Wu et al., 2019) eliminate the nonlinearities and collapse weight matrices between consecutive lay-
ers. FastGCN (Chen et al., 2018) successfully reduces the variance and improves the performance
by sampling a designated number of nodes for each convolutional layer. Nonetheless, these con-
volutional GNN algorithms rely on high-performance computing systems to achieve fast inference
for high-dimensional graph data due to a heavy computational cost. Since GCNs bridge the gap
between spectral-based and spatial-based approaches (Xie et al., 2020), they offer desirable flexibil-
ity, extensibility, and architecture complexity. Thus, we adopt the GCN-based feature processing to
construct our basic SNNs model.

3 SPIKING GRAPH NEURAL NETWORKS

Graphs are usually represented by a non-Euclidean data structure consisting of a set of nodes (ver-
tices) and their relationships (edges). The reasoning process in the human brain depends heavily on
the graph extracted from daily experience (Zhou et al., 2020). However, how to perform biologically
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interpretable reasoning for the standard graph neural networks has not been adequately investigated.
Thus, the proposed SpikingGCN aims to address challenges of semi-supervised node classification
in a biological and energy-efficient fashion.

Graph neural networks (GNNs) conduct propagation guided by the graph structure, which is fun-
damentally different from existing SNN models that can only handle relatively simple image data.
Instead of treating the single node as the input of an SNN model, the states of their neighbor-
hood should also be considered. Let G = (V,A) formally denote a graph, where V is the node set
{v1, ..., vN} and A ∈ RN×N represents the adjacent matrix. The entire attribute matrix X ∈ RN×F
includes the vectors of all nodes [x1, ..., xn]>. The degree matrix D = diag(d1, ..., dN ) consists of
the row-sum of the adjacent matrix di =

∑
j aij , where aij denotes the edge weight between nodes

vi and vj . Our goal is to conduct SNN inference without neglecting the relationships between nodes.

Inference in SNN models is commonly conducted through the classic Leaky Integrate-and-Fire (LIF)
mechanism (Gerstner & Kistler, 2002). Given the membrane potential V tm at time step t, the time
constant τm, and the new pre-synaptic input ∆Vm, the membrane potential activity is governed by:

τm
dV tm
dt

= −(V tm − Vreset) + ∆Vm, (1)

where Vreset is the signed reset voltage. The left differential item is widely used in the continuous
domain, but the biological simulation in SNNs requires the implementation to be executed in a
discrete and sequential way. Thus, we approximate the differential expression using an iterative
version to guarantee computational availability. Updating ∆Vm using the input I(t) of our network,
we can formalize (1) as:

V tm = V t−1m +
1

τm
(−V t−1m + Vreset + I(t)). (2)

To tackle the issue of feature propagation in an SNN model, we consider a spike encoder to extract
the information in the graph and output the hidden state of each node in the format of spike trains.
As shown in Fig. 1, the original input graph is transformed into the spikes from a convolution
perspective. To predict the labels for each node, we consider a spike decoder and treat the final spike
rate as a classification result.

Spike Encoder Spike Decoder
5 1 0

2 0 8

6 6 12

4 11 2

9 1 4

Original nodes Class 1 Class 2 Class 3

Figure 1: Schematic view of the proposed SpikingGCN. The original graph nodes will be trans-
formed into the spike trains for the SNN model via a spike encoder. The encoder should aggregate
the attributes in the graph and represent them in the format of spikes. Finally, a spike decoder, which
is always made up of linear layers, may convert spike trains into various firing rates. In this case, a
greater firing rate implies a higher chance that a node belongs to one of the classes.

Graph convolution. The pattern of graph data consists of two parts: topological structure and
node’s own features, which are stored in the adjacency and attribute matrices, respectively. Different
from the general processing of images with single-channel pixel features, the topological structure
will be absent if only the node attributes are considered. To avoid the performance degradation of
attributes-only encoding, SpikingGCN utilizes the graph convolution method inspired by GCNs to
incorporate the topological information. The idea is to use the adjacency relationship to normalize
the weights, thus nodes can selectively aggregate neighbor attributes. The convolution result, i.e.,
node representations, will serve as input to the subsequent spike encoder. Following the propagation
mechanism of GCN (Kipf & Welling, 2016) and SGC (Wu et al., 2019), we form the new node
representation hi utilizing the attributes xi of each node vi and its local neighborhood:

hi ←
1

di + 1
xi +

N∑
j=1

aij√
(di + 1)(dj + 1)

xj . (3)
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Here, we can express the attribute transformation over the entire graph by:

