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Abstract

This paper proposes a latent space energy-based prior model for semi-supervised
learning. The model stands on a generator network that maps a latent vector to the
observed example. The energy term of the prior model couples the latent vector and
a symbolic one-hot vector, so that classification can be based on the latent vector
inferred from the observed example. In our learning method, the symbol-vector
coupling, the generator network and the inference network are learned jointly. Our
method is applicable to semi-supervised learning in various data domains such
as image, text, and tabular data. Our experiments demonstrate that our method
performs well on semi-supervised learning tasks.

1 Introduction

Generative modeling and likelihood-based learning is a principled framework for unsupervised
and semi-supervised learning. The energy-based model (EBM) [29], being a generative version
of a discriminator, is particularly convenient for semi-supervised learning. A notable recent paper
is Grathwohl et al. [13], which proposed the joint energy-based model (JEM) and applied it to
classification. In an extension [46], it was applied to semi-supervised learning. Earlier papers that
touch on the relationship between modern EBM and classifier parametrized by deep networks [28, 25]
include [6, 43, 19, 27].

Recently, Pang et al. [36] proposed to learn EBM in latent space, where the EBM serves as a prior
model for the latent vector of a generator model that maps the latent vector to the observed example.
Both the EBM prior and the generator network can be learned jointly by maximum likelihood or
its approximate or variational variants. The latent space EBM has been applied to image modeling,
text modeling, and more recently molecule generation [37]. See also the more recent developments
[2, 42].

Moving EBM from data space to latent space allows the EBM to stand on an already expressive
generator model, and the EBM prior can be considered a correction of the non-informative uniform
or isotropic Gaussian prior of the generator model. Due to the low dimensionality of the latent space,
the EBM can be parametrized by a very small network, and yet it can capture regularities and rules in
the data effectively (and implicitly).

In this paper, we move the formulation of JEM [13] to latent space, so that the latent space EBM prior
becomes an associative memory that couples the dense latent vector for generation and the one-hot
symbolic vector for classification. Given the inferred latent vector, the conditional distribution of the
one-hot vector is a regular softmax classifier based on the latent vector. We learn the symbol-vector
coupling, the generator network, and the inference network jointly. Our method is applicable to semi-
supervised learning in various data domains such as image, text, and tabular data. In experiments, our
method demonstrates either competitive or improved performance compared to previous methods.
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The symbol-vector coupling in the latent space is of independent interest in terms of the interaction
between symbolic reasoning and distributed representation. We also provide a general theoretical
framework in appendix for learning latent EBM in general, where our learning method is a special
case.

2 Model and learning

2.1 Model: symbol-vector coupling

Let x ∈ RD be the observed example. Let z ∈ Rd be the latent vector. Let y be the symbolic one-hot
vector for classification of K categories. y is K-dimensional. Our model is defined by

pθ(y, z, x) = pα(y, z)pβ(x|z) (1)

where pα(y, z) is the prior model with parameters α, pβ(x|z) is the top-down generation model with
parameters β, and θ = (α, β). Given z, y and x are independent, i.e., z is sufficient for y. After
inferring z from x, the inference of y is based on z, i.e., z is the information bottleneck [41].

The prior model pα(y, z) is formulated as an energy-based model,

pα(y, z) =
1

Zα
exp(〈y, fα(z)〉)p0(z), (2)

where p0(z) is a reference distribution, assumed to be isotropic Gaussian (or uniform) prior of the
conventional generator model. fα(z) ∈ RK is parameterized by a small multi-layer perceptron. Zα
is the normalizing constant or partition function.

The energy term 〈y, fα(z)〉 in (2) forms an associative memory that couples the symbol y and the
dense vector z. Given z,

pα(y|z) ∝ exp(〈y, fα(z)〉), (3)

i.e., a softmax classifier, where fα(z) provides the K logit scores for the K categories. Marginally,

pα(z) =
1

Zα
exp(Fα(z))p0(z), (4)

where the marginal energy term

Fα(z) = log
∑
y

exp(〈y, fα(z)〉), (5)

i.e., the so-called log-sum-exponential form. The summation can be easily computed because we
only need to sum over K different values of the one-hot y.

The above prior model pα(y, z) stands on a generation model pβ(x|z), which is assumed to be the
same as the top-down network in VAE [23]. In particular, x = gβ(z) + ε, where ε ∼ N(0, σ2ID), so
that pβ(x|z) ∼ N(gβ(z), σ2ID). As in VAE, σ2 takes an assumed value.

