Under review as a conference paper at ICLR 2025

ACTION-CONSTRAINED IMITATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Policy learning under action constraints plays a central role in ensuring safe be-
haviors in various robot control and resource allocation applications. In this paper,
we study a new problem setting termed Action-Constrained Imitation Learning
(ACIL), where an action-constrained imitator aims to learn from a demonstrative
expert with larger action space. The fundamental challenge of ACIL lies in the
unavoidable mismatch of occupancy measure between the expert and the imita-
tor caused by the action constraints. We tackle this mismatch through trajectory
alignment and propose DTWIL, which replaces the original expert demonstra-
tions with a surrogate dataset that follows similar state trajectories while adhering
to the action constraints. Specifically, we recast trajectory alignment as a planning
problem and solve it via Model Predictive Control, which aligns the surrogate tra-
jectories with the expert trajectories based on the Dynamic Time Warping (DTW)
distance. Through extensive experiments, we demonstrate that learning from the
dataset generated by DTWIL significantly enhances performance across multiple
robot control tasks and outperforms various benchmark imitation learning algo-
rithms in terms of sample efficiency.

1 INTRODUCTION

Reinforcement learning (RL) is commonly used to solve tasks by finding a policy that maximizes
cumulative rewards through interactions with the environment. However, in many real-world appli-
cations, designing an effective reward function that consistently encourages the desired behavior in
all situations is a significant challenge. In such cases, imitation learning (IL) offers a compelling
alternative. Rather than relying on a reward function, IL learns a policy directly from a set of
pre-collected expert demonstrations, which are transition data logged from a near-optimal policy
(Pomerleau & Al (1991} Ho & Ermon, 2016).

In many real-world tasks, ensuring the safe and proper functioning of agents is crucial. To achieve
this, we can impose constraints that define the feasible set of actions for the agents. Classic examples
include optimally allocating network resources under capacity constraints (Xu et al.L[2018;|Gu et al.,
2019; Zhang et al., |2020) and robot control under kinematic limitations that prevent damage to the
robot’s physical structure (Pham et al.,[2018b; [Gu et al., 2017; Jaillet & Portal 2012; Tsounis et al.,
2020). Additionally, in many IL scenarios, the performance gap between the expert and the imitator
must be considered. For example, if data is collected using a human to perform tasks, the imitator,
which may be a robot with hardware limitations, is likely to be unable to replicate the large-scale
human actions. In this case, action constraints are essential to ensure the imitator can safely perform
tasks within its own capabilities while still learning from the expert’s behavior. While there has been
substantial research on action-constrained reinforcement learning (ACRL) (Kasaura et al., 2023 |Lin
et al., 2021} |Brahmanage et al.| 2023} |Chen et al., 2024), surprisingly, little attention has been given
to action-constrained imitation learning (ACIL).

To ensure that the actions generated by the policy adhere to specific constraints during both training
and evaluation, most existing ACRL methods incorporate a projection layer on top of the policy
network (Chow et al 2018 [Liu et al., [2020; |Gu et al., 2017). However, such an approach can
cause issues in IL. Most IL approaches aim to minimize the discrepancy between the occupancy
measure of the expert demonstrations and that of the imitator (Pomerleau & Al [1991;|Ho & Ermon,
2016). When expert actions lie outside the feasible action set, the projection layer can prevent the
imitator from accurately matching the occupancy measure of the expert, especially in cases with

Under review as a conference paper at ICLR 2025

(a) Starting point (b) Unconstrained case (c) Action-constrained case

Figure 1: (a) The green sphere starts in the bottom-right corner and navigates toward the red sphere
(goal). (b) A policy trained via BC successfully executes a U-turn to reach the target. (c) However,
when the box constraint is applied by projection, the sphere struggles to make the sharp U-turn and
ends up colliding with the wall.

more restrictive action sets. This issue leads to ambiguity in distribution matching for IL methods
under action constraints, a problem we term “occupancy measure distortion.”

To better illustrate the issue of occupancy measure distortion, let’s consider a simple example of a
Maze2d goal-reaching task, as shown in[Fig I. (a)} In this task, the green sphere (agent) needs to nav-
igate towards the red sphere (goal), using a two-dimensional action space that controls the force ap-
plied along the x- and y-axes. An unconstrained policy trained by behavior cloning (BC)(Pomerleaul
[1991)), based on five expert trajectories, can successfully turn left, avoid colliding with the
walls, and reach the goal (Fig T. (b)). Now, consider a weaker agent with a smaller feasible action
set, where a projection layer is applied to its policy network. This weaker agent lacks the force to
turn as quickly as the unconstrained agent, resulting in a collision with the wall of the space we
carved out and getting stuck. This example demonstrates how occupancy measure dis-
tortion prevents the agent from accurately replicating the expert’s trajectory. Without following the
expert’s path, the action-constrained agent suffers from the distribution shift, and even encounters
unexpected dangers in the environment.

Another approach to preventing learning infeasible actions is to focus on matching the state distribu-
tion rather than the state-action distribution of expert demonstrations, a scenario known as Learning
from observation (LfO). However, they cannot fully avoid issues related to mismatched state dis-
tributions, especially with constrained actions, and they typically require a substantial amount of
interaction data with the environment.

The most effective way to eliminate occupancy measure distortion is to ensure that both the expert
demonstrations and the learner share the same feasible action set, as this would prevent any distortion
from occurring. To accomplish this, we recast trajectory alignment as a planning problem, aiming to
generate trajectories that closely resemble the original expert trajectories but consist of constrained
actions as surrogate expert demonstrations. We leverage Model Predictive Control (MPC)
due to its flexibility in defining objective functions and its compatibility with various
constraints. Unlike existing MPC approaches, which primarily focus on optimizing short-horizon
returns during planning, we optimize for the similarity between the rollout trajectories and the ex-
pert trajectories. To quantify this similarity, we employ Dynamic Time Warping (DTW)
[1978), which allows us to compare trajectories that have different pacing of behaviors. In this
paper, we introduce Dynamic Time Warping Imitation Learning (DTWIL), an algorithm designed
to generate surrogate action-constrained demonstrations and learn the corresponding policy. Our ex-
periments demonstrate that DTWIL outperforms a range of benchmark IL algorithms in navigation
and locomotion tasks, particularly in terms of sample efficiency, while being less susceptible to the
challenges posed by occupancy measure distortion.