H = D̃−
1
2 ÃD̃−

1
2X, (4)

where Ã = A + I is the adjacent matrix with added self-connection and D̃ is the degree matrix
of Ã. Similar to the simplified framework as SGC, we drop the non-linear operation and focus
on the convolutional process on the entire graph. As a result, (4) acts as the only convolution
operation in the spike encoder. While we incorporate the feature propagation explored by GCN and
SGC, we would like to further highlight our novel contributions. First, our original motivation is to
leverage an SNNs-based framework to reduce the inference energy consumption of graph analysis
tasks without performance degradation. GCN’s effective graph Laplacian regularization approach
allows us to minimize the number of trainable parameters and perform efficient inference in SNNs.
Second, convolutional techniques only serve as the initial building block of SpikingGCN. More
significantly, SpikingGCN is designed to accept the convolutional results in a binary form (spikes),
and further detect the specific patterns among these spikes. This biological mechanism makes it
suitable to be deployed on a neuromorphic chip to improve energy efficiency.

Representation encoding. The representation H consists of continuous float-point values, but
SNNs accept discrete spike signals. A spike encoder is essential to take node representations as input
and output spikes for the subsequent procedures. We propose to use a probability-based Bernoulli
encoding scheme as the basic method to transform the node representations to the spike signals. Let
Oprei,t = (o1, ..., od)

> and λj denote the spikes before the fully connected layers’ neurons at the t-th
time step and the j-th feature in the new representation for node i, respectively. Our hypothesis
is that the spiking rate should keep a positive relationship with the importance of patterns in the
representations. In probability-based Bernoulli encoder, the probability p to fire a spike oj by each
feature is related to the value of λj in node representation as following:

p(oj) ∼ Bernoulli(λj), λj = min(λj , 1.0). (5)

Here, oj with j ∈ [d] denotes a pre-synaptic spike, which takes a binary value (0 or 1). Noting that
λj derived from the convolution of neighbors is positively correlated with the feature significance.
The larger the value, the greater the chance of a spike being fired by the encoder. Since the encoder
generates the spike for each node on a tiny scale, we interpret the encoding module as a sampling
process of the entire graph. In order to fully describe the information in the graph, we use T time
steps to repeat the sampling process. It is noteworthy that the number of time steps can be defined
as the resolution of the message encoded.

Charge, fire and reset in SpikingGCN. The following module includes the fully connected layer
and the LIF neuron layer. Specifically, the fully connected layer takes spikes as input and outputs
voltages according to trainable weights. The voltages charge LIF neurons and then conduct a series
of actions, including fire spikes and reset the membrane potential.

Potential charge. General deep SNN models adopt a multi-layer network structure including linear
and nonlinear counterparts to process the input (Cao et al., 2015; Hu et al., 2018). Following SGC’s
assumption, the depth in deep SNNs is not critical to predict unknown labels on the graph (Wu et al.,
2019). Thus, we drop redundant modules except for the final linear layer (fully connected layer) to
simplify our framework and increase the inference speed. We obtain the linear summation

∑
j ψjoj

as the input of SNN structure in (2). The LIF model includes the floating-point multiplication of the
constant τm, which is not biologically plausible. To address this challenge and avoid the additional
hardware requirement when deployed on neuromorphic chips, we calculate the factor 1− 1

τm
as km

and incorporate the constant 1
τm

into the synapse parameters ψ, then simplify the equation as:

V tm = kmV
t−1
m +

∑
j

ψjoj . (6)

Fire and reset. In a biological neuron, a spike is fired when the accumulated membrane potential
passes a spiking threshold Vth. In essence, the spikes Oposti,t after the LIF neurons are generated and
increase the spike rate in the output layer. We adopt the Heaviside function:

H
(
V tm
)

=

{
1 if V tm ≥ Vth
0 otherwise, (7)
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Figure 2: An illustration of SpikingGCN’s detailed framework

to simulate the fundamental firing process. As shown in Fig. 2, which demonstrates our framework,
T time spike trains for each node are generated from the three LIF neurons. Neurons sum the number
of spikes and then divide it by T to get the firing rate of each individual. For instance, for the example
nodes from ACM datasets, we get neurons’ firing rates as: fr = [30.0/T, 0.0/T, 87.0/T ]>, the true
label: lb = [0, 0, 1]>, then the loss in training process is MSE(fr, lb). If it is in the testing phase,
the predicted label would be the neuron with the max firing rate, which is 2 in this example.

Negative voltages would not trigger spikes, but these voltages contain information that (7) ignores.
To compensate for the negative term, we propose to use a negative threshold to distinguish the
negative characteristics of the membrane potential. To this end, we adjust the Heaviside activation
function after the neuron nodes as follows:

H
(
V tm
)

=

 1 if V tm ≥ Vth ,
−1 if V tm ≤ − 1

θVth ,
0 otherwise,

(8)

where θ is the hyperparameter that determines the negative range. In the context of biological mech-
anisms, we interpret the fixed activation function as an excitatory and inhibitory processes in the
neurons. When capturing more information and firing spikes in response to various features, this
more biologically reasonable modification also improves the performance of our model on classifi-
cation tasks. The whole process is detailed by Algorithm 1 in Appendix B.

