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Abstract
Designing and understanding molecules for bi-
ological applications requires models that can
integrate rich structural information from both
2D molecular graphs and diverse 3D conformer
ensembles. We introduce a fragment-aware,
structure-guided graph transformer that enables
scalable and expressive molecular modeling by
aggregating multiple 3D conformers while in-
corporating fragment-level inductive biases from
the 2D topology. Our approach employs a train-
able attention-based fusion mechanism within a
graph transformer to dynamically combine 2D
and 3D representations, moving beyond static
solvers and rigid fusion heuristics. This architec-
ture enables fine-grained reasoning over chemi-
cally diverse molecules, including organocatalysts
and transition-metal complexes. While originally
developed for molecular property prediction, the
method’s structure-aware and fragment-level mod-
eling is readily applicable to other downstream
applications in drug discovery, reaction modeling,
and AI-driven biological research. The model
scales to large datasets and achieves state-of-the-
art results across molecular property benchmarks,
demonstrating its potential as a foundational com-
ponent for generative AI in molecular science.

1. Introduction
Machine learning has become a transformative tool in com-
putational biology, chemistry, and drug discovery, enabling
predictive and generative modeling of molecular systems
(Butler et al., 2018; Vamathevan et al., 2019; Choudhary
et al., 2022; Fedik et al., 2022; Batatia et al., 2023). Many
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existing molecular representation learning methods rely on
either 2D molecular graphs, which capture topological con-
nectivity efficiently (Kipf & Welling, 2017; Gilmer et al.,
2017b; Xu et al., 2018; Veličković et al., 2018), or on 3D rep-
resentations derived from a single conformer (Schütt et al.,
2017; Schütt et al., 2021b; Batzner et al., 2022; Batatia
et al., 2022). While 2D graphs are computationally effi-
cient, they lack essential geometric context - critical for
understanding molecular interactions, activity, and design.
Incorporating 3D conformers introduces spatial features
such as bond lengths and torsion angles, but relying on a
single conformation fails to reflect the intrinsic flexibility
and thermodynamic diversity of real molecules.

In biological systems, molecules dynamically sample a
range of conformations due to bond rotations, vibrational
modes, and environmental interactions (Ramsundar et al.,
2019), and many functionally relevant properties — such
as solubility, binding affinity, or reactivity — emerge from
this conformational ensemble (Perola & Charifson, 2004).
Yet, fully modeling the conformational distribution remains
computationally intensive, as quantum mechanical meth-
ods for conformer generation are expensive (Rosa et al.,
2016; Wankowicz & Bonomi, 2025; Medrano Sandonas
et al., 2024). This challenge has motivated hybrid learn-
ing models that combine the scalability of 2D graphs with
the geometric richness of a small but representative subset
of 3D conformers. These approaches are currently open-
ing a promising path toward generative molecular design,
where both topological and spatial variations are essential
for modeling bioactive compounds and synthesizable drug-
like molecules.

To address this, structure-aware ensemble methods based
on optimal transport - especially those using fused Gromov-
Wasserstein (FGW) alignment - have shown promise
(Brogat-Motte et al., 2022; Ma et al., 2023; Nguyen et al.,
2024a). By aligning both feature and geometric spaces,
these models better preserve spatial correspondences across
conformers and enable expressive ensemble aggregation.
However, such methods are computationally expensive and
struggle to scale to large molecular datasets such as Drugs-
75k (Zhu et al., 2023; Axelrod & Gomez-Bombarelli, 2022),
limiting their utility for high-throughput applications in gen-
erative biology.
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In this work, we propose a scalable alternative: a train-
able, geometry-aware graph transformer that replaces
costly FGW alignment with efficient attention-based con-
former aggregation. By supervising the model with FGW
distances during training, we learn a latent embedding space
where conformer similarities reflect both topological and ge-
ometric structure. This enables fast, permutation-invariant
conformer integration suitable for large-scale generative
pipelines. Beyond efficiency, we further enrich our model
with fragment-level structural priors from 2D molecular
graphs, injecting chemically meaningful hierarchies into
both message passing and 3D attention layers. This uni-
fied 2D–3D framework captures fine-grained spatial and
topological interactions essential for applications such as
molecular property prediction, virtual screening, and func-
tional optimization.

In summary, our key contributions are:

• We propose a scalable, geometry-aware conformer
aggregation framework, denoted as FACET, that re-
places costly FGW alignment with a trainable Graph
Transformer, enabling efficient, deterministic attention-
based inference. We further provide theoretical bounds
on the approximation error relative to FGW distances.

• We introduce a unified 2D–3D representation learning
approach that embeds fragment-level structural pri-
ors into both 2D message passing and 3D spatial self-
attention, capturing multi-scale interactions between
molecular topology and geometry.

• Our method delivers over 6× faster aggregation than
prior geometry-aware baselines and achieves state-
of-the-art performance across six benchmarks, in-
cluding molecular property prediction and Boltzmann-
weighted ensemble tasks, demonstrating robustness
across diverse molecular scenarios and dataset scales.

2. Related Work
2.1. Conformer Ensemble Learning in Molecular

Representations
Molecular representations range from fingerprints (Morgan,
1965) and 1D strings (Ahmad et al., 2022; Wang et al., 2019)
to 2D graphs (Gilmer et al., 2017a; Rong et al., 2020) and
3D geometric models (Fang et al., 2021; Zhou et al., 2023).
While 2D models are efficient, they lack spatial context;
3D models add geometric detail but often rely on a single
conformer, overlooking structural flexibility. Recent hybrid
approaches combine 2D graphs with conformer ensembles
(Zhu et al., 2024b; Axelrod & Gómez-Bombarelli, 2023),
using aggregation techniques like pooling or self-attention
(Zaheer et al., 2017; Vaswani et al., 2017). Geometry-aware
methods based on FGW alignment (Brogat-Motte et al.,
2022; Nguyen et al., 2024a) better capture spatial similarity

across conformers but are computationally costly and strug-
gle to scale in generative or high-throughput settings (Zhou
et al., 2023). Our method addresses this limitation by using
graph transformer architectures to learn latent embeddings
of 3D conformers, integrating both geometry-aware signals
- akin to those used in FGW-based methods—and hierar-
chical features from molecular fragments. This yields a
scalable and permutation-invariant framework that balances
computational efficiency with high representational power,
making it well-suited for accuracy-critical molecular tasks.

2.2. Scalable Optimal Transport for Graph Learning
Recent advances in learning-based Optimal Transport (OT)
have introduced efficient alternatives to classical solvers.
Early work leveraged differentiable Sinkhorn distances with
entropic regularization to improve stability and scalability
(Cuturi, 2013; Feydy et al., 2019; Genevay et al., 2018). Sub-
sequent methods enhanced computational efficiency through
structural simplifications, such as low-rank approximations
(Scetbon et al., 2021; Cuturi et al., 2020) and spatially-
aware geometry-based formulations (Bachmann et al., 2022;
Solomon et al., 2015). Additionally, meta-learning tech-
niques accelerated optimization by learning better initial-
izations (Amos et al., 2023), while more recent approaches
have trained neural OT models directly on data to bypass
iterative solvers altogether (Courty et al., 2017; Tong et al.,
2021; Haviv et al., 2024).

Despite these advances, most of this work is limited to stan-
dard OT and does not extend to structure-aware variants
like Fused Gromov-Wasserstein (FGW), which account for
both feature similarity and relational graph structure. To
address this, we introduce the first learned approximation of
FGW via a graph transformer architecture, enabling scalable
and geometry-aware aggregation across conformer ensem-
bles. By integrating fragment-level structural priors into
both 2D and 3D encoders, our framework supports multi-
scale reasoning that unifies topological connectivity with
spatial conformational diversity—essential for rich molec-
ular representation and downstream biological modeling.

2.3. Fragment-biases in Molecular GNN
Fragment-level molecular substructures, such as rings, func-
tional groups, and pharmacophores, play a central role in
property prediction and drug development (Merlot et al.,
2003; Varnek et al., 2005). Recent studies have harnessed
these motifs for scaffold-aware molecule generation (Lee
et al., 2024; Li, 2020; Chan et al., 2024), fragment-centric
self-supervised tasks like masking and contrastive learning
(Rong et al., 2020; Zhang et al., 2021; Wen et al., 2024),
and in graph neural networks that encode inductive biases
at the fragment level (Fey et al., 2020; Wang et al., 2025;
Wollschläger et al., 2024). These approaches consistently
demonstrate improved generalization, interpretability, and
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data efficiency. Motivated by these findings, we take a
complementary approach: embedding fragment-level priors
directly into hybrid 2D–3D molecular models. Our method
encodes hierarchical substructures into both 2D message
passing and 3D spatial attention, supporting multi-scale
reasoning across topological and geometric domains. This
design enhances conformer ensemble aggregation and pro-
duces richer, geometry-aware representations for tasks that
depend on molecular flexibility and spatial precision.

3. Fragment-Aware Conformer Ensemble
Transformer

Notations. Let ∆N := {ω ∈ RN
+ : ω⊤1N = 1} denote

the probability simplex, where 1N is the all-ones vector in
RN . For x ∈ Ω, δx is the Dirac measure at x. We write
[K] := {1, . . . ,K} for K ∈ N, and use ⟨·, ·⟩ to denote
the Frobenius inner product. For a tensor L = (Lijkl)
and matrix B = (Bkl), define the contraction L ⊗B :=
(
∑

kl LijklBkl)ij . A graph G = (V,E) has N := |V |
nodes and edges E ⊆ {{u, v} ⊆ V : u ̸= v}. An attributed
graph is given by G := (H,A,ω), where H ∈ RN×d is the
node feature matrix (with row Hv for node v), A encodes
structure (e.g., adjacency or shortest-path), and ω ∈ ∆N is
a node weight distribution.

