
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ACTION-CONSTRAINED IMITATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Policy learning under action constraints plays a central role in ensuring safe be-
haviors in various robot control and resource allocation applications. In this paper,
we study a new problem setting termed Action-Constrained Imitation Learning
(ACIL), where an action-constrained imitator aims to learn from a demonstrative
expert with larger action space. The fundamental challenge of ACIL lies in the
unavoidable mismatch of occupancy measure between the expert and the imita-
tor caused by the action constraints. We tackle this mismatch through trajectory
alignment and propose DTWIL, which replaces the original expert demonstra-
tions with a surrogate dataset that follows similar state trajectories while adhering
to the action constraints. Specifically, we recast trajectory alignment as a planning
problem and solve it via Model Predictive Control, which aligns the surrogate tra-
jectories with the expert trajectories based on the Dynamic Time Warping (DTW)
distance. Through extensive experiments, we demonstrate that learning from the
dataset generated by DTWIL significantly enhances performance across multiple
robot control tasks and outperforms various benchmark imitation learning algo-
rithms in terms of sample efficiency.

1 INTRODUCTION

Reinforcement learning (RL) is commonly used to solve tasks by finding a policy that maximizes
cumulative rewards through interactions with the environment. However, in many real-world appli-
cations, designing an effective reward function that consistently encourages the desired behavior in
all situations is a significant challenge. In such cases, imitation learning (IL) offers a compelling
alternative. Rather than relying on a reward function, IL learns a policy directly from a set of
pre-collected expert demonstrations, which are transition data logged from a near-optimal policy
(Pomerleau & A, 1991; Ho & Ermon, 2016).

In many real-world tasks, ensuring the safe and proper functioning of agents is crucial. To achieve
this, we can impose constraints that define the feasible set of actions for the agents. Classic examples
include optimally allocating network resources under capacity constraints (Xu et al., 2018; Gu et al.,
2019; Zhang et al., 2020) and robot control under kinematic limitations that prevent damage to the
robot’s physical structure (Pham et al., 2018b; Gu et al., 2017; Jaillet & Porta, 2012; Tsounis et al.,
2020). Additionally, in many IL scenarios, the performance gap between the expert and the imitator
must be considered. For example, if data is collected using a human to perform tasks, the imitator,
which may be a robot with hardware limitations, is likely to be unable to replicate the large-scale
human actions. In this case, action constraints are essential to ensure the imitator can safely perform
tasks within its own capabilities while still learning from the expert’s behavior. While there has been
substantial research on action-constrained reinforcement learning (ACRL) (Kasaura et al., 2023; Lin
et al., 2021; Brahmanage et al., 2023; Chen et al., 2024), surprisingly, little attention has been given
to action-constrained imitation learning (ACIL).

To ensure that the actions generated by the policy adhere to specific constraints during both training
and evaluation, most existing ACRL methods incorporate a projection layer on top of the policy
network (Chow et al., 2018; Liu et al., 2020; Gu et al., 2017). However, such an approach can
cause issues in IL. Most IL approaches aim to minimize the discrepancy between the occupancy
measure of the expert demonstrations and that of the imitator (Pomerleau & A, 1991; Ho & Ermon,
2016). When expert actions lie outside the feasible action set, the projection layer can prevent the
imitator from accurately matching the occupancy measure of the expert, especially in cases with

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) Starting point (b) Unconstrained case (c) Action-constrained case

Figure 1: (a) The green sphere starts in the bottom-right corner and navigates toward the red sphere
(goal). (b) A policy trained via BC successfully executes a U-turn to reach the target. (c) However,
when the box constraint is applied by projection, the sphere struggles to make the sharp U-turn and
ends up colliding with the wall.

more restrictive action sets. This issue leads to ambiguity in distribution matching for IL methods
under action constraints, a problem we term “occupancy measure distortion.”

To better illustrate the issue of occupancy measure distortion, let’s consider a simple example of a
Maze2d goal-reaching task, as shown in Fig 1. (a). In this task, the green sphere (agent) needs to nav-
igate towards the red sphere (goal), using a two-dimensional action space that controls the force ap-
plied along the x- and y-axes. An unconstrained policy trained by behavior cloning (BC)(Pomerleau
& A, 1991), based on five expert trajectories, can successfully turn left, avoid colliding with the
walls, and reach the goal (Fig 1. (b)). Now, consider a weaker agent with a smaller feasible action
set, where a projection layer is applied to its policy network. This weaker agent lacks the force to
turn as quickly as the unconstrained agent, resulting in a collision with the wall of the space we
carved out (Fig 1. (c)) and getting stuck. This example demonstrates how occupancy measure dis-
tortion prevents the agent from accurately replicating the expert’s trajectory. Without following the
expert’s path, the action-constrained agent suffers from the distribution shift, and even encounters
unexpected dangers in the environment.

Another approach to preventing learning infeasible actions is to focus on matching the state distribu-
tion rather than the state-action distribution of expert demonstrations, a scenario known as Learning
from observation (LfO). However, they cannot fully avoid issues related to mismatched state dis-
tributions, especially with constrained actions, and they typically require a substantial amount of
interaction data with the environment.

The most effective way to eliminate occupancy measure distortion is to ensure that both the expert
demonstrations and the learner share the same feasible action set, as this would prevent any distortion
from occurring. To accomplish this, we recast trajectory alignment as a planning problem, aiming to
generate trajectories that closely resemble the original expert trajectories but consist of constrained
actions as surrogate expert demonstrations. We leverage Model Predictive Control (MPC) (Richalet
et al., 1978) due to its flexibility in defining objective functions and its compatibility with various
constraints. Unlike existing MPC approaches, which primarily focus on optimizing short-horizon
returns during planning, we optimize for the similarity between the rollout trajectories and the ex-
pert trajectories. To quantify this similarity, we employ Dynamic Time Warping (DTW) (Hiroaki &
Chiba, 1978), which allows us to compare trajectories that have different pacing of behaviors. In this
paper, we introduce Dynamic Time Warping Imitation Learning (DTWIL), an algorithm designed
to generate surrogate action-constrained demonstrations and learn the corresponding policy. Our ex-
periments demonstrate that DTWIL outperforms a range of benchmark IL algorithms in navigation
and locomotion tasks, particularly in terms of sample efficiency, while being less susceptible to the
challenges posed by occupancy measure distortion.