In biological neural systems, after firing a spike, the neurons tend to rest their potential and start to
accumulate voltage again. We reset the membrane potential:

V tm = V tm − Vth. (9)

Gradient surrogate. One of the most significant obstacles for SNN’s training is the non-
differentiable nature of activation function (7). In that case, the back-propagation algorithm can
not be employed directly during the training phase. Inspired by (Roy et al., 2019), the sigmoid
function is adopted to approximate the training fire phase when executing the back-propagation and
stochastic gradient descent operation (Rumelhart et al., 1986). Thus, we formalize the surrogate
function as follow:

H(V tm) ≈ G(V tm) =
1

1 + exp(−αV tm))
, (10)

where α can measure the approximation degree. When we train the model, the back-propagation is
feasible and the gradient of the Heaviside function can be replaced as followed:

∂H(V tm)

∂V tm
≈ ∂G(V tm)

∂V tm
=

α · exp(−αV tm)

(1 + exp(−αV tm))2
. (11)

4 EXPERIMENTS

To evaluate the effectiveness of the proposed SpikingGCN, we conduct extensive experiments that
focus on four major objectives: (i) semi-supervised node classification on citation graphs, (ii) per-
formance evaluation under limited training data in active learning, (iii) energy efficiency evaluation
on neuromorphic chips, and (iv) extensions to other application domains.
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4.1 SEMI-SUPERVISED NODE CLASSIFICATION

Datasets. For node classification, we test our model on four commonly used citation network
datasets: Cora, citepseer, ACM, and Pubmed (Wang et al., 2019b; Sen et al., 2008), where nodes
and edges represent the papers and citation links. The statistics of the four datasets are summarized
in Table 1. Sparsity refers to the number of edges divided by the square of the number of nodes.

Table 1: Statistics of the citation network datasets.
Datasets Nodes Edges Attributes Classes Sparsity

Cora 2, 708 5, 429 1, 433 7 0.07%
ACM 3, 025 13, 128 1, 870 3 0.14%

citepseer 3, 312 4, 715 3, 703 6 0.04%
Pubmed 19, 717 44, 324 500 3 0.01%

Baselines. We implement our proposed SpikingGCN and the following competitive baselines:
GCNs (Kipf & Welling, 2016), SGC (Wu et al., 2019), FastGCN (Chen et al., 2018), GAT
(Veličković et al., 2017), DAGNN (Liu et al., 2020a). We also conduct the experiments on
SpikingGCN-N, a variant of SpikingGCN, which uses a refined Heaviside activation function (8)
instead. For a fair comparison, we partition the data using two different ways. The first is as same as
(Yang et al., 2016), which is adopted by many existing baselines in the literature. In this split method
(i.e., Split I), 20 instances from each class are sampled as the training datasets. In addition, 500 and
1000 instances are sampled as the validation and testing datasets respectively. For the second data
split (i.e., Split II), the ratio of training and testing is divided into 8:2, and 20% of training samples
is further used for validation.

Table 2: Test accuracy (%) comparison of different methods. The results from the literature and
our experiments are provided. The literature statistics of ACM datasets are taken from (Wang et al.,
2020). The experimental scores are all averaged over 10 runs. The top 2 results are boldfaced.

Cora ACM citepseer Pubmed
Models Split I Split II Split I Split II Split I Split II Split I Split II

GCN 81.0 ± 1.3 87.8 ± 0.5 90.0 ± 0.9 94.2 ± 0.6 69.8 ± 1.6 73.5 ± 0.5 78.4 ± 0.5 87.4 ± 0.08

SGC 81.5 ± 0.4 86.7 ± 0.8 90.5 ± 0.9 93.62 ± 0.3 71.7 ± 0.4 73.06 ± 0.2 79.2 ± 0.3 86.52 ± 1.6

FastGCN 80.6 ± 1.2 86.5 ± 0.6 91.0 ± 0.7 93.85 ± 0.5 70.0 ± 0.9 73.73 ± 0.9 77.6 ± 0.6 88.32 ± 0.2

GAT 82.5 ± 0.7 87.2 ± 0.5 90.9 ± 0.8 93.54 ± 0.6 71.6 ± 0.5 74.72 ± 0.7 77.5 ± 0.5 86.68 ± 0.2

DAGNN 83.0 ± 0.7 89.70 ± 0.1 91.2 ± 0.2 94.25 ± 0.3 72.9 ± 0.2 74.66 ± 0.5 79.8 ± 0.3 87.30 ± 0.1

SpikingGCN 80.7 ± 0.6 88.7 ± 0.5 89.5 ± 0.2 94.36 ± 0.2 72.5 ± 0.2 77.56 ± 0.2 77.6 ± 0.5 89.33 ± 0.2

