
PPG Reloaded: An Empirical Study on What Matters in Phasic Policy Gradient

Kaixin Wang 1 Daquan Zhou 2 Jiashi Feng 2 Shie Mannor 1 3

Abstract
In model-free reinforcement learning, recent
methods based on a phasic policy gradient (PPG)
framework have shown impressive improvements
in sample efficiency and zero-shot generalization
on the challenging Procgen benchmark. In PPG,
two design choices are believed to be the key con-
tributing factors to its superior performance over
PPO: the high level of value sample reuse and
the low frequency of feature distillation. How-
ever, through an extensive empirical study, we
unveil that policy regularization and data diver-
sity are what actually matters. In particular, we
can achieve the same level of performance with
low value sample reuse and frequent feature distil-
lation, as long as the policy regularization strength
and data diversity are preserved. In addition, we
can maintain the high performance of PPG while
reducing the computational cost to a similar level
as PPO. Our comprehensive study covers all 16
Procgen games in both sample efficiency and gen-
eralization setups. We hope it can advance the
understanding of PPG and provide insights for
future works.

1. Introduction
In recent years, model-free deep reinforcement learning
(RL) has achieved great success in multiple domains ranging
from video games (Badia et al., 2020; Cobbe et al., 2021) to
robotics control (Haarnoja et al., 2018; OpenAI et al., 2019).
One family of high-performing model-free algorithms is
the actor-critic methods, such as PPO (Schulman et al.,
2017), A3C (Mnih et al., 2016) and IMPALA (Espeholt
et al., 2018). These methods learn a policy (actor) and a
value function (critic). In deep RL with image observation
(e.g., video games), the policy and the value function often

1Faculty of Electrical And Computer Engineering, Tech-
nion, Haifa, Israel 2ByteDance, Singapore 3NVIDIA Re-
search, Haifa, Israel. Correspondence to: Kaixin Wang
<kaixin96.wang@gmail.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

share a torso network to encode the observations into latent
features. While this benefits sharing features between policy
and value, jointly training the policy and value function
might incur optimization interference and impose artificial
restrictions on sample reuse (Cobbe et al., 2021).

Recently, Cobbe et al. (2021) proposes a phasic policy gra-
dient (PPG) framework, which circumvents the disadvan-
tages of using a shared encoder while preserving its benefits.
The PPG framework is the core behind recent improve-
ments (Cobbe et al., 2021; Raileanu & Fergus, 2021; Moon
et al., 2022) in sample efficiency and zero-shot generaliza-
tion on the large-scale Procgen benchmark (Cobbe et al.,
2020). Therefore, it is worthwhile to take a closer look at
what makes PPG so effective.

The stark difference between PPG and PPO is that PPG
decouples the joint training of policy and value function
into two separate phases (a policy phase and a distillation
phase, see Section 2.2 for details). With this decoupling,
one can make different algorithmic choices for policy and
value learning (Table 1). In existing works (Cobbe et al.,
2021; Moon et al., 2022), two design choices are believed
to be the key factors to the superior performance of PPG:

• High level of value sample reuse,
• Low frequency of feature distillation.

However, these conclusions are drawn from ablation experi-
ments that do not properly disentangle different factors. For
example, in (Cobbe et al., 2021), increasing the frequency
of feature distillation also shrinks the size of the off-policy
buffer, consequently reducing the diversity of the buffered
data.

To get a clear understanding of what matters in PPG, we
conduct a large-scale empirical study on Procgen. Specif-
ically, we focus on the three aspects in Table 1 and run
ablation experiments with proper control of other (possibly
confounding) hyperparameters. We aim to elucidate the core
contributing factors in PPG and provide insights for future
works built upon it. Our study consists of comprehensive
experiments covering all 16 Procgen games in both sample
efficiency and generalization setups.

Below is a summary of our main findings:

• The low frequency of feature distillation is actually

1

Phasic Policy Gradient Reloaded

Table 1. Main differences between the policy training (i.e., the
policy phase) and value training (i.e., the distillation phase) in
PPG. In comparison, the joint training in PPO restricts the policy
and value to be trained with the same (on-policy) data, the same
level of sample reuse, and the same update frequency.

ASPECTS
π

(policy phase)
V

(distillation phase)

DATA on-policy off-policy
SAMPLE REUSE low high
UPDATE FREQUENCY high low

not critical. Feature distillation can be performed fre-
quently without degrading the performance, as long as
there is sufficiently strong policy regularization.

• High sample reuse is also not the key factor. Reducing
the minibatch size while fixing the number of gradi-
ent updates (hence lower sample reuse) can achieve
similar or even better performance. Besides, we can
maintain PPG’s high performance while reducing the
computational cost to a similar level as PPO.

• Apart from policy regularization, the diversity of train-
ing data in the distillation phase is another key con-
tributing factor to the performance.