2 RELATED WORK

Action constrained Reinforcement Learning To the best of our knowledge, no prior work has
specifically addressed the problem of ACIL, which tackles the capability gap between the expert and
the learner agent. Therefore, we refer to ACRL methods to define the problem setting in this paper.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Kasaura et al. (2023) provides a benchmark for evaluating existing ACRL approaches. Some works,
such as Pham et al. (2018a); Bhatia et al. (2019); Dalal et al. (2018), ensure safe and compliant
behavior by incorporating a differentiable projection layer at the end of the policy network to meet
action constraints. However, Lin et al. (2021); Brahmanage et al. (2023) highlight issues with this
approach, particularly the zero gradient and longer training times, and propose alternative methods.
Notably, Brahmanage et al. (2023); Chen et al. (2024) employ normalizing flows to directly gener-
ate actions that comply with the constraints, thereby circumventing the drawbacks associated with
projection layers.

Learning from Demonstration IL focuses on deriving a policy using only the information from
expert demonstrations, which also termed Learning from Demonstration (LfD). BC (Pomerleau &
A, 1991) approaches this by treating policy as a state-action mapping, learning it in a supervised
manner. Adversarial Imitation Learning (AIL), on the other hand, focuses on matching the state-
action distribution between expert and learner through adversarial training. GAIL (Ho & Ermon,
2016) is a foundational method in this domain, using a discriminator to distinguish between expert
and learner transitions, and providing rewards based on this discrimination. Various AIL extensions
(Kostrikov et al., 2019a;b) improve on GAIL, tailoring the method to different environments and
goals. A comprehensive review of IL techniques can be found in Zare et al. (2024), but ACIL
remains unexplored in these surveys.

Learning from Observation An alternative approach to avoid the undesirable effects of projected
policy outputs after imitating expert actions is to learn from expert observation data only, which falls
under the scenario of Learning from Observation (LfO). Methods like GAIfO and IDDM (Torabi
et al., 2018b; Yang et al., 2019) follow the principles of GAIL by training a state-only discriminator.
OPOLO (Zhu et al., 2020) further improves on this by relaxing the on-policy requirement, speeding
up the learning process. BCO (Torabi et al., 2018a) takes a different approach by learning an inverse
dynamics model to infer the expert’s missing actions from observations, and then applying BC to
train the policy. CFIL (Freund et al., 2023), using a flow-based model to capture state or state-action
distributions, sets a new benchmark for LfO scenario. However, despite relying solely on expert
state information, these methods still overlook the capability gap between the expert and the learner
agent, and many of them depend on a large amount of environment interaction data.

Cross-Embodiment Imitation Learning Cross-Embodiment Imitation Learning focuses on
transferring knowledge or skills between agents with different physical structures, such as robots
with varying morphologies or dynamics. This field addresses the challenges of aligning state and
action spaces across embodiments to enable effective knowledge transfer. Approaches in this do-
main often leverage shared latent spaces, domain adaptation techniques, or hierarchical reinforce-
ment learning to bridge embodiment-specific differences. For example, modular policy frameworks
(Huang et al., 2020) and domain randomization strategies (Tobin et al., 2017) have been employed
to achieve generalization across multiple embodiments. While ACIL also seeks to address the chal-
lenge of transferring knowledge across different agents, it does not consider differences in physical
structures. Instead, ACIL focuses on a unique problem setting where agents share action spaces of
the same dimension but differ in the scale or magnitude of their actions.

3 PRELIMINARIES

Problem Formulation We consider a Markov decision process (MDP) defined as a tupleM =
⟨S,A, T, r, p0, γ⟩, where S and A are the sets of feasible state and action respectively; T describes
the dynamics of the environments, with T (st+1|st, at) indicating the transition probability to next
state st+1 from the current state st if the agent takes action at; p0 is the initial state distribution;
R : S × A → R is the reward function; and γ ∈ [0, 1] is the discount factor. An agent follows
its policy π : S → A to interact with the environment of MDP with an objective of maximizing
long-term expected cumulative reward. In this paper, we consider action-constrained MDPs where
for each state s ∈ S there is a feasible action set C(s) ⊆ A determined by explicit action constraints
incorporated. That is, the agent can only take actions from C(s) at each time step.

Model Predictive Control In actor-critic RL, solving an MDP is to find the optimal policy π∗

maximizing cumulative reward. In control, the optimal policy is formulated by maximizing a spe-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

cific performance measure. MPC achieves this by utilizing a forward dynamics model f(st, at) of
the environment to explore various action sequences. This allows MPC to evaluate potential future
trajectories and select the one that best meets the defined objective J . A local solution to the trajec-
tory optimization at each step t can be acquired by estimating the optimal action sequence at:t+H

over a finite horizon H:

πMPC(st) = argmin
at:t+H

E

[
H∑
i=t

J(si, ai)

]
, (1)

The agent will execute the first action of the resulting action sequence, and repeat the procedure
again at the next time step. To improve action sampling, we can utilize the Cross-Entropy Method
(CEM) optimizer, which iteratively refines the mean (µ) and standard deviation (σ) of a multivariate
Gaussian distribution by sampling actions, evaluating them, and updating the distribution based on
the best samples over a finite horizon. In this work, we employ an MPC implementation based on
Probabilistic Ensembles with Trajectory Sampling (PETS) as proposed by Chua et al. (2018). PETS
integrates probabilistic neural networks to model the dynamics of the environment, utilizing an en-
semble of learned models to estimate uncertainty in predictions. This ensemble approach allows for
more robust decision-making by accounting for variability in the system. In practice, PETS inter-
acts with the environment by iteratively predicting future states based on the current state, choosing
actions that maximize a given reward function while considering uncertainty, and then updating its
models as new data is collected. This method significantly reduces the sample complexity, allowing
the agent to perform well after a limited number of interactions with the environment.