SpikingGCN-N 81.0 ± 0.4 88.7 ± 0.1 90.7 ± 0.2 94.78 ± 0.2 72.9 ± 0.1 77.80 ± 0.1 78.5 ± 0.2 89.27 ± 0.2
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Figure 3: Impact of T

Table 2 summarizes the node classification’s
accuracy comparison with the competing meth-
ods over four datasets. We show the best
results we can achieve for each dataset and
have the following key observations: Spiking-
GCN achieves or matches SOTA results across
four benchmarks on these two different dataset
split methods. It is worth noting that, when
the dataset is randomly divided proportion-
ally and SpikingGCN obtains enough data, it
can even outperform the state-of-the-art ap-
proaches. For example, SpikingGCN-N outper-
forms DAGNN by over 3.0% on citepseer dataset. The remarkable performance of bio-fidelity Spik-
ingGCN is attributed to three main reasons. First, as shown in Fig. 3, an appropriate T can enable
our network to focus on the most relevant parts of the input representation to make a decision, simi-
lar to the attention mechanism (Veličković et al., 2017). Noting that an optimal T relies on different
statistical patterns in the dataset. In another word, we can also view the Bernoulli encoder as a mod-
erate max-pooling process on the graph features, where the salient representation of each node can
have a higher probability to be the input of the network. As a result, assigning varying importance
to nodes enable SpikingGCN to perform more effective prediction on the overall graph structure.
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Figure 4: Membrane potential activity

Second, based on our assumption, the majority
of accurate predictions benefit from attribute in-
tegration. We simplify the network and make
predictions using fewer parameters, which ef-
fectively reduces the chance of overfitting. The
significant performance gain indicates the bet-
ter generalization ability of neural inference
trained with the simplified network, which val-
idates the effectiveness of bio-fidelity SpikingGCN. Last, the variant SpikingGCN-N has achieved
better results than the original one on Cora, ACM, and citepseer datasets. As shown in Fig. 4, part
of the negative voltages will be converted into negative spikes by the Heaviside activation function.
The negative spikes can play a role in suppression since the spikes of T times are summed to calcu-
late the fire ratio, which is more biologically plausible. However, the improvement seems to have no
effect on Pubmed, which has the highest sparsity and the lowest number of attributes. Sparse input
leads to sparse spikes and voltages, and negative spikes tend to provide overly dilute information
because the hyperparameters (e.g., −1/θ of Heaviside activation function) are more elusive.

4.2 SPIKINGGCN FOR ACTIVE LEARNING

Based on the prediction result above, we are interested in SpikingGCN’s performance when the
training samples vary, especially when the data is limited. Active learning has the same problem as
semi-supervised learning in that labels are rare and costly to get. The objective of active learning is
to discover an acquisition function that can successively pick unlabeled data in order to optimize the
prediction performance of the model. Thus, instead of obtaining unlabeled data at random, active
learning may help substantially increase data efficiency and reduce cost. Meanwhile, active learning
also provides a way to evaluate the generalization capability of models when the data is scarce.
Since SpikingGCN can achieve a 3.0 percent performance improvement with sufficient data, we are
interested in how the prediction performance changes as the number of training samples increases.

Experiment Setup. We apply SpikingGCN and GCN as the active learners and observe their per-
formance. Furthermore, three kinds of acquisition methods are considered. First, according to (Ma
et al., 2013), the

∑
- optimal (SOPT) acquisition function is model agnostic because it only depends

on the graph Laplacian to determine the order of unlabeled nodes. The second one is the standard
predictive entropy (PE) (Hernández-Lobato et al., 2014). Last, we consider random sampling as the
baseline. Starting with only one initial sample, the accuracy is periodically reported until 50 nodes
are selected. Results are reported on both Cora and ACM datasets.

Table 3: The Area under the Learning Curve (ALC) on Cora and ACM datasets.
SOPT PE Random

Datasets GCN SpikingGCN GCN SpikingGCN GCN SpikingGCN

Cora 71.3± 0.2 72.9± 0.3 59.3± 1.4 62.6± 1.1 57.3± 2.1 60.8± 2.0
ACM 85.8± 0.7 87.7± 0.4 83.2± 1.0 85.1± 1.3 82.7± 1.5 84.7± 1.7

The Area under the Learning Curve (ALC) 1 results are shown in Table 3. Fig 5 in Appendix C.1
provides additional details on the results. It can be seen that SOPT can choose the most informative
nodes for SpikingGCN and GCN. At the same time, the PE acquisition function is a moderate
strategy for performance improvement. Finally, in random strategy both models suffer from high
variations during prediction as well as unstable conditions throughout the active learning process.
However, no matter which strategy is adopted, SpikingGCN achieves a better generalization than
GCN when the training data is scarce.

