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Abstract

The capability to reason from text is crucial001
for real-world NLP applications. Real-world002
scenarios often involve incomplete or evolving003
data. In response, individuals update their be-004
liefs and understandings accordingly. However,005
most existing evaluations assume that language006
models (LMs) operate with consistent informa-007
tion. We introduce Belief-R1, a new dataset008
designed to test LMs’ belief revision ability009
when presented with new evidence. Inspired by010
how humans suppress prior inferences, this task011
assesses LMs within the newly proposed delta012
reasoning (∆R) framework. Belief-R features013
sequences of premises designed to simulate sce-014
narios where additional information could ne-015
cessitate prior conclusions drawn by LMs. We016
evaluate ∼30 LMs across diverse prompting017
strategies and found that LMs generally strug-018
gle to appropriately revise their beliefs in re-019
sponse to new information. Further, models020
adept at updating often underperformed in sce-021
narios without necessary updates, highlighting022
a critical trade-off. These insights underscore023
the importance of improving LMs’ adaptive-024
ness to changing information, a step toward025
more reliable AI systems.026

1 Introduction027

Human reasoning is characterized by its ability to028

deal with partial or evolving information. When029

new information becomes available, we dynami-030

cally update our beliefs. We reevaluate and adjust031

our initial premises or conclusions as necessary032

in light of this new evidence (Łukaszewicz, 1990;033

Brewka, 1991). For instance, knowing Tweety is a034

bird, we conclude that it flies since birds usually035

fly. Discovering Tweety is a penguin, we retract036

the conclusion but not the other premises; we still037

believe Tweety is a bird and that birds typically fly,038

however, we now conclude that it cannot fly since039

1We will release the dataset and code upon acceptance.

Figure 1: Belief revision allows reasoners to update
their belief based on the new provided evidence. Such
ability is necessary to enable better logical reasoning on
the case of defeasible inference.

we know that penguins cannot fly. This form of 040

reasoning permits new information to undermine 041

prior beliefs, which necessitates the ability of belief 042

revision (Gärdenfors, 1988, 1991; Rott, 2001). 043

The ability to adjust beliefs allows better adapt- 044

ability of AI systems by enabling them to properly 045

revise prior inferences as further evidence emerges, 046

such as in commonsense inferences (Brewka et al., 047

1997; Etherington, 1986; Pfeifer and Kleiter, 2005) 048

and decision-making (Antoniou and Williams, 049

1997; Dubois et al., 2002). Despite this, recent 050

reasoning evaluations of state-of-the-art AI tech- 051

nologies, such as language models (LMs), primar- 052

ily focus on its ability to draw conclusions assum- 053

ing complete information (c.f. Bhagavatula et al. 054

(2020); Han et al. (2024); Kazemi et al. (2024)). 055

While these evaluations useful to demonstrate the 056

reasoning abilities of LMs, they fail to capture the 057

concept of belief change. 058

We introduce Belief-R, the first-of-a-kind diag- 059

nostic reasoning evaluation dataset designed to as- 060
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Features bAbI 15 FOLIO Proof Writer Leap of Thought αNLI BoardgameQA PropInd Belief-R

Incomplete info ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

Contradictory info ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

Belief revision ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Table 1: The comparison of Belief-R with other widely-used logical reasoning datasets. Belief-R uniquely examines
scenarios potentially necessitating belief updates. Belief-R specifically evaluates the capability of belief revision,
assessing whether prior beliefs should be adjusted or retained depending of the significance of the new information.

