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ABSTRACT

Heart rate(HR) is a key parameter for evaluating a person’s physio-
logical condition. In recent years, there have been many researches
on remote heart rate measurement. However, these methods are
mostly conducted in close-range scenarios, making them inappli-
cable in many scenarios. Remote photoplethysmography (rPPG)
provides more possibilities for heart rate measurement in far-field
environments. Moreover,the performance of heart rate measurement
will be significantly reduced when the subject’s movement and the
illumination changing. We propose a rPPG framework for heart
rate detection, which selects a larger region of interest (ROI) using
feature point tracking in far-field environments. The combination
of fast wavelet transform (FWT) and second-order blind identifica-
tion (SOBI) is used to resist illumination interference and most of
the motion interference. Singular spectrum analysis (SSA) is then
used to resist residual motion interference.In addition, we collected
a database of illumination changes in far-field environments and
tested our framework with it. The results show that our method is
superior to all previous methods.

Index Terms: Heart rate(HR),Far-field environments,Fast wavelet
transform(FWT),Second-order blind identification(SOBI).

1 INTRODUCTION

Heart rate is a key parameter for evaluating a person’s physiological
condition. Early symptoms of cardiovascular disease are not easy to
detect and require specific heart rate monitoring equipment, such as
electrocardiogram (ECG), which must be in contact with the surface
of the skin. If continuous long-term monitoring is required, it can
cause inconvenience to the user or patient. In addition, ECG devices
are often large in size and expensive, resulting in high measurement
costs, which are not conducive to real-time monitoring of the user’s
physiological and psychological health conditions.People urgently
hope to be able to learn their cardiovascular physiological condition
through safe and convenient means. Compared with contact-based
devices, video-based non-contact heart rate monitoring has obvious
advantages. This method uses a consumer level camera to sense the
heart rate by capturing body surface videos, so it is very cheap and
user friendly.The non-contact method overcomes the disadvantages
of contact based heart rate measurement and is therefore widely used
in human-computer interaction, health monitoring, and other fields.
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rPPG is a non-contact method for measuring heart rate. rPPG tech-
nology has broad application prospects, for example, in scenarios
such as neonates, burn patients, or long-term monitoring, where
measurement does not require a far distance. Currently, the near-
distance rPPG technology has achieved good application effects
in these scenes.However, in some environments where heart rate
measurement needs to be performed at a considerable distance, most
of the current rPPG applications are unable to meet the require-
ments.For example, in scenarios such as court hearings, live sports
events,and online interviews, it is necessary to obtain the heart rate
of individuals over a certain distance.Previous research has shown
the feasibility of video-based heart rate measurement, but in real-
world environments, changes of illumination and human motion can
significantly affect measurement results. It is difficult to avoid inter-
ference from illumination during long-term heart rate monitoring,
as changes in illumination include various forms of noise caused
by environmental changes,such as flickering indoor illumination or
changes in outdoor natural indoor illumination.Additionally, it is dif-
ficult to avoid interference from human motion,which includes both
rigid movements such as head tilting and nonrigid movements such
as blinking and smiling. In this paper, we propose a framework that
can effectively resist these interferences in a far-field environment.
Furthermore, we collected a database of illumination changes in
far-field environments and used this database to test our algorithm.

2 RELATED WORKS

rPPG is a non-contact method for measuring heart rate from a dis-
tance using a camera. The basic rPPG process involves the following
steps: First,capturing a video of the subject’s face using a camera
with sufficient resolution and frame rate, Then,selecting an ROI on
the subject’s face, typically around the forehead or cheek. After
that,extracting the BVP (Blood Volume Pulse) signal from the se-
lected ROI using various signal processing techniques, processing
the BVP signal to remove any noise or artifacts.Finally,estimating
the heart rate from the processed BVP signal.
Verkruysse et al. [12] first proposed the use of a regular high-
definition camera with rPPG technology to measure heart rate. In
ideal conditions, they used the G-BVP method to estimate heart
rate and achieved relatively accurate results. However, in practical
scenarios, rPPG technology struggles to extract accurate BVP wave-
forms due to changes of illumination and significant motion. To
address these issues, Poh et al. [9] first proposed a method based
on independent component analysis (ICA). They believed that the
R, G, and B channel signals from the imaging device were mixed
with BVP signals and noise signals and that using ICA separation
methods could isolate the BVP signals from the three channels. The
results showed that the ICA separation method provided more ac-
curate results than using the green channel alone. Lewandowska