4.3 ENERGY EFFICIENCY ON NEUROMORPHIC CHIPS

To examine the energy efficiency of SpikingGCN, we propose two metrics: i) the number of oper-
ations required to predict a node on each model, and ii) the energy consumed by SpikingGCN on
neuromorphic hardware versus other models on GPUs.

The standard calculation of the computation overhead relies on operations in the hardware (Merolla
et al., 2014). The operation unit of ANNs in contemporary GPUs is usually set to multiply-

1ALC corresponds to the area under the learning curve and is constrained to have the maximum value 1.
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accumulate (MAC), and SNNs in the neuromorphic chip is synaptic operation (SOP). Furthermore,
SOP is defined as the change of membrane potential (i.e., voltages) in the LIF nodes, and specific
statistics in the experiment refers to voltages’ changes during charge and fire processes. Follow-
ing the quantification methods introduced in (Hunger, 2005) and ensuring the consistency between
different network constraints, we compute operations of baselines and SpikingGCN to classify one
node. Table 4 shows that SpikingGCN has a significant operand advantage. According to the liter-
ature (Hu et al., 2018; Kim et al., 2020), SOPs consume far less energy than MACs, which further
highlights the energy efficiency of SpikingGCN.

Table 4: Operations comparison

models Cora ACM citepseer Pubmed

GCN 67.77K 63.71K 79.54K 414.16K
SGC 10.03K 5.61K 22.22K 1.50K

FastGCN 67.54K 71.97K 141.69K 94.88K
GAT 308.94K 349.91K 499.16K 1.53M

DAGNN 281.73K 210.63K 436.11K 623.71K
SpikingGCN 1.39K 0.59K 1.19K 0.59K

Table 5: Energy consumption comparison

GCN on TITAN

Power (W) GFLOPS Nodes FLOPS Energy (J)

280 16,310 10,000 4.14E+09 0.07

SpikingGCN on ROLLs

Voltage (V) Energy/spike (pJ) Nodes Spikes Energy

1.8 3.7 10,000 2.73E+07 1.01E-04

However, the energy consumption measured by SOPs may be biased, e.g., the zero spikes would also
result in the voltage descending changes, which don’t cost energy in neuromorphic chips. Hence
calculating energy only based on operations might result in an incorrect conclusion. We further pro-
vide an alternative estimation approach as follow. Neuromorphic designs could provide event-based
computation by transmitting one-bit spikes between neurons. This characteristic contributes to the
energy efficiency of SNNs because they consume energy only when needed (Esser et al., 2016). For
example, during the inference phase, the encoded sparse spike trains act as a low-precision synapse
event, which costs the computation memory once spikes are sent from a source neuron. Considering
the above hardware characteristics and the deviation of SOPs in consumption calculation, we follow
the spike-based approach utilized in (Cao et al., 2015) and count the overall spikes during inference
for 4 datasets, to estimate the SNN energy consumption. We list an example of energy consumption
when inferring 10,000 nodes in the Pubmed dataset, as shown in Table 5.

Applying the energy consumed by each spike or operation, in Appendix C.1, we visualize the energy
consumption between SpikingGCN and GNNs when employed on the recent neuromorphic chip
(ROLLS (Indiveri et al., 2015)) and GPU (TITAN RTX, 24G 2), respectively. Fig. 6 shows that
SpikingGCN could use remarkably less energy than GNNs when employed on ROLLs. For example,
SpikingGCN could save about 100 times energy than GCN in all datasets. Note that different from
GPUs, ROLLS is firstly introduced in 2015, and higher energy efficiency of SpikingGCN can be
expected in the future.

4.4 EXTENSION TO OTHER APPLICATION DOMAINS

In the above experiments, we adopt a basic encoding and decoding process, which can achieve
competitive performance on the citation datasets. However, some other graph structures like im-
age graphs and social networks can not be directly processed using graph Laplacian regularization
(Belkin et al., 2006; Kipf & Welling, 2016; Wu et al., 2019). To tackle the compatibility issue, we
extend our model and make it adapt to the graph embedding methods (Gilbert & Levchenko, 2004;
Perozzi et al., 2014; Yang et al., 2016). Different from the graph Laplacian regularization methods
like GCNs, the graph embedding methods always contain specific trainable parameters to incorpo-
rate the attributes in the graph structure. In this case, the Bernoulli encoder is unable to generate
the spike trains, which perfectly represent the graph information. Taking the image graph as an
example, we can see that the Bernoulli encoder cannot fully represent the pixels. Hence, the char-
acteristics of the pixels’ local Euclidean neighborhoods must be aggregated. We propose a trainable
spike encoder, to allow deeper SNNs for different tasks, including classification on grid images and
superpixel images, and rating prediction in recommender systems. Limited by space, we leave the
implementation detail to Appendix C.2.