2.2 Prior and posterior sampling: symbol-aware continuous vector computation

Sampling from the prior pα(z) and the posterior pθ(z|x) can be accomplished by Langevin dynamics.
For prior sampling from pα(z), Langevin dynamics iterates zt+1 = zt + s2∇z log pα(zt)/2 +
N(0, s2Id), where s is the step size, and the gradient is computed by

∇z log pα(z) = Epα(y|z)[∇z log pα(y, z)] = Epα(y|z)[〈y,∇zfα(z)〉], (6)

where the gradient computation involves averaging ∇zfα(z) over the softmax classification pα(y|z)
in (3). Thus the sampling of the continuous dense vector z is aware of the symbolic y.

Posterior sampling from pθ(z|x) follows a similar scheme, where

∇z log pθ(z|x) = Epα(y|z)[〈y,∇zfα(z)〉] +∇z log pβ(x|z). (7)

When the dynamics is reasoning about x by sampling the dense continuous vector z from pθ(z|x), it
is aware of the symbolic y via the softmax pα(y|z).
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Thus (y, z) forms a duality between symbol and dense vector, i.e., they are two sides of a single
“sym-vec coin.” The entropy of pα(y|z) may determine whether the symbolic interpretation will pop
out from z.

Pang et al. [36] proposed to use prior and posterior sampling for maximum likelihood learning.
Due to the low-dimensionality of the latent space, MCMC sampling is affordable and mixes well.
Comparing prior and posterior sampling, prior sampling is particularly affordable, because fα(z) is a
small network. In comparison, ∇z log pβ(x|z) in the posterior sampling requires back-propagation
through the generator network, which can be more expensive. Therefore we shall amortize the
posterior sampling from pβ(x|z) by an inference network, as detailed in the next subsection.

2.3 Amortizing posterior sampling and variational learning

Similar to VAE [23], we recruit an inference network qφ(z|x) to approximate the true posterior
pθ(z|x), in order to amortize posterior sampling. Following VAE, we learn the inference model
qφ(z|x) and the top-down model pθ(z, x) jointly.

For unlabeled x, the log-likelihood log pθ(x) is lower bounded by the evidence lower bound (ELBO),

ELBO(θ, φ) = log pθ(x)− DKL(qφ(z|x)‖pθ(z|x)) (8)
= Eqφ(z|x) [log pβ(x|z)]− DKL(qφ(z|x)‖pα(z)), (9)

where DKL denotes the Kullback-Leibler divergence.

For the prior model, the learning gradient is

∇αELBO = Eqφ(z|x)[∇αFα(z)]− Epα(z)[∇αFα(z)], (10)

where Fα(z) is defined by (5), Eqφ(z|x) is approximated by samples from the inference network, and
Epα(z) is approximated by persistent MCMC samples from the prior.

Let ψ = {β, φ} collect the parameters of the inference (encoder) and generator (decoder) models.
The learning gradients for the two models are

∇ψELBO = ∇ψEqφ(z|x)[log pβ(x|z)]−∇ψDKL(qφ(z|x)‖p0(z)) +∇ψEqφ(z|x) [Fα(z)], (11)

where DKL(qφ(z|x)‖p0(z)) is tractable and the expectations in the other two terms are approximated
by samples from the inference network qφ(z|x) with reparametrization trick [23].

VAE is employed for training latent space EBM in recent work [2, 42]. In our work, we train the
inference network jointly with the latent space EBM. We only need to include the extra Fα(z) term,
and logZα is a constant that can be discarded. This expands the scope of VAE where the top-down
model is a latent EBM.

As mentioned above, we shall not amortize the prior sampling from pα(z) due to its simplicity, and
due to the fact that sampling pα(z) is only needed in the training stage, but is not required in the
testing stage. In general, we can also amortize the sampling of pα(z) by a flow-based model [9, 10].
See appendix for a general theoretical formulation.

2.4 Labeled data

For a labeled example (x, y), the log-likelihood can be decomposed into log pθ(x, y) = log pθ(x) +
log pθ(y|x). The gradient of log pθ(x) can be computed in the same way as the unlabeled data, and

pθ(y|x) = Epθ(z|x)[pθ(y|z)] ≈ Eqφ(z|x)[pθ(y|z)], (12)

where pθ(y|z) is the softmax classifier defined by (3), and qφ(z|x) is the learned inference network.
Thus ∇θ log pθ(y|x) ≈ ∇θ log Eqφ(z|x)[pθ(y|z)]. The gradients backpropagate to both the EBM
prior and the inference network.