2. Backgrounds
2.1. Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) (Schulman et al., 2017)
is a model-free policy gradient method that optimizes a
clipped surrogate objective

Lclip = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
where rt(θ) =

πθ(at|st)
πθold (at|st) is the importance sampling ratio

to correct the discrepancy between current policy πθ and
the behavior policy πθold , Ât is the estimated advantage at
timestep t, and Ê[. . .] indicates the empirical average over
a finite batch of timesteps t. An entropy bonus H[πθ(·|s)]
is often used to ensure sufficient exploration. The total loss
for training policy πθ is

Lπ = Lclip + βH Êt [H[πθ(·|st)]]

where βH is a scalar hyper-parameter. PPO is commonly
implemented in the actor-critic style (Konda & Tsitsiklis,
1999), where a state value function Vθ is learned for com-
puting variance-reduced advantage. The value function is
trained by optimizing

LV = Êt

[
1

2

(
Vθ − V̂ targ

t

)2
]

Figure 1. The network architecture of the single-network PPG.

where V̂ targ
t are value function targets. Both Â and V̂ targ are

often calculated using Generalized Advantage Estimation
(GAE) (Schulman et al., 2016).

In practice, especially when it comes to high-dimensional
visual inputs (e.g., video games), the policy and the value
function often share a torso network for feature extraction.
The state inputs are first mapped to latent features by the
torso network, and then the latent features are mapped to
policy and value output by separate heads. Empirical evi-
dence on Procgen (Cobbe et al., 2021) suggests that sharing
parameters between the policy and the value function leads
to clearly better performance than using disjoint networks,
probably because this allows features trained by one objec-
tive to help better optimize the other.

In the rest of the paper, we denote the parameters of the
shared feature encoder, the policy head, and the value head
as θϕ, θπ, and θV respectively. For notation clarity, we
slightly abuse θ in the subscript to denote all parameters in
the policy and value function, i.e., θ in Vθ refers to (θϕ, θV)
and θ in πθ refers to (θϕ, θπ).

2.2. Phasic Policy Gradient (PPG)

Despite the benefits of feature sharing, the joint training of
policy and value in PPO suffers two problems: potential
interference between policy and value function optimization
and the artificial restriction that policy and value function
are trained with the same data. Phasic Policy Gradient
(PPG) (Cobbe et al., 2021) addresses these problems by
decoupling the training of the policy and value function.
While PPG was initially developed to use disjoint policy
and value networks, this is not the key to its superior per-
formance, and using the single-network version can achieve
comparable performance (see Section 3.6 in (Cobbe et al.,
2021)). Therefore, in this paper, we concentrate our focus
on the single-network PPG (illustrated in Figure 1).

Different from PPO which jointly trains the policy and value
function, PPG decouples its training by alternating between
a policy phase and a distillation phase.

In the policy phase, PPG optimizes the following loss:

Lπ + βV RV

2

Phasic Policy Gradient Reloaded

Algorithm 1 Single-network PPG framework
1: Initialize a FIFO buffer B of size Toff ×Nenv ×M to store off-policy data
2: for iteration i = 1, 2, . . . do
3: // Data collection
4: Roll out policy π to obtain on-policy data D of size Nenv ×M
5: Add on-policy data D to buffer B
6: // Policy phase
7: for policy update = 1, 2, . . . ,Kπ do
8: From on-policy data D, sample a minibatch B of size Mπ

9: Optimize θϕ, θπ and θV with loss Lπ + βV RV on data B
10: end for
11: if t mod Tfreq = 0 then
12: // Distillation phase
13: for value update = 1, 2, . . . ,KV do
14: From off-policy buffer B, sample a minibatch B of size MV

15: Optimize θϕ, θπ and θV with loss LV + βπRπ on data B
16: end for
17: end if
18: end for

Toff: buffer size, i.e., how many recent itera-
tions of data stored in the buffer
Tfreq: number of iterations between two con-
secutive distillation phase
Nenv: number of parallel environments
M : number of roll-out steps
Kπ: number of policy updates per iteration
KV : number of value updates per iteration
βV : value regularization strength
βπ: policy regularization strength

where RV is a regularizer that updates θV while minimizing
interference with θϕ. In the original PPG, RV is LV with
gradients detached at the last layer of the shared encoder,
such that it only updates θV . Alternatively, (Moon et al.,
2022) proposes

RV = Êt

[
1

2
(Vθ(st)− Vθold(st))

2

]
,

which regularizes the deviation between the updated value
function and the old one before the policy phase. In both
cases, βV is a coefficient to balance the losses.

In the distillation phase, PPG optimizes the following loss:

LV + βπRπ,

where Rπ = Êt [DKL [πθold(·|st) | πθ(·|st)]]

regularizes the KL divergence between the updated policy
and the old policy before the distillation phase. This phase
essentially distills useful features learned from the value
function objective to the policy. βπ is a hyperparameter to
balance the losses.

Putting it together, PPG decouples the optimization of the
policy and the value function: in the policy phase, we opti-
mize Lπ while regularizing V , and in the distillation phase,
we optimize LV while regularizing π. In each phase, the
shared encoder is only updated by either Lπ or LV , thus
reducing interference.

3. Experiments
By decoupling the optimization of the policy and value
function objectives, PPG is able to train these two objectives

differently to boost performance. The differences lie mainly
in three aspects. Compared to the policy objective, the value
function objective is trained

• much less frequently,
• using additional off-policy data,
• with a higher level of sample reuse.

In comparison, PPO trains both objectives at the same fre-
quency, with the same (on-policy) data, and at the same
level of sample reuse.