Result on grid images. To validate the performance of SpikingGCN on image graphs, we first apply
our model to the MNIST dataset (LeCun et al., 1998). The classification results of grid images on
MNIST are summarized in Table 6. We choose several SOTA algorithms including ANN and SNN

2https://www.nvidia.com/en-us/deep-learning-ai/products/titan-rtx/
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models, which work on MNIST datasets. The depth is calculated according to the layers including
trainable parameters. Since we are using a similar network structure as the Spiking CNN (Lee et al.,
2016), the better result proves that our clock-driven architecture is able to capture more significant
patterns in the data flow. The competitive performance of our model on image classification also
proves that SpikingGCN’s compatibility to different graph scenarios.

Table 6: Test accuracy (%) comparison on MNIST dataset. The best results are boldfaced.
Models Type Depth Accuracy

SplineCNN (Fey et al., 2018) ANN 8 99.22
LeNet5 (LeCun et al., 1998) ANN 4 99.33
LISNN (Cheng et al., 2020) SNN 6 99.50

Spiking CNN (Lee et al., 2016) SNN 4 99.31
S-ResNet (Hu et al., 2018) SNN 8 99.59

SpikingGCN (Ours) SNN 4 99.35

Results on superpixel images. We select the MNIST superpixel dataset (Monti et al., 2017a) for
the comparison with the grid experiment mentioned above. The results of the MNIST superpixel
experiments are presented in Table 7. Since our goal is to prove the generalization of our model on
different scenarios, we only use 20 time steps to conduct this subgraph classification task and achieve
the mean accuracy of 94.50% over 10 runs. It can be seen that SpikingGCN is readily compatible
with the different convolutional methods of the graph and obtain a competitive performance through
a biological mechanism.

Table 7: Test accuracy comparison on MNIST
dataset. The best results are boldfaced. Baseline
numbers are taken from Fey et al. (2018).

Models Accuracy

ChebNet Defferrard et al. (2016) 75.62
MoNet Monti et al. (2017a) 91.11
SplineCNN Fey et al. (2018) 95.22

SpikingGCN (Ours) 94.50

Table 8: Test RMSE scores with MovieLens
100K datasets. Baselines numbers are taken from
(van den Berg et al., 2017).

Models RMSE Score

MC (Candès & Recht, 2012) 0.973
GMC (Kalofolias et al., 2014) 0.996

GRALS (Rao et al., 2015) 0.945
sRGCNN (Monti et al., 2017b) 0.929

GC-MC (van den Berg et al., 2017) 0.910
SpikingGCN (Ours) 0.924

Results on recommender systems. We also evaluate our model with a rating matrix extracted from
MovieLens 100K 3 and report the RMSE scores compared with other matrix completion baselines,
as shown in Table 8. The comparable loss 0.924 indicates that our proposed framework can also be
employed in recommender systems. Because the purpose of this experiment is to demonstrate the
applicability of SpikingGCN in recommender systems, we have not gone into depth on the design
of a specific spike encoder. We leave this design in the future work since it is not the focus of the
current paper.

5 CONCLUSIONS

In this paper, we present SpikingGCN, a first-ever bio-fidelity and energy-efficient framework fo-
cusing on graph-structured data, which encodes the node representation and makes the prediction
with less energy consumption. In our basic model for citation networks, the encoded spike trains
are processed by a simple linear layer combined with a neuron layer. We conduct extensive ex-
periments on node classification with four public datasets, including Cora, citepseer, ACM, and
Pubmed. Compared with other SOTA approaches, we demonstrate that SpikingGCN achieves the
best accuracy with the lowest computation cost, which leads to much-reduced energy consumption.
Furthermore, SpikingGCN also exhibits great generalization when confronted with limited data. In
our extended model for more graph scenarios, SpikingGCN also has the potential to compete with
the SOTA models on tasks from computer vision or recommender systems. Relevant results and
discussions are presented to offer key insights on the working principle, which may stimulate future
research on environmentally friendly and biological algorithms.

3https://grouplens.org/datasets/movielens/
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Appendix

Organization of the Appendix. In this Appendix, we first discuss some additional related work
that provides a more complete context of the proposed SpikingGCN model. We then describe the
detailed training process of the model, which is accompanied by the link to access the entire source
code. Finally, we show additional experimental results that complement the ones presented in the
main paper.