Figure 1: Proposed framework for heart rate measurement.

et al. [7] used principal component analysis (PCA) to select the
strongest periodic signals as BVP signals, resulting in accurate heart
rate measurements. Li et al. [8] proposed a method based on face
tracking and normalized least mean square adaptive filtering to com-
bat the effects of illumination and motion. Chen et al. [3] used
joint blind source separation and empirical mode decomposition to
analyze color signals from multiple facial subregions to resist the
effects of illumination changes. In addition, there are also some
model-based methods [4] [14] , which believe that motion artifacts
can be eliminated by linear combinations of the R, G, and B chan-
nels. When detecting heart rate based on rPPG, reliable region of
interest (ROI) detection and tracking are key steps. By removing
areas on the face that are more susceptible to motion or change and
using local motion compensation methods [9] , the accuracy of heart
rate measurement can be ensured.
The above methods aim to mitigate the effects of illumination
changes and human motion on heart rate measurement as much
as possible. However, their experiments were carried out with the
distance between camera and the subjects very close, which imposes
many limitations on the practical application scenarios. Al-Naji
et al. [1] used a framework combining video magnification and
blind source separation to reduce the impact of illumination changes
on heart rate measurement. They increased the distance of heart
rate measurement and provided more space for the application of
rPPG. Since the facial image is smaller in a far-field environment,
they selected the entire face as the ROI. To avoid interference from
non-rigid motion on the measurement results, they removed the eye
region for heart rate measurement as accurately as possible. How-
ever, their experiments only involved six individuals, which may
lead to insufficient data to prove the effectiveness of the experimental
measurement. In addition, the ROI they selected includes some back-
ground outside the face, which may obtain some non-physiological
signals of the person during the video signal processing, resulting
in inaccurate heart rate measurement. Moreover, the region they
selected when removing the human eyes is too large, which will
continue to amplify the disadvantage of the image being too small in
the far-field environment, resulting in a ROI selected for heart rate
measurement that is too small and inaccurate results.

3 A FRAMEWORK FOR RESISTING ILLUMINATION AND MO-
TION INTERFERENCE IN FAR-FIELD ENVIRONMENTS

As there is no publicly available database for illumination changes
in far-field environments, we collected a database specifically for
this scenario. Additionally, we propose a framework that can re-
sist illumination and slight motion interference in far-field environ-
ments.Our framework consists of three steps, as shown in Fig. 1.
In the first step, we need to obtain the ROI that contains the raw

physiological signal of the person. We use the Viola-Jones(VJ) al-
gorithm [13] to detect the face in the first frame of the image and
then use the Kanade-Lucas-Tomasi (KLT) algorithm [11] to track
the position of the ROI. In each frame, we convert the ROI image
into an RGB three-channel signal by spatial averaging. The purpose
of the second step is to reduce the interference caused by changes in
illumination. We perform fast wavelet transform (FWT) [15] on the
three-channel signal, preprocess the signal to remove some of the
interference of illumination, and then use the SOBI algorithm [2] to
process the signal to remove both illumination and motion interfer-
ence. The purpose of the third step is to filter out residual motion
interference. We perform singular spectrum analysis (SSA) [5] on
the processed signal, which can resist motion interference to some
extent. Then, we estimate the heart rate using Fourier transform.
The details of each step will be explained in the following sections.

3.1 ROI Detection and Tracking

(a) (b)

(c) (d)

Figure 2: Video frame. (a) A frame from the video, (b) Facial region
image, (c) Image with generally selected ROI, (d) Image with feature
point tracked ROI.