For semi-supervised learning, we can combine the learning gradients from both unlabeled and labeled
data.
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2.5 Algorithm

The learning and sampling algorithm is described in Algorithm 1.

Algorithm 1: Semi-supervised learning of latent space EBM with symbol-vector coupling.
input :Learning iterations T , learning rates (η0, η1, η2), initial parameters (α0, β0, φ0),

observed unlabelled examples {xi}Mi=1, observed labelled examples {(xi, yi)}M+N
i=M+1,

unlabelled and labelled batch sizes (n,m), set of persistent chains {z−i ∼ p0(z)}Li=1,
and number of Langevin dynamics steps TLD.

output : (αT , βT , φT ).
for t = 0 : T − 1 do

1. Mini-batch: Sample unlabelled {xi}mi=1 and labelled observed examples {xi, yi}m+n
i=m+1.

2. Prior sampling: For each unlabelled xi, randomly pick and update a persistent chain z−i
by MCMC with target distribution pα(z) for TLD steps.

3. Posterior sampling: For each xi, sample z+i ∼ qφ(z|xi) using the inference network and
reparameterization trick.

4. Unsupervised learning of prior model:
αt+1 = αt + η0

1
m

∑m
i=1[∇αFαt(z+i )−∇αFαt(z−i )].

5. Unsupervised learning of inference and generator models:
ψt+1 = ψt + η1

1
m

∑m
i=1[∇ψ[log pβt(x|z+i )]−∇ψDKL(qφt(z|xi)‖p0(z)) +∇ψ[Fαt(z

+
i )].

6. Supervised learning of prior and inference model:
θt+1 = θt + η2

1
n

∑m+n
i=m+1

∑K
k=1 yi,k log(pθt(yi,k|z+i )).

3 Related work

Discriminative models. Recent semi-supervised learning (SSL) methods based on discriminative
models have achieved substantial progress. Most of these methods rely on data augmentation
strategies which heavily exploit class-invariance properties of images [3, 40]. Invariance properties
for text and tabular data are however less clear. One successful method, virtual adversarial training
(VAT) [31], does not depend on image-domain-specific properties. Instead, it finds an adversarial
augmentation to x within an ε-ball of x with respect to lp norm such that the distance between the
class distribution conditional on x and that conditional on the augmentation is maximized. This
approach is applicable to continuous data beyond images like tabular data. It nevertheless still
has the limitation on discrete data since the adversarial augmentation requires the data space to be
differentiable.

GANs. Generative models in the GAN family have also been applied to SSL and exhibited promising
results. Salimans et al. [39] changed the discriminator in GAN to be a classifier with an extra
"generated" class, which is thus able to simultaneously distinguish real and generated samples and to
predict class labels. To avoid the incompatible roles of the classifier and discriminator, Li et al. [5]
proposed to keep the discriminator in the original GAN and add a classifier for class prediction. Dai
et al. [7] argued that a preferred generator for SSL should be a complement generator in the sense
that it should assign high densities for data points with low densities in the data distribution. These
GAN-based SSL methods generally perform well on images, competitive with discriminative models.
However, GANs are highly tuned to image data. The adversarial generative training relies on the
differentibility of data generation and applying it to discrete data like text with does not exhibit much
gain if no harm is caused [4].

Energy-based model. Recently EBMs have also been applied to SSL. Grathwohl et al. [13] proposed
Joint Energy-based Model (JEM) on top of a regular discriminative classifier by re-interpreting the
logits. Zhao et al. [46] extended JEM to SSL and obtained reasonable performance. With a similar
formulation, Gao et al. [11] adversarially trained the EBM with a pretrained GLOW [21] and obtained
performance competitive with GAN-based and discriminative models, especially after it is combined
with VAT. Our model shares similarities with these models in that our model has a latent space EBM
and it is constructed through re-using the logits of a discriminative classifier in the latent space. Our
EBM in the latent space however has a much lower dimension and smoother landscape, which renders
fast sampling and mixing. The learning also does not require expensive pretraining of GLOW like in
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[11]. Also, it is not easy to apply data space EBM to discrete data since its training requires either the
data space or the generation process of the auxiliary generator (e.g., GLOW) to be differentiable.