Given two graphs G1 and G2 with N1 and N2 nodes, the
Fused Gromov-Wasserstein (FGW) distance (Peyré et al.,
2016; Titouan et al., 2019; 2020) is: FGWp,α(G1,G2) :=
minπ∈Π(ω1,ω2) ⟨(1− α)M + αL(A1,A2)⊗ π,π⟩ ,
where Π(ω1,ω2) := {π ∈ RN1×N2

+ : π1N2 =
ω1, π⊤1N1 = ω2} is the set of valid couplings,
M [i, j] = df (H1[i],H2[j])

p is the node feature cost,
L(A1,A2)[i, j, l,m] = |A1[i, j] − A2[l,m]|p captures
structural mismatch, and α ∈ [0, 1] balances feature and
structure alignment.

3.1. Conformer Generation
Following prior work, we generate molecular conformers
using distance geometry methods that convert interatomic
constraints, such as bond lengths, angles, stereochemistry,
and steric limits, into 3D coordinates (Hawkins, 2017). A
lightweight force field refines the structures toward low-
energy conformations. Compared to quantum methods like
DFT, this approach is highly scalable and efficient for large
datasets. As in prior studies (Raza et al., 2022; Nguyen
et al., 2024b), we use RDKit (Landrum, 2016) for fast and
reliable conformer generation.

3.2. Framework Overview
We propose a neural architecture as in Figure 1 composed of
three components. First, a 2D MPNN captures topological
features from the molecular graph, while another MPNN op-
erates on a fragment-induced hypergraph to encode higher-
order structural priors (Sec.3.3). The outputs from both
are fused and passed through a lightweight adaptor module,

which dynamically refines and calibrates the feature repre-
sentations before feeding them into the pre-trained graph
transformer (Sec.3.4). Given a set of 3D conformers sam-
pled from an input molecule graph, we use a 3D-MPNN
to extract their embedding features (Sec. 3.4.1), followed
by another adaptor layer. These adaptors are crucial for
handling the variability in 3D conformer and 2D molecule
features extracted by the 3D-MPNN (Φ(.)) and 2D-MPNN.
Then a graph transformer is used to aggregate the conformer
feature sets into a geometry-aware molecular embedding,
guided by atom-level and fragment-level attention. Finally,
a permutation- and E(3)-invariant fusion module combines
the 2D and 3D representations into a unified embedding for
downstream tasks (Sec. 3.4.5).

3.3. Fragment-Enhanced 2D Molecular Graph
Each molecule is represented as a 2D graph G = (V,E),
where nodes V correspond to atoms and edges E to covalent
bonds. Atom features h

(0)
v ∈ Rd encode properties like

atom type and valence, while bonds (u, v) are annotated
with features e(u, v) (Scarselli et al., 2008; Gilmer et al.,
2017a). We adopt a 2D message-passing neural network
(MPNN) that updates node embeddings layer-wise:

hℓ
v = UPDℓ(hℓ−1

v ,AGGℓ(Mℓ(hℓ−1
v ,hℓ−1

u , ev,u) | u ∈ N(v))),
(1)

where Mℓ is a message function, AGGℓ is sum aggregation,
and UPDℓ is identity or multilayer perception layers. We
use Graph Attention Networks (GATs) (Veličković et al.,
2017), where messages are computed as:

Mℓ
v,u = αℓ

v,uW
ℓhℓ−1

u ,

αℓ
v,u = softmaxu

(
LeakyReLU

(⊤[Wℓhℓ−1
v , |,Wℓhℓ−1

u ]
))

.

(2)

After L layers, we obtain final atom-level features hL
v for

each atom v used for downstream tasks.

Fragment-Based Structural Augmentation. To enhance
atomic representations with higher-order structural context,
we construct a fragment hypergraph from the input molec-
ular graph G using ring-path decomposition (Kong et al.,
2022; Geng et al., 2023; Wollschläger et al., 2024) to iden-
tify key substructures such as aromatic rings and functional
groups (Fig. 2). Each fragment is treated as a node in a
new graph Gfrag = (V frag, Efrag), where nodes correspond
to fragments and edges are induced from the connectivity in
G, two fragments are connected if they share an atom or are
directly bonded.

We apply the same GAT formulation in Eq. (1) to the frag-
ment graph to obtain fragment embeddings {hfrag

f }f∈V frag .
Then for each atom v that belongs to its fragment f(v),
we fuse their atom-level representations h(L)

v with {hfrag
f }
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Figure 1. FACET overview. The model integrates 2D topological features from molecular and fragment graphs using message passing
neural networks (MPNNs), combines them with 3D conformer features processed through a 3D-MPNN (Φ) and a lightweight adaptor, and
feeds them into a fragment-aware graph attention for geometry-aware embedding guided by FGW distance. A final structural aggregation
module fuses 2D and 3D representations into a unified embedding for downstream tasks.

by:

h̃(L)
v = h(L)

v + FFN
(
hfrag
f(v)

)
, (3)

where FFN(·) is a learnable feedforward network that
projects fragment-level context into the same space as atom
features. If an atom belongs to multiple fragments, its
atom-level features are aggregated with the correspond-
ing fragment structures using the shared FFN(·). Fi-
nally, we define a fragment-enhanced graph-level repre-
sentation that is computed by applying a readout function
h2D = READOUT

(
{h̃(L)

v | v ∈ V }
)
=
∑

v∈V h̃
(L)
v . In-

tuitively, the dual-level encoding combining local atomic
features and global fragment-level context as Eq.(3) al-
lows the model to reason over both fine-grained and
coarse-grained structures, enhancing the expressivity of
the molecular representation.

3.4. Learning Graph Transformer for 3D Molecule
Aggregations

A molecular conformer is represented as a set S =
{ri, Zi}Ni=1, where N denotes the number of atoms, ri ∈ R3

corresponds to the 3D Cartesian coordinates of atom i, and
Zi ∈ N indicates its atomic number.

3.4.1. 3D CONFORMER FEATURE REPRESENTATION

For each conformer S, we can define its graph GS and
compute its 3D feature embedding by using a geomet-
ric message-passing network SchNet (Schütt et al., 2017),
though other E(3)-invariant neural architectures can be read-
ily substituted without modification. We represent the ma-
trix of atom-level features from the final message-passing
layer L of SchNet as H, where each column H[v] corre-
sponds to the feature vector h

(L)
3d,v of atom v. We then

compute the vector representation for a conformer S as

h3d,S =
∑

v∈V (W3d)h
(L)
3d,v + b3d ∈ Rd with W3d and

b3d are learnable vectors. Given a set of K conformers
{Sk}Kk=1, we define H3d[k] = h3D,Sk as the feature embed-
ding for the k-th conformer. The matrix H3d ∈ RK×d thus
summarizes the feature representations of all conformers in
the set.

3.4.2. FRAGMENT-AWARE GRAPH FORMER

Given the atom-wise feature matrix H for each conformer
S, we aim to learn structure-encoded latent representations
using Graph Transformer architectures (Zhang et al., 2020;
Ying et al., 2021; Kreuzer et al., 2021; Luo et al., 2024).
We adopt the architecture from (Ying et al., 2021) due to
its strong expressiveness on small molecular graphs, and
further extend its attention mechanism with fragment sub-
structures (Fig .2). It is important to note that our framework
is flexible and can incorporate alternative transformer-based
models.

In particular, we compose N of transformer layers (Vaswani
et al., 2017). Each Transformer layer consists of a self-
attention mechanism followed by a position-wise feed-
forward network. Given H = [h⊤

1 , . . . ,h
⊤
n ]

⊤ ∈ Rn×d

computed in Section 3.4.1 by a 3D-MPNN, where hi =

h
(L)
3d,vi

∈ R1×d is the vector embedding of an atom vi with
d is the hidden size. We compute self-attention, by lin-
early projecting H into query (Q), key (K), and value (V)
matrices using learned weights WQ,WK ,WV ∈ Rd×d:
Q = HWQ, K = HWK , V = HWV ,

Ã = QK⊤/
√
d, Attention(H) = softmax(Ã)V. (4)

Here, Ã denotes the attention score matrix representing
pairwise similarities between tokens. For clarity, we present
the single-head version; extending to multi-head attention is
straightforward. Bias terms are omitted for brevity.

4



A Unified Graph Transformer for Molecular Representation from Conformer Ensembles

While the attention in Eq. (4) only uses feature nodes, lever-
aging the structural information of the 3D conformer graph
is essential. Follow (Ying et al., 2021), we incorporate the
(i) centrality encoding, measuring how important
a node is in the graph using its degree, and (ii) spatial
encoding, measuring spatial relation between two nodes
vi and vj in a graph GS by the distance of the shortest path
distance (SPD) (Cormen et al., 2022; Balaban, 1985) to-
gether with a weighted learnabe value along edges of SPD
between two nodes. Specifically, we incorporate (i) by:

hi = hi + z−deg−(vi)
+ z+deg+(vi)

, (5)

where z−, z+ ∈ Rd are learnable embedding vectors spec-
ified by the indegree deg−(vi) and outdegree deg+(vi) of
atom vi respectively. Assume Ãij as the (i, j)-element of
the Query-Key product matrix Ã, the condition (ii) extends
Ãij as:

Ãij = (hiWQ)(hjWK)T /
√
d+ sϕ(vi,vj) + cij , (6)

where sϕ(vi,vj) is a learnable scalar indexed by ϕ(vi, vj),
which denotes for SPD distance between vi and vj , and
shared across all layers; cij = E(xen(w

E
n )

T ) where E(.)
is the expectation operation, xen is the feature of the n-th
edge en in SPDij , wE

n ∈ RdE is the n-th weight embedding,
and dE is the dimensionality of edge feature compute as
difference in feature embeddings of two nodes belong to it.