The selection of the face region of interest (ROI) is a crucial step
in rPPG heart rate measurement. Figure 2(a) shows a frame from
one of the videos in our self-collected dataset, captured under far-
field conditions with illumination changes.Fig. 2(b) shows an image
without the selected ROI. Typically, as shown in Fig. 2(c), the region
below the eyes and above the mouth is generally selected as the
ROI because this area is not susceptible to motion interference and
contains dense capillaries that provide the required signal, making it
a good choice for ROI. However, if a fixed box in the video frame is
used to represent the ROI, the box may deviate from the original ROI
area result in losing the area for obtaining physiological signals. In
a far-field environment, since the facial area is relatively small, our
goal is to include as much of the facial area as possible in the ROI,
while excluding the eye region, which produces non-rigid motion



and interferes to heart rate measurement.As shown in Fig. 2(d),we
used the Viola-Jones face detector [13] to detect the face in the first
frame, which provides a rectangular box containing the approximate
position of the face. We used a rough facial template to locate the
skin areas above and below the eyes and remove the eye region.
To remove the background, we detected feature points [10] using
the Minimum Eigenvalue Algorithm and selected suitable facial
landmarks within the rectangular box to include as much of the
facial area as possible in the ROI. Then, we used the Kanade-Lucas-
Tomasi (KLT) technique [11] to track the face in each frame of
the video. By tracking the feature points in the current and next
frames, we adjusted the spatial orientation and size of the ROI in 2D
and obtained the raw RGB signal by spatially averaging the pixel
intensity values in each frame’s ROI.

3.2 Illumination Rectification
In this section, we aim to remove illumination changes as much
as possible. To achieve this, we use wavelet transform to process
the RGB signal. Wavelet transform is a time-frequency localized
analysis method, whose window area is fixed but time and frequency
windows are variable. Therefore, wavelet transform has the char-
acteristics of multi-resolution analysis and can represent the local
features of signals in both time and frequency domains. In simple
terms, wavelet transform can decompose a signal into components
of different frequencies, in order to better understand the temporal
and spectral characteristics of the signal. In the low-frequency part,
wavelet transform has higher spectral resolution and lower time
resolution, while in the high-frequency part, it has higher time reso-
lution and lower spectral resolution. These two characteristics are
consistent with the characteristics of slow changes in low-frequency
signals and rapid changes in high-frequency signals, making wavelet
transform adaptive to different types and frequencies of signals.
Through fast wavelet transform, we can decompose the influence
of illumination changes on the RGB signal into different frequency
components, and select appropriate components for filtering to ex-
tract the heart rate signal and remove noise. This process is similar
to passing the signal through a band-pass filter, retaining only the
signals within the target frequency range and filtering out other fre-
quency components. Finally, the filtered components are combined
into a clean heart rate signal, thereby removing the interference of
illumination changes on heart rate detection. Therefore, the fast
wavelet transform algorithm can be regarded as a filter. For a 1D
input signal f(t), its decomposition formula is as follows:

f (t) = An +Dn +Dn−1 + ...+D1 (1)

In formula 1, n represents the number of decomposition levels of
the signal. Through wavelet decomposition, we can divide the sig-
nal into low-frequency and high-frequency parts, represented by A
and D, respectively [15].. In order to better process the signal, we
use filters to separate the high-frequency and low-frequency waves
and convert them into frequencies. Then, we recombine them and
perform dimensionality reduction to integrate local information (low-
frequency) and spatial information (high-frequency). The proposed
method adopts 4-level wavelet decomposition and chooses the db3
wavelet type,which has good time-domain and frequency-domain
characteristics.The db3 wavelet consists of three scales of wavelet
functions and three scales of wavelet packet functions, which can
provide a higher signal compression ratio and better signal recon-
struction quality. In addition, the db3 wavelet has good performance
in both low-frequency and high-frequency decomposition, which
can effectively extract heart rate signals while removing noise and
interference. Therefore, choosing db3 wavelet for one-dimensional
discrete wavelet transformation can improve the measurement accu-
racy.Considering that the frequency range of heart rate is completely
covered by the frequency range of D4, we choose to set the de-
composition coefficients of D1, D2, D3, and A4 to zero, and retain

the decomposition coefficient of D4. Then, we reconstruct the de-
composition coefficients of D1, D2, D3, D4, and A4 to obtain the
preprocessed signal. This preprocessing method can better highlight
the characteristics of the heart rate signal and improve the quality
of the signal. By further analyzing the preprocessed signal, we can
more accurately measure the heart rate.