2 RELATED WORK

Action constrained Reinforcement Learning To the best of our knowledge, no prior work has
specifically addressed the problem of ACIL, which tackles the capability gap between the expert and
the learner agent. Therefore, we refer to ACRL methods to define the problem setting in this paper.

Under review as a conference paper at ICLR 2025

Kasaura et al.|(2023)) provides a benchmark for evaluating existing ACRL approaches. Some works,
such as [Pham et al.| (2018a); |[Bhatia et al.| (2019); |Dalal et al.| (2018]), ensure safe and compliant
behavior by incorporating a differentiable projection layer at the end of the policy network to meet
action constraints. However, [Lin et al.| (2021)); Brahmanage et al.| (2023) highlight issues with this
approach, particularly the zero gradient and longer training times, and propose alternative methods.
Notably, Brahmanage et al.|(2023)); |Chen et al.| (2024) employ normalizing flows to directly gener-
ate actions that comply with the constraints, thereby circumventing the drawbacks associated with
projection layers.

Learning from Demonstration IL focuses on deriving a policy using only the information from
expert demonstrations, which also termed Learning from Demonstration (LfD). BC (Pomerleau &
Al [1991) approaches this by treating policy as a state-action mapping, learning it in a supervised
manner. Adversarial Imitation Learning (AIL), on the other hand, focuses on matching the state-
action distribution between expert and learner through adversarial training. GAIL (Ho & Ermon,
2016) is a foundational method in this domain, using a discriminator to distinguish between expert
and learner transitions, and providing rewards based on this discrimination. Various AIL extensions
(Kostrikov et al., |2019aib) improve on GAIL, tailoring the method to different environments and
goals. A comprehensive review of IL techniques can be found in [Zare et al.| (2024), but ACIL
remains unexplored in these surveys.

Learning from Observation An alternative approach to avoid the undesirable effects of projected
policy outputs after imitating expert actions is to learn from expert observation data only, which falls
under the scenario of Learning from Observation (LfO). Methods like GAIfO and IDDM (Torabi
et al., 2018bj Yang et al.,2019) follow the principles of GAIL by training a state-only discriminator.
OPOLO (Zhu et al., 2020) further improves on this by relaxing the on-policy requirement, speeding
up the learning process. BCO (Torabi et al.,|2018a)) takes a different approach by learning an inverse
dynamics model to infer the expert’s missing actions from observations, and then applying BC to
train the policy. CFIL (Freund et al.,|2023)), using a flow-based model to capture state or state-action
distributions, sets a new benchmark for LfO scenario. However, despite relying solely on expert
state information, these methods still overlook the capability gap between the expert and the learner
agent, and many of them depend on a large amount of environment interaction data.

Cross-Embodiment Imitation Learning Cross-Embodiment Imitation Learning focuses on
transferring knowledge or skills between agents with different physical structures, such as robots
with varying morphologies or dynamics. This field addresses the challenges of aligning state and
action spaces across embodiments to enable effective knowledge transfer. Approaches in this do-
main often leverage shared latent spaces, domain adaptation techniques, or hierarchical reinforce-
ment learning to bridge embodiment-specific differences. For example, modular policy frameworks
(Huang et al.,[2020) and domain randomization strategies (Tobin et al.| 2017)) have been employed
to achieve generalization across multiple embodiments. While ACIL also seeks to address the chal-
lenge of transferring knowledge across different agents, it does not consider differences in physical
structures. Instead, ACIL focuses on a unique problem setting where agents share action spaces of
the same dimension but differ in the scale or magnitude of their actions.

3 PRELIMINARIES

Problem Formulation We consider a Markov decision process (MDP) defined as a tuple M =
(S, A, T,r, po,), where S and A are the sets of feasible state and action respectively; 7" describes
the dynamics of the environments, with T'(s;1|st, a;) indicating the transition probability to next
state s, from the current state s; if the agent takes action a;; pg is the initial state distribution;
R : S x A — Ris the reward function; and v € [0, 1] is the discount factor. An agent follows
its policy m : & — A to interact with the environment of MDP with an objective of maximizing
long-term expected cumulative reward. In this paper, we consider action-constrained MDPs where
for each state s € S there is a feasible action set C(s) C A determined by explicit action constraints
incorporated. That is, the agent can only take actions from C(s) at each time step.

Model Predictive Control In actor-critic RL, solving an MDP is to find the optimal policy 7*
maximizing cumulative reward. In control, the optimal policy is formulated by maximizing a spe-

Under review as a conference paper at ICLR 2025

cific performance measure. MPC achieves this by utilizing a forward dynamics model f(s;,a;) of
the environment to explore various action sequences. This allows MPC to evaluate potential future
trajectories and select the one that best meets the defined objective J. A local solution to the trajec-
tory optimization at each step ¢ can be acquired by estimating the optimal action sequence ay.¢4
over a finite horizon H:

mmpc(st) = argmin E
at:t+H

ZJ(si,ai)l :)

i=t

The agent will execute the first action of the resulting action sequence, and repeat the procedure
again at the next time step. To improve action sampling, we can utilize the Cross-Entropy Method
(CEM) optimizer, which iteratively refines the mean (1) and standard deviation (o) of a multivariate
Gaussian distribution by sampling actions, evaluating them, and updating the distribution based on
the best samples over a finite horizon. In this work, we employ an MPC implementation based on
Probabilistic Ensembles with Trajectory Sampling (PETS) as proposed by (Chua et al.|(2018)). PETS
integrates probabilistic neural networks to model the dynamics of the environment, utilizing an en-
semble of learned models to estimate uncertainty in predictions. This ensemble approach allows for
more robust decision-making by accounting for variability in the system. In practice, PETS inter-
acts with the environment by iteratively predicting future states based on the current state, choosing
actions that maximize a given reward function while considering uncertainty, and then updating its
models as new data is collected. This method significantly reduces the sample complexity, allowing
the agent to perform well after a limited number of interactions with the environment.