sess inferences involving belief revision. Belief-061

R is inspired by the concept of the Suppression062

Task (Byrne, 1989) which enables the retraction of063

previously inferred beliefs by the introduction of064

new contextual premises, mimicking how humans065

reassess their inferences when presented with addi-066

tional context. To allow a specific and measurable067

evaluation on belief revision, we introduce a new068

reasoning evaluation setting dubbed as delta rea-069

soning (∆R) framework. Within ∆R, evaluation070

is done within two sequential reasoning steps. We071

start by presenting LMs with two initial premises072

that satisfy basic logical inference rule to assess073

its basic inference ability. We expect the model074

to make accurate inferences to establish the prior075

beliefs. Then, we introduce another premise to076

see if the model adjusts its beliefs or keeps them077

unchanged, depending on the significance of the078

newly introduced information to the initial beliefs.079

Belief-R is specifically designed to support the080

belief revision evaluation through the ∆R frame-081

work. Each sample in Belief-R is equipped with082

two initial premises that support basic modus083

ponens or modus tollens inferences, and a new084

premise that brings in new information that might085

modify previously held beliefs. We synthetically086

generate the premises in Belief-R leveraging on087

publicly available dataset, and manually annotate088

the new information significances along with the089

ground truth answers through multiple human an-090

notators and majority voting. As illustrated in Fig-091

ure 2, Belief-R uniquely facilitates thorough evalu-092

ations of belief revision capabilities.093

Through Belief-R, we evaluate the belief revi-094

sion ability of small and large scale LMs using095

different prompting techniques. Our study shows096

that these models often fail to adjust their responses097

when presented with new information that neces-098

sitates adjustments. We further reveal a critical099

limitation: they confront a performance trade-off100

between updating and maintaining their prior be-101

liefs. Models that perform better in the cases where102

an update is needed, typically faltered on the other.103

Furthermore, better prompting methods also fail104

to significantly enhance this capability. These in- 105

sights underscore a need for strategies to enhance 106

model’s capability to correctly update or maintain 107

its initial beliefs when faced with new evidence to 108

ensure its reliability across evolving scenarios. 109

2 Related Works 110

Belief revision Belief revision is the process of 111

changing beliefs to take into account a new piece 112

of information. In AI systems, one of its early 113

implementation is through procedures by which 114

databases can be updated, i.e. for recording and 115

maintaining reasons for system beliefs (Doyle, 116

1979; Falappa et al., 2002; Hansson, 2022). No- 117

tably, Alchourrón et al. (1985) created formal 118

frameworks to determine how beliefs should be 119

updated in a rational manner. The core challenge in 120

belief revision is deciding rationally which prior be- 121

liefs to modify, retain, or discard when confronted 122

with new evidence (Rott, 2001). Consequently in 123

this paper, we look at how LMs handle belief revi- 124

sion. Belief in LMs can be thought of as models’ 125

output (Li et al., 2019; Jang et al., 2022; Wang 126

et al., 2023a). Several works revise LMs’ beliefs 127

through updating its parameter directly or via fine- 128

tuning (De Cao et al., 2021; Dai et al., 2021; Hase 129

et al., 2023). However, this process is not a ratio- 130

nal process of the model itself (Hofweber et al., 131

2024). Moreover, it relies on pre-prepared knowl- 132

edge, which is not ideal if we envision LMs to help 133

with discovering new things (Ban et al., 2023; Ma 134

et al., 2024). In this work, we assess LMs’ belief 135

revision capabilities through its response towards 136

queries that neccessitate judgement on whether it 137

needs to update its prior beliefs or keep it. 138

Language model reasoning evaluation Rea- 139

soning is one of the fundamental intelligent be- 140

haviors, essential for solving complex real-world 141

tasks (Huang and Chang, 2023). Many studies test 142

this behaviour in LMs by setting up various tasks. 143

For instance, some create simple tasks to check 144

if a system can answer questions by connecting 145

facts or using basic logic (Weston et al., 2016). 146
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Others design more advanced tests to evaluate in-147