Among the three points listed above, the lower frequency
and the higher sample reuse of the distillation phase (i.e.,
where the value function is trained), are believed to be key
to PPG’s superior performance (Cobbe et al., 2021; Moon
et al., 2022). However, the conclusion is drawn from abla-
tion experiments that do not carefully disentangle different
factors. For example, in (Cobbe et al., 2021), increasing the
distillation frequency is coupled with reducing the amount
of additional off-policy data. It is hard to tell which is the
actual cause of the performance change.

To gain a clear understanding of what matters in PPG, in this
section, we carefully control different factors and conduct
a large-scale empirical study. Section 3.1 introduces the
experimental settings. Section 3.2, 3.3, and 3.4 cover our
empirical investigations regarding the three aspects respec-
tively.

3.1. Settings

3.1.1. ALGORITHM FRAMEWORK

The PPG framework used in our experiments is presented
in Algorithm 1. As introduced in Section 2.2, there are

3

Phasic Policy Gradient Reloaded

Figure 2. Performance with varying distillation interval Tfreq and the default policy regularization strength (βπ = 1), normalized over all
Procgen games.

two ways to regularize the value function during the policy
phase (detaching the gradient or penalizing the deviation).
In our study, we use the latter since it is shown to perform
better (Moon et al., 2022). To facilitate later discussions,
we make a small change in describing the algorithm: the
number of epochs used in prior works is replaced with the
number of gradient updates (Lines 7 and 13).

3.1.2. TRAINING AND EVALUATION CONFIGURATIONS

The large-scale Procgen benchmark (Cobbe et al., 2020) is
used as the testbed of our study. Procgen consists of 16
games that are designed to be highly diverse. Thus, we
expect our findings on this benchmark might be useful in
other RL environments. In Procgen games, the game level is
randomly generated at the beginning of each episode, so the
total number of levels is almost infinite. Procgen provides
two difficulty choices for each game (easy and hard), which
controls the complexity of the generated levels.

We consider two standard setups in Procgen:

• sample efficiency setup: the agent is trained and tested
on the full distribution of levels,

• generalization setup: the agent is trained on a limited set
of levels and tested on the full distribution of levels.

Previous works (Cobbe et al., 2021; Moon et al., 2022)
only focus on one of the above two setups. In comparison,
our study covers both, providing a comprehensive view of
how different factors contribute to PPG. For the sample effi-
ciency setup, we follow (Cobbe et al., 2021) to use the hard
difficulty and train the agent for 100M steps. For the gener-
alization setup, we consider both easy and hard difficulties
and train the agent for 25M and 200M steps respectively.
Other training details can be found in Appendix A. Notably,
we reiterate here the default values of some important param-
eters: Toff = 32, Tfreq = 32, βπ = 1. For a fair comparison,

whenever the Tfreq is changed, we also change the number
of value updates KV accordingly such that the total number
of value updates remains the same.

The main performance metric is the mean normalized re-
turn averaged over all games in Procgen (see Section 2.2
in (Cobbe et al., 2020)). Each experiment is run with 3 ran-
dom seeds and the standard deviations are plotted as shaded
areas. In addition, we also report results using the rliable
library (Agarwal et al., 2021) in Appendix B.4.

3.2. Distillation Frequency

We first take a closer look at how the frequency of the dis-
tillation phase affects performance. In prior works, Cobbe
et al. (2021) find that performing the distillation phase too
frequently has negative impacts. However, their ablation ex-
periments do not control the amount of off-policy data in the
buffer B. The buffer size changes as the frequency changes,
which may confound the results. In this subsection, we keep
the buffer size fixed to eliminate its influence and focus on
the interplay between the distillation frequency Tfreq and
another overlooked factor: policy regularization strength βπ .
The influence of the buffer size will be investigated in the
next subsection.

When the features are distilled from the value function to
the policy, the policy regularization strength βπ controls the
distortions to the policy between two policy phases. Thus,
more frequent distillation leads to more policy distortions
throughout policy optimization. We hypothesize that the
increased policy distortion is the underlying cause of the
performance degradation and that imposing a higher regu-
larization strength can be a simple fix. First, we obtain the
results of varying Tfreq but the same regularization strength
βπ. As shown in Figure 2, with the influence of data di-
versity removed, the performance seems to still suffer from

4

Phasic Policy Gradient Reloaded

Figure 3. Performance with varying distillation interval Tfreq and regularization strength βπ , normalized over all Procgen games.

Figure 4. Performance with varying regularization strength βπ and infrequent distillation (Tfreq = 32), normalized over all Procgen games.

more frequent distillation. However, as Figure 3 shows, if
we increase the policy regularization strength as the distil-
lation phase becomes more frequent, we can easily reach a
similar performance. In particular, we can perform the pol-
icy training phase and distillation phase at the same rate (i.e.,
Tfreq = 1) with almost no performance drop. Thus, we can
remove Line 11 in Algorithm 1 and obtain a simplified PPG.
In each iteration, the agent is first trained with policy loss
and value regularization and then trained with value loss and
policy regularization. We believe removing the infrequency
requirement makes PPG easier to analyze since we do not
need to consider policy updates across multiple rounds of
data collection. On the practical side, this simplification
also removes one tunable hyperparameter Tfreq.