While the spatial encoding in Eq.(6) is implicated by the
SPD, we argue that this might inadequately capture chem-
ically meaningful substructures (ablation in Tab. 5). This
motivates us to extend attention scores in Eq. (6) us-
ing values derived from (iii) fragment-level node
features computed on 2D topology graph in Eq. (3),
directly guiding attention toward structurally and function-
ally relevant regions such as rings, functional groups, or
scaffolds. To this end, we compute an adjacency-like matrix
A(G) using cosine distance over the final node embeddings
h̃
(L)
v . Specifically, for each pair of atoms (vi, vj) in the 2D

molecular graph, we define

A(G)ij = 1−
⟨h̃(L)

i , h̃
(L)
j ⟩

|h̃(L)
i |2 · |h̃

(L)
j |2

, (7)

which quantifies their directional dissimilarity in the embed-
ding space. Finally, we use the attention score as:
Ãij = (hiWQ)(hjWK)T /

√
d+ sϕ(vi,vj) + cij +A(G)ij .

(8)

3.4.3. LEARNING TO APPROXIMATE FGW DISTANCE

We denote by Tθ(.) be a graph transformer model that has
its attention operation as Eq.(8), our goal is to train Tθ(·) to
map the feature representation of each conformer S into a
latent space where the L2 distance between any pair Si, Sj

approximates their FGW distance - an effective, yet compu-
tationally expensive, geometry-aware metric (Brogat-Motte
et al., 2022; Ma et al., 2023; Nguyen et al., 2024a). To

this end, given a set of Ω = {Si}Ki=1 of K generated con-
formers, we sample B conformers from Ω, then compute
their encoding features by Tθ(Hi) for each Si ∈ B. These
outputs are compared with their pair-wise FGW distance to
optimize the loss:

Lenc =
∑
ij

[
||Tθ(Hi)− Tθ(Hj)||22 − FGWp,α(G(Si),G(Sj))

]
.

(9)
By minimizing the loss Lenc, we update the parameters
of the transformation module Tθ(·) using gradient descent:
θ ← θ−ϵ∇Lenc. Once trained, we freeze Tθ and incorporate
it back into the framework to compute a geometry-aware
representation across K conformers {Sk}Kk=1 as follows:

H = E
(
{Tθ(Hi)}Ki=1

)
, where H denotes the aggregated

structural embedding. However, the 3D conformer feature
distribution, extracted by 3D-MPNN, used to train Lenc
(Eq. 9) may experience a domain shift when co-trained
with other components in the full framework (Sec. 3.4.4)
due to the continuous updating of 3D-MPNN. To address
this, we design adapter layers as simple FFN layers to
transform the input features in Eq. (9), aligning them to the
seen distribution during training Tθ.

3.4.4. INVARIANT AGGREGATION OF 2D AND 3D
REPRESENTATION

We integrate representations from the 2D molecular graph
and multiple 3D conformers using both average pooling
and a GraphTransformer-based aggregation. The trans-
former captures rich spatial interactions while ensuring per-
mutation invariance across conformers and E(3) equivari-
ance, preserving robustness to 3D transformations. Given
K conformers, using H as the GraphTransformer (GT)-
aggregated atom features. We compute the global GT
representation as: hGT =

∑
v∈V

(
WGT,hv + bGT

)
,

where hv = H[v] and WGT,bGT are learnable param-
eters. We then define H2D and HGT be the matrices
whose columns are, respectively, K copies of the 2D feature
h2D (Sec.3.3) and hGT representations from previous sec-
tion. We fuse those representations with the 3D conformer
features H3D to produce the final atom-wise embedding:
Hcomb = W̃2D H2D + W̃3D H3D + W̃GT HGT, where
each ˜Wi, i ∈ {2D, 3D,GT} are trainable projection ma-
trix. The combined embedding Hcomb is fed into a final
FFN layer to predict the target property.

4. Theoretical Bounds for Embedding
Non-Euclidean FGW Distance Matrices

Learning a Transformer Tθ(.) to predict the FGW problem is
closely related to multidimensional scaling (MDS) (Torger-
son, 1952). Building on recent advances (Haviv et al., 2024;
Sonthalia et al., 2021), we extend MDS theory to derive
bounds on the error of embedding non-Euclidean distances,
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specifically Wasserstein and FGW, into a Euclidean space
suitable for graph transformer integration. While computing
FGW barycenters is costly, our embedding enables efficient
approximation via averaging and decoding in latent space.
Prior work (Haviv et al., 2024) validated this approach for
Wasserstein distances; we generalize it to FGW and pro-
vide theoretical justification, offering a scalable path for
structure-aware graph alignment.

Cumulative Stress Optimization Problem via Pairwise
FGW Distance Matrix. We define the pairwise FGW
distance matrix D for a set of K distributions as Dij :=
FGWp,α(G(Si),G(Sj)) for all i, j ∈ [K], following Sec-
tion 3.4.3. The empirical FGW barycenter is given
by GK ∈ arg minG∈Pp(Ω)

1
K

∑K
i=1 FGWp

p,α(G,G(Si)),
where Pp(Ω) denotes the space of attributed graphs with
finite p-th order FGW distance.

To approximate this barycenter in embedding space, we
require ∥eK − ej∥22 ≈ FGWp,α(GK ,G(Sj)) := DK,j

for all j ∈ [K], where eK = 1
K

∑K
i=1 ei is the

mean embedding and ei := Tθ(Hi) is the learned
representation. To assess how well the embeddings
{ei}Ki=1 ⊂ Rd preserve both pairwise FGW distances
and barycenter structure, we define the cumulative
stress: S = minei∈Rd

∑
i,j∈[K]

(
∥ei − ej∥22 −Dij

)2
+∑

j∈[K]

(
∥eK − ej∥22 −DK,j

)2
. This objective enforces

faithful reconstruction of both the distance structure and the
barycenter alignment in the learned embedding space, as
formalized in Theorem 4.1 (see proof in Appendix D).

Theorem 4.1. Let D denote the pairwise FGWp,α distance
matrix, and let {λi,vi}Ki=1 represent the eigendecompo-
sition of the associated criterion matrix F = −CDC,
where C = IK − 1

K1K1⊤
K is the centering matrix. The

optimal stress value, denoted by S∗, is bounded as fol-
lows: L ≤ S∗ ≤ U , where L :=

∑
i:λi<0 λ

2
i , U :=∑

ij(∆gi+∆gj)
2+L+C, ∆gi =

1
2

∑
j:λj<0 λj ·v2

ij . Here,
vij denotes the j-th component of the i-th eigenvector vn

of F , and C quantifies the approximation error between the
empirical barycenter in the Euclidean embedding space and
that in the original space of undirected attributed graphs.

5. Experiments
5.1. Implementation Details
General pipeline. Our training consists of three stages.
Stage 1: We train 2D and 3D MPNNs to extract features
from molecular graphs and conformers. These features are
also used to supervise the Graph Transformer in the next
stage. Stage 2: The Graph Transformer is trained indepen-
dently to approximate FGW distances between conformers
using the features from Stage 1. We use the architecture
of Graphormer (Ying et al., 2021), with 12 attention layers,
8 heads, and a hidden size of 64 (372k parameters). It is
trained for 1000 epochs with a learning rate of 1e−5. Stage

3: We integrate all components into an end-to-end model,
where only the 2D and 3D MPNNs are updated (300 epochs,
learning rate 5e−4). To address feature distribution shift
caused by finetuning, we apply FFN-based adaptor layers
to the 2D and 3D features before feeding them to the Graph
Transformer.

We use Adam for all stages. Further experimental details
are provided in the Appendix.

5.2. Approximation of FGW Distance via Graph
Transformer

Figure 2. Correlations between FGW distance and trained Graph-
Transformer on four datasets in MoleculeNet benchmark. For each
test molecule, we compute pairwise FGW distances between con-
formers and compare them with Euclidean distances between their
Graph Transformer embeddings. The correlation ρ is reported,
with the reference line y = x shown in blue.

Beyond theoretical estimation, we empirically evaluate how
well the Graph Transformer approximates FGW distances
between conformers in Euclidean space. As shown in Fig-
ure 2, results on the MoleculeNet benchmarks reveal a
strong correlation between learned embeddings and true
FGW distances, validating the transformer’s effectiveness
in simulating costly FGW computations. While correla-
tion varies slightly across datasets, the results consistently
highlight the model’s reliability as a fast FGW surrogate,
especially as the number of conformers in the aggregation
increases

5.3. Scaling Fragment Geometry-Aware Aggregation
To validate the scalability of FACET model, based on a
Graph Transformer for structure-aware aggregation, we
compare it against Conan-FGW (Nguyen et al., 2024a),
a method computing FGW distances on-the-fly during
training and inference. We evaluate two key aspects: (i)
inference-time efficiency with varying numbers of con-

6



A Unified Graph Transformer for Molecular Representation from Conformer Ensembles

formers, and (ii) average training time per epoch at dif-
ferent dataset scales. For inference, we measure the time
required to generate output embeddings from K conformers
(K ∈ 5, 10, 15, 20) using single and multi-GPU settings.
Experiments are conducted on the BACE dataset and sum-
marized in Figure 3.

It can be seen that (a) FACET exhibits strong scalability,
maintaining a nearly constant runtime across varying num-
bers of conformers, in both single- and multi-GPU envi-
ronments. In contrast, ConAN-FGW scales poorly, with
runtime increasing sharply as the number of conformers
grows. Although using multiple GPUs reduces the runtime
compared to a single GPU, the upward trend persists, with
runtimes surpassing 50 seconds for 20 conformers. (b) Sec-
ondly, FACET’s similar runtime on single- and multi-GPU
setups reflects its efficiency and the small workload in this
experiment. In such cases, multi-GPU overhead can out-
weigh speedup gains. We expect multi-GPU acceleration to
be beneficial mainly for large-scale tasks, like processing
a large batch size of thousands of molecules or handling
memory-intensive inputs.
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Figure 3. Total inference time on a test set of BACE to extract
geometry-aware embedding aggregation using CoNan-FGW and
our FACET.