Dynamic Time Warping DTW (Hiroaki & Chibal [1978) is an algorithm designed to measure the
similarity between two temporal series data that may not align perfectly in time. It is particularly
useful in scenarios where trajectories, such as those generated by agents with different action con-
straints, differ in speed or timing but represent the same underlying behavior. The core of DTW lies
in the calculation of the optimal warping path p* and the resulting DTW distance, which quantifies
the alignment cost. Specifically, let x = {z1,29,...,2,} and y = {y1,¥2,...,Ym} denote two
sequences of length n and m, respectively, then the DTW distance between x and y is given by

DTW Distance(x,y) = Y |z —y;|* = min D i =yl
(@.5)€p (i.3)€p
where p = {(ir, jx)}i_, is a warping path such that:
l.i.;=1and j; =1,
2.9 =nand jg = m,
3.1, <igy1 and ji < jpqq forall £,
4. Jigs1 —ix| < land |jr11 — Jr| < 1 forall k.

Algorithm 1 Dynamic Time Warping Imitation Learning (DTWIL)

1: Input: Expert demos 7 = {7}, planning horizon H, ERC horizon A, number of particles
P, dynamics model ensembles f, training dataset D = {7} |, the number of episodes to run
K

2: BC dataset Dpc « {}

3: for Iteration £ = 1 to K do .

4: Select an expert trajectory 7°

5: Train f with D

6: 7% < Trajectory Alignment(7*)

7: D+—DuUr“

8: if no alignment of 7 in Dpc or DTWDistance (7%, 7¢) < DTWDistance(Dgc|[i], 7°) then
9: Dgc [Z} «— 7¢
10: end if

11: end for

12: Train a BC policy with Dgc

Under review as a conference paper at ICLR 2025

RN RO NOIC

(a) Final expert state is not excluded (b) Final expert state is excluded

Figure 2: Effect of excluding the final expert state on the DTW warping path. Including the final
expert state Figure [2a] leads to a 1-to-1 alignment since both trajectories have the same number of
states. Excluding it Figure 2b] prevents state from advancing, yielding a more desirable matching.
The total arrow length represents the DTW distance.

4 METHODOLOGY

Our motivation is to generate a surrogate demonstration dataset that aligns with expert trajectories
while operating within constrained action spaces , and later utilize this surrogate data set to train
a BC policy for generalization. To this end, we recast the alignment issue as a trajectory planning
task, where a trajectory of the agent is designed to follow the expert demonstration. As mentioned in
Section 3] we leverage the PETS framework (Chua et al., 2018) to optimize the expected outcomes
of sampled actions. In this process, we replace the environment reward with DTW (Hiroaki & Chiba,
19778) distance as our key criterion for selecting actions, ensuring better alignment with the expert
trajectory. Additionally, to handle the complexities of environments requiring precise movements,
we introduce Expert Regularized Control (ERC), inspired by Actor Regularized Control (ARC)
(Sikchi et al.|[2021)), into the trajectory sampling process, improving the alignment’s effectiveness.

In the following sections, we detail our implementation of DTW distance as the action selection
criterion in Section[4.1] highlighting its role in aligning the agent’s trajectory with that of the expert.
Section {.2] introduces ERC and its integration into the trajectory sampling process. The compre-
hensive pseudo code for DTWIL can be found in Algorithm I} and the pseudo code for trajectory
alignment is presented in Algorithm 2] and

4.1 TRAJECTORY ALIGNMENT

Due to the asynchronous nature of the rollout pacing between the expert demonstration and the
constrained agent, step-by-step alignment is not feasible. To address this, we incorporate DTW
to evaluate the alignment and select the most appropriate planning trajectory that corresponds to
the expert demonstration. In the following sections, we explain how DTW distance is utilized as
a criterion for the MPC controller in PETS framework in Section [£.1.1] and how we determine the
expert demonstration segment to be aligned at each step in Section[#.1.2}

4.1.1 DTW CRITERIA

To utilize DTW as a reference, we first introduce a progression parameter, ¢ps, which indicates the
timestep of the expert state with which the constrained agent is currently aligned. For instance, if
the current progress is at t,,, and the planning horizon is set to H, the targeted segment of the expert

trajectory for alignment would be s‘zp (tpetH)? where s§ denotes the ¢-th expert state.
g g

Let the current timestep be ¢, the current progress be ., and the H-step planning trajectory rolled
out by the action sequence A and a dynamics model fp be s.(;4 7). The optimal planning action
sequence A* is then defined as:

A* — argjnin E DTWDistance(sipg:(tpg+H), st:(t+H))} . 2)

We approximate the solution to the optimization problem by employing a CEM optimizer, which
samples 500 candidate action sequences and selects the one with the smallest DTW distance to the
expert trajectory. To address variations in scale across different dimensions, we normalize both

Under review as a conference paper at ICLR 2025

Algorithm 2 Trajectory Alignment

1: Input: Planning horizon H, ERC horizon he, number of particles P, dynamics model ensem-
bles f, i-th expert trajectory 7° = {(s°, a%)}._,, constrained action space C(s).

2: Qutput: 7%

3: Agent’s initial state s <— s;;, progression t,, < 0, time step ¢ <— 0, alignment 7% «+ {}

4: Action projection function Proj()

5: while ¢ < max_episode_steps and t,, < [do

6 ift,, + H > [then

7 Pad the target expert segment to length= H with s;".

8

end if

9: for Particle p = 1 to P do
10: for Action sampled af h from CEM, h = 0to H do
11: if h < her then

12: aryp, < BProj(ai vty | Cmnaernn)) + (1= B)aiy,
13: end if

14: Sf—l—h+1 = f(sf-&-h‘azz—i-h)

15: end for

. e

16: |p|lprw < DTWDistance(s",,, , s(tpg):(tpﬁH))
17: end for

18: p* < argmin,, [|p|lprw

19: Update CEM distribution
20: Execute af and get s;41
21: T = 7% U (84,0l)
22: if Progression has advanced in the warping path then
23: tpg < tpg + 1
24: end if

25: end while

the planned trajectory and the corresponding expert trajectory segment prior to computing the DTW
distance. Specifically, each dimension is linearly scaled such that the minimum and maximum values
of the expert trajectories are mapped to 0 and 1, respectively. To ensure compatibility with the action-
constrained setting, we adapt the CEM optimizer through rejection sampling, strictly enforcing that
all sampled actions satisfy the imposed constraints. Subsequently, the MPC controller executes the
first action of A*.