ductive, deductive, and abductive reasoning (Sinha148

et al., 2019; Saparov et al., 2024; Bhagavatula et al.,149

2020). Some benchmarks replicate real-world com-150

plexities by presenting partial or conflicting infor-151

mations (Talmor et al., 2020; Arabshahi et al., 2021;152

Sprague et al., 2022; Han et al., 2024; Kazemi et al.,153

2024). Our research pushes this boundary further,154

focusing on scenarios where information evolves,155

presenting queries that neccessitate a dynamic up-156

date of prior beliefs in light of this new evidence.157

We note the comparison in Table 1.158

3 Belief Revision159

Belief revision is the ability to adapt the reason-160

ing process in response to new information. This161

capability is critical as it ensures rational decision-162

making in the face of incomplete and evolving na-163

ture of available information (Nute, 2001; Makin-164

son and Gärdenfors, 2005; Ribeiro et al., 2019). In165

this section, we introduce the concept of belief re-166

vision and its notation, and propose the evaluation167

framework for belief revision capabilities.168

3.1 Background and notation169

For set of query sentences χ, it encompasses a set170

of premises Γ={γ1, . . . , γN} that could imply a171

set of conclusions Φ={φ1, . . . , φM}. We denote172

reasoner’s belief set as a set of sentences B to rep-173

resent a contextually fixed background knowledge174

of χ. In this regard, B is a tuple that contains set175

of premises and conclusions: B=(Γ,Φ). In pres-176

ence of new information γN+1, the belief revision177

concept allow us to infer conclusion φM+1 if it is178

rational to believe φM+1 after acknowledging γN+1.179

Belief revision operation The belief revision op-180

eration is to update belief set B with a new piece181

of information, γN+1. Here, the result of operation182

must always be that the beliefs does not contradict183

one another to avoid inconsistencies among them.184

The significance of the new information γN+1, de-185

cides whether it fits with or modifies the existing186

beliefs after performing the belief revision opera-187

tion. The operation should smoothly incorporate188

γN+1 and yield a new conclusion φM+1 as long as189

it does not conflict, thereby justifying the mainte-190

nance of the reasoner’s prior beliefs. However, if191

it conflicts, we update the initial beliefs B appro-192

priately, i.e., by retracting any prior conclusions in193

Φ, to incorporate the new, conflicting information194

γN+1 to resolve any inconsistencies as we yield the195

correct φM+1. The process to figure out what fol- 196

lows from the revised beliefs is then essentially to 197

infer the new conclusion φM+1. 198

3.2 Evaluating belief revision with ∆R 199

We introduce a novel delta reasoning (∆R) frame- 200

work, to study how LMs adapt their reasoning when 201

presented with new information over successive 202

timesteps. In this framework, we focus on under- 203

standing how model responds to query changes at 204

two essential, consecutive reasoning steps at t and 205

t+1. We do this by comparing responses to prior 206

queries at step t, χt, and the next query at step t+1, 207

χt+1, adding the new information γN+1. 208

To begin with, we need χt to minimally include 209

two premises, i.e. {γ1, γ2}, and at least imply con- 210

clusion φ1. We set χt to be basic as we expect LMs 211

to answer it in high accuracy to help establish the 212

prior belief and not be affected by the inconsisten- 213

cies in LMs’ behaviour (Jang et al., 2022; Kassner 214

et al., 2021; Hase et al., 2023). We then add the 215

new information γN+1 as another premise γ3 in 216

χt+1 such that χt+1={γ1, γ2, γ3}. We examine the 217

corresponding conclusion, φM+1, to see how the 218

beliefs shifts according to the significance of γ3. 219

One way to set χt as basic, is to state them as 220

premises that could satisfy basic logical inference 221

rules of modus ponens and modus tollens (Wa- 222

son and Johnson-Laird, 1972; Haack, 1978; Evans, 223

1982). Modus ponens and modus tollens is a valid 224

form of inference that have been made a central 225

principle in many propositional and modern log- 226

ics (Copi, 1972; Haack, 1978). Modus ponens rule 227

of inference states that the premises “if p then q” is 228

true and p is true (p → q, p) satisfy modus ponens 229

conclusion that q must be true (q). Modus tollens 230

rule of inference states that the premises “if p then 231

q” is true and q is false (p → q,¬q) satisfy modus 232

tollens conclusion that p must be false (¬q). 233

In this setup, we are able to evaluate how well 234

the models revise its beliefs after the introduction 235

of new information in γ3. We measure the model’s 236

dynamic reasoning ability: whether it can correctly 237

update or maintain its initial beliefs when con- 238

fronted with new information that may contradict 239

prior beliefs. Through this approach, we can as- 240

sess both how accurate and how flexible different 241

reasoning models are in evolving scenarios. 242

Example Figure 2 presents a scenario where the 243

initial two premises at step t, γ1 and γ2, adhere to a 244

basic inference rule, modus ponens (p → q, p ⊢ q), 245
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If she has an essay to finish then she will study late in
the library
She has an essay to finish
If the library stays open then she will study late in
the library

What necessarily had to follow assuming that the above
premises were true?
(a) She will study late in the library.
(b) She will not study late in the library.
(c) She may or may not study late in the library. ✓

If she has an essay to finish then she will study late in
the library
She has an essay to finish
If she has some textbooks to read then she will study
late in the library

What necessarily had to follow assuming that the above
premises were true?
(a) She will study late in the library. ✓
(b) She will not study late in the library.
(c) She may or may not study late in the library.

Figure 2: Human reasoning adapts based on new information, leading us to adjust our prior beliefs. Here, the
additional condition (left) casts doubt on prior modus ponens conclusion in (a). People may consider that certain
other conditions necessary for this conclusion to hold, i.e., the library must remain open. In contrast, the alternative
argument (right) does not affect the modus ponens inference pathway, thus prior conclusion could still hold.