In the second setting, we compare the average per-epoch
training time of FACET and Conan-FGW on two datasets of
different scales: Kraken (1,086 molecules) and Drugs-75k
(52,569 molecules). As summarized in Figure 4, FACET
exhibits linear scaling with the number of conformers and
achieves 5–6× faster runtime on average than Conan-FGW.
This efficiency is critical for scaling to large datasets and
longer training schedules - for example, training Conan-
FGW on Drugs-75k for 300 epochs requires 1,107.58 GPU
hours, while FACET only takes 214 hours. This can be
further reduced to 26.75 hours with 8 GPUs, compared to
138 hours for Conan-FGW under the same hardware setup.
5.4. State-of-the-Art Performance Comparison on

Molecular Tasks

Datasets. We evaluate molecular property regression on
the MoleculeNet (Wu et al., 2018) and MARCEL (Zhu
et al., 2024a) benchmarks. MoleculeNet includes four

(a) Drugs-75K

(b) Kraken

Figure 4. Comparison of the one-epoch training time of CONAN-
FGW (Nguyen et al., 2024b) and the proposed FACET on the
Drugs-75K and Kraken datasets from the MARCEL benchmark.

datasets, ESOL, BACE, Lipo, and FreeSolv, with tar-
gets covering solubility, inhibitory concentration (pIC50),
lipophilicity, and hydration free energy. MARCEL consists
of Drugs-75K and Kraken, where the goal is to predict
the Boltzmann-averaged property ⟨y⟩kB from sampled con-
formers. Drugs-75K uses quantum descriptors (IP, EA, χ),
while Kraken focuses on Sterimol features (B5, L, and their
buried forms). The Boltzmann average is computed as a
weighted sum over conformer-specific values yi with prob-
abilities pi. All datasets follow the original random split
settings, using the provided sampled conformers.

Table 3. Number of samples for each split on tasks of MoleculeNet
and the MARCEL benchmark.

Model Lipo ESOL FreeSolv BACE Drugs-75k Kraken

Train 2940 789 449 1059 52569 1086
Valid. 420 112 64 151 7509 155
Test 2940 227 129 303 15021 311

Total 4200 1128 642 1513 75099 1552

Baselines. For the MoleculeNet benchmark (Wu
et al., 2018), we compare FACET with a wide range
of baselines, including (i) 2D supervised methods
(e.g., GAT (Veličković et al., 2018), D-MPNN (Yang
et al., 2019a), AttentiveFP (Xiong et al., 2019)), (ii)
pre-training approaches (e.g., PretrainGNN (Hu
et al., 2020b), GROVER (Rong et al., 2020), ChemBERTa-
2* (Ahmad et al., 2022), ChemRL-GEM (Fang et al., 2022),
MolFormer (Ross et al., 2022)), (iii) 3D-conformers
based models ConfNet (Liu et al., 2021)), UniMol (Zhou
et al., 2023), SchNet (Schütt et al., 2017), ChemProp3D (Ax-
elrod & Gómez-Bombarelli, 2023),CONAN-FGW (Nguyen
et al., 2024b)). Training follows the setup in CONAN-
FGW (Nguyen et al., 2024b).

For the MARCEL benchmark (Zhu et al., 2024a), we
compare FACET against 2D models (e.g., GIN (Xu
et al., 2019), GIN+VN (Hu et al., 2020a), ChemProp (Yang
et al., 2019b), GraphGPS (Rampášek et al., 2022)),
3D models (e.g., SchNet (Schütt et al., 2017),
DimeNet++ (Klicpera et al., 2020), GemNet (Gasteiger
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Table 1. Comparison of molecular property regression performance on the MoleculeNet
benchmark (MSE ↓). The results of competing methods are adapted from (Nguyen et al.,
2024b). FACET uses a SchNet backbone.

Model Lipo ESOL FreeSolv BACE

2D-GAT (Veličković et al., 2018) 1.387 ± 0.206 2.288 ± 0.017 8.564 ± 1.345 1.844 ± 0.33
D-MPNN (Yang et al., 2019a) 0.534 ± 0.022 0.923 ± 0.045 4.213 ± 0.068 0.723 ± 0.021
Attentive FP (Xiong et al., 2019) 0.520 ± 0.001 0.771 ± 0.026 4.197 ± 0.193 -
PretrainGNN (Hu et al., 2020b) 0.545 ± 0.003 1.210 ± 0.005 6.392 ± 0.003 -
GROVER large (Rong et al., 2020) 0.676 ± 0.012 0.798 ± 0.018 5.162 ± 0.047 -
ChemBERTa-2* (Ahmad et al., 2022) 0.639 ± 0.006 0.795 ± 0.033 - 1.858 ± 0.029
ChemRL-GEM (Fang et al., 2022) 0.486 ± 0.008 0.706 ± 0.061 3.924 ± 0.436 -
MolFormer (Ross et al., 2022) 0.492 ± 0.012 0.766 ± 0.026 5.485 ± 0.045 1.091 ± 0.021
ConfNet (Liu et al., 2021) 1.360 ± 0.038 2.115 ± 0.484 - 1.329 ± 0.042
UniMol (Zhou et al., 2023) 0.374 ± 0.012 0.741 ± 0.014 2.867 ± 0.186 -
SchNet-scalar (Schütt et al., 2017) 0.704 ± 0.032 0.672 ± 0.027 1.608 ± 0.158 0.723 ± 0.100
SchNet-emb (Schütt et al., 2017) 0.589 ± 0.022 0.635 ± 0.057 1.587 ± 0.136 0.692 ± 0.028
ChemProp3D (Axelrod & Gómez-Bombarelli, 2023) 0.602 ± 0.035 0.681 ± 0.023 2.014 ± 0.182 0.815 ± 0.170
CONAN (Nguyen et al., 2024b) 0.556 ± 0.013 0.571 ± 0.019 1.496 ± 0.158 0.635 ± 0.051
CONAN-FGW (Nguyen et al., 2024b) 0.422 ± 0.016 0.529 ± 0.022 1.068 ± 0.083 0.549 ± 0.016

FACET 0.424 ± 0.009 0.516 ± 0.044 0.967 ± 0.082 0.495 ± 0.115

Table 2. RingsPaths decomposition on
BACE, splitting molecules into rings,
paths, and linkers. This reflects molecu-
lar topology and improves interpretability
and generalization.

et al., 2021), PaiNN (Schütt et al., 2021a), ClofNet (Du
et al., 2022), LEFTNet (Du et al., 2023)), and ensemble
strategies such as DeepSets-based ensemble (Zaheer
et al., 2017), self-attention (Vaswani et al., 2017), etc. All
methods are evaluated under the same settings as described
in the MARCEL benchmark.

5.4.1. RESULTS

MoleculeNet. FACET achieves state-of-the-art results on
ESOL, FreeSolv, and BACE, reporting the lowest MSE
scores across all tasks. Its consistent outperformance
of CONAN-FGW underscores the value of incorporating
fragment-level substructures into geometry-aware attention,
which enhances the model’s ability to capture localized
chemical contexts and improves molecular property predic-
tion.

MARCEL. FACET also demonstrates strong performance
on the MARCEL benchmark, improving results across both
SchNet and GemNet backbones. By combining structure-
aware aggregation with hierarchical fragment information,
FACET remains robust even at scale - unlike CONAN-FGW,
which struggles with MARCEL’s larger dataset. Together,
these results highlight FACET’s effectiveness and scalability
across diverse molecular modeling tasks.

5.5. Ablation study
In this section, we analyze the key components of FACET
through ablation studies. Specifically, we evaluate the im-
pact of: (i) removing fragment structures from both the
2D MPNN and the self-attention mechanism in the graph
transformer (w/o Frag); (ii) using fragments only in the
2D MPNN but not in the graph transformer (w/o Frag
in Trans.); and (iii) omitting the trainable adaptor (w/o
Adap.) that aligns 3D conformer features with the graph
transformer, which can lead to performance degradation
due to domain shift during training. As shown in Table 5,

Table 4. Comparison of molecular property regression perfor-
mance on the MARCEL benchmark (MAE ↓). The results of
competing methods are adapted from (Zhu et al., 2024a).

Category Model Drugs-75K Kraken
IP EA χ B5 L BurB5 BurL

2D models

GIN (Xu et al., 2019) 0.4354 0.4169 0.2260 0.3128 0.4003 0.1719 0.1200
GIN+VN (Hu et al., 2020a) 0.4361 0.4169 0.2267 0.3567 0.4344 0.2422 0.1741
ChemProp (Yang et al., 2019b) 0.4595 0.4417 0.2441 0.4850 0.5452 0.3002 0.1948
GraphGPS (Rampášek et al., 2022) 0.4351 0.4085 0.2212 0.3450 0.4363 0.2066 0.1500

3D models

SchNet (Schütt et al., 2017) 0.4394 0.4207 0.2243 0.3293 0.5458 0.2295 0.1861
DimeNet++ (Klicpera et al., 2020) 0.4441 0.4233 0.2436 0.3510 0.4174 0.2097 0.1526
GemNet (Gasteiger et al., 2021) 0.4069 0.3922 0.1970 0.2789 0.3754 0.1782 0.1635
PaiNN (Schütt et al., 2021a) 0.4505 0.4495 0.2324 0.3443 0.4471 0.2395 0.1673
ClofNet (Du et al., 2022) 0.4393 0.4251 0.2378 0.4873 0.6417 0.2884 0.2529
LEFTNet (Du et al., 2023) 0.4174 0.3964 0.2083 0.3072 0.4493 0.2176 0.1486

Ensemble
Strategy with

DeepSets

SchNet (Schütt et al., 2017) 0.4452 0.4232 0.2243 0.2704 0.4322 0.2024 0.1443
DimeNet++ (Klicpera et al., 2020) 0.4126 0.3944 0.2267 0.2630 0.3468 0.1783 0.1185
GemNet (Gasteiger et al., 2021) 0.4066 0.3910 0.2027 0.2313 0.3386 0.1589 0.0947
PaiNN (Schütt et al., 2021a) 0.4466 0.4269 0.2294 0.2225 0.3619 0.1693 0.1324
ClofNet (Du et al., 2022) 0.4280 0.4033 0.2199 0.3228 0.4485 0.2178 0.1548
LEFTNet (Du et al., 2023) 0.4149 0.3953 0.2069 0.2644 0.3643 0.2017 0.1386

FACET SchNet (Schütt et al., 2017) 0.4235 0.3971 0.2155 0.2508 0.3982 0.1803 0.1245
GemNet (Gasteiger et al., 2021) 0.3891 0.3852 0.1970 0.2225 0.3402 0.1503 0.0952

the absence of (i) significantly reduces performance, mak-
ing FACET comparable to CONAN-FGW but with better
scalability. Incorporating fragments into both components
(ii) provides further gains, while (iii) proves essential for
mitigating the domain shift introduced by changes in the 3D
MPNN during training.