Likelihood-based models. In a seminal work [22], Kingma et al. adopted VAE for SSL where
a discrete latent variable, y, representing the class labels is introduced in addition to the usual
continuous vector, z. In [30], adversarial training was applied to force y and z to capture disentangled
semantics. In our model, the continuous vector is coupled with the discrete variable or symbol to
form a latent space EBM prior. More recently, Izmailov et al. [18] proposed a flow-based model,
FlowGMM, where the data distribution is mapped to a Gaussian mixture in the latent space with
invertible flow. Our model is similar in the sense that it uses an inference network to map the data
distribution to an latent space EBM. But our model does not have the restriction of invertibility.
FlowGMM is aimed for broad applicability and demonstrate promising results on text and tabular
data, sharing the goal of our work.

4 Experiments

We evaluate our model on a wide variety of datasets to demonstrate the broad applicability of our
model. We begin the evaluation with image data which most SSL research works have been focused
on. Next we consider text data in both continuous and discrete situations. Finally, our model is
assessed on tabular data. Two recent works applied their methods, FlowGMM [18] and JEM [46],
beyond image data and these two models are closely related to ours. They thus serve as important
baselines of our model.

For image experiments, the inference network is implemented with a standard Wide ResNet [44],
widely used in image SSL works [35]. The generator network is a 4-layer deconvoluational network,
similar to the generator in DCGAN [38]. The inference and generator networks in text and tabular
experiments are all a 3-layer MLP. The latent EBM prior in all experiments is also a small 3-layer
MLP with a hidden dimension of 200. All model parameters are initialized with Xavier normal
[12]. Adam [20] is adopted for all model optimization. The models are trained until convergence
(taking approximately 400,000 parameter updates for image models, 100,000 updates for text models
without pretrained embeddings, 3,000 updates for text models with pretrained embeddings, 4,000
updates for tabular models). We run 20 steps of persistent chains with step size 0.6 to obtain MCMC
samples used in learning the latent space EBM prior (i.e., Step 4 in Algorithm 1). Notice that MCMC
sampling only needs to compute the gradients of the small latent space EBM and does not need to
backpropagate through the larger generator.

4.1 Image

Standard image SSL benchmarks, SVHN [32], with 1,000 labeled data and 64,932 unlabeled data,
and CIFAR-10 [24], with 4,000 labeled data and 41,000 unlabeled data, are adopted to assess our
model on image classification. The results are summarized in Tabel 1. Besides FlowGMM [18]
and JEM [46], we also compare our model to other likelihood-based models, VAE M1+M2 [22],
AAE [30], in addition to representative GAN-based models, TripleGAN [5], BadGAN [7] and
discriminative models, Π-Model [26] and VAT [31]. Our model outperforms FlowGMM and JEM
and other likelihood-based models. The improvement is especially clear on SVHN (with almost 10%
absolute improvement compared to FlowGMM). We however observe a performance gap between
our model and GAN-based and discriminative methods which highly tuned for images.

4.2 Text

We evaluate our model on text with a widely used text classification dataset, AGNews [45], in two
settings. The first one follows the evaluation protocol used in FlowGMM [18]. Text data are first
embedded by a pretrained language model, BERT [8], and the SSL model is constructed on the
embedding space. We use the preprocesed data provided by [18] which contains 200 labeled data
and 120,000 unlabled data are used in training. AGNews has 4 classes. Our model is compared to
FlowGMM [18], RBF Label Spreading (a graph-based label spreading method) [47], and Π-Model
[26]. Table 2 displays the results. Our model exhibits competitive performance with FlowGMM and
outperforms other baselines.

5



SVHN CIFAR-10
Method 1000 Labels 4000 Labels

VAE M1+M2 64.0 ± 0.1 -
AAE 82.3 ± 0.3 -
JEM 66.0 ± 0.7 -
FlowGMM 82.4 78.2
Ours 92.0 ± 0.1 78.6 ± 0.3

TripleGAN 94.2 ± 0.2 83.0 ± 0.4
BadGAN 95.8 ± 0.03 85.6 ± 0.03
Π-Model 94.6 ± 0.2 83.6 ± 0.3
VAT 96.3 ± 0.1 88.0 ± 0.1
Table 1: Accuracy on SVHN and CIFAR-10.