implying a φ1 conclusion of q: She will study late246

in the library. These premises: γ1, γ2, and φ1, form247

the belief set B. Subsequently, we introduce the248

third premise γ3, i.e., another conditional (r → q)249

“if the library stays open then she will study late in250

the library”, as the new information in query χt+1251

and evaluate model’s answer at step t+1. This sets252

the stage to execute the belief revision operation.253

Recall B = {γ1 : If she has an essay to finish254

then she will study late in the library., γ2 : She255

has an essay to finish., φ1 : She will study late in256

the library.}, and γ3 = {If the library stays open257

then she will study late in the library.}. The intro-258

duction of γ3 suggests that “the library being open”259

is a sufficient condition for her to “study late in260

the library”. However, people might consider it as261

a necessary condition for φ1. This would involve262

commonsense reasoning step to recognize that de-263

spite the conditions set by γ1 and γ2, the actual264

feasibility of her studying late as concluded in φ1265

might inherently depend on the library’s availabil-266

ity. Thus, while γ3 does not explicitly redefine the267

dependency of φ1 on the library’s status, it implies268

a scenario where such a dependency could be rea-269

sonably inferred. Consequently, we retract φ1 and270

infer the new conclusion φ2: “She may or may not271

study late in the library”.272

4 The Belief-R Dataset273

Belief-R is designed to specifically assess the be-274

lief revision capability through the ∆R framework.275

To account for this, we adopt a reasoning task that276

has been extensively studied in cognitive science:277

the suppression task (Byrne, 1989). Typically, this278

task employs a trio of premises γ1, γ2, γ3 that ac-279

companied by three possible conclusions, i.e. as280

exemplified in Figure 2 for modus ponens: (a) She281

will study late in the library (q), (b) She will not282

study late in the library (¬q), and (c) She may or 283

may not study late in the library (3q ∧3¬q; here 284

the symbol 3 expresses possibility, 3q can be read 285

as “possibly q”). 286

At step t, we form a query χt using the first two 287

premises, γ1 and γ2. These two premises are the 288

premises that respectively satisfy the modus po- 289

nens or modus tollens conclusion, (p → q, p) or 290

(p → q,¬q). These logical rules are basic, and 291

we generally expect that most reasoners can apply 292

them accurately. Next, at step t+1, to form the 293

query χt+1, we introduce a third premise γ3 which 294

is another conditional statement r → q. The addi- 295

tion of γ3 brings in new information that might con- 296

flict previously held beliefs. The new information 297

in r can be seen either as adding more requirements 298

or providing an alternative pathway, i.e. to reach 299

the same modus ponens conclusion q. 300

For instance, if γ3 states if the library stays open 301

then she will study late, we now view r: the library 302

stays open as another additional requirement on 303

top of p. In such cases, just knowing p alone isn’t 304

enough to conclude q: we also need r to be true, 305

thus the condition now becomes p ∧ r→q. In this 306

case, we retract the prior modus ponens conclusion 307

q, and infer the new conclusion 3q ∧ 3¬q. We 308

refer to this subset of dataset as the “Belief Up- 309

date” (BU) category. However, in another case, γ3 310

could instead states if she has textbooks then she 311

will study late. In this case, r stands as a separate 312

alternative inference path that also leads to q, thus 313

p ∨ r→q. Here, p still directly leads to q, and the 314

acknowledgement of r doesn’t affect this pathway, 315

enabling prior conclusion to still hold. We call this 316

subset as the “Belief Maintain” (BM) category. 317

In Belief-R, the task requires the model to per- 318

form multi-step reasoning to manage the relevance 319

of information within r and decide if it needs to 320
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update its prior beliefs at step t or not. The model321

must discern the implicit commonsense and causal322

links amongst given premises to identify how p and323

r are related, determining if their interaction is con-324

junctive (p∧ r) or disjunctive (p∨ r). Based on the325

relationships, reasoner needs to determine whether326

to update its initial conclusion q if the new infor-327

mation r imply an additional requirement for its328

prior beliefs to hold (p ∧ r), or to maintain its prior329

beliefs if r simply serves as alternatives (p ∨ r).330

To quantitatively measure the model’s reasoning331

accuracy, we provide multiple choices and ask it to332

pick the most plausible conclusion. For instance,333

in examples shown in Figure 2, we would expect334

LMs to choose options (c) and (a) for each scenario,335

which aligns with the majority choices made in the336

original study (Byrne, 1989; Byrne et al., 1999).337

4.1 Dataset construction338

We leverage ATOMIC (Sap et al., 2019), a publicly-339

available dataset of everyday commonsense reason-340

ing. It contains textual descriptions of inferential341

if-then knowledge (e.g., “if X pays Y a compliment,342

then Y will likely return the compliment”). In addi-343

tion to the textual commonsense descriptions, the344

dataset also contains detailed annotation on the type345

of causal dimensions, i.e. the events, causes (i.e.,346

‘xIntent’), and effects (i.e., ‘xEffect’, ‘oReact’);347

with “x” and “o” pertain to PersonX and others.348

We use ATOMIC as our seed to ensure the gold-349

standard validity of our dataset. We synthetically350

generate Belief-R and minimally introduce vari-351

ance from the LLM by instructing it to be grounded352

in the context provided by the seed and not to in-353

troduce new ones. We mainly utilize GPT-4 series354

model as the LLM in our data generation pipeline.355

4.1.1 Dataset generation process356

We prompt LLM to generate the first two premises357

conditioned on the events, causes (‘xIntent’,358

‘xNeed’, ‘xAttr’), and effects (‘xEffect’,359

‘xReact’, ‘xWant’, ‘oEffect’, ‘oReact’, ‘oWant’).360

We exclude the static elements, as we want to361

focus on the dynamic causal relationships where362

change or action is involved, following the original363

task (Byrne, 1989). For each event, cause, and364

effect in ATOMIC, we generate the first two365

premises in both modus ponens, p −→ q and p, and366

modus tollens, p −→ q and ¬q. Afterwards, we367

prompt LLM to generate the third premises. We368

design separately the prompt for the alternative369

and additional conditions (corresponding to the370

Split Basic
@t

Belief
Update

Belief
Maintain

All w/ 3
premises

Inference rule

Modus ponens 956 537 335 872
Modus tollens 956 537 335 872

Effect entities

Mental states 504 276 184 460
Events 1408 798 486 1284

Total 1912 1074 670 1744

Table 2: Statistics of Belief-R dataset.