Table 5. FACET ablation study.

Settings FACET w/o Frag. w/o Frag. in Trans. w/o Adap.

ESOL 0.516 0.531 0.525 0.546
FreeSolv 0.967 1.072 0.973 1.085

6. Conclusion
We present the FACET, a scalable method that integrates
3D conformer features with fragment-level 2D graph infor-
mation. Using a trainable attention mechanism, it dynami-
cally fuses 2D and 3D representations, outperforming FGW-
based baselines across all MoleculeNet tasks. It also scales
to 75,000 molecules and large conformer ensembles in the
MARCEL benchmark, achieving state-of-the-art results in
property and reaction prediction with efficient runtimes.
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and Günnemann, S. Expressivity and generalization:
Fragment-biases for molecular gnns. International Con-
ference on Machine Learning, 2024.

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Ge-
niesse, C., Pappu, A. S., Leswing, K., and Pande, V.
MoleculeNet: A benchmark for molecular machine learn-
ing. Chemical Science, pp. 513–530, 2018.

Xiong, Z., Wang, D., Liu, X., Zhong, F., Wan, X., Li, X.,
Li, Z., Luo, X., Chen, K., Jiang, H., et al. Pushing the
boundaries of molecular representation for drug discovery
with the graph attention mechanism. Journal of medicinal
chemistry, 63(16):8749–8760, 2019.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-i.,
and Jegelka, S. Representation learning on graphs with
jumping knowledge networks. In Dy, J. and Krause, A.
(eds.), Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pp. 5453–5462. PMLR, 10–15
Jul 2018.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? International Conference on
Learning Representations, 2019.

Yang, K., Swanson, K., Jin, W., Coley, C., Eiden, P., Gao,
H., Guzman-Perez, A., Hopper, T., Kelley, B., Mathea,
M., Palmer, A., Settels, V., Jaakkola, T., Jensen, K., and
Barzilay, R. Analyzing learned molecular representations
for property prediction. Journal of Chemical Information
and Modeling, 59(8):3370–3388, July 2019a. ISSN 1549-
960X. doi: 10.1021/acs.jcim.9b00237.

Yang, K., Swanson, K., Jin, W., Coley, C., Eiden, P., Gao,
H., Guzman-Perez, A., Hopper, T., Kelley, B., Mathea,
M., et al. Analyzing learned molecular representations
for property prediction. Journal of chemical information
and modeling, 59(8):3370–3388, 2019b.

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen,
Y., and Liu, T.-Y. Do transformers really perform badly
for graph representation? Advances in neural information
processing systems, 34:28877–28888, 2021.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. Deep sets. Ad-
vances in neural information processing systems, 30,
2017.

Zhang, J., Zhang, H., Xia, C., and Sun, L. Graph-bert: Only
attention is needed for learning graph representations.
arXiv preprint arXiv:2001.05140, 2020.

Zhang, Z., Liu, Q., Wang, H., Lu, C., and Lee, C.-K. Motif-
based graph self-supervised learning for molecular prop-
erty prediction. Advances in Neural Information Process-
ing Systems, 34:15870–15882, 2021.

13



A Unified Graph Transformer for Molecular Representation from Conformer Ensembles

Zhou, G., Gao, Z., Ding, Q., Zheng, H., Xu, H., Wei, Z.,
Zhang, L., and Ke, G. Uni-mol: A universal 3d molecu-
lar representation learning framework. In The Eleventh
International Conference on Learning Representations,
2023.

Zhu, Y., Hwang, J., Adams, K., Liu, Z., Nan, B., Stenfors,
B., Du, Y., Chauhan, J., Wiest, O., Isayev, O., Coley,
C. W., Sun, Y., and Wang, W. Learning over molecular
conformer ensembles: Datasets and benchmarks, 2023.

Zhu, Y., Hwang, J., Adams, K., Liu, Z., Nan, B., Stenfors,
B., Du, Y., Chauhan, J., Wiest, O., Isayev, O., et al. Learn-
ing over molecular conformer ensembles: Datasets and
benchmarks. In International Conference on Learning
Representations, 2024a.

Zhu, Y., Hwang, J., Adams, K., Liu, Z., Nan, B., Sten-
fors, B., Du, Y., Chauhan, J., Wiest, O., Isayev, O., et al.
Learning over molecular conformer ensembles: Datasets
and benchmarks. International Conference on Learning
Representations (ICLR), 2024b.

14



Supplementary Materials for
“From Fragments to Geometry: A Unified Graph Transformer for Molecular

Representation from Conformer Ensembles”

Contents
A Limitations of FACET 15

A.1 FACET Operates on a Predefined Set of 3D Conformers. . . . . . . . . . . . . . . . . . . . . . . . . . . 15
A.2 Limitations in Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

B Implementation Details 16

C Additional Analysis of FACET’s Scalability and Performance with More 3D Conformers 17
C.1 Inference Time when Increasing the Number of 3D Conformers for Each Molecule. . . . . . . . . . . . . . 17
C.2 Average Training Time per Epoch as a Function of Dataset Size. . . . . . . . . . . . . . . . . . . . . . . . 17

D Proof of Theorem 4.1 17
D.1 Non-Euclidean Nature of Pairwise FGW Distance Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 19
D.2 Lower Bounds on Embedding non-Euclidean FGW Distances . . . . . . . . . . . . . . . . . . . . . . . . 19
D.3 Upper Bounds on Embedding of Pairwise Empirical FGW Barycenter Distances . . . . . . . . . . . . . . . 21
D.4 Proof of Lemma D.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

A. Limitations of FACET
A.1. FACET Operates on a Predefined Set of 3D Conformers.

Our method enables efficient geometry-aware aggregation without requiring expensive alignment procedures at inference
time. While FACET demonstrates improved performance even with a small subset of conformers, the quality and representa-
tiveness of this subset can still influence downstream predictions. In particular, if the selected conformers are heavily biased
or fail to capture key structural variations, some aspects of molecular flexibility may be underrepresented. Addressing this
challenge through better conformer sampling strategies or task-aware selection mechanisms could further enhance model
robustness, especially for highly flexible molecules.

Future direction: A promising extension would be to develop end-to-end models that can learn to generate conformers
dynamically during training, using gradient feedback from downstream prediction losses. Such a differentiable conformer
generation module could enable task-aware structural modeling, ensuring that the generated conformers are optimized not
just for physical plausibility, but also for relevance to the predictive task at hand.

A.2. Limitations in Scope

A.2.1. FOCUSING ON SMALL MOLECULES

FACET has primarily been evaluated on standard molecular property prediction benchmarks such as those in MoleculeNet,
which consist mostly of small, drug-like molecules. While this setup is well-suited for many pharmacological applications,
it limits the assessment of FACET’s generalizability to more complex molecular systems. For example, biomacromolecules
(e.g., peptides, proteins, nucleic acids) exhibit high flexibility, long-range dependencies, and hierarchical organization
that are not present in small molecules. Polymers and materials often involve much larger structures without well-
defined conformers, challenging FACET’s reliance on discrete 3D inputs. Additionally, FACET currently models only
single-molecule properties and has not been extended to multi-molecular interactions, such as protein-ligand binding.

Future direction: To broaden FACET’s applicability, several promising future directions can be explored. First, incor-
porating efficient attention to capture both local fragment-level information and long-range structural dependencies is
essential for handling large biomolecules. Second, adapting FACET to support flexible input formats, such as voxel grids or
material-specific graphs, would allow it to process polymers and crystalline materials that lack stable conformers. Third,
extending FACET to jointly model molecular interactions through cross-graph attention or co-embedding mechanisms could
open applications in drug docking and molecular complex prediction. Finally, applying and evaluating FACET on broader
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datasets, such as PDBbind (Liu et al., 2015), PolyInfo (Otsuka et al., 2011), or CoRE MOF 2019 (Chung et al., 2019), would
provide a more comprehensive understanding of its strengths and limitations across molecular domains.

A.2.2. LIMITATION IN GENERATIVE CAPABILITIES.

While FACET demonstrates strong performance on discriminative tasks such as molecular property prediction across
MoleculeNet and MARCEL benchmarks, its current formulation and evaluation are limited to regression settings where the
goal is to predict properties from given molecular structures. As a result, the model’s potential for generative applications
such as de novo molecule generation, scaffold decoration, or fragment-based drug design remains unexplored. This limits
our understanding of how well FACET can serve as a foundational model for inverse molecular problems, where structural
creativity and diversity are critical. Future work should explore extensions of FACET with generative decoding mechanisms,
such as auto-regressive sampling (Cheng et al., 2025), diffusion models (Tong et al., 2025), or variational objectives, to fully
leverage its design for structure-conditioned generation.