Dynamic Time Warping DTW (Hiroaki & Chiba, 1978) is an algorithm designed to measure the
similarity between two temporal series data that may not align perfectly in time. It is particularly
useful in scenarios where trajectories, such as those generated by agents with different action con-
straints, differ in speed or timing but represent the same underlying behavior. The core of DTW lies
in the calculation of the optimal warping path ρ∗ and the resulting DTW distance, which quantifies
the alignment cost. Specifically, let x = {x1, x2, . . . , xn} and y = {y1, y2, . . . , ym} denote two
sequences of length n and m, respectively, then the DTW distance between x and y is given by

DTW Distance(x,y) =
∑

(i,j)∈ρ∗

∥xi − yj∥2 = min
ρ

∑
(i,j)∈ρ

∥xi − yj∥2,

where ρ = {(ik, jk)}Kk=1 is a warping path such that:
1. i1 = 1 and j1 = 1,

2. iK = n and jK = m,

3. ik ≤ ik+1 and jk ≤ jk+1 for all k,
4. |ik+1 − ik| ≤ 1 and |jk+1 − jk| ≤ 1 for all k.

Algorithm 1 Dynamic Time Warping Imitation Learning (DTWIL)

1: Input: Expert demos τ = {τ i}Ni=1, planning horizon H , ERC horizon herc, number of particles
P , dynamics model ensembles f , training dataset D = {τ i}Ni=1, the number of episodes to run
K

2: BC dataset DBC ← {}
3: for Iteration k = 1 to K do
4: Select an expert trajectory τ i

5: Train f with D
6: τ ci ← Trajectory Alignment(τ i)
7: D ← D ∪ τ ci

8: if no alignment of τ i in DBC or DTWDistance(τ ci , τ i) < DTWDistance(DBC[i], τ
i) then

9: DBC[i]← τ ci

10: end if
11: end for
12: Train a BC policy with DBC

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) Final expert state is not excluded (b) Final expert state is excluded

Figure 2: Effect of excluding the final expert state on the DTW warping path. Including the final
expert state Figure 2a leads to a 1-to-1 alignment since both trajectories have the same number of
states. Excluding it Figure 2b prevents state from advancing, yielding a more desirable matching.
The total arrow length represents the DTW distance.

4 METHODOLOGY

Our motivation is to generate a surrogate demonstration dataset that aligns with expert trajectories
while operating within constrained action spaces , and later utilize this surrogate data set to train
a BC policy for generalization. To this end, we recast the alignment issue as a trajectory planning
task, where a trajectory of the agent is designed to follow the expert demonstration. As mentioned in
Section 3, we leverage the PETS framework (Chua et al., 2018) to optimize the expected outcomes
of sampled actions. In this process, we replace the environment reward with DTW (Hiroaki & Chiba,
1978) distance as our key criterion for selecting actions, ensuring better alignment with the expert
trajectory. Additionally, to handle the complexities of environments requiring precise movements,
we introduce Expert Regularized Control (ERC), inspired by Actor Regularized Control (ARC)
(Sikchi et al., 2021), into the trajectory sampling process, improving the alignment’s effectiveness.

In the following sections, we detail our implementation of DTW distance as the action selection
criterion in Section 4.1, highlighting its role in aligning the agent’s trajectory with that of the expert.
Section 4.2 introduces ERC and its integration into the trajectory sampling process. The compre-
hensive pseudo code for DTWIL can be found in Algorithm 1, and the pseudo code for trajectory
alignment is presented in Algorithm 2, and

4.1 TRAJECTORY ALIGNMENT

Due to the asynchronous nature of the rollout pacing between the expert demonstration and the
constrained agent, step-by-step alignment is not feasible. To address this, we incorporate DTW
to evaluate the alignment and select the most appropriate planning trajectory that corresponds to
the expert demonstration. In the following sections, we explain how DTW distance is utilized as
a criterion for the MPC controller in PETS framework in Section 4.1.1 and how we determine the
expert demonstration segment to be aligned at each step in Section 4.1.2.

4.1.1 DTW CRITERIA

To utilize DTW as a reference, we first introduce a progression parameter, tpg, which indicates the
timestep of the expert state with which the constrained agent is currently aligned. For instance, if
the current progress is at tpg, and the planning horizon is set to H , the targeted segment of the expert
trajectory for alignment would be se

tpg:(tpg+H), where se
t denotes the t-th expert state.

Let the current timestep be t, the current progress be tpg, and the H-step planning trajectory rolled
out by the action sequence A and a dynamics model fθ be st:(t+H). The optimal planning action
sequence A∗ is then defined as:

A∗ = argmin
A

E
[
DTWDistance(se

tpg:(tpg+H), st:(t+H))
]
. (2)

We approximate the solution to the optimization problem by employing a CEM optimizer, which
samples 500 candidate action sequences and selects the one with the smallest DTW distance to the
expert trajectory. To address variations in scale across different dimensions, we normalize both

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 2 Trajectory Alignment

1: Input: Planning horizon H , ERC horizon herc, number of particles P , dynamics model ensem-
bles f , i-th expert trajectory τ i = {(sei , aei)}lt=0, constrained action space C(s).