BM and BU categories) within the context in the 371

first premise. For the alternative condition, we 372

prompt the model to generate conditions that are 373

not related at all to p for the conclusions q to 374

happen. For the additional condition, we prompt 375

the model to generate conditions strongly relate to 376

p for this conclusions q to surely hold. Following 377

the original task setup, we set the same third 378

statement in both cases with modus ponens and 379

modus tollens inferences. 380

In our iterations, we discovered that several enti- 381

ties in the ATOMIC dataset are quite abstract, such 382

as “wants to know what he is selling” or “to analyze 383

the thing in question.” To make these clearer for a 384

general audience and to make them less ambiguous 385

for our study, we prompt LLM to generate more 386

specific examples, changing them to “asks about 387

the price of a pen” or “examine the pen.” To pro- 388

vide more clarity on the dataset generation process, 389

we attach the samples of prompt and generation 390

process in Appendix A. Further, to decide the sig- 391

nificance of the third premises, whether it serves as 392

alternative or additional condition, we conducted 393

majority voting among multiple human annotators. 394

4.1.2 Ground-truth formulation 395

To further validate the implied commonsense inter- 396

action of the third premises, whether it serves as 397

alternative or additional condition, we manually an- 398

notate the final conclusions through a crowdsource 399

annotation task at Appen2 (see Appendix B). We 400

cater the variability arises from different interpre- 401

tations from diverse human readers by asking 5 402

workers to annotate each problem and then take the 403

majority voting out of them to set the agreed op- 404

tions as the ground truths. Upon further inspection, 405

we found some annotations that logically invalid, 406

i.e. answering ¬q in questions with modus ponens 407

inferences or answering p in modus tollens infer- 408

ences. We view such cases as non modus ponens 409

(or tollens) inferences and specifically treat the an- 410
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Figure 3: Evaluation on basic logical inference capabilities in Belief-R on various LLMs sorted by the #parameters.
Pre-trained LLMs with ≥6B parameters achieves adequate accuracy (≥75%), while instruction-tuned LLMs achieve
the same performance on much smaller scale with ≥2.7B parameters.

notation similarly with answering c) 3q ∧3¬q.411

In Belief-R, both cases of the logical inferences412

share the same third statement. To streamline413

our process, we annotate only the modus ponens414

samples and then extend the insight on the third415

premises’ significance to the modus tollens cases.416

For modus tollens cases, if the corresponding417

modus ponens sample primarily supports conclu-418

sion a) q, indicating no conflict with initial beliefs,419

we set the correct answer to b) ¬p. Conversely, if420

on the modus ponens samples the majority vote421

suggests the answer c) 3q ∧3¬q, implying addi-422

tional requirement for the inference, we likewise423

categorize the corresponding modus tollens cases424

answers to be c) 3p∧3¬p. This process maintains425

the consistencies of the impact of the third premise426

effectively across related inference scenarios.427

4.2 Quality check428

Context and logical quality checks Through-429

out the data construction phase, we assign one ex-430

pert to review of the logical formations to ensure431

they follow the intended structure. We also further432

gauge the quality of the generated data by review-433

ing 100 randomly chosen samples to confirm on434

the context and logical consistency. We conducted435

a human evaluation via Appen2, with three native436

English speakers assessing each sample’s quality.437

They unanimously confirmed that the conditional438

relationships in the premises were logically sound439

across all samples, i.e. that q entails p and q en-440

tails r in both of the conditional premises. We also441

attach the annotation guidelines in Appendix B.442

Dataset filtering To enhance the quality of our443

dataset for more reliable evaluation, we refined it444

by focusing on consensus among annotators. For445

each question, we utilize the answers manually446

labeled by five independent workers. We retained 447

only the questions with strong majority agreement 448

(at least four out of five annotators concurred). This 449

filtering retained ∼65% of the original data. 450

4.3 Statistics of Belief-R 451

Table 2 shows the composition of our dataset, 452

sized optimally at around 2K entries to balance 453

representation and computational efficiency for 454

LLM inferences. The dataset includes cate- 455

gories such as Basic @t for basic logical infer- 456

ences at time t, and categories like Belief Up- 457

date, Belief Maintain, and All w/3 premises 458

for the next step queries at time t+1. Addition- 459

ally, the table details categories inherited from the 460

ATOMIC dataset for the causal relationships of 461

If-Event-Then-Event (e.g., “promoted to senior 462

manager”) and If-Event-Then-Mental-State 463

(e.g., “learns something new”). 464

5 Experiment Settings 465

Evaluation metrics The primary goal of our ex- 466

periments is to investigate whether LMs possess 467

the capability to perform belief revision in their 468

reasoning processes. We report the accuracies in 469

the Belief Update (BU-Acc) and the Belief Main- 470

tain (BM-Acc) subsets to indicate LM capabilities 471

in updating and maintaining its beliefs in which it 472

has to do so. We further introduce a novel metric, 473

BREU (Belief Revision Evaluation Understudy), 474

to assess LMs’ belief revision ability, by averaging 475

BU-Acc and BM-Acc equally. The goal of BREU 476

is to gauge whether the model accurately decides 477

when to update or maintain its prior beliefs. We 478

then benchmark publicly-available LMs and de- 479

2https://appen.com/
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Figure 4: BREU score evaluation on belief revision capabilities in Belief-R on various models sorted by the BREU
score. While larger-scale LLMs tend to achieve higher BREU score, the performance is far lower compared their
basic logical inference at t, showcasing limited capability of LLMs in performing belief revision.