B. Implementation Details
Our training pipeline includes three stages: In the first stage, we train only the 2D and 3D MPNNs to learn corresponding
features from 2D molecular graph and 3D conformers. The features in this stage also serve as a dataset for approximating
Graph Transformer to the FGW distance. In the next stage, the Graph Transformer is trained separately to simulate the
costly computation of FGW distance between two conformers using learned features from stage 1. In the last stage, Graph
Transformer is integrated in a single end-to-end training with 2D and 3D MPNNs. At this stage, only 2D and 3D MPNNs
are trained. As a result of changing MPNNs during the last stage, a shift in the distribution of the Graph Transformer input
might occur. We solve this problem by adding an adaptor layer using an MLP on both 3D and 2D features before feeding
them to the GraphTransformer. For all experiments on the MoleculeNet and MARCEL benchmarks, we use the same
number of conformers as specified in their original settings.

In all stages, we use Adam as our optimizer. We train our model on an 8 V100-GPUs cluster.

Stage 1. Learning 2D and 3D features. For each molecule, we define by H2d−3d = W̃2DH2D + W̃3DH3D, we then
train for 150 epochs and set the learning rate to 1e−3. to optimize target property tasks Lpred = ||ŷ2d−3d − ỹ||22 where ỹ be
the ground-truth value and ŷ be our predicted value defined by:

ŷ2d−3d = WG

(
1

K

K∑
k=1

H2d−3d[k]

)
+ bG , (10)

with WG and bG are learnable parameters.

Stage 2. Training Graph Transformer to approximate FGW distance. The Graph Transformer is trained separately in
the second stage to approximate the FGW distance by Euclidean embedding space. For the Graph Transformer architecture,
we employ the same setting as Graphormer from (Ying et al., 2021). Specifically, a number of attention layers, a number of
attention heads, and the hidden dimension of the transformer are set to 12, 8, and 64, respectively, which makes the total
number of parameters of the Graph Transformer 372k. In our attention, we use the shortest-path distance (SPD) between
a pair of nodes. Following practical implementation in (Ying et al., 2021), we pre-compute SPD distance for each 3D
molecule graph and load these values during training and inference. We set a learning rate of 1e−5 and train for 1000 epochs
with the following loss function:

Lenc =
∑
ij

[
||Tθ(Hi)− Tθ(Hj)||22 − FGWp,α(G(Si),G(Sj))

]
. (11)

Stage 3. Training Fragment-aware Graph Transformer. In the final stage, we freeze the trained GraphTransformer T θ(·)
and use it to compute aggregated features from 3D conformer embeddings generated by the 3D-MPNN. To accommodate
potential distribution shifts, we add lightweight FFN adaptor layers on top of both the 2D- and 3D-MPNNs used in T θ(·),
while continuing to update the MPNNs during training. The full model is trained for 300 epochs with a reduced learning
rate to optimize the training loss Lpred = ||ŷ − ỹ||22 where

ŷ = WG

(
1

K

K∑
k=1

Hcomb[k]

)
+ bG . (12)
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C. Additional Analysis of FACET’s Scalability and Performance with More 3D Conformers
In this section, we further analyze FACET’s scalability on the following two factors:

C.1. Inference Time when Increasing the Number of 3D Conformers for Each Molecule.

We compare FACET against two versions of CONAN-FGW in running time to extract structure-aware embedding aggregation
with different input of 3D conformers. We use two variations of CONAN-FGW, including a single GPU version and another
relaxed solver that permits running Sinkhorn iterations on GPUs by matrix multiplication, thus supporting distributed
multi-GPUs acceleration. The experiments are conducted on a single GPU using a batch size of 32 molecules, each with
different conformers ranging from 3, 5, 10, 15, and 20, and another experiment with four GPUs on the same batch size, i.e.,
8 molecules per GPU.

Figure 5 indicates our observations across four datasets of MoleculeNet benchmark, where we report the required time to
extract embedding aggregations for all molecules in the test set. We see that (i) FACET demonstrates excellent scalability
where its runtime remains nearly constant regardless of the number of conformers, both in single-GPU and multi-GPU
settings. In contrast, ConAN-FGW shows poor scalability where runtime increases steeply with the number of conformers.
While the multi-GPU usage improves runtime over single-GPU, the growth trend remains significant, with runtimes still
exceeding 30 seconds at 20 conformers (e.g., with ESOL dataset).

Secondly, the nearly identical runtime of FACET across single- and multi-GPU settings, as shown in the plot, can be
attributed to its computational efficiency and the relatively small workload in this experiment. In such cases, the overhead
introduced by multi-GPU parallelization - such as inter-GPU communication and data synchronization - can outweigh its
potential speedup benefits. Therefore, we argue that multi-GPU acceleration for FACET becomes advantageous only under
substantially larger workloads, such as batch processing of thousands to millions of molecules or handling complex input
representations that exceed the memory capacity of a single GPU.

C.2. Average Training Time per Epoch as a Function of Dataset Size.

We analyze the scalability of FACET with respect to the number of training molecules. To this end, we report the average
training time per epoch across four datasets from the MoleculeNet benchmark. Figure 6 compares the training time of
FACET and ConAN-FGW on a single GPU, using a batch size of 256 and 5 conformers per molecule. As shown in the
figure, FACET achieves a 2.28× to 3.17× speedup over ConAN-FGW. Notably, this speedup is roughly proportional to the
number of training molecules in each dataset, as reported in Table 3.

D. Proof of Theorem 4.1
Recall that we aim to establish the following novel theoretical bounds: Let D denote the pairwise FGWp,α distance
matrix, and let {λk,vk}Kk=1 represent the eigendecomposition of the associated criterion matrix F = −CDC, where
C = IK − 1

K1K1⊤
K is the centering matrix. The optimal stress value, denoted by S∗, is bounded as follows: L ≤ S∗ ≤ U ,

where

L :=
∑

k:λk<0

λ2
k, U :=

∑
kl

(∆gk +∆gl)
2 + L+ C, ∆gk =

1

2

∑
l:λl<0

λl · v2
kl, ∀k ∈ [K].

Here, vkl denotes the l-th component of the k-th eigenvector vk of F , and C quantifies the approximation error between the
empirical barycenter in the Euclidean embedding space and its counterpart in the original space of undirected attributed
graphs. This is equivalent to that given e := {ek}k∈[K] ∈ Rd×K , our objective is to derive lower and upper bounds for the
following cumulative stress:

S∗ = min
e∈Rd×K

S(e), S(e) = S1(e) + S2(e), (13)

S∗1 := min
e∈Rd×K

S1(e), S1(e) :=
∑

k,l∈[K]

(
∥ek − el∥22 −Dkl

)2
, (14)

S∗2 := min
e∈Rd×K

S2(e), S2(e) :=
∑
l∈[K]

(
∥eK − el∥22 −DK,l

)2
. (15)

To this end, we begin by specifying and formally defining the following important concepts in Appendix D.1.
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Figure 5. Runtime comparison of structure-aware embedding aggregation between ConAN-FGW (Nguyen et al., 2024b) and the proposed
FACET on four datasets from the MoleculeNet benchmark. Results are shown for both single-GPU and 4-GPU configurations. Reported
runtimes represent the total time required to extract structural embeddings for all molecules in the test set of each dataset.

(a) ESOL (b) FreeSolv

(c) Lipo (d) BACE

Figure 6. Comparison of the one-epoch training time of CONAN-FGW (Nguyen et al., 2024b) and the proposed FACET on four datasets
from the MoleculeNet benchmark.
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D.1. Non-Euclidean Nature of Pairwise FGW Distance Matrix

Definition D.1 (Euclidean Distance Matrix). A K ×K distance matrix D is said to be Euclidean if there exists a set of
points e = {ek}Kk=1 in some Euclidean space Rd such that

∀k, l ∈ [K], Dkl = ∥ek − el∥22.
The space of all Euclidean distance matrices (EDM) is denoted by E .

Fact 1 (Conditions for Euclidean Distance Matrix, see, e.g., (Gower, 1985)). A matrix D is an EDM if and only if it
satisfies the following three conditions:

(i) Non-negativity: Dkl ≥ 0 for all k, l ∈ [K],

(ii) Hollow diagonal: Dkk = 0 for all k ∈ [K],

(iii) Positive semidefiniteness: the associated double-centered matrix F := −CDC is positive semidefinite (PSD), where
C = IK − 1

K1K1⊤
K is the centering matrix, and 1K denotes the K-dimensional vector of ones.

Recall that the pairwise FGW distance matrix D for a collection of K distributions is defined entry-wise by Dkl :=
FGWp,α(G(Sk),G(Sl)) for all k, l ∈ [K], as introduced in Section 3. The following result establishes that this matrix does
not correspond to a Euclidean distance matrix:

Lemma D.2 (Non-Euclidean Nature of Pairwise FGW Distance Matrix). Consider the case where df = ∥ · ∥2. Then the
FGW distance matrix D, whose entries are given by

FGWp,α(G1,G2) := min
π∈Π(ω1,ω2)

⟨(1− α)M + αL(A1,A2)⊗ π,π⟩ ,

with α ∈ [0, 1], does not define a Euclidean distance matrix.

As established in Lemma D.2, which is proved in Appendix D.4, the distance FGWp,α is not a Euclidean distance. Therefore,
we are interested in quantifying how accurately non-Euclidean distance matrices can be approximated by pairwise distances
between learned embeddings. To this end, we analyze the lower and upper bound of the set S in Appendices D.2 and D.3,
respectively.