2: Output: τ ci

3: Agent’s initial state s0 ← sei
0 , progression tpg ← 0, time step t← 0, alignment τ ci ← {}

4: Action projection function Proj()
5: while t < max episode steps and tpg < l do
6: if tpg +H > l then
7: Pad the target expert segment to length= H with sei

l .
8: end if
9: for Particle p = 1 to P do

10: for Action sampled apt+h from CEM, h = 0 to H do
11: if h ≤ herc then
12: apt+h ← β Proj(aei

min(tpg+h,l) | C(s
p
min(t+h,l))) + (1− β) apt+h

13: end if
14: spt+h+1 = f(spt+h|a

p
t+h)

15: end for
16: ∥p∥DTW ← DTWDistance(spt:t+H , sei

(tpg):(tpg+H))

17: end for
18: p∗ ← argminp ∥p∥DTW
19: Update CEM distribution
20: Execute ap

∗

t and get st+1

21: τ ci ← τ ci ∪ (st, a
p∗

t)
22: if Progression has advanced in the warping path then
23: tpg ← tpg + 1
24: end if
25: end while

the planned trajectory and the corresponding expert trajectory segment prior to computing the DTW
distance. Specifically, each dimension is linearly scaled such that the minimum and maximum values
of the expert trajectories are mapped to 0 and 1, respectively. To ensure compatibility with the action-
constrained setting, we adapt the CEM optimizer through rejection sampling, strictly enforcing that
all sampled actions satisfy the imposed constraints. Subsequently, the MPC controller executes the
first action of A∗.

4.1.2 PROGRESSION MANAGEMENT

The progression parameter, tpg, is initialized to 0 at the start of every trajectory alignment. After
each action, we update tpg by analyzing the warping map to determine how many expert states the
agent’s action has advanced. Notably, when constructing the warping path, the final expert state in
the segment is excluded from the matching calculation to prevent unintended progression when the
agent exhibits minimal movement across consecutive actions. Specifically, when two trajectories
have an equal number of states, DTW often tends to align states in a strictly 1-to-1 manner, which
can mislead progression. By excluding the final expert state, the DTW algorithm is encouraged
to create a 2-to-1 alignment during the matching process. Given the constrained actions, which
naturally take smaller steps than expert actions, this 2-to-1 alignment often occurs in the initial few
states. Consequently, if the agent’s first planning state, s1, is not sufficiently close to the next expert
state, se

1, it is more likely to be matched with the current expert state, se
0. This concept is illustrated

in Figure 2.

Figure 3 shows how this advancement value is determined. The advancement value is then added to
tpg after every MPC step.

4.2 EXPERT REGULARIZED CONTROL

In environments that demand precise movements, even small errors can lead to significant disrup-
tions. To mitigate this, we incorporate expert actions into the sampled actions as guidance , termed

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) Progression Advancement = 0 (b) Progression Advancement = 1

Figure 3: Since the MPC controller executes only the first planning step per iteration, we focus on
the number of expert states the agent advances after the initial action a0. The figure shows two DTW
warping path cases (green patches). In Figure 3a, the agent transitions from s0 to s1 while staying
aligned with se

0 causing no progression (tpg unchanged). In Figure 3b, the agent advances to the next
expert state, updating tpg to tpg + 1.

ERC. Specifically, the actions used to rollout the planning trajectories in the MPC controller become
the weighted average of the sampled actions and a corresponding segment of the expert demonstra-
tion. To implement this, we first extract a specific segment ae

tpg:(tpg+herc)
, from the expert actions

ae, where herc is the horizon over which expert actions are blended. Then, given the dynamics
model ensembles f(s, a), a specific weight β ∈ [0, 1], and the projection function Proj(a | C(s)),
which projects an action a onto a specific constrained action space C(s), ERC guide the trajectory
generation with the following functions:

For h = 0, 1, ..,H :

ah =

{
β Proj(ae

tpg+h | sh) + (1− β) asampled
h , if h <= herc ,

asampled
h , if h > herc ,

(3)

sh+1 = f(sh, ah) ,

where ah is the hth action step in an H-step planning trajectory, asampled
h is the hth action directly

sampled from a CEM optimizer, and sh is the hth state of the planning trajectory.

The performance of our algorithm in environments where agents are highly susceptible to devi-
ations—such as Hopper, where falling results in early termination—is significantly enhanced by
incorporating ERC. A detailed analysis of this improvement is presented in Section 5.6.

5 EXPERIMENTS

In this chapter, we assess DTWIL across a range of randomly initialized continuous control tasks
in navigation and locomotion environments, each subject to different constraints. We compare our
results against both offline baselines and online baselines. For a fair comparison, we allocate the
same number of environment steps to the online baselines as we do to DTWIL.

Two types of constraints are applied: box constraints and state-dependent constraints. A box con-
straint, denoted as Box(cbox), restricts each action dimension to the range [−cbox, cbox], where cbox
is a positive constant. In contrast, a state-dependent constraint varies based on the agent’s current
state. To ensure that these baseline methods adhere to the constrained action domains, we project
their generated actions onto the nearest feasible actions based on the L2 norm.

5.1 CONSTRAINED ENVIRONMENTS

Maze2d (Fu et al., 2020) To evaluate our method on a navigation task, we selected the Maze2d-
Medium-v1 environment. This task involves a point-mass agent navigating a 2D maze from a ran-
domly chosen start location to a goal. The original action set is a 2-dimensional vector (v1, v2) with

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: We evaluate the impact of action constraints on DTWIL and baseline methods across three
environments : Maze2d-Medium-v1, HalfCheetah-v3, and Hopper-v2.

each element in the range [−1.0, 1.0]. We impose an Box(0.1) constraint and a state-dependent con-
straint M+O defined as Σ2

i=1|viwi| ≤ 0.5 on agent actions, where (w1, w2) represent the velocities
in the x and y directions, respectively. For this task, we collected 100 demonstrations, resulting in a
total of 18,525 state-action pairs for training.

HalfCheetah (Brockman et al., 2016) The task involves controlling a bipedal cheetah agent to
run forward by applying torque to its joints. The action space consists of a 6-dimensional vector
(v1, v2, ..., v6), where each component is bounded by [−1, 1]. We introduce a Box(0.5) constraint
and a state-dependent constraint HC+O defined as Σ6

i=1|viwi| ≤ 10, where wi denotes the angu-
lar velocity of the i-th joint, a component of the agent’s state. We rely on five 1000-step expert
demonstrations for training.