sign series of experiments through ∆R framework.480

We perform zero-shot-classification on series of481

smaller to larger scales pre-trained and finetuned482

LMs, and prompt LLMs generations through API.483

Models We perform zero-shot classification us-484

ing encoder-only and decoder-only LMs. For485

encoder-only LMs, we employ entailment-based486

inference (Yin et al., 2019) using NLI-finetuned487

LMs of RoBERTa (Liu et al., 2019), DeBERTa-488

v3 base (Laurer et al., 2024), and DeBERTa-v3489

large (Laurer et al., 2023). For decoder-only LMs,490

we follow Brown et al. (2020) using GPT (Rad-491

ford et al., 2019; Black et al., 2021; Wang and Ko-492

matsuzaki, 2021), Llama (Touvron et al., 2023a,b;493

AI@Meta, 2024), and Phi series (Gunasekar et al.,494

2023; Li et al., 2023; Abdin et al., 2024).495

We also include larger-scale LLMs with ≥35B496

parameters. We evaluate the belief revision ca-497

pability of these larger-scale LLMs via comple-498

tion API through generation-based approach. We499

employ three zero-shot prompting methods, i.e.,500

direct prompting (DP), triggering the genera-501

tion of chain-of-thought (CoT) (Kojima et al.,502

2022), or through plan and solve (PS) prompt-503

ing (Wang et al., 2023b). We employ 8 large-scale504

LLMs, i.e., Llama-3 70B (AI@Meta, 2024), Mix-505

tral 8x22B (Jiang et al., 2024), Command R, Com-506

mand R+ (Cohere, 2024), Claude 3 Haiku, Son-507

net (Anthropic, 2024), GPT-3.5 Turbo, and GPT-4508

Turbo (OpenAI, 2023). Here, we follow Yao et al.509

(2022) and instruct the model to output the exact510

character of the final answer as a format. We then511

retrieve the final answer and report accuracy of the512

final answer as the metric. When the answer does513

not follow the format instructed before, we treat it 514

as an instruction-following error. 515

6 Result and Analysis 516

Smaller models fail even on basic logical rea- 517

soning tasks. We start by examining the infer- 518

ences through the first two premises in Belief-R. In 519

Figure 3, we find as the number of parameters in 520

LMs increases, their ability to handle basic logical 521

inference improves. Smaller models, with <2B 522

parameters, struggle with these tasks, scoring close 523

to the majority baseline. Models >6B parameters 524

do better, surpassing 75% accuracy. Pre-trained 525

LMs with >6B parameters achieve ≥ 75% accu- 526

racy, while instruction-tuned LMs show an emerg- 527

ing ability from 2.7B parameters achieving signifi- 528

cantly higher performance with ≥ 90% accuracy. 529

LLMs are incapable of revising their prior be- 530

liefs. We group our further exploration on these 531

LMs that performed well (≥ 75% accuracy) in ba- 532

sic logical inference, and evaluate their average per- 533

formance in Belief Maintain (BM) and Belief Up- 534

date (BU) subsets. Despite being a strong reasoner 535

on simple logic, all larger-scale LMs under study 536

fail to perform well on these subsets of Belief-R. In 537

evaluation shown in Figure 4, most of the non-API 538

based models perform almost 0% in BU-Acc, indi- 539

cating their inability on performing belief revision. 540

We observe that all larger-scale both open-source 541

and commercial LLMs perform better on the belief 542

revision tasks, but their performances are still very 543

limited, achieving at most ∼50% on BREU. 544

LLMs confront a trade-off between updating 545

and maintaining their prior beliefs. We dis- 546
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Figure 5: Performance comparisons dissected across various aspects covering distinction on modus ponens and
modus tollens, on different effect entities, and on different prompt methods.