The second setting where a large pretrained language model is not available follows the setup used in
Gururangan et al. [14] where they proposed VAMPIRE. While the huge amount of text data required
for large transformer-based language model pretraining is available for some languages, such as
English, this scale of data is not available for all languages. We use the preprocessed data provided
by [14] and it contains 200 labeled data and 114,600 unlabeled documents for training. Follow [14],
a document is modeled by the unigram of its words. Thus, each document is a vector of vocabulary
size, V (V = 30, 000 for AGNews), and each element represents a word’s occurring frequency in the
document, modeled by a multinominal distribution. Notice that most popular SSL methods, such as
GAN-based models, data space EBM, and VAT, cannot be easily applied in this case since the data
space is discrete. We compare our model to VAMPIRE using unigram representation, self-training,
and supervised training with Glove word embeddings pretrained on in-domain and out-domain data
(see [14] for detailed descriptions of these baselines). The results are summarized in Table 3. Our
model clearly outperforms these baselines. It is worth pointing that FlowGMM is also applicable in
this setting. We attempted to apply FlowGMM to this task but achieved low accuracy.

AGNews-Bert
Method 200 Labels

RBF Label Spreading 36.1
FlowGMM 82.1 ± 1.0
Ours 82.0 ± 0.2

Π-Model 80.2 ± 0.3
Table 2: Accuracy on AGNews with Bert embeddings.

AGNews-Unigram
Method 200 Labels

Self-training 77.3 ± 1.7
Glove (ID) 70.4 ± 1.2
Glove (OD) 68.8 ± 5.7
VAMPIRE 81.9 ± 0.5
Ours 84.5 ± 0.3

Table 3: Accuracy on AGNews with Unigram.

4.3 Tabular data

We use three tabular datasets from the UCI repository. Hepmass and Miniboone were utilized in
[18] for SSL and Protein was used in [46]. Protein has a continuous target variable and we follow
[46] to bin the targets into 10 equally weighted buckets. We use the same experimental settings as in
the two prior works. The number of labeled / unlabeled data for Hepmass, Miniboone, and Protein
are 20/140,000, 20/65,000, 100/41,057 respectively. Hepmass and Miniboone have 2 classes, while
Protein has 10 classes. We compare our model to RBF Label Spreading, JEM, FlowGMM, Π-Model,
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and VAT. Tabel 4 summarizes the results. Our model outperforms all baselines across the three tabular
datasets.

Hepmass Miniboone Protein
Method 20 Labels 20 Labels 100 Labels

RBF Label Spreading 84.9 79.3 -
JEM - - 19.6
FlowGMM 88.5 ± 0.2 80.5 ± 0.7 -
Ours 89.1 ± 0.1 81.2 ± 0.3 23.1 ± 0.3

Π-Model 87.9 ± 0.2 80.8 ± 0.01 -
VAT - - 17.1

Table 4: Accuracy on Hepmass, Miniboone, and Protein.

5 Conclusion

Semi-supervised learning based on latent space EBM prior with symbol-vector coupling is very
natural. For unlabeled data, the marginal EBM prior is in the form of sum of exponentials. For
labeled data, the conditional distribution of label given the inferred latent vector is a regular softmax
classifier. The semi-supervised learning can be based on a principled likelihood-based framework,
with inference computation being amortized by a variational inference network.

Our model may be interpreted as a generative classifier, where the latent vector used for classification
is inferred based on a top-down generative model. The top-down model and the posterior inference
captures the concept of information bottleneck [41] more naturally than bottom-up classifier. The
posterior inference of a top-down model may be more robust to adversarial perturbations than a
classifier defined on the input directly, because the posterior inference can explain away the adversarial
perturbations via the top-down model. The inference of the latent vector is aware of the underlying
symbol, and the symbol-vector coupling in our prior model may shed light on the interaction between
symbolic reasoning and continuous computation. We may consider a multi-layer top-down model
where each layer consists of dense sub-vectors coupled with symbolic one-hot sub-vectors, so that
continuous computation based on dense sub-vectors is aware of the corresponding symbols.

Our experiments show that our semi-supervised learning method outperforms existing methods on
text and tabular data. We shall continue to improve our method on image data. To rephrase the title
of this workshop, we cannot believe our principled model-based semi-supervised learning method
does not work better than existing methods on image data.
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Appendix: learning latent EBM with divergence perturbation formulation

This section provides a theoretical formulation for learning latent EBM in general, where our model
is a special case. We can embed our learning method within this general formulation.