Hopper (Brockman et al., 2016) The task requires controlling a robot to hop forward by applying
torques to its hinges. The action is represented by a 3-dimensional vector (v1, v2, v3), with each
value constrained between [−1.0, 1.0]. We also impose two separate constraints on this task. The
first one is a Box(0.9) constraint, while the second introduces a state-dependent constraint H+M:
Σ3

i=1|viwi| ≤ 10 , where wi denotes the angular velocity of the i-th joint, which is part of the robot’s
state. For training, we use five expert demonstrations, each consisting of 1000 state-action pairs.

5.2 BASELINES

To ensure that the action outputs of various baseline methods meet specific constraints, we incorpo-
rate a projection layer into each method’s policy, allowing the action outputs to remain within the
feasible set. We append “+P” to the names of each baseline method to denote the versions of the
algorithms that include a projection layer.

• BC+P (Pomerleau & A, 1991): BC formulates policy learning as a supervised problem,
treating the policy as a mapping between states and actions.

• BCO+P (Torabi et al., 2018a): BCO is a LfO method, learning an inverse dynamics model
to infer action from state-only data and applying BC to learn a policy.

• GAIL+P (Ho & Ermon, 2016): GAIL is an online LfD method that utilize a generative
adversarial network (GAN) to infer the underlying reward function.

• GAIfO+P (Torabi et al., 2018b): Similar to GAIL but only learning from observations,
GAIfO is an AIL-based online LfO algorithm.

• OPOLO+P (Zhu et al., 2020): OPOLO is an online LfO method. Leveraging off-policy
learning, OPOLO ranks among the most effective LfO techniques.

• CFIL-s+P/ CFIL-sa+P (Freund et al., 2023): CFIL utilize a flow-based model to capture
state or state-action distributions, sets a new benchmark for LfO scenario. The LfD version
of CFIL is denoted as CFIL-sa, and LfO version of CFIL is denoted as CFIL-s.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.3 PERFORMANCE COMPARISON

In all tasks, DTWIL only interacts with the environment using MPC for no more than 50K steps.
To ensure a fair comparison, we limit the interaction for all online IL methods to 50K environment
steps during training. All results are evaluated with randomly initialized starting states.

Following this, the best-performing model from each algorithm during these interactions was se-
lected for final evaluation. This ensures that the results reflect the effectiveness of each method
within a limited sample regime, providing a fair comparison across environments while emphasiz-
ing sample efficiency.

Task Maze2d box Maze2d M+O HalfCheetah Box HalfCheetah HC+O Hopper Box Hopper H+M

BC+P 0.61 ± 0.05 0.81 ± 0.05 1815.51 ± 303.89 2753.86 ± 27.34 2204.83 ± 753.32 1233.96 ± 211.87
GAIL+P 0.22 ± 0.0 0.14 ± 0.05 -163.63 ± 47.47 -185.53 ± 66.11 360.97 ± 59.19 261.83 ± 81.41
BCO+P 0.14 ± 0.05 0.88 ± 0.06 -4.05 ± 4.07 6.23 ± 31.85 219.46 ± 20.33 224.25 ± 32.81

GAIfO+P 0.07 ± 0.02 0.19 ± 0.08 -74.77 ± 32.98 -163.84 ± 33.79 197.36 ± 30.12 206.37 ± 19.19
OPOLO+P 0.2 ± 0.06 0.64 ± 0.13 -605.84 ± 390.21 -9.12 ± 80.47 1068.3 ± 952.96 228.28 ± 33.10
CFIL-sa+P 0.23 ± 0.21 0.47 ± 0.10 -95.67 ± 515.43 1674.75 ± 1316.81 1485.74 ± 677.37 1553.86 ± 1096.28
CFIL-s+P 0.23 ± 0.06 0.45 ± 0.12 -172.56 ± 738.44 1422.98 ± 1830.51 866.27 ± 249.20 1443.06 ± 547.59

DTWIL 0.77 ± 0.04 0.87 ± 0.04 2669.41 ± 4.56 2637.34 ± 26.82 2844.68 ± 57.77 2873.88 ± 240.46

Table 1: Evaluation performance of the proposed method and baseline algorithms across various
tasks, with results expressed as the mean and standard deviation calculated from three seeds.

Based on the experimental results, the BC+P algorithm maintains basic functionality across all tasks
but is still affected by action constraints, which hinders its ability to replicate expert-level perfor-
mance. This limitation is particularly noticeable in the Hopper environment, where a single fall
results in the episode ending prematurely, further hindering its performance. The rigid constraints
imposed on the actions make it challenging for BC+P to generalize well in tasks requiring smooth
and dynamic control.

Moreover, the other online algorithms such as GAIL+P and OPOLO+P face dual challenges. Not
only are they affected by the same action constraints, but they also suffer from poor sample ef-
ficiency, which leads to subpar performance across all tasks. These methods, despite interacting
with the environment, cannot recover expert-like behavior within the limited number of interaction
steps, contributing to their consistently low scores. While BCO+P show competitive performance in
simpler tasks like Maze2d M+O, they fall short in more complex environments.

In contrast, DTWIL, which learns from surrogate expert data and adopts a BC approach to learn
the policy, perform well across all tasks. By learning from the surrogate data to match the expert
trajectories and using BC for policy learning, DTWIL manages to replicate expert performance
while maintaining sample efficiency. As a result, it successfully reproduces expert-like trajectories
across tasks, without being adversely affected by the constraints that cripple other methods. The
results of training the various baseline methods for sufficient steps are included in Appendix A.3.

5.4 PREVENTION FROM UNINTENDED PROGRESSION

Excluded Not Excluded

DTW-S 2.99 ± 0.75 2.99 ± 0.82
Return-S 0.76 ± 0.0 0.69 ± 0.0

Return-BC 0.77 ± 0.04 0.72 ± 0.03

Table 2: Results comparison of whether the
final expert state is excluded when calculat-
ing the warping path in Maze2d-Medium un-
der the box constraint.