D.2. Lower Bounds on Embedding non-Euclidean FGW Distances

We would like to find the lower bound of S. We note that the original formulation is non-convex, making it analytically
intractable. Nonetheless, by reparameterizing the objective as a function of the pairwise squared distances D̂kl := ∥ek−el∥22
and D̂Kl := ∥eK − el∥22 induced by the embedding, and by incorporating the necessary conditions to ensure that D̂
corresponds to a valid Euclidean distance matrix, the reformulated problem becomes convex for S1. Note that we can prove
that S has a lower bound at L̂∗, where L̂∗ is a minimizer of S1, that is,

S∗ = min
D̂∈E

[
S1(D̂) + S2(D̂)

]
, S2(D̂) :=

∑
l∈[K]

(
D̂Kl −DK,l

)2
, (16)

S1(L̂∗) = min
D̂∈E
S1(D̂), S1(D̂) :=

∑
k,l∈[K]

(
D̂kl −Dkl

)2
. (17)

Indeed, given the previous reformulation of S , we can establish the following lower bound via Proposition D.3. Notably, to
simplify the problem, in Proposition D.3, we relax the EDM constraint by considering EL, containing E by keeping only the
PSD property from the EDM definition in Fact 1. We will reintroduce the missing constraints in EL and use the solution for
the simplified problem to construct an upper bound in Appendix D.3.

Proposition D.3 (Error Lower Bound of S∗). The lower bound of S is provided as follows:

S∗ = min
D̂∈E

[
S1(D̂) + S2(D̂)

]
≥ S1(L̂∗) + S2(L̂∗) ≥ L1 + L2 =: L, (18)

S1(L̂∗) = min
D̂∈EL

S1(D̂) ≥
∑

k:λk<0

λ2
k =: L1, (19)

S2(L̂∗) = min
D̂∈EL

S2(D̂) = 0 =: L2. (20)

Here EL contains E by keeping only the PSD property from the EDM definition in Fact 1.
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Proof of Proposition D.3. Note that if S1 is minimized at L̂∗, that is,

S1(L̂∗) = min
D̂∈E
S1(D̂), S1(D̂) :=

∑
k,l∈[K]

(
D̂kl −Dkl

)2
. (21)

We then can find the lower bound of S∗ = minD̂∈E

[
S1(D̂) + S2(D̂)

]
via the minimizer L̂∗.

Using the definition of Frobenius norm and EL, we can obtain:
S1(L̂∗) := min

D̂∈E
S1(D̂) ≥ min

D̂∈EL

S1(D̂), S1(D̂) = ∥D̂ −D∥2F ,

We then obtain the following decomposition:
∥D̂ −D∥2F = ∥A∥2F + ∥B∥2F , A := CD̂C −CDC,

B :=
1

K
OD̂C +

1

K
CD̂O +

1

K2
OD̂O −

(
1

K
ODC +

1

K
CDO +

1

K2
ODO

)
,

where C = IK − 1
KO is the centering matrix and O = 1K1⊤

K is the all-ones matrix. Indeed, using the definition of the
centering matrix C = IK − 1

KO, we have IK = C + 1
KO.

∥D̂ −D∥2F = ∥IKD̂IK − IKDIK∥2F = ∥A+B∥2F = ∥A∥2F + ∥B∥2F + 2Tr(AB) = ∥A∥2F + ∥B∥2F ,
Here we used the fact that the matrix product is invariant under cyclic permutation:

Tr(AB) = Tr

(
C(D̂ −D)C(D̂ −D)

1

K
O

)
= Tr

(
1

K
OC(D̂ −D)C(D̂ −D)

)
= 0,

and
1

K
OC =

1

K
O

(
IK −

1

K
O

)
=

1

K
O − 1

K2
OO = 0.

Under only the PSD constraint, the optimal solution L̂∗ that minimizes S1(D̂) can be decomposed as:

L̂∗ = L̂∗
A + L̂∗

B,

where L̂∗
A and L̂∗

B respectively minimize the terms ∥A∥2F and ∥B∥2F independently.

In particular, using the definition of the centering matrix C = IK − 1
KO, the entries of L̂∗

B are given by:

L̂∗
B,kl :=

[
1

K
ODC +

1

K
CDO +

1

K2
ODO

]
kl

=

[
1

K
OD +

1

K
(OD)⊤ − 1

K2
ODO

]
kl

= Dk +Dl −D,

where Dk denotes the mean of the k-th row (or column) of D, and D is the global mean of all elements in D. Therefore,
the rows/columns mean of L̂∗

B equal those of D itself, and hence

L̂∗
B = arg min

D̂∈EL

∥B∥2F , min
D̂∈EL

∥B∥2F = 0.

Therefore,

min
D̂∈EL

S2(D̂) = min
D̂∈EL

∑
l∈[K]

(
D̂Kl −DK,l

)2
= 0.

Here we used the fact that the matrix D is given by Dkl := FGWp,α(G(Sk),G(Sl)) for all k, l ∈ [K] and the empirical
FGW barycenter is given by

GK ∈ arg min
G∈Pp(Ω)

1

K

K∑
l=1

FGWp
p,α(G,G(Sl)) = arg min

G∈Pp(Ω)

1

K

K∑
l=1

FGWp,α(G,G(Sl)),

DK,l := FGWp,α(GK ,G(Sl)) = min
G∈Pp(Ω)

1

K

K∑
l=1

FGWp,α(G,G(Sl)) (=: column l-th means of D),

where Pp(Ω) denotes the space of attributed graphs with finite p-th order FGW distance. To approximate this barycenter in
embedding space, we require

∥eK − el∥22 ≈ FGWp,α(GK ,G(Sl)) := DK,l for all l ∈ [K],
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where eK = 1
K

∑K
k=1 ek is the mean embedding and ek := Tθ(Hk) is the learned representation.

Now we would like to find a local analytic solution L̂∗
A minimizing ∥A∥2F such that the global solution L̂∗ = L̂∗

A + L̂∗
B

minimizes both terms ∥A∥2F and ∥B∥2F simultaneously. That is,

min
D̂∈EL

∥A∥2F = min
D̂∈EL

∥C(L̂A + L̂B)C −CDC∥2F

= ∥C(L̂∗
A + L̂∗

B)C −CDC∥2F = ∥CL̂∗
AC −CDC∥2F .

Here we used the fact that by definition of L̂∗
B , it holds that CL̂∗

BC = 0. Hence, the optimization becomes:

min
D̂∈EL

∥CL̂AC −CDC∥2F .

This is in fact the problem of computing the nearest PSD approximation CL̂AC to a symmetric matrix CDC. Using the
result from (Higham, 1988), we find the analytic solution as follows:

L̂∗
A = −

∑
k:λk>0

λkvkv
⊤
k . (22)

Here {λk,vk}k∈[K] are the eigenvalues and eigenvectors of F = −CDC. Because CDC has rows/columns means 0, the
ones vector 1K is an eigenvector of CDC with eigenvalue 0. This leads to 1K is also in the null space L̂∗

A and:

L̂∗
A = CL̂∗

AC,
1

K
OL̂∗

A =
1

K

(
OL̂∗

A

)⊤
= 0.

Therefore,
∥L̂∗ −D∥2F = ∥L̂∗

A + L̂∗
B −D∥2F =

∑
k:λk<0

λ2
k.

Combining all together, Proposition D.3 is derived as follows:

S∗ ≥ min
D̂∈EL

∥A∥2F + min
D̂∈EL

∥B∥2F + min
D̂∈EL

S2(D̂) =
∑

k:λk<0

λ2
k + 0 + 0 =

∑
k:λk<0

λ2
k =: L.

D.3. Upper Bounds on Embedding of Pairwise Empirical FGW Barycenter Distances

As discussed in Appendix D.2, the lower bound stated in Proposition D.3 is derived by simplifying the problem and relaxing
the EDM constraint. Specifically, this relaxation involves considering the set EL, which contains E but retains only the PSD
requirement from the EDM characterization given in Fact 1. In Proposition D.4, we reintroduce the missing constraints
excluded in EL and leverage the closed-form solution obtained from the relaxed problem to construct an upper bound under
the original EDM constraint set E .
Proposition D.4 (Error Upper Bound of S∗). There exists a matrix Û∗ ∈ E such that the following upper bounds hold:

S∗ = min
D̂∈E

[
S1(D̂) + S2(D̂)

]
≤ S1(Û∗) + S2(Û∗) ≤ U1 + U2 =: U , (23)

S1(Û∗) = min
D̂∈E
S1(D̂) ≤ U1 :=

∑
k:λk<0

λ2
k +

∑
kl

(∆pk +∆pl)
2,

∆pk =
1

2

∑
l:λl<0

λl · v2
kl, ∀k ∈ [K] (24)

S2(Û∗) = min
D̂∈E
S2(D̂) ≤

∑
l

(∆pl)
2
=: U2, (25)

where the aggregated error term is defined as:

∆pl :=
1

2K

K∑
k=1

∑
l:λl<0

λl · v2
kl.

We aim to exploit the information derived from the truncation of the negative eigenspace of the matrix CDC, specifically
the matrix introduced in Equation (22), defined as:

L̂∗
A = −

∑
k:λk>0

λkvkv
⊤
k ,
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where {λk,vk}k∈[K] denote the eigenvalues and corresponding eigenvectors of the matrix F = −CDC.

Recall that the entries of L̂∗
B are given by:

L̂∗
B,kl =

[
1

K
OD +

1

K
(OD)⊤ − 1

K2
ODO

]
kl

= Dk +Dl −D.

As a consequence, the sum L̂∗
A+ L̂∗

B may not be strictly hollow or PSD when D is not an EDM. To address this, we seek to
construct a symmetric matrix P to be added to L̂∗

A, resulting in the matrix Û∗ := L̂∗
A + P , which is both hollow and PSD.