Finally, we complete our investigation with experiments that
vary the regularization strength under frequent distillation
(Tfreq = 32). As shown in Figure 4, using higher βπ leads
to similar or even worse performance. The results indicate
that high regularization strength works not by improving
performance on its own, but rather by fixing the increased

policy distortions caused by frequent distillation.

3.3. Data Diversity

As mentioned earlier, in previous work (Cobbe et al., 2021),
one factor that is entangled with the distillation frequency is
the size of the off-policy data buffer. In the above section,
we investigate the interplay between distillation frequency
and policy regularization while fixing the buffer size to its
default value (Toff = 32). We now turn to this factor and
conduct experiments with varying Toff. A lower Toff means
less diverse data in the buffer. In the extreme case (Toff = 1),
only on-policy data is used for the distillation phase.

First, we fix the policy regularization strength (βπ = 1) and
study how much the performance will be impacted if we
reduce Toff in addition to reducing Tfreq. This experiment
helps elucidate if, and how much, the change in data diver-
sity contributes to performance degradation. The results are
shown in Figure 5. Comparing the solid and dashed lines of
the same color and the gray line, we can see that reducing

5

Phasic Policy Gradient Reloaded

Figure 5. Performance with varying buffer size Toff at different distillation frequencies, normalized over all Procgen games. Here βπ is
fixed at 1.

Figure 6. Performance with varying Toff under frequent distillation (Tfreq = 1 and βπ = 16), normalized over all Procgen games.

Toff indeed leads to a significant performance drop. Please
also refer to Figure 19 to Figure 23 in the appendix. In
addition, this drop loosely correlates to the reduction in Toff,
with changing Toff from 32 to 1 giving the largest decline.

In Section 3.2, we show that it is possible to recover com-
parable performance under frequent distillation by using
a stronger policy regularization (see Figure 3). A natural
question is: how does the data diversity affect the results
in that case? To answer this question, we run experiments
with varying Toff while setting Tfreq = 1 and βπ = 16. As
the results in Figure 6 show, using more diverse data (i.e.,
a higher Toff) generally yields better performance. Only us-
ing the on-policy data (i.e., Toff = 1) incurs a considerable
performance drop.

In the above results for generalization setups, we observe
that the influence of data diversity on the testing perfor-
mance is less significant compared to that on the training
performance. A possible explanation is that, whether Toff is
low or high, the data in the buffer comes from a limited num-
ber of training levels. Thus, changes in the data diversity

have a smaller influence on the testing performance.

Finally, we end this subsection with an experiment that
varies the data diversity in an alternative way. Specifically,
we fix Toff = 1 (i.e., only using on-policy data) but scale the
number of parallel environments. To keep the number of
samples in each iteration unchanged, we sample a subset of
the original size (Nenv ×M) from the collected data and use
it instead of all collected data as D for subsequent training.
Building upon the results in the previous subsection, we
run the experiments under frequent distillation (Tfreq = 1
and βπ = 16). As the results in Figure 7 show, despite
that only on-policy data is used, increasing the number
of environments achieves a similar performance boost as
using an off-policy buffer. This indicates that data diversity
is indeed one of the factors that matter. We observe that
the improvements of the final testing performance in the
generalization (hard) setup are relatively small, probably
because the default configuration Nenv = 256 is already
large enough to provide diverse data.

6

Phasic Policy Gradient Reloaded

Figure 7. Performance with varying data diversity by scaling the number of parallel environments, normalized over all Procgen games.

Figure 8. Performance with scaled minibatch sizes under frequent distillation (Tfreq = 1, βπ = 16), normalized over all Procgen games.

3.4. Sample Reuse

In this subsection, we look at the last aspect: sample reuse.
In the prior work (Cobbe et al., 2021), high sample reuse in
the distillation phase is attributed as one of the key contribut-
ing factors to PPG’s good performance. Given a dataset (e.g.,
the off-policy buffer B), two parameters together determine
the level of sample reuse: the number of updates (KV) and
the minibatch size (MV). Previously, increasing sample
reuse is done by increasing the number of updates while
keeping the minibatch size fixed. It is possible that the per-
formance boost is the result of more gradient updates rather
than higher sample reuse.

To test this hypothesis, we conduct experiments by fixing
the number of updates KV while varying the minibatch size
MV . As the results in Figure 8 show, reducing the minibatch
size does not cause a drop in the performance. The only
noticeable drop occurs in the generalization (easy) setup,
when the minibatch size is too small (MV × 1/8 = 128).
In some cases, especially the sample efficiency setup, a

smaller minibatch size even leads to better results. The
results suggest high sample reuse is not a key factor in PPG.
We can achieve similar or even better performance with low
sample reuse. We also run experiments in the infrequent
distillation case (i.e., Tfreq = 1 and βπ = 16), and observe
similar results (Figure 9 in the appendix).

One practical benefit of smaller minibatch size is shorter
training time. Although the original PPG outperforms PPO,
it also introduces additional training costs (due to more
updates in the distillation phase). Our findings suggest
that we can achieve the same high performance without
sacrificing too much in training speed. Table 2 shows the
average wall clock training time of each iteration under
our hardware. We can see that using MV × 1/8 halves the
training time, resulting in similar time costs as PPO. While
the numbers in Table 2 are certainly influenced by various
things, we believe the relative gain in training speed is clear.