To mitigate unintended progression of the param-
eter tpg, as detailed in 4.1.2, we exclude the ter-
minal state of the alignment target during com-
putation. As demonstrated in Table 2, this ad-
justment significantly enhances performance in
the Maze2d-Medium environment under box con-
straints. Specifically, excluding the final expert
state when determining the DTW warping path im-
proves the returns obtained during both the trajec-
tory alignment phase and the subsequent behavioral
cloning (BC) phase. These results validate the ef-
fectiveness of the proposed modification in stabiliz-
ing and optimizing the alignment process.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Task HalfCheetah Box HalfCheetah Box-Sync Hopper Box Hopper Box-Sync

DTW-S 15.17 ± 0.24 15.06 ± 0.12 11.70 ± 6.02 27.68 ± 0.26
Return-S 2576.20 ± 61.62 2590.31 ± 24.07 2527.63 ± 572.53 418.73 ± 89.35

Return-BC 2669.41 ± 4.56 2594.28 ± 29.80 2844.68 ± 57.77 153.52 ± 1.20

Table 3: Comparison of results between asynchronous and synchronous progression methods.
DTW-S denotes the DTW distance between the generated surrogate trajectories and the expert trajec-
tories, Return-S indicates the average return of the surrogate expert data, and Return-BC represents
the average return of BC policy trained on this surrogate expert data.

5.5 ASYNCHRONOUS PROGRESSION UPDATE

In this section, we compare two approaches to progression management. The first is asynchronous
progression, where the parameter tpg is updated in tandem with the warping path. This method is
primarily used in our algorithm. The second is synchronous progression, where tpg increases by 1
with each step, matching the expert’s pace. Given that agents with constrained actions typically take
longer to replicate expert behavior, asynchronous progression is more sensible. Table 3 presents
the full experimental results for both methods. While the differences on HalfCheetah are minimal,
asynchronous progression significantly outperforms on Hopper.

5.6 EXPERT REGULARIZED CONTROL

Without ERC With ERC

Return-S 820.7 ± 84.8 2527.6 ± 572.5
Return-BC 889.7 ± 5.4 2844.7 ± 57.8

Table 4: Comparison of results with and without
ERC applied during action sampling in Hopper.

We evaluate the effectiveness of our ERC de-
sign in the Hopper environment. Table 4 demon-
strate a clear performance difference: without
ERC, the agent frequently falls, leading to sig-
nificantly lower rewards and shorter trajectories.
In contrast, incorporating ERC stabilizes the
agent’s behavior, allowing it to generate surro-
gate trajectories of appropriate length and main-
tain consistent performance throughout the task.
This highlights the importance of ERC in en-
abling robust and reliable imitation under action-constrained settings. Refer to Appendix A.5 for
detailed hyperparameter tuning.

6 CONCLUSION

ACIL has the potential to greatly influence real-world robot training, as real robots often oper-
ate under constrained action spaces due to limited power, mechanical imperfections, or restricted
capabilities resulting from wear and tear. These limitations present challenges that previous meth-
ods have not effectively addressed. In this paper, we highlight that directly learning from expert
demonstrations using agents with constrained action spaces introduces several issues, including oc-
cupancy measure distortion and asynchronous progression. These challenges cannot be resolved by
traditional RL and IL methods because of the inevitable progression gap between expert and agent
trajectories. To address this, we propose the first-ever ACIL method, DTWIL, which effectively
bridges the gap caused by asynchronous time series alignment. DTWIL leverages DTW distance
as a reference to select optimal actions in a MPC framework, and incorporates Actor Regularized
Critic (ARC) to stabilize the sampled actions. As a result, our approach outperforms methods heav-
ily reliant on projection in multiple environments, demonstrating that a dedicated algorithm for the
ACIL problem is both effective and necessary. Our results indicate that as long as the computational
cost of DTW is manageable, DTWIL achieves exceptional performance on ACIL tasks. As the first
contribution to the ACIL research field, we hope our work inspires further research. Future efforts
could focus on developing ACIL algorithms that handle more complex environments with greater
efficiency.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Abhinav Bhatia, Pradeep Varakantham, and Akshat Kumar. Resource constrained deep reinforce-
ment learning. In Proceedings of the International Conference on Automated Planning and
Scheduling, volume 29, pp. 610–620, 2019.

Janaka Brahmanage, Jiajing Ling, and Akshat Kumar. FlowPG: Action-constrained Policy Gradient
with Normalizing Flows. Advances in Neural Information Processing Systems, 2023.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv:1606.01540, 2016.

Changyu Chen, Ramesha Karunasena, Thanh Nguyen, Arunesh Sinha, and Pradeep Varakantham.
Generative modelling of stochastic actions with arbitrary constraints in reinforcement learning.
Advances in Neural Information Processing Systems, 36, 2024.

Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A Lyapunov-
based approach to safe reinforcement learning. In Advances in Neural Information Processing
Systems, pp. 8103–8112, 2018.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. Advances in neural information
processing systems, 31, 2018.

Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru, and Yuval
Tassa. Safe exploration in continuous action spaces. arXiv:1801.08757, 2018.

Gideon Joseph Freund, Elad Sarafian, and Sarit Kraus. A coupled flow approach to imitation learn-
ing. In International Conference on Machine Learning, pp. 10357–10372, 2023.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv:2004.07219, 2020.

Lin Gu, Deze Zeng, Wei Li, Song Guo, Albert Y Zomaya, and Hai Jin. Intelligent VNF orchestration
and flow scheduling via model-assisted deep reinforcement learning. IEEE Journal on Selected
Areas in Communications, 38(2):279–291, 2019.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates. In IEEE International Conference
on Robotics and Automation (ICRA), pp. 3389–3396, 2017.