cover a trade-off between BU-Acc and BM-Acc:547

models performing well on one subset typically548

faltered on the other, especially in models where549

the BU-Acc is not close to 0% (see Fig 4). This in-550

dicates a potential tension between enhancing spe-551

cific capabilities, as improving one aspect could in-552

advertently weaken another. An ideal model would553

excel at belief revision by consistently making the554

right decision on whether the new information con-555

flicts with prior beliefs or aligns with them. This556

underlines the importance of developing strategies557

that refine the ability to revise beliefs accurately,558

ensuring its reliability across various scenarios.559

7 Discussion560

Belief revision is harder in a more complex561

task with modus tollens inferences. We com-562

pare LLMs’ belief revision capabilities in average,563

through tasks with modus ponens and modus tol-564

lens rule as the basic logical inferences at step t. As565

observed in Figure 5a, LLMs show reduced BREU566

score in tasks with modus tollens rule. This is ex-567

pected, as modus tollens is inherently more difficult568

relative to modus ponens as it require backward di-569

rections of reasoning and it involves reasoning with570

negations (Evans, 1982, 1993; Girotto et al., 1997).571

Furthermore, in tasks involving modus tollens in-572

ference, we observe a notably higher BU-Acc com-573

pared to a much lower BM-Acc. This disparity574

suggests that executing accurate belief revision be-575

comes more challenging in complex tasks: deci-576

sions to update or maintain beliefs are less clear-cut577

in these scenarios compared to simpler tasks.578

Belief update on mental states effect entities579

is more challenging than events. We examine580

LLMs’ belief revision capabilities in average, when581

dealing with scenarios involving causal relation-582

ships on events and mental states effect entities and583

note them in Figure 5b. While the BREU score is 584

similar, LLMs demonstrate tendency towards main- 585

taining their beliefs in mental state effects instead 586

of updating them. This may stem from the chal- 587

lenge of recognizing additional requirements im- 588

plied from the third, mental state-related, premise 589

which is inherently more abstract and less directly 590

observable than a concrete sequential event. 591

Better prompting methods yield limited gain on 592

belief revision. We explore how different prompt- 593

ing methods affect belief revision abilities of LLMs 594

on average. Figure 5c shows that CoT, which en- 595

courages LLMs to elicit reasoning steps, does not 596

significantly enhance belief revision. While this 597

may stem from its vulnerability to missing-step 598

errors (Wang et al., 2023b), attempts to correct 599

these errors with the PS prompting offer minimal 600

benefits, improving only by ∼1% of BREU. This 601

suggests the ability to revise beliefs could still be 602

absent despite elicitation of reasoning steps. 603

8 Conclusion 604

The ability to reason and adapt to changing infor- 605

mation is crucial for NLP applications in the real 606

world. Most evaluations assume static knowledge 607

environment, which does not prepare models for dy- 608

namic real-life scenarios. To address this, Belief-R 609

is introduced as a diagnostic dataset for evaluating 610

belief revision capability in LMs. Through Belief- 611

R and a novel evaluation framework for evaluating 612

reasoning in a dynamically evolving environment, 613

∆R, we reveal that current models struggle with 614

updating their beliefs in response to new informa- 615

tion, highlighting the need for improved adaptabil- 616

ity and reliability. Our work emphasizes the signif- 617

icance of enhancing the capability of AI models to 618

reason with evolving data for real-world readiness. 619
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Limitations620

Towards understanding general belief revision621

capabilities. Our study on belief revision using622

the Belief-R dataset via the ∆R framework fo-623

cuses on belief changes driven by logical inferences624

like modus ponens and modus tollens, which may625

not fully represent the complexity of real-world626

belief revision that often includes a broader range627

of scenarios and subtleties. Moreover, our method-628

ology primarily considers the introduction of new629

premises as the trigger for belief revision, overlook-630

ing how beliefs might change through re-evaluation631

of existing knowledge or shifts in perspective in the632

absence of new information (i.e. in Kronemyer and633

Bystritsky (2014)). Additionally, our approach to634

simulate future data is constrained by our inability635

to determine what LMs have previously known and636

by resource limitations that restrict the training of637

large-scale models from scratch.638

Intersection of reasoning capability and knowl-639

edge capacity. The evaluation of models’ reason-640

ing capabilities is intricately tied to their knowl-641

edge capacity, presenting a significant challenge642

in discerning pure reasoning capability from mere643

knowledge recall. Current benchmarks often fail to644

disentangle these aspects, as models with extensive645

knowledge bases may appear to possess superior646

reasoning abilities when, in fact, they might be647

leveraging stored information rather than demon-648

strating genuine inferential logic. This conflation649

complicates the assessment of a model’s true rea-650

soning faculties, as performance improvements on651

reasoning tasks could be attributed to enhanced652

information retrieval rather than advancements in653

reasoning algorithms. Similar to observations in654

other reasoning datasets, we acknowledge the lim-655

itation that the improved performance of models656

tested on Belief-R might not only stem from their657

ability to revise beliefs but could also be influenced658

by superior knowledge recall (Huang and Chang,659

2023). Future research could delve deeper into the660

relationship between these capabilities, specifically661

focusing on developing evaluation methods that662

effectively distinguish between them.663

Ethics statement664

This research explores how well LMs can revise665

their beliefs when faced with new information,666

which is crucial for their use in constantly changing667

real-world situations. We created a reasoning eval-668

uation dataset to test whether LMs can revise their 669

beliefs correctly or if they stick to their initial as- 670

sumptions. This is important for using LMs in areas 671

where being accurate and up-to-date is vital, like 672

healthcare or legal advice. In example, being able 673

to revise beliefs appropriately could help prevent 674

LMs from repeating outdated or wrong information, 675

making them more reliable and trustworthy. Plus, 676

LMs that can refresh their understanding accord- 677

ing to new societal norms can avoid perpetuating 678

biases, contributing to the fair and ethical use of 679

AI. We consider this a promising and significant 680

area for research. We construct the dataset using 681

events, causes, and effects from ATOMIC and the 682

construction template is designed and reviewed 683

manually and attached in this paper. We utilized 684

crowd-sourced annotators who voluntarily partici- 685

pated through the platform Appen2, choosing tasks 686

they deemed fairly compensated. The annotators 687

were presented with multiple-choice tasks prede- 688

fined to avoid bias and protect privacy, ensuring an 689

ethical annotation process. 690
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Appendix1044