7

Phasic Policy Gradient Reloaded

Table 2. Comparison of the wall clock training time for each itera-
tion (in seconds), averaged over all runs and games.

PPG with varying MV PPO
×2 ×1 ×1/2 ×1/4 ×1/8

EFF (HARD) 52.7 31.2 20.4 15.5 13.0 12.5
GEN (EASY) 13.3 8.5 6.2 5.0 4.6 3.9
GEN (HARD) 51.6 31.5 20.7 15.3 13.4 12.7

4. Discussions
Value regularization. In Section 3.2, we show that policy
regularization is one of the key factors in PPG. Since Al-
gorithm 1 has a pretty symmetric structure under frequent
distillation (i.e., removing Line 11), we are interested in
how the counterpart of policy regularization, value regular-
ization, affects the performance. Figure 10 in the appendix
shows the results of varying value regularization strength
βV . As expected, using too strong regularization hampers
policy learning and degrades performance.

Interestingly, applying no value regularization (i.e., βV = 0)
only causes little performance drop or even improves testing
performance in the generalization (hard) setup. In compar-
ison, the performance will degrade greatly with no value
regularization in the infrequent distillation case (Figure 11).
The results indicate that we need stronger value regulariza-
tion under infrequent distillation, which is opposite to our
observations for policy regularization. Despite the symmet-
ric structure, policy and value regularization seem to play
quite different roles in the training process.

Stiffness and infrequent value update. Stiffness is a mea-
sure of how a small gradient step in the network’s parameters
on one example affects the loss on another example (Fort
et al., 2019). It has been shown that a value network with
lower stiffness is prone to memorizing the training data (Ben-
gio et al., 2020). In the previous work, Moon et al. (2022)
show that delayed value update (i.e., infrequent distillation)
leads to higher stiffness and hence helps mitigate overfit-
ting. Since our results indicate that infrequent distillation
is not necessary, we are interested in the stiffness measure
in such cases. As shown in Figure 12 (see Appendix B.3),
less frequent distillation in general correlates with higher
stiffness. However, compared to Figure 13, it seems that
the difference in stiffness is not closely correlated with the
performance. We believe more works are needed to reach
a better understanding of the interactions among stiffness,
value update frequency, and overfitting.

5. Related Works
PPG is a reinforcement learning framework proposed
in (Cobbe et al., 2021), aiming to resolve the optimiza-

tion interference between policy and value function while
preserving the benefits of sharing features between them.
Following PPG, some works (Raileanu & Fergus, 2021;
Moon et al., 2022) adapt this framework to improve the
agent’s zero-shot generalization ability. Raileanu & Fergus
(2021) use the auxiliary head to approximate the advantage
instead of the value, in order to reduce the spurious corre-
lation between the observation and the value. Moon et al.
(2022) introduce explicit value regularization to replace the
value network training (with detached gradient) during the
policy phase.

While these follow-up works focus on making modifications
to PPG, our paper studies what are the key contributing fac-
tors in PPG. To the best of our knowledge, the only work
that studies different design choices in PPG with compre-
hensive experiments is the original PPG paper. However, as
we show in our paper, the two key factors identified before
are actually not that critical. In addition, the previous study
only focuses on the sample efficiency setup while our work
covers both sample efficiency and generalization setups.

Related to our findings, Aitchison & Sweetser (2022) use
a distillation loss very similar to the one in PPG and they
observe that a smaller batch size works better when opti-
mizing this loss. Apart from Procgen, PPG has also been
successfully applied in the very challenging Minecraft envi-
ronment (Baker et al., 2022). Thus, we believe our findings
might be useful beyond Procgen games.

6. Conclusion and Future Works
In this paper, we investigated what factors matter in PPG, a
high-performing actor-critic method. Through comprehen-
sive experiments on the Procgen benchmark, we show that
the two factors that were believed to be critical, high level of
sample reuse and low frequency of feature distillation, turn
out to be not the deciding factors. Instead, we unveil that
policy regularization and data diversity are what actually
matter in PPG. In addition, our findings suggest that we
can preserve PPG’s high performance while reducing the
computation cost (by more than half) to a similar level as
PPO.

We have shown that varying policy regularization strength
has a significant influence on the training process (e.g., dis-
tillation frequency). One interesting topic for future works
is to study how policy regularization and value loss influ-
ence each other, and how the learned representation evolves.
Moreover, what if we use another auxiliary objective other
than the value loss? Besides, it is also worthwhile to explore
the use of offline data for the distillation phase. Finally,
we note that data diversity can be measured and improved
consciously, opening up the opportunity for further improve-
ments in the learning process.

8

Phasic Policy Gradient Reloaded

Acknowledgement
This work was partially funded by the Israel Science Foun-
dation under Contract 2199/20.

References
Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A. C.,

and Bellemare, M. G. Deep reinforcement learning
at the edge of the statistical precipice. In Ranzato,
M., Beygelzimer, A., Dauphin, Y. N., Liang, P., and
Vaughan, J. W. (eds.), Advances in Neural Information
Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, pp. 29304–29320, 2021.
URL https://proceedings.neurips.cc/
paper/2021/hash/
f514cec81cb148559cf475e7426eed5e-
Abstract.html.