Sakoe Hiroaki and Seibi Chiba. Dynamic programming algorithm optimization for spoken word
recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1978.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in Neural
Information Processing Systems, pp. 4565–4573, 2016.

Wenlong Huang, Igor Mordatch, and Deepak Pathak. One policy to control them all: Shared modular
policies for agent-agnostic control. In International Conference on Machine Learning, pp. 4455–
4464. PMLR, 2020.

Léonard Jaillet and Josep M Porta. Path planning under kinematic constraints by rapidly exploring
manifolds. IEEE Transactions on Robotics, 29(1):105–117, 2012.

Kazumi Kasaura, Shuwa Miura, Tadashi Kozuno, Ryo Yonetani, Kenta Hoshino, and Yohei Hosoe.
Benchmarking actor-critic deep reinforcement learning algorithms for robotics control with action
constraints. Robotics and Automation Letters, 2023.

Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan Tomp-
son. Discriminator-actor-critic: Addressing sample inefficiency and reward bias in adversarial
imitation learning. In International Conference on Learning Representations, 2019a.

Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distribution
matching. In International Conference on Learning Representations, 2019b.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jyun-Li Lin, Wei Hung, Shang-Hsuan Yang, Ping-Chun Hsieh, and Xi Liu. Escaping from zero gra-
dient: Revisiting action-constrained reinforcement learning via Frank-Wolfe policy optimization.
In Uncertainty in Artificial Intelligence, 2021.

Anqi Liu, Guanya Shi, Soon-Jo Chung, Anima Anandkumar, and Yisong Yue. Robust regression for
safe exploration in control. In Learning for Dynamics and Control, pp. 608–619. PMLR, 2020.

Tu-Hoa Pham, Giovanni De Magistris, and Ryuki Tachibana. Optlayer-practical constrained opti-
mization for deep reinforcement learning in the real world. In 2018 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 6236–6243. IEEE, 2018a.

Tu-Hoa Pham, Giovanni De Magistris, and Ryuki Tachibana. Optlayer - practical constrained opti-
mization for deep reinforcement learning in the real world. In IEEE International Conference on
Robotics and Automation (ICRA), pp. 6236–6243, 2018b.

Pomerleau and Dean A. Efficient training of artificial neural networks for autonomous navigation.
Neural computation, 3(1):88–97, 1991.

J. Richalet, A. Rault, J. L. Testud, and J. Papon. Model predictive heuristic control: Applications to
industrial processes. Automatica, 14(5):413–428, 1978.

Harshit Sikchi, Wenxuan Zhou, and David Held. Learning off-policy with online planning. In
Conference of Robot Learning, 2021.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Do-
main randomization for transferring deep neural networks from simulation to the real world. In
2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 23–30.
IEEE, 2017.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. In Proceedings
of the 27th International Joint Conference on Artificial Intelligence, pp. 4950–4957, 2018a.

Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from observation.
arXiv preprint arXiv:1807.06158, 2018b.

Vassilios Tsounis, Mitja Alge, Joonho Lee, Farbod Farshidian, and Marco Hutter. Deepgait: Plan-
ning and control of quadrupedal gaits using deep reinforcement learning. IEEE Robotics and
Automation Letters, 5(2):3699–3706, 2020.

Zhiyuan Xu, Jian Tang, Jingsong Meng, Weiyi Zhang, Yanzhi Wang, Chi Harold Liu, and Dejun
Yang. Experience-driven networking: A deep reinforcement learning based approach. In IEEE
Conference on Computer Communications (INFOCOM), pp. 1871–1879, 2018.

Chao Yang, Xiaojian Ma, Wenbing Huang, Fuchun Sun, Huaping Liu, Junzhou Huang, and Chuang
Gan. Imitation learning from observations by minimizing inverse dynamics disagreement. Ad-
vances in neural information processing systems, 32, 2019.

Maryam Zare, Parham M Kebria, Abbas Khosravi, and Saeid Nahavandi. A survey of imitation
learning: Algorithms, recent developments, and challenges. IEEE Transactions on Cybernetics,
2024.

Junjie Zhang, Minghao Ye, Zehua Guo, Chen-Yu Yen, and H Jonathan Chao. CFR-RL: Traffic
engineering with reinforcement learning in SDN. IEEE Journal on Selected Areas in Communi-
cations, 38(10):2249–2259, 2020.

Zhuangdi Zhu, Kaixiang Lin, Bo Dai, and Jiayu Zhou. Off-policy imitation learning from observa-
tions. Advances in neural information processing systems, 33:12402–12413, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 CEM OPTIMIZER

Our implementation of the CEM optimizer closely follows the approach used in PETS (Chua et al.,
2018), where a momentum term is added into the update calculations, and bounds are imposed on
the standard deviations in addition to the standard CEM optimization.

Specifically, if a distribution at CEM iteration i, N (µi, σ
2
i), is updated toward a target distribution

N (µtarget, σ
2
target), the resulting updated distribution at iteration i + 1, N (µi+1, σ

2
i+1), will be given

by:

N (µi+1, σ
2
i+1) = N (αµi + (1− α)µtarget, ασ

2
i + (1− α)σ2

target), α ∈ [0, 1] , (4)

and the value of σ2
i is further constrained by 1

2w, where w represents the minimum distance from µi

to the bounds of the feasible action space.

Moreover, to adapt the CEM optimizer for our action-constrained setting, we employ rejection sam-
pling to ensure that all sampled actions strictly adhere to the predefined constraints.