(a) (b)

(c) (d)

Figure 3: Raw RGB signals and SOBI processed signal. (a) Raw
signal of red channel, (b) Raw signal of green channel, (c) Raw signal
of blue channel, (d) SOBI processed signal.

The blind source separation algorithm is used to further denoise
the preprocessed signal, which can remove most of the lighting
and motion noise. We use SOBI for denoising, which is a type
of ICA (Independent Component Analysis) algorithm that differs
from other ICA algorithms in that it uses second-order statistical
information to reconstruct source signal. SOBI method can deal
with non-Gaussian noise better, so it is more suitable for BVP signal
processing. Therefore, in the case of the interference of illumination
and motion interference, the SOBI method is better than other ICA
methods. The observed signal X is obtained by linearly mixing the
source signals S through the mixing matrix A. The source signals can
be represented as S = [s1,s2,s3]T, and the mathematical expression
is X = AS. Both the source signals S and the mixing matrix A
are unknown and Formula 3 can be used to separate the observed
signalX. Where W is the separation matrix, represented as W = A-1

, and Y = [y1, y2, y3]T is the estimated value of the source signals
S. W is randomly initialized and continuously optimized until Y is
close to S, obtaining the desired signal X.

xi =
3

∑
j=1

ai js j(1 ≤ i ≤ 3) (2)

yi =
3

∑
j=1

wi jx j(1 ≤ i ≤ 3) (3)

3.3 Motion Elimination
We use SSA to remove residual motion noise from the BVP sig-
nal.SSA is an effective method for processing nonlinear time series
data, which can decompose time series into meaningful components
without prior knowledge. It can directly extract the artifact spectrum
from the BVP signal of the facial ROI, assuming that the facial ROI



contains all interference information and that the noise artifact is
unrelated to the pulse signal. By applying SSA, dominant noise arti-
facts can be extracted, and it is found that the effect of noise artifacts
on all RGB channels is almost the same. To eliminate residual noise
artifacts in the extracted BVP signal, SSA can be applied to estimate
the spectrum and obtain a BVP signal without noise artifacts. The
modal decomposition calculated using SSA is as follows.Let x(t) be
the normalized BVP signal at time t, and define its trajectory matrix
as follows:

X =


x(1) x(2) . . . x(m)
x(2) x(3) . . . x(m+1)

...
...

. . .
...

x(n−m+1) x(n−m+2) . . . x(n)

 (4)

In this method, the trajectory matrix plays an important role in
defining the relationship between the window length m and the total
number of data points n. Typically, the window length is chosen as
one quarter of the data. If the data is periodic, the window length
can also be chosen as one quarter of the longest period in the data.
Singular value decomposition of the trajectory matrix X yields three
matrices U, W, and V, expressed as:

X =UWV T (5)

where U and V are regular orthogonal matrices, and W is a diagonal
matrix that describes the diagonal components of the singular values
λi . U = (u1,u2,...,ur),V=(v1,v2,...,vr)and r ≤ min(m,n), X can be
decomposed into the sum of several matrices as follows:

X = X1 +X2 + ...+Xr (6)

Xi =
√

λiUiV T
i (i = 1,2, ...,r) (7)

The singular values of these matrices decrease with increasing sub-
scripts, indicating that modes with smaller mode number have larger
variances. Therefore, modes with smaller subscripts contribute more
to the original signal. By eliminating signals with relatively small
partial correlation, the remaining signals can be reconstructed to
obtain the variable components that do not include irrelevant sig-
nals.By using the reconfigured BVP signal from X, a robust heart
rate estimation can be obtained. We use a weight-correlated method
to set the threshold, ensuring that noise can be effectively eliminated
without losing the original valid signals.We performed a fast Fourier
transform (FFT) on the BVP signal to convert it to the frequency
domain and analyzed its power spectral density (PSD). Since the
heart rate signal appears as a distinct peak in the frequency spectrum,
we can approximate the heart rate value fHR by taking the frequency
with the maximum spectral density:

fHR = argmax|W ( f )| (8)

where W(f) is the power spectral density of the BVP signal. Finally,
we can obtain an estimated value of the heart rate, HR, is: HR =
fHR*60.