Aitchison, M. and Sweetser, P. DNA: Proximal pol-
icy optimization with a dual network architecture. In
Oh, A. H., Agarwal, A., Belgrave, D., and Cho, K.
(eds.), Advances in Neural Information Processing Sys-
tems, 2022. URL https://openreview.net/
forum?id=WHFgQLRdKf9.

Badia, A. P., Piot, B., Kapturowski, S., Sprechmann,
P., Vitvitskyi, A., Guo, Z. D., and Blundell, C.
Agent57: Outperforming the atari human bench-
mark. In Proceedings of the 37th International Con-
ference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research, pp. 507–517. PMLR,
2020. URL http://proceedings.mlr.press/
v119/badia20a.html.

Baker, B., Akkaya, I., Zhokhov, P., Huizinga, J., Tang, J.,
Ecoffet, A., Houghton, B., Sampedro, R., and Clune,
J. Video pretraining (VPT): learning to act by watch-
ing unlabeled online videos. CoRR, abs/2206.11795,
2022. doi: 10.48550/arXiv.2206.11795. URL https:
//doi.org/10.48550/arXiv.2206.11795.

Bengio, E., Pineau, J., and Precup, D. Interfer-
ence and generalization in temporal difference learn-
ing. In Proceedings of the 37th International Con-
ference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research, pp. 767–777. PMLR,
2020. URL http://proceedings.mlr.press/
v119/bengio20a.html.

Cobbe, K., Hesse, C., Hilton, J., and Schulman, J. Lever-
aging procedural generation to benchmark reinforce-
ment learning. In Proceedings of the 37th International

Conference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research, pp. 2048–2056. PMLR,
2020. URL http://proceedings.mlr.press/
v119/cobbe20a.html.

Cobbe, K., Hilton, J., Klimov, O., and Schulman, J.
Phasic policy gradient. In Meila, M. and Zhang, T.
(eds.), Proceedings of the 38th International Confer-
ence on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event, volume 139 of Proceedings of
Machine Learning Research, pp. 2020–2027. PMLR,
2021. URL http://proceedings.mlr.press/
v139/cobbe21a.html.

Dangel, F., Kunstner, F., and Hennig, P. BackPACK:
Packing more into backprop. In 8th International
Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net, 2020. URL https://openreview.net/
forum?id=BJlrF24twB.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V.,
Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning, I.,
Legg, S., and Kavukcuoglu, K. IMPALA: scalable dis-
tributed deep-rl with importance weighted actor-learner
architectures. In Dy, J. G. and Krause, A. (eds.), Proceed-
ings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of Proceedings
of Machine Learning Research, pp. 1406–1415. PMLR,
2018. URL http://proceedings.mlr.press/
v80/espeholt18a.html.

Fort, S., Nowak, P. K., and Narayanan, S. Stiffness: A new
perspective on generalization in neural networks. CoRR,
abs/1901.09491, 2019. URL http://arxiv.org/
abs/1901.09491.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S.
Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In
Dy, J. G. and Krause, A. (eds.), Proceedings of
the 35th International Conference on Machine Learn-
ing, ICML 2018, Stockholmsmässan, Stockholm, Swe-
den, July 10-15, 2018, volume 80 of Proceedings of
Machine Learning Research, pp. 1856–1865. PMLR,
2018. URL http://proceedings.mlr.press/
v80/haarnoja18b.html.

Kingma, D. P. and Ba, J. Adam: A method for stochas-
tic optimization. In Bengio, Y. and LeCun, Y. (eds.),
3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

9

https://proceedings.neurips.cc/paper/2021/hash/f514cec81cb148559cf475e7426eed5e-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f514cec81cb148559cf475e7426eed5e-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f514cec81cb148559cf475e7426eed5e-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f514cec81cb148559cf475e7426eed5e-Abstract.html
https://openreview.net/forum?id=WHFgQLRdKf9
https://openreview.net/forum?id=WHFgQLRdKf9
http://proceedings.mlr.press/v119/badia20a.html
http://proceedings.mlr.press/v119/badia20a.html
https://doi.org/10.48550/arXiv.2206.11795
https://doi.org/10.48550/arXiv.2206.11795
http://proceedings.mlr.press/v119/bengio20a.html
http://proceedings.mlr.press/v119/bengio20a.html
http://proceedings.mlr.press/v119/cobbe20a.html
http://proceedings.mlr.press/v119/cobbe20a.html
http://proceedings.mlr.press/v139/cobbe21a.html
http://proceedings.mlr.press/v139/cobbe21a.html
https://openreview.net/forum?id=BJlrF24twB
https://openreview.net/forum?id=BJlrF24twB
http://proceedings.mlr.press/v80/espeholt18a.html
http://proceedings.mlr.press/v80/espeholt18a.html
http://arxiv.org/abs/1901.09491
http://arxiv.org/abs/1901.09491
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/haarnoja18b.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

Phasic Policy Gradient Reloaded

Konda, V. R. and Tsitsiklis, J. N. Actor-critic algo-
rithms. In Solla, S. A., Leen, T. K., and Müller, K.
(eds.), Advances in Neural Information Processing Sys-
tems 12, [NIPS Conference, Denver, Colorado, USA,
November 29 - December 4, 1999], pp. 1008–1014. The
MIT Press, 1999. URL http://papers.nips.cc/
paper/1786-actor-critic-algorithms.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T. P., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
Balcan, M. and Weinberger, K. Q. (eds.), Proceedings of
the 33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24, 2016,
volume 48 of JMLR Workshop and Conference Proceed-
ings, pp. 1928–1937. JMLR.org, 2016. URL http://
proceedings.mlr.press/v48/mniha16.html.