A ADDITIONAL RELATED WORK

Spiking Neural Networks One popular way to build the SNNs models is the spike-timing-
dependent-plasticity (STDP) learning rule, where the synaptic weight is adjusted according to the in-
terval between the pre- and postsynaptic spikes. Diehl & Cook (2015) propose an unsupervise learn-
ing model, which utilizes more biologically plausible components like conductance-based synapses
and different STDP rules to achieve competitive performance on the MNIST dataset. Lee et al.
(2018) introduce a pre-training scheme using biologically plausible unsupervised learning to better
initialize the parameters in multi-layer systems. Although STDP models provide a closer match
to biology for the learning process, how to achieve a higher level function like classification using
supervised learning is still unsolved (Cao et al., 2015). Besides, it can easily suffer from prediction
performance degradation compared with supervised learning models.

Energy consumption estimation. An intuitive measurement of the model’s energy consumption
is investigating the practical electrical consumption. Strubell et al. (2019) propose to repeatedly
query the NVIDIA System Management Interface 4 to obtain the average energy consumption for
training deep neural networks for natural language processing (NLP) tasks. Canziani et al. (2016)
measure the average power draw required during inference on GPUs by using the Keysight 1146B
Hall effect current probe. However, querying the practical energy consumption requires very strict
environment control (e.g., platform version and temperature), and might include the consumption of
background program, which results in the inaccuracy measurement. Another promising approach to
estimate the model’s energy consumption is according to the operations during training or inference.
Anthony et al. (2020) develop a tool for calculating the operations of different neural network lay-
ers, which helps to track and predict the energy and carbon footprint of ANN models. Some SNN
approaches (Hu et al., 2018; Kim et al., 2020) successfully access the energy consumed by ANN
and SNN models by measuring corresponding operations multiplied by theoretical unit power con-
sumption. This kind of methods can estimate the ideal energy consumption excluding environmental
disturbance. In addition, contemporary GPU platforms are much more mature than SNN platforms
or neuromorphic chips (Merolla et al., 2014; Indiveri et al., 2015). As a result, due to the technical
restriction of employing SpikingGCN on neuromorphic chips, we theoretically estimate the energy
consumption in the experimental section.

B ALGORITHM AND SOURCE CODE

Algorithm 1 shows the detailed training process of the proposed SpikingGCN model. The source
code can be accessed via https://anonymous.4open.science/r/SpikingGCN-1527.

C ADDITIONAL EXPERIMENTAL RESULTS

We report additional experimental results that complement the ones reported in the main paper.

C.1 ACTIVE LEARNING CURVES AND ENERGY EFFICIENCY EXPERIMENTS

We provide the active learning curves of SpikingGCN and GCN in Fig. 5, which are consistent with
the statistics reported in Table 3. Fig. 6 shows the remarkable energy difference between Spiking-
GCN and GNN based models. First, the sparse characteristic of graph datasets fits the spike-based
encoding method. Furthermore, the zero values in node representations would have no chance to
inspire a synapse event (spike) on a neuromorphic chip, leading to no energy consumption. Second,
our simplified network architecture only contains two main neuron layers: a single fully connected
layer and an LIF layer. Consider Pubmed as an example. Few attributes and a sparse adjacency
matrix result in sparse spikes, and the smaller number (i.e., 3) of classes also require fewer neurons.

4nvidia-smi: https://bit.ly/30sGEbi
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Algorithm 1 Model Training of SpikingGCN
Input: Graph G(V,A); input attributes xi ∈ X; one-hot matrix of label yi ∈ Yo;
Parameter: Learning rate β; Weight matrix w; embedding function EMBEDDING(); encoding func-
tion ENCODING();
charge, fire, reset functions CHARGE(), FIRE(), RESET()
Output: Firing rate vector ŷi for training subset Vo, which is the prediction

1: while not converge do
2: Sample a mini-batch nodes Vl from the training nodes Vo
3: for each node i ∈ Vl do
4: hi ← EMBEDDING(A, xi) // Eq. (3)(4)
5: for t = 1...T do
6: Oprei,t ← ENCODING(hi) // Eq. (5)
7: V tm = CHARGE(W ·Oprei,t ) // Eq. (2)
8: Oposti,t = FIRE(V tm)

9: V tm = RESET(V tm) // Eq. (9)
10: end for
11: ŷi ← 1

T

∑
Oposti,t

12: end for
13: Perform meta update, w← w − β∇wL(yi, ŷi)
14: end while

This promising results imply that SpikingGCN could have the potential to achieve more significant
advantages in energy consumption than general GNNs.

(a) Active learning on the Cora dataset

(b) Active learning on the ACM dataset

Figure 5: Active learning curves for both Cora and ACM datasets.