4.1.2 PROGRESSION MANAGEMENT

The progression parameter, ?p, is initialized to O at the start of every trajectory alignment. After
each action, we update ¢, by analyzing the warping map to determine how many expert states the
agent’s action has advanced. Notably, when constructing the warping path, the final expert state in
the segment is excluded from the matching calculation to prevent unintended progression when the
agent exhibits minimal movement across consecutive actions. Specifically, when two trajectories
have an equal number of states, DTW often tends to align states in a strictly 1-to-1 manner, which
can mislead progression. By excluding the final expert state, the DTW algorithm is encouraged
to create a 2-to-1 alignment during the matching process. Given the constrained actions, which
naturally take smaller steps than expert actions, this 2-to-1 alignment often occurs in the initial few
states. Consequently, if the agent’s first planning state, s1, is not sufficiently close to the next expert
state, s9, it is more likely to be matched with the current expert state, sf. This concept is illustrated
in Figure 2]

Figure [3|shows how this advancement value is determined. The advancement value is then added to
ipg after every MPC step.

4.2 EXPERT REGULARIZED CONTROL

In environments that demand precise movements, even small errors can lead to significant disrup-
tions. To mitigate this, we incorporate expert actions into the sampled actions as guidance , termed

Under review as a conference paper at ICLR 2025

Expert Expert
s¢ s§ s§ s3 s§ s§ s5 S5
e e
£ S1 g S1
& &0
< S» < S»
S3 S3
(a) Progression Advancement = 0 (b) Progression Advancement = 1

Figure 3: Since the MPC controller executes only the first planning step per iteration, we focus on
the number of expert states the agent advances after the initial action ag. The figure shows two DTW
warping path cases (green patches). In Figure[3a] the agent transitions from sg to s; while staying
aligned with sg causing no progression (t,, unchanged). In Figure@ the agent advances to the next
expert state, updating tpg to tpe + 1.

ERC. Specifically, the actions used to rollout the planning trajectories in the MPC controller become
the weighted average of the sampled actions and a corresponding segment of the expert demonstra-

tion. To implement this, we first extract a specific segment a5 . (tpathe)’ from the expert actions
pg - \Upg T flerc

a®, where he. is the horizon over which expert actions are blended. Then, given the dynamics
model ensembles f(s,a), a specific weight 5 € [0, 1], and the projection function Proj(a|C(s)),
which projects an action a onto a specific constrained action space C(s), ERC guide the trajectory
generation with the following functions:

Forh=0,1,..,H :

. sampled
ap = ﬂ Pro‘](a;pg+h | Sh) + (1 - 5) a;;lmpe) if h <= herc 5 (3)
a:fmp]ed , if h > here
Sh+1 = f(sha (lh))
where ay, is the h™ action step in an H-step planning trajectory, a}"™* is the ™ action directly

sampled from a CEM optimizer, and sy, is the h'" state of the planning trajectory.

The performance of our algorithm in environments where agents are highly susceptible to devi-
ations—such as Hopper, where falling results in early termination—is significantly enhanced by
incorporating ERC. A detailed analysis of this improvement is presented in Section[5.6]

5 EXPERIMENTS

In this chapter, we assess DTWIL across a range of randomly initialized continuous control tasks
in navigation and locomotion environments, each subject to different constraints. We compare our
results against both offline baselines and online baselines. For a fair comparison, we allocate the
same number of environment steps to the online baselines as we do to DTWIL.

Two types of constraints are applied: box constraints and state-dependent constraints. A box con-
straint, denoted as Box(cpoy), restricts each action dimension to the range [—Cpox, Chox]> Where Cpox
is a positive constant. In contrast, a state-dependent constraint varies based on the agent’s current
state. To ensure that these baseline methods adhere to the constrained action domains, we project
their generated actions onto the nearest feasible actions based on the Lo norm.

5.1 CONSTRAINED ENVIRONMENTS

Maze2d (Fu et al.,[2020) To evaluate our method on a navigation task, we selected the Maze2d-
Medium-v1 environment. This task involves a point-mass agent navigating a 2D maze from a ran-
domly chosen start location to a goal. The original action set is a 2-dimensional vector (v, v2) with

Under review as a conference paper at ICLR 2025

Figure 4: We evaluate the impact of action constraints on DTWIL and baseline methods across three
environments : Maze2d-Medium-v1, HalfCheetah-v3, and Hopper-v2.

each element in the range [—1.0, 1.0]. We impose an Box(0.1) constraint and a state-dependent con-
straint M+O defined as ¥7_, |v;w;| < 0.5 on agent actions, where (w1, w5) represent the velocities
in the x and y directions, respectively. For this task, we collected 100 demonstrations, resulting in a
total of 18,525 state-action pairs for training.

HalfCheetah (Brockman et al.,2016) The task involves controlling a bipedal cheetah agent to
run forward by applying torque to its joints. The action space consists of a 6-dimensional vector
(v1,v2, ..., v6), where each component is bounded by [—1, 1]. We introduce a Box(0.5) constraint
and a state-dependent constraint HC+O defined as E?zl |v;w;| < 10, where w; denotes the angu-
lar velocity of the ¢-th joint, a component of the agent’s state. We rely on five 1000-step expert
demonstrations for training.

Hopper (Brockman et al.,2016) The task requires controlling a robot to hop forward by applying
torques to its hinges. The action is represented by a 3-dimensional vector (vq, ve, v3), with each
value constrained between [—1.0,1.0]. We also impose two separate constraints on this task. The
first one is a Box(0.9) constraint, while the second introduces a state-dependent constraint H+M:
Zg’zl |v;w;| < 10, where w; denotes the angular velocity of the i-th joint, which is part of the robot’s
state. For training, we use five expert demonstrations, each consisting of 1000 state-action pairs.