Moon, S., Lee, J., and Song, H. O. Rethinking value func-
tion learning for generalization in reinforcement learn-
ing. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho,
K. (eds.), Advances in Neural Information Processing
Systems, 2022. URL https://openreview.net/
forum?id=JkEz1fqN3hX.

OpenAI, Akkaya, I., Andrychowicz, M., Chociej, M.,
Litwin, M., McGrew, B., Petron, A., Paino, A., Plap-
pert, M., Powell, G., Ribas, R., Schneider, J., Tezak, N.,
Tworek, J., Welinder, P., Weng, L., Yuan, Q., Zaremba,
W., and Zhang, L. Solving rubik’s cube with a robot
hand. CoRR, abs/1910.07113, 2019. URL http:
//arxiv.org/abs/1910.07113.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Köpf, A., Yang, E. Z., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner,
B., Fang, L., Bai, J., and Chintala, S. Pytorch: An
imperative style, high-performance deep learning library.
In Wallach, H. M., Larochelle, H., Beygelzimer, A.,
d’Alché-Buc, F., Fox, E. B., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pp. 8024–8035, 2019.
URL https://proceedings.neurips.cc/
paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-
Abstract.html.

Raileanu, R. and Fergus, R. Decoupling value and policy
for generalization in reinforcement learning. In Meila,
M. and Zhang, T. (eds.), Proceedings of the 38th Interna-
tional Conference on Machine Learning, ICML 2021, 18-
24 July 2021, Virtual Event, volume 139 of Proceedings
of Machine Learning Research, pp. 8787–8798. PMLR,

2021. URL http://proceedings.mlr.press/
v139/raileanu21a.html.

Schulman, J., Moritz, P., Levine, S., Jordan, M. I., and
Abbeel, P. High-dimensional continuous control using
generalized advantage estimation. In Bengio, Y. and Le-
Cun, Y. (eds.), 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings, 2016. URL
http://arxiv.org/abs/1506.02438.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A.,
and Klimov, O. Proximal policy optimization algo-
rithms. CoRR, abs/1707.06347, 2017. URL http:
//arxiv.org/abs/1707.06347.

10

http://papers.nips.cc/paper/1786-actor-critic-algorithms
http://papers.nips.cc/paper/1786-actor-critic-algorithms
http://proceedings.mlr.press/v48/mniha16.html
http://proceedings.mlr.press/v48/mniha16.html
https://openreview.net/forum?id=JkEz1fqN3hX
https://openreview.net/forum?id=JkEz1fqN3hX
http://arxiv.org/abs/1910.07113
http://arxiv.org/abs/1910.07113
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
http://proceedings.mlr.press/v139/raileanu21a.html
http://proceedings.mlr.press/v139/raileanu21a.html
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

Phasic Policy Gradient Reloaded

A. Training Details
For all experiments, we use the residual convolutional networks in IMPALA (Espeholt et al., 2018) and the Adam
optimizer (Kingma & Ba, 2015), following previous practices (Cobbe et al., 2020; 2021). We use PyTorch (Paszke et al.,
2019) as a deep learning framework. All experiments are conducted using Intel® Xeon® Platinum 8260 CPU and NVIDIA
V100 GPU. The table below lists the default values of the parameters in our experiments. Note that when we decrease
Tfreq, we also reduce KV accordingly such that the total number of gradient updates remains the same. For example, when
Tfreq = 1, KV = 3072/32 = 96.

Sample Efficiency (hard) Generalization (easy) Generalization (hard)

Toff 32 32 32
Tfreq 32 32 32
Nenv 256 64 256
M 256 256 256
Kπ 8 8 8
KV 3072 3072 3072
Mπ 8192 2048 8192
MV 4096 1024 4096
βV 1 1 1
βπ 1 1 1

Discount factor γ 0.999 0.999 0.999
GAE parameter λ 0.95 0.95 0.95
PPO clip range (ϵ) 0.2 0.2 0.2

Reward normalization? Yes Yes Yes
Entropy bonus coefficient βH 0.01 0.01 0.01

Learning rate 5e-4 5e-4 5e-4
Maximum gradient norm 0.5 0.5 0.5

Total timesteps 100M 25M 200M
Number of training levels All 200 500

LSTM? No No No
Frame stack? No No No

11

Phasic Policy Gradient Reloaded

B. More Experiment Results
B.1. Scaling minibatch size under infrequent distillation

Figure 9. Performance with scaled minibatch sizes under infrequent distillation (Tfreq = 32, βπ = 1), normalized over all Procgen games.