A Samples of Prompts1045

To provide more clarity on the dataset generation1046

process, we attach the samples of prompt in Fig-1047

ure A1.1048

B Annotation guidelines1049

We provide human annotators with specific guide-1050

lines and examples, as detailed in Figures A2 and1051

A3 for ground truth and quality check annotations,1052

respectively.1053

C Additional analysis1054

C.1 LLMs logical reasoning ability are not1055

robust in the presence of distractors1056

We analyze the performance of LLMs on basic logi-1057

cal inference tasks and compare it to their accuracy1058

on the BM subset, which differs only by including1059

a third premise. We selected 378 queries from the1060

Belief-R dataset where premises overlap between1061

the basic logical inference tasks at time t and the1062

BM subset for a fair comparison, and visualize1063

them in Figure A4. On most of the models, LMs’1064

accuracy on samples that do not require change of1065

conclusion (BM-Acc) is dropping compared to its1066

basic inference at t performances. This indicates1067

that the logical reasoning ability of these models1068

are not robust in the presence of distractors, expos-1069

ing a critical problem of these models especially1070

on the challenges in currently adopted retrieval-1071

augmented-generation (RAG) pipeline to manage1072

noisy documents that have question-related con-1073

tent despite lacking substantive information (Lewis1074

et al., 2020; Chen et al., 2022; Gao et al., 2023).1075

C.2 Better prompting methods yield limited1076

gain on belief revision.1077

We provide more details on the investigation in1078

the impact of varied prompting techniques on the1079

performance accuracy of several models, as sum-1080

marized previously in Figure 5c. In that figure,1081

the data indicates most significant performance im-1082

provements in the BU subset, though overall belief1083

revision improvements remain marginal, showing1084

∼1% increase in BREU. In examining the perfor-1085

mance across models and different prompting meth-1086

ods as shown in Table A1, it is clear that the influ-1087

ence of these methods is not uniform. For instance,1088

the PS prompting method notably boosted accuracy1089

for models like Mixtral 8x22B and Command R by1090

Models Method BU-Acc BM-Acc BREU

Llama-3
Instruct
(70B)

DP 10.99% 92.09% 51.54%
CoT 12.57% 89.40% 50.99%
PS 12.66% 88.21% 50.44%

Mixtral
(8x22B)

DP 35.38% 36.57% 35.98%
CoT 27.28% 34.93% 31.11%
PS 44.04% 53.13% 48.59%

Command
R

DP 12.10% 80.45% 46.28%
CoT 11.36% 81.19% 46.28%
PS 19.37% 69.85% 44.61%

Command
R+

DP 13.69% 75.67% 44.68%
CoT 14.71% 77.76% 46.24%
PS 13.41% 65.07% 39.24%

Claude-3
Haiku

DP 9.40% 88.66% 49.03%
CoT 13.50% 83.73% 48.62%
PS 13.22% 82.99% 48.11%

Claude-3
Sonnet

DP 19.65% 82.69% 51.17%
CoT 21.51% 81.19% 51.35%
PS 16.76% 83.73% 50.25%

GPT-3.5
Turbo

DP 14.53% 55.22% 34.88%
CoT 20.48% 65.22% 42.85%
PS 17.78% 67.91% 42.85%

GPT-4
Turbo

DP 16.76% 86.72% 51.74%
CoT 13.59% 87.76% 50.68%
PS 12.76% 88.66% 50.71%

Table A1: The effectiveness of various prompting tech-
niques varies across LLMs and subset of Belief-R, en-
hancing performance in some while degrading it in oth-
ers.

over 10%. Conversely, this same strategy led to per- 1091

formance reductions in models such as Claude-3 1092

Sonnet and GPT-4 Turbo. Similarly, utilizing CoT 1093

and PS exhibited mixed outcomes across models. 1094

It strengthened robustness in models like GPT-3.5 1095

Turbo and GPT-4 Turbo, as shown by higher BM- 1096

Acc scores, while it increased sensitivity to noise in 1097

models like Llama-3 Instruct (70B) and Command 1098

R, resulting in reduced BM-Acc values. 1099
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Figure A1: Samples of prompts utilized in each of the Belief-R generation pipeline. Here, we take the Event:
PersonX uses PersonX’s ___ to obtain, Cause (from PersonX): to have an advantage, Effect (to
PersonX): pleased from ATOMIC, to generate p, q, and r for us to form queries at step t and t+1 in Belief-R and
later go through the manual annotaion process.
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(a) Annotation Guidelines

(b) Example of Annotation Questions

Figure A2: Details on ground truth annotation
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(a) Annotation Guidelines

(b) Example of Annotation Questions

Figure A3: Details on quality check annotation
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Figure A4: LLMs show decreased inference performance when exposed to noise from the new information in
alternative condition.
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