5.2 BASELINES

To ensure that the action outputs of various baseline methods meet specific constraints, we incorpo-
rate a projection layer into each method’s policy, allowing the action outputs to remain within the
feasible set. We append “+P” to the names of each baseline method to denote the versions of the
algorithms that include a projection layer.

* BC+P (Pomerleau & A}, [1991): BC formulates policy learning as a supervised problem,
treating the policy as a mapping between states and actions.

* BCO+P (Torabi et al.,[2018a): BCO is a LfO method, learning an inverse dynamics model
to infer action from state-only data and applying BC to learn a policy.

e GAIL+P (Ho & Ermon, [2016): GAIL is an online LfD method that utilize a generative
adversarial network (GAN) to infer the underlying reward function.

¢ GAIfO+P (Torabi et al., 2018b): Similar to GAIL but only learning from observations,
GAIfO is an AlL-based online LfO algorithm.

* OPOLO+P (Zhu et al.,2020): OPOLO is an online LfO method. Leveraging off-policy
learning, OPOLO ranks among the most effective LfO techniques.

* CFIL-s+P/ CFIL-sa+P (Freund et al.,[2023): CFIL utilize a flow-based model to capture
state or state-action distributions, sets a new benchmark for LfO scenario. The LfD version
of CFIL is denoted as CFIL-sa, and LfO version of CFIL is denoted as CFIL-s.

Under review as a conference paper at ICLR 2025

5.3 PERFORMANCE COMPARISON

In all tasks, DTWIL only interacts with the environment using MPC for no more than 50K steps.
To ensure a fair comparison, we limit the interaction for all online IL methods to 50K environment
steps during training. All results are evaluated with randomly initialized starting states.

Following this, the best-performing model from each algorithm during these interactions was se-
lected for final evaluation. This ensures that the results reflect the effectiveness of each method
within a limited sample regime, providing a fair comparison across environments while emphasiz-
ing sample efficiency.

Task Maze2d box Maze2d M+O HalfCheetah Box HalfCheetah HC+O Hopper Box Hopper H+M
BC+P 0.61 £0.05 0.81£0.05 1815.51 + 303.89 2753.86 + 27.34 2204.83 +753.32 1233.96 +211.87
GAIL+P 0.22+0.0 0.14 £0.05 -163.63 +47.47 -185.53 £ 66.11 360.97 +59.19 261.83 +81.41
BCO+P 0.14 £0.05 0.88 + 0.06 -4.05 +£4.07 6.23 +£31.85 219.46 +20.33 224.25 +32.81
GAIfO+P 0.07 £0.02 0.19 +0.08 -74.77 £ 32.98 -163.84 + 33.79 197.36 + 30.12 206.37 +19.19
OPOLO+P 0.2+0.06 0.64+0.13 -605.84 +390.21 -9.12 + 80.47 1068.3 + 952.96 228.28 + 33.10

CFIL-sa+P 0.23 +0.21 047 +0.10 -95.67 £515.43 1674.75 £ 1316.81 1485.74 £ 677.37 1553.86 + 1096.28
CFIL-s+P 0.23 +£0.06 045+0.12 -172.56 +738.44 1422.98 +1830.51 866.27 £249.20 1443.06 + 547.59

DTWIL 0.77 £ 0.04 0.87 +0.04 2669.41 £ 4.56 2637.34 +26.82 2844.68 £ 57.77 2873.88 + 240.46

Table 1: Evaluation performance of the proposed method and baseline algorithms across various
tasks, with results expressed as the mean and standard deviation calculated from three seeds.

Based on the experimental results, the BC+P algorithm maintains basic functionality across all tasks
but is still affected by action constraints, which hinders its ability to replicate expert-level perfor-
mance. This limitation is particularly noticeable in the Hopper environment, where a single fall
results in the episode ending prematurely, further hindering its performance. The rigid constraints
imposed on the actions make it challenging for BC+P to generalize well in tasks requiring smooth
and dynamic control.

Moreover, the other online algorithms such as GAIL+P and OPOLO+P face dual challenges. Not
only are they affected by the same action constraints, but they also suffer from poor sample ef-
ficiency, which leads to subpar performance across all tasks. These methods, despite interacting
with the environment, cannot recover expert-like behavior within the limited number of interaction
steps, contributing to their consistently low scores. While BCO+P show competitive performance in
simpler tasks like Maze2d M+O, they fall short in more complex environments.

In contrast, DTWIL, which learns from surrogate expert data and adopts a BC approach to learn
the policy, perform well across all tasks. By learning from the surrogate data to match the expert
trajectories and using BC for policy learning, DTWIL manages to replicate expert performance
while maintaining sample efficiency. As a result, it successfully reproduces expert-like trajectories
across tasks, without being adversely affected by the constraints that cripple other methods. The
results of training the various baseline methods for sufficient steps are included in Appendix[A.3]

5.4 PREVENTION FROM UNINTENDED PROGRESSION

To mitigate unintended progression of the param-

eter ¢y, as detailed in @ we exclude the ter-

minal state of the alignment target during com- e A il et
putation. As demonstrated in Table [2] this ad- DTW-S 299+0.75 2.99+0.82
justment significantly enhances performance in Return-S 0.76 = 0.0 0.69+0.0

the Maze2d-Medium environment under box con- Return-BC 0.77+£0.04 0.72 £ 0.03
straints. Specifically, excluding the final expert
state when determining the DTW warping path im- Table 2: Results comparison of whether the
proves the returns obtained during both the trajec- final expert state is excluded when calculat-
tory alignment phase and the subsequent behavioral ing the warping path in Maze2d-Medium un-
cloning (BC) phase. These results validate the ef- der the box constraint.

fectiveness of the proposed modification in stabiliz-

ing and optimizing the alignment process.