The latent EBM is of the following form:

pθ(z, x) =
1

Zθ
exp(fθ(x, z)). (13)

Marginally, pθ(x) =
∫
pθ(z, x)dz, and the posterior is pθ(z|x) = pθ(z, x)/pθ(x).

Let pdata(x) be the data distribution that generates x. Maximum likelihood estimation (MLE)
minimizes DKL(pdata(x)‖pθ(x)), where expectation with respect to pdata can be approximated by
averaging over observed examples.
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Learning of latent EBM can be based on the following divergence perturbation (see [15, 16] for
related formulations),

∆ = DKL(pdata(x)‖pθ(x)) + DKL(q+(z|x)‖pθ(z|x))− DKL(q−(z, x)‖pθ(z, x)), (14)

which is a perturbation of the divergence DKL(pdata(x)‖pθ(x)) that underlies MLE. q+(z|x) is the
positive phase sampler, and q−(z, x) is the negative phase sampler. They correspond to the positive
phase and negative phase of MLE learning of latent EBM such as Boltzmann machine [1]. For two dis-
tributions q(z|x) and p(z|x), we define DKL(q(z|x)‖p(z|x)) = Epdata(x)Eq(z|x)[log(q(z|x)/p(z|x)],
with an outer expectation with respect to pdata. The divergence DKL(pdata(x)‖pθ(x)) for MLE is
perturbed by the positive phase divergence DKL(q+(z|x)‖pθ(z|x)) and the negative phase divergence
DKL(q−(z, x)‖pθ(z, x)).

For latent space EBM prior, we have the factorization pθ(z, x) = pα(z)pβ(x|z), and q−(z, x) =
q−(z)pβ(x|z), so that the negative phase DKL in (14) becomes DKL(q−(z)‖pα(z)), i.e., the KL
divergence between the priors.

The above formulation has the following features.

(1) Gradient of divergence perturbation ∆ can be calculated explicitly without intractable integrations
in pθ(x) and logZθ, because pθ(x) is merged with pθ(z|x) to become pθ(z, x) due to the positive
phase DKL term, and the logZθ is canceled by the negative phase DKL term.

(2) For MLE learning, at iteration t, let θt be the current estimate of θ. We let q+(z|x) = pθt(z|x) and
q−(z, x) = pθt(z, x). In this case, the positive phase DKL(q+(z|x)‖pθ(z|x)) achieves its minimum
0 at θt, so that its gradient at θt is 0. Similarly the negative phase DKL(q−(z, x)‖pθ(z, x)) achieves
its minimum 0 at θt too, so that its gradient at θt is also 0. Thus the gradient of the divergence
perturbation ∆ in (14) is the same as the MLE gradient of the first KL term DKL(pdata(x)‖pθ(x)).

(3) For amortized computation, q+(z|x) = qφ+
(z|x) is an inference network, and q−(z, x) =

qφ−(z, x) is a synthesis network, with parameters φ+ and φ− respectively, that are independent of
the model parameter θ. The learning can be based on minθ minφ+

maxφ− ∆. The positive phase
DKL leads to variational learning. The negative phase DKL leads to a generalized form of contrastive
divergence [17], as well as adversarial interpretation due to the negative sign and maxφ− .

For latent space EBM prior, we only need a synthesis network qφ−(z) to approximate the prior model
pα(z). We may consider using a flow-based model [9, 10] for qφ−(z).

In our current work, we employ an inference network for qφ+
(z|x), but we leave q−(z) to MCMC

sampling, because pα(z) is very simple, and sampling of pα(z) does not require back-propagation
through the generator network. Moreover, sampling pα(z) is not needed in the testing stage.

(4) In between (2) and (3), both q+(z|x) and q−(z, x) can be sampled by short-run MCMC for
inference and synthesis [33, 34]. The short-run MCMC runs a fixed number of MCMC iterations
from a fixed initial distribution, so that both q+(z|x) and q−(z, x) are well defined. The gradient
of ∆ in (14) based on short-run MCMC is a perturbation of the MLE learning gradient. The MLE
learning gradient is impractical because it requires convergence of MCMC. Learning algorithm based
on short-run MCMC converges to the solution of an estimating equation which is a perturbation of
the MLE estimating equation. The learning algorithm of Pang et al. [36] works within this scheme.

The above formulation encompasses many generative models and associated learning algorithms. It
helps us understand the model and learning algorithm proposed in this paper. It will also help us
develop new models and algorithms.
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