C.2 SPIKINGGCN ON OTHER APPLICATION DOMAINS

Results on image grids. The MNIST dataset contains 60,000 training samples and 10,000 testing
samples of handwritten digits from 10 classes. Each image has 28 × 28 = 784 grids or pixels,
hence we treat each image as a node which has 784 features. It is worth noting that the grid image
classification is identical to the citation networks where node classes will be identified, with the
exception of the absence of an adjacent matrix. To extend our model, we adopt the traditional
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Figure 6: The energy consumption of SpikingGCN and baselines on their respective hardware.

convolutional layers and provide the trainable spike encoder for graph embedding models, and the
extended framework is given by Fig. 7. Since the LIF neuron models contain the leaky parameters
τm, which can decay the membrane potential V tm and activate the spikes on a small scale, we adopt
the Integrate-and-Fire (IF) process to maintain a suitable firing rate for the encoder. The membrane
activity happening in the spike encoder can be formalized as:

V tm = V t−1m (1− |H
(
V t−1m

)
|) +X(t), (12)

where X(t) is the convolutional output at time step t, and H
(
V t−1m

)
is given in (8). As shown in

Fig. 7, the convolutional layers combined with the IF neurons will perform an auto-encoder function
for the input graph data. After processing the spike trains, the fully connected layers combined with
the LIF neurons can generate the spike rates for each class, and we will obtain the prediction result
from the most active neurons.
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Figure 7: An extended model for deep SNNs
Figure 8: Comparison between grid and super-
pixel images

Results on superpixel images. Another more complex graph structure is the superpixel images.
Compared with the general grid images, superpixel images represent each picture as a graph which
consists of connected nodes. Hence the classification task is defined as the prediction on the sub-
graphs. Another important distinction is that the superpixel images require to construct the connec-
tivity between chosen nodes. A comparison between the grid and superpixel images is shown in Fig.
8, where 75 superpixels are processed as the representation of the image.

One of the important steps when processing the superpixel data is learning effective graph embed-
ding extracted from the graph. To demonstrate the ability of our model when predicting based on
the superpixel images, we empirically follow the convolutional approach utilized in SplineCNN
(Fey et al., 2018) to further aggregate the connectivity of superpixels. The trainable kernel function
based on B-splines can make the most use of the local information in the graph and filter the input
into a representative embedding. Similar to the framework proposed in Fig 7, the experiments on
superpixel images also follow the structures as grid image experiments, where the convolutional
layers & IF neurons enable the spike representations, and the fully connected layers & LIF neurons
are responsible for the classification results.
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In addition, we also provide a unique perspective to understand the mechanism of our model. In
particular, our spike encoder can be regarded as a sampling process using spike train representation.
The scenario of the image graph provides us an ideal chance to visualize the data processing in our
model. Regarding the experiments of grid and superpixel images, we extract the outputs of our spike
encoder and visualize them in Fig. 9 (c), along with other observations. First, the Bernoulli encoder
mentioned above can be viewed as a sampling process with respect to the pixel values. As the time
step increases, the encoder almost rebuilds the original input. However, the static spike encoder
can not capture more useful features from the input data. Thus, our trainable encoder performs the
convolution procedure and stimulates the IF neurons to fire a spike. As shown in Fig. 9 (b) and (c),
by learning the convolutional parameters in the encoder, the spike encoder successfully detects the
structure patterns and represents them in a discrete format.

Primitive T=1 T=10T=3T=2

(a) Outputs of Bernoulli encoder in grid images

(b) Outputs of trainable encoder in grid images

Superpixel image Spike representation

(c) Outputs of trainable encoder in superpixel images

Figure 9: Visualization of the spike trains generated by the spike encoder. We extract these features
from the MNIST dataset for demonstration. Grid images: (a) shows the spike trains from a simple
Bernoulli encoder, and we list the different time steps which indicate different precision. (b) de-
picts the spikes from the trainable spike encoder, in which the overall shape patterns are learned.
Superpixel images: (c) demonstrates the spikes from the trainable encoder, and the encoding results
indicate the successful detection of local aggregation.

Spike encoder for recommender systems. Much research has tried to leverage the graph-based
methods in analyzing social networks (van den Berg et al., 2017; Wang et al., 2019a; He et al., 2020).
To this end, we extend our framework to the recommender systems, where users and items form a
bipartite interaction graph for message passing. We tackle the rating prediction in recommender
systems as a link classification problem. Starting with MovieLens 100K datasets, we take the rating
pairs between users and items as the input, transform them into suitable spike representations, and
finally output the classification class via firing rate. To effectively model this graph-structured data,
we build our trainable spike encoder based on the convolutional method used in GC-MC (van den
Berg et al., 2017). In particular, GC-MC applies a simple but effective convolutional approach based
on differentiable message passing on the bipartite interaction graph, and reconstruct the link utilizing
a bilinear decoder.
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