Under review as a conference paper at ICLR 2025

Task HalfCheetah Box HalfCheetah Box-Sync Hopper Box Hopper Box-Sync

DTW-S 15.17 £ 0.24 15.06 = 0.12 11.70 + 6.02 27.68 +0.26
Return-S 2576.20 £ 61.62 2590.31 + 24.07 2527.63 £572.53 418.73 £ 89.35
Return-BC 2669.41 + 4.56 2594.28 + 29.80 2844.68 + 57.77 153.52 £ 1.20

Table 3: Comparison of results between asynchronous and synchronous progression methods.
DTW-S denotes the DTW distance between the generated surrogate trajectories and the expert trajec-
tories, Return-S indicates the average return of the surrogate expert data, and Return-BC represents
the average return of BC policy trained on this surrogate expert data.

5.5 ASYNCHRONOUS PROGRESSION UPDATE

In this section, we compare two approaches to progression management. The first is asynchronous
progression, where the parameter ¢, is updated in tandem with the warping path. This method is
primarily used in our algorithm. The second is synchronous progression, where ¢, increases by 1
with each step, matching the expert’s pace. Given that agents with constrained actions typically take
longer to replicate expert behavior, asynchronous progression is more sensible. Table [3] presents
the full experimental results for both methods. While the differences on HalfCheetah are minimal,
asynchronous progression significantly outperforms on Hopper.

5.6 EXPERT REGULARIZED CONTROL

We evaluate the effectiveness of our ERC de-
sign in the Hopper environment. Tabledgmon- Without ERC With ERC
strate a clear performance difference: without

ERC, the agent frequently falls, leading to sig- Return-S 820.7 £84.8 2527.6 £572.5
nificantly lower rewards and shorter trajectories. ~ Return-BC ~ 889.7 £ 5.4 2844.7 + 57.8
In contrast, incorporating ERC stabilizes the
agent’s behavior, allowing it to generate surro- Table 4: Comparison of results with and without
gate trajectories of appropriate length and main- ERC applied during action sampling in Hopper.

tain consistent performance throughout the task.

This highlights the importance of ERC in en-

abling robust and reliable imitation under action-constrained settings. Refer to Appendix for
detailed hyperparameter tuning.

6 CONCLUSION

ACIL has the potential to greatly influence real-world robot training, as real robots often oper-
ate under constrained action spaces due to limited power, mechanical imperfections, or restricted
capabilities resulting from wear and tear. These limitations present challenges that previous meth-
ods have not effectively addressed. In this paper, we highlight that directly learning from expert
demonstrations using agents with constrained action spaces introduces several issues, including oc-
cupancy measure distortion and asynchronous progression. These challenges cannot be resolved by
traditional RL and IL methods because of the inevitable progression gap between expert and agent
trajectories. To address this, we propose the first-ever ACIL method, DTWIL, which effectively
bridges the gap caused by asynchronous time series alignment. DTWIL leverages DTW distance
as a reference to select optimal actions in a MPC framework, and incorporates Actor Regularized
Critic (ARC) to stabilize the sampled actions. As a result, our approach outperforms methods heav-
ily reliant on projection in multiple environments, demonstrating that a dedicated algorithm for the
ACIL problem is both effective and necessary. Our results indicate that as long as the computational
cost of DTW is manageable, DTWIL achieves exceptional performance on ACIL tasks. As the first
contribution to the ACIL research field, we hope our work inspires further research. Future efforts
could focus on developing ACIL algorithms that handle more complex environments with greater
efficiency.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Abhinav Bhatia, Pradeep Varakantham, and Akshat Kumar. Resource constrained deep reinforce-
ment learning. In Proceedings of the International Conference on Automated Planning and
Scheduling, volume 29, pp. 610-620, 2019.

Janaka Brahmanage, Jiajing Ling, and Akshat Kumar. FlowPG: Action-constrained Policy Gradient
with Normalizing Flows. Advances in Neural Information Processing Systems, 2023.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv:1606.01540, 2016.

Changyu Chen, Ramesha Karunasena, Thanh Nguyen, Arunesh Sinha, and Pradeep Varakantham.
Generative modelling of stochastic actions with arbitrary constraints in reinforcement learning.
Advances in Neural Information Processing Systems, 36, 2024.

Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A Lyapunov-
based approach to safe reinforcement learning. In Advances in Neural Information Processing
Systems, pp. 8103-8112, 2018.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. Advances in neural information
processing systems, 31, 2018.

Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru, and Yuval
Tassa. Safe exploration in continuous action spaces. arXiv:1801.08757, 2018.

Gideon Joseph Freund, Elad Sarafian, and Sarit Kraus. A coupled flow approach to imitation learn-
ing. In International Conference on Machine Learning, pp. 10357-10372, 2023.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv:2004.07219, 2020.

Lin Gu, Deze Zeng, Wei Li, Song Guo, Albert Y Zomaya, and Hai Jin. Intelligent VNF orchestration
and flow scheduling via model-assisted deep reinforcement learning. IEEE Journal on Selected
Areas in Communications, 38(2):279-291, 2019.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates. In IEEE International Conference
on Robotics and Automation (ICRA), pp. 3389-3396, 2017.

Sakoe Hiroaki and Seibi Chiba. Dynamic programming algorithm optimization for spoken word
recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1978.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in Neural
Information Processing Systems, pp. 4565—-4573, 2016.

Wenlong Huang, Igor Mordatch, and Deepak Pathak. One policy to control them all: Shared modular
policies for agent-agnostic control. In International Conference on Machine Learning, pp. 4455—
4464. PMLR, 2020.

Léonard Jaillet and Josep M Porta. Path planning under kinematic constraints by rapidly exploring
manifolds. IEEE Transactions on Robotics, 29(1):105-117, 2012.

Kazumi Kasaura, Shuwa Miura, Tadashi Kozuno, Ryo Yonetani, Kenta Hoshino, and Yohei Hosoe.
Benchmarking actor-critic deep reinforcement learning algorithms for robotics control with action
constraints. Robotics and Automation Letters, 2023.

Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan Tomp-
son. Discriminator-actor-critic: Addressing sample inefficiency and reward bias in adversarial
imitation learning. In International Conference on Learning Representations, 2019a.

Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distribution
matching. In International Conference on Learning Representations, 2019b.

11

Under review as a conference paper at ICLR 2025

Jyun-Li Lin, Wei Hung, Shang-Hsuan Yang, Ping-Chun Hsieh, and Xi Liu. Escaping from zero gra-
dient: Revisiting action-constrained reinforcement learning via Frank-Wolfe policy optimization.
In Uncertainty in Artificial Intelligence, 2021.

Anqi Liu, Guanya Shi, Soon-Jo Chung, Anima Anandkumar, and Yisong Yue. Robust regression for
safe exploration in control. In Learning for Dynamics and Control, pp. 608-619. PMLR, 2020.

Tu-Hoa Pham, Giovanni De Magistris, and Ryuki Tachibana. Optlayer-practical constrained opti-
mization for deep reinforcement learning in the real world. In 2018 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 6236-6243. IEEE, 2018a.

Tu-Hoa Pham, Giovanni De Magistris, and Ryuki Tachibana. Optlayer - practical constrained opti-
mization for deep reinforcement learning in the real world. In IEEE International Conference on
Robotics and Automation (ICRA), pp. 6236—6243, 2018b.

Pomerleau and Dean A. Efficient training of artificial neural networks for autonomous navigation.
Neural computation, 3(1):88-97, 1991.

J. Richalet, A. Rault, J. L. Testud, and J. Papon. Model predictive heuristic control: Applications to
industrial processes. Automatica, 14(5):413-428, 1978.

Harshit Sikchi, Wenxuan Zhou, and David Held. Learning off-policy with online planning. In
Conference of Robot Learning, 2021.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Do-
main randomization for transferring deep neural networks from simulation to the real world. In
2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 23-30.
IEEE, 2017.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. In Proceedings
of the 27th International Joint Conference on Artificial Intelligence, pp. 4950-4957, 2018a.

Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from observation.
arXiv preprint arXiv:1807.06158, 2018b.

Vassilios Tsounis, Mitja Alge, Joonho Lee, Farbod Farshidian, and Marco Hutter. Deepgait: Plan-
ning and control of quadrupedal gaits using deep reinforcement learning. IEEE Robotics and
Automation Letters, 5(2):3699-3706, 2020.

Zhiyuan Xu, Jian Tang, Jingsong Meng, Weiyi Zhang, Yanzhi Wang, Chi Harold Liu, and Dejun
Yang. Experience-driven networking: A deep reinforcement learning based approach. In IEEE
Conference on Computer Communications (INFOCOM), pp. 1871-1879, 2018.

Chao Yang, Xiaojian Ma, Wenbing Huang, Fuchun Sun, Huaping Liu, Junzhou Huang, and Chuang
Gan. Imitation learning from observations by minimizing inverse dynamics disagreement. Ad-
vances in neural information processing systems, 32, 2019.

Maryam Zare, Parham M Kebria, Abbas Khosravi, and Saeid Nahavandi. A survey of imitation
learning: Algorithms, recent developments, and challenges. IEEE Transactions on Cybernetics,
2024.

Junjie Zhang, Minghao Ye, Zehua Guo, Chen-Yu Yen, and H Jonathan Chao. CFR-RL: Traffic
engineering with reinforcement learning in SDN. IEEE Journal on Selected Areas in Communi-
cations, 38(10):2249-2259, 2020.

Zhuangdi Zhu, Kaixiang Lin, Bo Dai, and Jiayu Zhou. Off-policy imitation learning from observa-
tions. Advances in neural information processing systems, 33:12402—12413, 2020.

12

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 CEM OPTIMIZER

Our implementation of the CEM optimizer closely follows the approach used in PETS (Chua et al.}
2018)), where a momentum term is added into the update calculations, and bounds are imposed on
the standard deviations in addition to the standard CEM optimization.

Specifically, if a distribution at CEM iteration 4, N'(u;, 02), is updated toward a target distribution
N (fuearget asﬁget) the resulting updated distribution at iteration 7 + 1, N(pit1,02,), will be given

by:

N (pita, 01'2+1) = N(api + (1 —) tuarget, O‘UiQ +(1- O‘)U?arget), a €[0,1], 4)

and the value of o7 is further constrained by %w, where w represents the minimum distance from p;
to the bounds of the feasible action space.

Moreover, to adapt the CEM optimizer for our action-constrained setting, we employ rejection sam-
pling to ensure that all sampled actions strictly adhere to the predefined constraints.

A.2 DYNAMICS MODEL

In this work, we train an ensemble of probabilistic neural networks to model the system’s dynamics.
Specifically, we utilize ensembles of five dynamics models, where the bt model, fo,» 1s parameter-
ized by 6. Each network in the ensemble is trained to minimize the negative log-likelihood of the
predicted outcomes, optimizing the following objective:

N
£(9b) = - Z log f&b(sn-‘:-l'sm an)-)

n=1

Referring to the ensembles used in PETS (Chua et al.l 2018), we define our network to output a
Gaussian distribution with diagonal covariance parameterized by 6 and conditioned on s,, and a,,,
e f=Pr(siti1]se, ar) = N(po(se,ar), > (e, a¢)). In this specific case, Eq. (5) becomes:

N
9b = Z M@b Sn; an anrl]—r 2911 (sn7 an) [/Jé)b (Sna an) - 5n+1] + log det 291, <3n7 an)a
(6)

The next states are obtained in the same manner as T'Sco described in PETS.

Additionally, to mitigate the risk of over-fitting that can occur when a dynamics model is trained
solely on expert trajectories, we augment the training data with online agent experiences and itera-
tively retrain the dynamics models.

A.3 TRAINING CURVES FOR BASELINE METHODS WITH ADDITIONAL STEPS

In Section[5.3] we presented the performance of DTWIL and various baseline methods when inter-
acting with the environment for up to 50K steps, focusing on sample efficiency. In Figure [5] we
showcase the training curves of baseline methods over 500 thousand steps, which is 10 times the
original limit. These results reveal that methods like CFIL and OPOLO can train effective poli-
cies on multiple tasks when granted sufficient interaction steps. However, compared to DTWIL,
which requires only the training of an MPC dynamics model to generate surrogate expert demon-
strations, these online LfO methods demand significantly more interaction steps, highlighting their
inefficiency relative to DTWIL.