B.2. Varying value regularization strength βV

Figure 10. Performance with varying βV under frequent distillation (Tfreq = 1, βπ = 16), normalized over all Procgen games.

Figure 11. Performance with varying βV under infrequent distillation (Tfreq = 32, βπ = 1), normalized over all Procgen games.

12

Phasic Policy Gradient Reloaded

B.3. Stiffness Analysis

Following (Moon et al., 2022), we measure the stiffness of the value objective gradients between states. Specifically, the
stiffness of the value objective gradients between states (s, s′) is defined by

ρ(s, s′) =
∇θLV (s)

⊤∇θLV (s
′)

∥∇θLV (s)∥2∥∇θLV (s′)∥2

where θ = (θϕ, θV) refers to the parameters of the value function, and ∥·∥2 denotes L2 norm. We run the experiments in the
generalization (easy) setup. At each iteration, we first compute the individual value objective gradient for each state in the
batch using BackPACK (Dangel et al., 2020), then calculate the mean stiffness of the gradients across all state pairs. Finally,
the results averaged from 3 runs are shown in the figure below.

Figure 12. Stiffness measure under different distillation interval Tfreq.

13

Phasic Policy Gradient Reloaded

Figure 13. Per-game performance in the generalization (easy) setup, with varying Tfreq and βπ . See Figure 3 for the normalized result.

14

Phasic Policy Gradient Reloaded

B.4. Evaluation results using the rilable library (Agarwal et al., 2021)

Figure 14. Performance in the sample efficiency (hard) setup with varying Tfreq and βπ , corresponding to Figure 2, 3 and 4.

Figure 15. Training performance in the generalization (easy) setup with varying Tfreq and βπ , corresponding to Figure 2, 3 and 4.

Figure 16. Testing performance in the generalization (easy) setup with varying Tfreq and βπ , corresponding to Figure 2, 3 and 4.

15

Phasic Policy Gradient Reloaded

Figure 17. Training performance in the generalization (hard) setup with varying Tfreq and βπ , corresponding to Figure 2, 3 and 4.

Figure 18. Testing performance in the generalization (hard) setup with varying Tfreq and βπ , corresponding to Figure 2, 3 and 4.

Figure 19. Performance in the sample efficiency (hard) setup with varying Toff at different Tfreq, corresponding to Figure 5.

16

Phasic Policy Gradient Reloaded

Figure 20. Training performance in the generalization (easy) setup with varying Toff at different Tfreq, corresponding to Figure 5.

Figure 21. Testing performance in the generalization (easy) setup with varying Toff at different Tfreq, corresponding to Figure 5.

Figure 22. Training performance in the generalization (hard) setup with varying Toff at different Tfreq, corresponding to Figure 5.

Figure 23. Testing performance in the generalization (hard) setup with varying Toff at different Tfreq, corresponding to Figure 5.

17

Phasic Policy Gradient Reloaded

Figure 24. Performance in the sample efficiency (hard) setup with varying Toff under Tfreq = 1 and βπ = 16, corresponding to Figure 6.

Figure 25. Training performance in the generalization (easy) setup with varying Toff under Tfreq = 1 and βπ = 16, corresponding to
Figure 6.

Figure 26. Testing performance in the generalization (easy) setup varying Toff under Tfreq = 1 and βπ = 16, corresponding to Figure 6.

Figure 27. Training performance in the generalization (hard) setup with varying Toff under Tfreq = 1 and βπ = 16, corresponding to
Figure 6.

Figure 28. Testing performance in the generalization (hard) setup varying Toff under Tfreq = 1 and βπ = 16, corresponding to Figure 6.

18

Phasic Policy Gradient Reloaded

Figure 29. Performance in the sample efficiency (hard) setup with varying data diversity by scaling the number of parallel environments,
corresponding to Figure 7.

Figure 30. Training performance in the generalization (easy) setup with varying data diversity by scaling the number of parallel environ-
ments, corresponding to Figure 7.

Figure 31. Testing performance in the generalization (easy) setup varying data diversity by scaling the number of parallel environments,
corresponding to Figure 7.

Figure 32. Training performance in the generalization (hard) setup with varying data diversity by scaling the number of parallel environ-
ments, corresponding to Figure 7.

Figure 33. Testing performance in the generalization (hard) setup varying data diversity by scaling the number of parallel environments,
corresponding to Figure 7.

19

Phasic Policy Gradient Reloaded

Figure 34. Performance in the sample efficiency (hard) setup with scaled minibatch sizes under frequent distillation (Tfreq = 1, βπ = 16),
corresponding to Figure 8.

Figure 35. Training performance in the generalization (easy) setup with scaled minibatch sizes under frequent distillation (Tfreq = 1,
βπ = 16), corresponding to Figure 8.

Figure 36. Testing performance in the generalization (easy) setup with scaled minibatch sizes under frequent distillation (Tfreq = 1,
βπ = 16), corresponding to Figure 8.

Figure 37. Training performance in the generalization (hard) setup with scaled minibatch sizes under frequent distillation (Tfreq = 1,
βπ = 16), corresponding to Figure 8.

Figure 38. Testing performance in the generalization (hard) setup with scaled minibatch sizes under frequent distillation (Tfreq = 1,
βπ = 16), corresponding to Figure 8.

20