4 EXPERIMENTAL SETUP AND RESULTS

Due to the fact that the experiment was conducted in a far-field
environment, there are currently no publicly available datasets to use.
Therefore, in order to collect the necessary data, 13 subjects were
self-collected, each video is 70 seconds long, including 10 males
and 3 females. In this experiment, we used a network camera (Guke,
G06-18X) to record the video. The camera was placed 5 meters
away from the subjects, with a frame rate of 30 fps and a resolution
of 640×480px. In order to produce the phenomenon of illumination
changes, we placed a white LED light panel (FengChuan Ltd., Shen-
zhen, China) with 18W power at a distance of 1.5 meters from the

Figure 4: The scene diagram of the experiment.

Figure 5: Changes of heart rate at different times between the device,
SOBI algorithm and the proposed algorithm.

subjects. In order to obtain the ground truth of the subject’s heart
rate, we used a finger clip oximeter (ContecMedice, CMS50E) to
measure the photoplethysmogram (PPG) on the subjects’ fingers.
The scene of the experiment is shown in Fig. 4.

5 RESULT ANALYSIS

In this section, we used different denoising methods to process the
raw signal.In order to evaluate the performance of different denoising
methods, we compared the actual heart rate measured by the finger
clip oximeter with the heart rate obtained after denoising. In order to
assess the accuracy of heart rate measurement, we used two metrics:
mean absolute error (MAE) and root mean square error (RMSE).
The formulas for calculating RMSE and MAE are as follows:

RMSE =

√
1
n

n

∑
i=1

(hi(x)− yi)2 (9)

MAE =
1
n

n

∑
i=1

|hi(x)− yi| (10)

where n is the number of measurements, y represents the true heart
rate value, and h(x) represents ground truth HR obtained by the
method. The smaller the values of RMSE and MAE, the better
the denoising performance. By calculating these metrics, we can
evaluate the advantages and disadvantages of different denoising
methods and find the best denoising method to provide more accurate
results for heart rate measurement.
We took an example video from our own collected database to
analyze the changes of heart rate obtained by using the standard PPG
signal collected by the CMS50E device, the heart rate obtained by
using the SOBI denoising algorithm, and the heart rate obtained by
our proposed method at different times, as shown in Fig. 5.In Fig. 5,
HRppg represents the ground truth HR collected by the instrument,
HRours is the heart rate obtained using our proposed method, and



Table 1: The RMSE and MAE values of generally selected ROI under
different methods.

method G-BVP SOBI OURS
RMSE(bpm) 18.23 13.71 9.52
MAE(bpm) 16.17 11.74 7.76

Table 2: The RMSE and MAE values of feature point tracked ROI
under different methods.

method G-BVP SOBI OURS
RMSE(bpm) 18.05 12.96 8.9
MAE(bpm) 15.95 10.62 7.13

HRsobi is the heart rate obtained using the SOBI algorithm. It can
be seen that in the scenario with changing illumination, the heart
rate measurement obtained directly using the SOBI algorithm is not
particularly accurate. In contrast, our proposed method can more
accurately fit the heart rate measured by the instrument.
We compared generally selecting regions of interest with using fea-
ture point tracking to define regions of interest, several metrics were
used to demonstrate the experiment. To present the results more
intuitively, we used Table 1 and Table 2 to list their RMSE and MAE
values.From Table 1 and Table 2, the difference between generally
selecting ROI and using feature point tracking ROI is not very signif-
icant, but it can still be seen that the feature point tracking method is
slightly better than the general selection method. In the experiment,
the RMSE of the G-BVP method with general selection and feature
point tracking were 18.23bpm and 18.05bpm, respectively, and their
MAE were 16.17bpm and 15.95bpm, respectively. The RMSE of
the SOBI algorithm were 13.71bpm and 12.96bpm, respectively, and
their MAE were 11.74bpm and 10.62bpm, respectively. The pro-
posed method had RMSE of 9.52bpm and 8.9bpm, respectively, and
their MAE were 7.76bpm and 7.13bpm, respectively. Feature point
tracking has smaller errors. The feature point tracking algorithm
can automatically identify the position of the ROI and adaptively
track the ROI, which can better cope with the interference caused by
facial expressions and other factors, and obtain more accurate heart
rate measurement results.
To verify the performance of the method, We used some typical
methods to estimate heart rate using videos in the self-collecting
database, These methods including G-BVP, FastICA [6] , POS,
CHROM, and SOBI. We compared them with the proposed method
to validate the experimental results.Fig. 6 shows the heart rate range
plot drawn based on the results obtained from different methods.
The red line represents the average value, the blue squares represent
the distribution range of most values, and the red dots represent
individual outlier values. Referring to the values of PPG, it can be
seen that our proposed method is basically consistent with the range

Figure 6: Heart rate ranges and outlier distributions of different meth-
ods.