13

Under review as a conference paper at ICLR 2025

HalfCheetah-v2 Box Hopper-v2 Box maze2d-medium-vl Box
2500 (7 |
3000
2000 f
2500 |
1500 _ H / \)
g 2 CFiLs £ 2000 | AR i’) \/
::: 1000 o 51500 ; N/ \ I\
@ s00/ BCO v | \/
© | —— opoLO 5 |
[P — — GAIfo 000) 7 Y,
Y-) A WP GAIL | 7= \
-500. . / — DTWIL s00, J_/ oA
_1000 BC+P o
10 20 30 a0 o 10 20 30 a0 0 1 20 30 a0
Interaction Steps (1e4) Interaction Steps (1e4) Interaction Steps (1e4)
HalfCheetah-v2 HC+0 Hopper-v2 H+M maze2d-medium-vl M+0
3000 P\ Y il
e 2500 [N 1 |
| 0.6 |
#2000 | / #2000 | 008 |
5 51500/ 5
{ 1500/ | f \ V! \
@ 1000 9 | A\£ S %4 A e AR
== 1000, SN ~ = WO
ol | /f \ 02)
o — 500 i
f = — |
| o 0.0
0 10 20 30 a0 o 10 20 30 a0 0 1 20 30 a0
Interaction Steps (1e4) Interaction Steps (1e4) Interaction Steps (1e4)

Figure 5: Training curves for baseline methods over 1 million interaction steps across multiple tasks.

A.4 DTW INPUT NORMALIZATION

Typically, trajectories are normalized before being fed into the DTW calculation, as described in
[.1.1] In this section, we analyze the impact of this normalization. Table[5]shows an ablation study
on HalfCheetah and Hopper with their respective box constraints. We observe a performance drop
in both environments when this normalization step is omitted from DTWIL. This is because, with-
out normalization, DTW becomes disproportionately influenced by dimensions with larger scales,
leading to poor generalization. Conversely, when the states are normalized in advance, DTW treats
each dimension equally, resulting in more effective warping.

Task HalfCheetah Box HalfCheetah Box w/o N Hopper Box Hopper Box w/o N

Return-S 2576.2 + 61.62 1667.46 +51.13 2527.63 +572.53 608.18 + 208.20
Return-BC 2669.41 + 4.56 1893.9 £ 71.56 2844.68 + 57.77 281.13 £31.88

Table 5: Impact of DTW input normalization on performance. Return-S represent the average return
of surrogate expert data, while Return-BC denotes the average evaluation return of the BC policy
trained on this surrogate data. “W/o N” indicates results obtained without applying DTW input
normalization.

B=0 8 =0.02 B =0.05 B =0.1 B8=02

Return-S 820.71 +84.78 149297 £ 144.35 2527.63 £572.53 1657.47 +286.44 670.72 + 328.28
Return-BC ~ 889.65 £5.39 1138.85 +56.35 2844.68 +57.77 2167.3 £360.73 723.95 £ 345.70

herc =0 herc =5 herc =10 herc =20

Return-S 820.71 £ 84.78 2527.63 + 572.53 242525 +370.40 2166.99 +351.04
Return-BC ~ 889.65+5.39 2844.68 £ 57.77 2686.85 +135.64 2616.09 +102.90

Table 6: Impact of varying 5 and h.,.. values on performance in the Hopper task with H+M con-
straints. The table highlights the optimal balance between expert actions and MPC sampling, show-
ing the best-performing configurations for stability and action guidance.

A.5 HYPERPARAMETERS IN ERC

We explore the influence of the hyperparameter 5, which regulates the balance between expert ac-
tions and MPC-sampled actions in the ERC method. Additionally, we examine the effect of the

14

Under review as a conference paper at ICLR 2025

horizon length he,., which determines how many steps to blend MPC-sampled actions with expert
actions. We conducted experiments on the Hopper with H+M constraints, varying 8 from 0 to 0.2
and her from 0 to 30, while keeping all other hyperparameters fixed at their optimal values identi-
fied in prior tuning. As shown in Table[6] setting 5 to 0.05 resulted in the highest performance. A
lower (3 led to instability in the sampled actions, while higher values negatively impacted the MPC
optimization process. Regarding he., a value of 5 provided the best results. Extending the horizon
did not improve performance, as expert actions taken too far in the future became less informative
due to the action constraints.

A.6 COMPUTATIONAL TIME

In this section, we present the computational time of various baselines and DTWIL during infer-
ence. Table [/| reports the average computational time (in seconds) required to generate a single
action during inference in HalfCheetah, averaged over 5000 generations. As shown, methods with
state-dependent constraints require significantly more time due to the use of the projection function
implemented with Gurobi, whereas box constraints, which allow actions to be directly clipped, are
much faster.

DTWIL BC+P GAIL+P BCO+P GAIFO+P OPOLO+P CFIL-sa+P CFIL-s+P

HalfCheetah Box ~ 0.0002092 0.0002164 0.0004068 0.0003413 0.0003860 0.0002955 0.0010342 0.0010611
HalfCheetah HC+O 0.0337372 0.0334898 0.0091491 0.0104184 0.0093199 0.0091958 0.0099135 0.0098245

Table 7: Average computation time required to generate a single action during inference, averaged
over 5000 trials.

15

	Introduction
	Related Work
	Preliminaries
	Methodology
	Trajectory Alignment
	DTW Criteria
	Progression Management

	Expert Regularized Control

	Experiments
	Constrained Environments
	Baselines
	Performance comparison
	Prevention from Unintended Progression
	Asynchronous Progression Update
	Expert Regularized Control

	Conclusion
	Appendix
	CEM Optimizer
	Dynamics Model
	Training Curves for Baseline Methods with Additional Steps
	DTW Input Normalization
	Hyperparameters in ERC
	Computational Time