A.2 DYNAMICS MODEL

In this work, we train an ensemble of probabilistic neural networks to model the system’s dynamics.
Specifically, we utilize ensembles of five dynamics models, where the bth model, fθb , is parameter-
ized by θb. Each network in the ensemble is trained to minimize the negative log-likelihood of the
predicted outcomes, optimizing the following objective:

L(θb) = −
N∑

n=1

log fθb(sn+1|sn, an). (5)

Referring to the ensembles used in PETS (Chua et al., 2018), we define our network to output a
Gaussian distribution with diagonal covariance parameterized by θ and conditioned on sn and an,
i.e.: f = Pr(st+1|st, at) = N (µθ(st, at),

∑
θ(st, at)). In this specific case, Eq. (5) becomes:

LG(θb) =

N∑
n=1

[µθb(sn, an)− sn+1]
⊤
Σ−1

θb
(sn, an) [µθb(sn, an)− sn+1] + log detΣθb(sn, an),

(6)

The next states are obtained in the same manner as TS∞ described in PETS.

Additionally, to mitigate the risk of over-fitting that can occur when a dynamics model is trained
solely on expert trajectories, we augment the training data with online agent experiences and itera-
tively retrain the dynamics models.

A.3 TRAINING CURVES FOR BASELINE METHODS WITH ADDITIONAL STEPS

In Section 5.3, we presented the performance of DTWIL and various baseline methods when inter-
acting with the environment for up to 50K steps, focusing on sample efficiency. In Figure 5, we
showcase the training curves of baseline methods over 500 thousand steps, which is 10 times the
original limit. These results reveal that methods like CFIL and OPOLO can train effective poli-
cies on multiple tasks when granted sufficient interaction steps. However, compared to DTWIL,
which requires only the training of an MPC dynamics model to generate surrogate expert demon-
strations, these online LfO methods demand significantly more interaction steps, highlighting their
inefficiency relative to DTWIL.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 5: Training curves for baseline methods over 1 million interaction steps across multiple tasks.

A.4 DTW INPUT NORMALIZATION

Typically, trajectories are normalized before being fed into the DTW calculation, as described in
4.1.1. In this section, we analyze the impact of this normalization. Table 5 shows an ablation study
on HalfCheetah and Hopper with their respective box constraints. We observe a performance drop
in both environments when this normalization step is omitted from DTWIL. This is because, with-
out normalization, DTW becomes disproportionately influenced by dimensions with larger scales,
leading to poor generalization. Conversely, when the states are normalized in advance, DTW treats
each dimension equally, resulting in more effective warping.

Task HalfCheetah Box HalfCheetah Box w/o N Hopper Box Hopper Box w/o N

Return-S 2576.2 ± 61.62 1667.46 ± 51.13 2527.63 ± 572.53 608.18 ± 208.20
Return-BC 2669.41 ± 4.56 1893.9 ± 71.56 2844.68 ± 57.77 281.13 ± 31.88

Table 5: Impact of DTW input normalization on performance. Return-S represent the average return
of surrogate expert data, while Return-BC denotes the average evaluation return of the BC policy
trained on this surrogate data. “W/o N” indicates results obtained without applying DTW input
normalization.

β = 0 β = 0.02 β = 0.05 β = 0.1 β = 0.2

Return-S 820.71 ± 84.78 1492.97 ± 144.35 2527.63 ± 572.53 1657.47 ± 286.44 670.72 ± 328.28
Return-BC 889.65 ± 5.39 1138.85 ± 56.35 2844.68 ± 57.77 2167.3 ± 360.73 723.95 ± 345.70

herc = 0 herc = 5 herc = 10 herc = 20

Return-S 820.71 ± 84.78 2527.63 ± 572.53 2425.25 ± 370.40 2166.99 ± 351.04
Return-BC 889.65 ± 5.39 2844.68 ± 57.77 2686.85 ± 135.64 2616.09 ± 102.90

Table 6: Impact of varying β and herc values on performance in the Hopper task with H+M con-
straints. The table highlights the optimal balance between expert actions and MPC sampling, show-
ing the best-performing configurations for stability and action guidance.

A.5 HYPERPARAMETERS IN ERC

We explore the influence of the hyperparameter β, which regulates the balance between expert ac-
tions and MPC-sampled actions in the ERC method. Additionally, we examine the effect of the

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

horizon length herc, which determines how many steps to blend MPC-sampled actions with expert
actions. We conducted experiments on the Hopper with H+M constraints, varying β from 0 to 0.2
and herc from 0 to 30, while keeping all other hyperparameters fixed at their optimal values identi-
fied in prior tuning. As shown in Table 6, setting β to 0.05 resulted in the highest performance. A
lower β led to instability in the sampled actions, while higher values negatively impacted the MPC
optimization process. Regarding herc, a value of 5 provided the best results. Extending the horizon
did not improve performance, as expert actions taken too far in the future became less informative
due to the action constraints.

A.6 COMPUTATIONAL TIME

In this section, we present the computational time of various baselines and DTWIL during infer-
ence. Table 7 reports the average computational time (in seconds) required to generate a single
action during inference in HalfCheetah, averaged over 5000 generations. As shown, methods with
state-dependent constraints require significantly more time due to the use of the projection function
implemented with Gurobi, whereas box constraints, which allow actions to be directly clipped, are
much faster.

DTWIL BC+P GAIL+P BCO+P GAIFO+P OPOLO+P CFIL-sa+P CFIL-s+P

HalfCheetah Box 0.0002092 0.0002164 0.0004068 0.0003413 0.0003860 0.0002955 0.0010342 0.0010611
HalfCheetah HC+O 0.0337372 0.0334898 0.0091491 0.0104184 0.0093199 0.0091958 0.0099135 0.0098245

Table 7: Average computation time required to generate a single action during inference, averaged
over 5000 trials.

15

	Introduction
	Related Work
	Preliminaries
	Methodology
	Trajectory Alignment
	DTW Criteria
	Progression Management

	Expert Regularized Control

	Experiments
	Constrained Environments
	Baselines
	Performance comparison
	Prevention from Unintended Progression
	Asynchronous Progression Update
	Expert Regularized Control

	Conclusion
	Appendix
	CEM Optimizer
	Dynamics Model
	Training Curves for Baseline Methods with Additional Steps
	DTW Input Normalization
	Hyperparameters in ERC
	Computational Time