Figure 7: RMSE and MAE of various classical methods and proposed
methods.

of PPG, while other methods may have large value range offsets or
more outlier points, and the results obtained are not accurate enough.
At the same time, the average values of the POS algorithm and our
proposed method are basically consistent with the values measured
by the instrument.
It can be seen from Fig. 7 that the proposed method has the smallest
RMSE and MAE. it can be seen that compared with our proposed
method, the RMSE and MAE obtained by other methods are rela-
tively large. The POS algorithm has the best performance among
other methods, followed by SOBI, CHROM, FastICA, and G-BVP.
The RMSE of our proposed method is 8.9 bpm, and the MAE is
7.13 bpm, which also indicates that the proposed method has strong
resistance to changes in illumination.
In the case of remote measurement in the far field with changing il-
lumination, the statistical values of all remote measurement methods
based on the Bland-Altman method are shown in Fig. 8. Accord-
ing to G-BVP, as shown in Fig. 8(a), the average deviation and
consistency range are -10, -40.32+20.31 beats/min. According to
FastICA, as shown in Figure Fig. 8(b), the average deviation and con-
sistency range are -12.16, -30.9+14.1 beats/min. According to POS,
as shown in Figure Fig. 8(c), the average deviation and consistency
range are -1.67, -26.9+23.57 beats/min. According to CHROM, as
shown in Figure Fig. 8(d), the average deviation and consistency
range are -3.53, -34.77+27.72 beats/min. According to SOBI, as
shown in Fig. 8(e), the average deviation and consistency range are
-8.14 beats/min, -30.9+14.1 beats/min. Using our proposed frame-
work, as shown in Fig. 8(f), the average deviation and consistency
range are -3.17, -18.82+12.49 beats/min. Based on the statistical re-
sults in Figure 10, it can be seen that POS, CHROM, and our pro-
posed method have smaller average offsets, among which our pro-
posed method has the smallest standard deviation and almost no out-
liers deviating from the consistency range. This indicates that our pro-
posed method has good performance in remote heart rate measure-
ment.

6 CONCLUSION

Our research not only extends the distance for measuring heart
rate, but also proposes a new framework for remote heart rate mea-
surement. In response to the performance degradation of previous
common face video remote heart rate measurement methods under
environmental illumination changes and subject movement interfer-
ence, we propose a framework consisting of three main processes.
Firstly, we use the VJ algorithm to accurately identify the ROI of
the face and solve the problem caused by rigid head movement. At
the same time, we use KLT technology to continuously track each
frame to further reduce motion interference. Secondly, we use FWT
to remove initial illumination interference, and then use the SOBI
algorithm to remove most of the noise. Finally, we use the SSA
method to remove residual motion artifact noise. We conducted



(a) (b)

(c) (d)

(e) (f)
Figure 8: Bland-Altman plots. (a) G-BVP method, (b) FastICA method,
(c) POS method, (d) CHROM method, (e) SOBI method, (f) Ours
method.

extensive experimental evaluations of this method and compared it
with reference measurement results. The results show that in a far-
field environment, this framework can accurately measure the heart
rate of people under interference of illumination. We evaluated the
system using multiple video data sources and found that the system
exhibits strong consistency, high correlation, and low noise levels.
Moreover, in complex and changing situations, the system’s results
are better than traditional measurement methods such as G-BVP,
FastICA, POS, CHROM, and SOBI algorithms. Our research results
have important implications for the development of remote heart rate
measurement technology. Our method not only extends the measure-
ment distance, but also reduces the interference of environmental
illumination changes and subject movement on measurement results,
thereby improving the practicality and reliability of this technology
and expanding the application scenarios of rPPG. We believe that
in the future, this technology will be widely used to provide more
convenient and accurate monitoring means for people’s health.
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