This adjustment is designed to avoid any additional penalty on the term ∥A∥2F , though it may introduce some approximation
errors in ∥B∥2F and in the quantity S2. These induced errors contribute to the upper bound U for the optimal score S∗.

We begin with the requirement that the matrix P does not contribute any additional penalty to the term ∥A∥2F . This can
be ensured by imposing the constraint CPC = 0. Under this condition, the matrix Û∗ remains a minimizer of ∥A∥2F , as
demonstrated below:

min
D̂∈EL

∥A∥2F = min
D̂∈EL

∥C(L̂A + L̂B)C −CDC∥2F

= ∥C(L̂∗
A + P + L̂∗

B)C −CDC∥2F
= ∥CL̂∗

AC −CDC∥2F ,
where the final equality holds due to the constraint CPC = 0.

This leads to the condition (CP )C = C(PC) = 0, implying that CP lies in the left null space of C, and PC lies in its
right null space. As a result, all rows of PC must be constant, and this expression can be written as:

1Kc⊤ = PC = P

(
IK −

1

K
O

)
or P = 1Kc⊤ + P

1

K
O,

where c is a column vector to be defined subsequently. Here, we have used the fact that C is the centering matrix defined by
C = IK − 1

KO.

Multiplying both sides on the left by 1
KO yields:

1

K
OP =

1

K
O1Kc⊤ +

1

K
O

(
1

K
PO

)
= 1Kc⊤ +

1

K2
OPO.

This leads to

c⊤ =
1

K
1⊤
KP − 1

K2
1⊤
KOPO.

Indeed, via the definition of O = 1K1⊤
K , we can verify this as follows:

1Kc⊤ +
1

K2
OPO = 1K

(
1

K
1⊤
KP − 1

K2
1⊤
KOPO

)
+

1

K2
OPO

=
1

K
1K1⊤

KP − 1

K2
1K1⊤

KOPO +
1

K2
OPO

=
1

K
1K1⊤

KP − 1

K2
OOPO +

1

K2
OPO

=
1

K
OP .

Hence,

P = 1K

(
1

K
1⊤
KP − 1

K2
1⊤
KOPO

)
+ P

1

K
O

=
1

K
1K(1⊤

KP ) +
1

K
(P1K)1⊤

K −
1

K2
1K1⊤

KOPO

Since P1K is a column vector, to satisfy this constraint, P must be of the form:

P = 1K
p⊤

K
+

p

K
1⊤
K − p̂

1K1⊤
K

K
,

where p ∈ RK is a vector of free parameters, and p̂ denotes its average. This construction implies that P has only K
degrees of freedom. However, to ensure that L̂∗

A + P has zero diagonal (i.e., the resulting matrix is hollow), the diagonal
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entries of P must satisfy the following K linear constraints:

pk −
1

2
p̂ = −1

2
[L̂∗

A]kk, ∀k ∈ [K].

Solving this linear system yields:

pk =
1

2

( ∑
l:λl>0

λl · v2
kl +

1

K
p̂

)
,

p̂ =
1

K

K∑
k=1

pk =
1

K

K∑
k=1

∑
l:λl>0

λl · v2
kl,

where we have used the fact that L̂∗
A = −

∑
l:λl>0 λlvlv

⊤
l , and hence its diagonal entries are given by [L̂∗

A]kk =

−
∑

l:λl>0 λl · v2
kl.

Consequently, the resulting matrix P can be expressed element-wise as:

Pk,l = −
[L̂∗

A]kk + [L̂∗
A]ll

2
≥ 0,

where the inequality follows from the fact that L̂∗
A is negative semi-definite.

In summary, the matrix Û∗ := L̂∗
A + P satisfies all three constraints specified in Definition D.1.

Although Û∗ preserves the value of ∥A∥2F , it differs from L̂∗
A and introduces approximation errors in the ∥B∥2F term and

the S2 term. Note that the sum of the untruncated version of CDC and the matrix
1

K
ODC +

1

K
CDO +

1

K2
ODO

is equal to D and remains hollow. Recall the decomposition:
∥D̂ −D∥2F = ∥A∥2F + ∥B∥2F , A := CD̂C −CDC,

B :=
1

K
OD̂C +

1

K
CD̂O +

1

K2
OD̂O

−
(

1

K
ODC +

1

K
CDO +

1

K2
ODO

)
,

where C = IK − 1
KO is the centering matrix and O = 1K1⊤

K is the all-ones matrix.

The matrix
1

K
ODC +

1

K
CDO +

1

K2
ODO

can be written similarly to P by including the contributions from the negative eigenvalues, resulting in the matrix P̃ ,
parameterized by:

p̃k =
1

2

(∑
l

λl · v2
kl +

1

K
˜̂p) ,

˜̂p =
1

K

K∑
k=1

p̃k =
1

K

K∑
k=1

∑
l

λl · v2
kl.

Define the correction due to negative eigenvalues as:

∆pk :=
1

2

∑
l:λl<0

λl · v2
kl, ∀k ∈ [K].

The resulting error in the ∥B∥2F term is given by:

∥B∥2F = ∥P̃ − P ∥2F =
∑
k,l

(∆pk +∆pl)
2
.

Furthermore, the contribution to S2 is bounded as:

S2 = min
D̂∈E
S2(D̂) =

∑
l∈[K]

(
D̂K,l −DK,l

)2
≤
∑
l

(∆pl)
2
=: U2,
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where the aggregated error term is defined as:

∆pl :=
1

2K

K∑
k=1

∑
l:λl<0

λl · v2
kl.

D.4. Proof of Lemma D.2

The proof is proved via leveraging Proposition 8.2 from (Peyré et al., 2019), applied to the specific case α = 0, and relies on
the relationships among FGW, Wasserstein (W), and Gromov-Wasserstein (GW) distances.

The FGW cost FGWp,α(G1,G2) is defined via two components: the node feature cost matrix M [i, j] = df (H1[i],H2[j])
p,

and the structural discrepancy tensor L(A1,A2)[i, j, l,m] = |A1[i, j]−A2[l,m]|p.

Let G1 = (H1,A1,ω1) and G2 = (H2,A2,ω2) be two attributed graphs with N1 and N2 nodes, respectively. Their
associated probability measures are

µ1 =
∑
k

ω1kδ(x1k,a1k), µ2 =
∑
l

ω2lδ(x2l,a2l).

We define the marginals µH1 =
∑

k ωkδxk
and µA1 =

∑
k ωkδak

(and analogously for µH2 and µA2 ) as projections of µ1

and µ2 onto the feature and structural spaces, respectively.

Using these definitions, we introduce the following notation:

Jp(A1,A2,π) =
∑
ijkl

Lijkl(A1,A2)
pπijπkl, (26)

GWp(µH1 , µH2)
p = min

π∈Π(ω1,ω2)
Jp(A1,A2,π), (27)

Hp(M ,π) =
∑
kl

df (x1k,x2l)
pπkl, (28)

Wp(µA1
, µA2

)p = min
π∈Π(ω1,ω2)

Hp(M ,π). (29)

Let π ∈ Π(ω1,ω2) be any admissible coupling. If both µ1 and µ2 are defined over a common metric space (Ω,A, µ), then
the FGW distance is given by:

FGWp,α(G1,G2) := min
π∈Π(ω1,ω2)

⟨(1− α)M + αL(A1,A2)⊗ π,π⟩ . (30)

We now derive the following fundamental identity:

Ep,α (M ,A1,A2,π) :=
∑
ijkl

[(1− α)df (x1k,x2l)
p + α |A1(i, k)−A2(j, l)|p]πijπkl

= (1− α)Hp(M ,π) + αJp(A1,A2,π). (31)

Moreover, let πα denote the optimal coupling that minimizes the FGW objective Ep,α (M ,A1,A2, ·). Then the FGW
distance admits the following decomposition:

FGWp
p,α(µ1, µ2) = min

π∈Π(ω1,ω2)
Ep,α (M ,A1,A2,π) = Ep,α (M ,A1,A2,πα)

= (1− α)Hp(M ,πα) + αJp(A1,A2,πα)

≥ (1− α)Wp
p(µA1

, µA2
) + αGWp

p(µH1
, µH2

). (32)

This inequality follows from the optimality of the W and GW distances with respect to the cost functions Hp and Jp,
respectively, and highlights the interpolation nature of the FGW distance between these two metrics as governed by the
parameter α.

The generalized FGW cost Ep,α (M ,A1,A2,π) admits the following explicit formulation:
Ep,α (M ,A1,A2,π) = ⟨(1− α)Mp + αL(A1,A2)

p ⊗ π,π⟩

=
∑
i,j,k,l

[(1− α)df (x1k,x2l)
p + α |A1(i, k)−A2(j, l)|p]πijπkl.
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Based on the formulation above, we obtain the following upper bound on the FGW distance:
FGWp,α(G1, G2) ≤ ⟨(1− α)M + αL(A1,A2)⊗ π,π⟩

≤
∑
k,l

[
(1− α) df (x1k,x2l) + 2p−1αA[k, l]

]p
πkl, (33)

where the second inequality follows from the convexity of the function x 7→ xp for p ≥ 1 and an application of Minkowski-
type bounds on the structural term. Importantly, inequality in equation (33) holds for any admissible coupling π ∈
Π(ω1,ω2), and in particular, it remains valid when π = π, the optimal coupling associated with the Wasserstein distance
Wp(µ1, µ2) over the product metric space (Ω, d). Here, the effective distance d between structured nodes (x1,a1) and
(x2,a2) is defined as:

d((x1,a1), (x2,a2)) = (1− α) df (x1,x2) + 2p−1αA(a1,a2).

Combining this with the Wasserstein formulation in equation (29), we observe the following inequality:
FGWp,α(G1,G2) ≤Wp(µA1

, µA2
), and FGWp,α(G1,G2) = Wp(µA1

, µA2
) when α = 0. (34)
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