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Abstract

This paper examines plagiarism-like behaviors in Transformer-based models for
symbolic music generation. While these models can produce musically convincing
outputs, they also risk copying fragments from training data. We hypothesize that
such plagiarism arises from local overfitting of motifs—short, recurrent patterns
within a piece—rather than from global overfitting. To test this hypothesis, we
analyze motif repetition in training data and assess motif-level plagiarism through
perplexity and the originality of generated samples. Experiments show that fre-
quently repeated motifs are predicted with lower perplexity and are more likely to
reappear in generated outputs. We also explore preliminary strategies to mitigate
plagiarism—Iabel smoothing, transposition-based data augmentation, and Top-K
sampling—and evaluate their effectiveness.

1 Introduction

Symbolic music generation has advanced rapidly with neural sequence models, which can now
produce musically coherent compositions [13]. However, this progress comes with a growing ethical
concerns due to their tendency to plagiarize training data [[15,21]. As the deployment of generative
music systems expands into creative domains, addressing plagiarism is essential for ensuring their
ethical reliability and long-term safety.

This raises an important question: why do plagiarism-like behaviors appear? While regularization
methods such as early stopping and dropout are generally helpful to prevent overfitting, they do not
suffice to prevent plagiarism in symbolic music generation. We hypothesize that plagiarism arises not
from global overfitting but from local overfitting of motifs—short, recurrent patterns within a musical
piece. Because motifs are repeated multiple times within a single composition, they present highly
predictable structures for the model to learn. As a result, the model may memorize and reproduce
these fragments with high fidelity despite the impression of overall generalization.

In this work, we investigate this hypothesis by analyzing how motif frequency in training data
influences model predictions and generated outputs. Here, we operationalize “motif” at the bar
level—that is, we focus on repetitions of single bars as fixed-length units, while acknowledging that
motifs in music are generally variable-length phrases. Our findings show that motifs are predicted with
low perplexity and disproportionately reproduced in generated samples as illustrated in Figure[I] This
suggests that plagiarism risk is closely tied to motif and cannot be explained solely by conventional
notions of overfitting. We further explore three strategies to mitigate motif-level memorization; label
smoothing, Top-K sampling, and data augmentation via transposition.

Our study contributes to a deeper understanding of how plagiarism arises in symbolic music generation
models and provides concrete directions for mitigation. We argue that motif-level analysis is essential
for developing ethically reliable and safe generative models, and we hope this work stimulates further
discussion at the intersection of creativity and ethics.
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Figure 1: Illustration of motif-level copying. The model trained on data containing repeated motifs
reproduces these motifs in its generated samples.

2 Motif Repetition and Plagiarism Metrics

In this section, we describe the methods used to measure similarity between musical segments, to
quantify motif repetition in the training data, and to define plagiarism-oriented evaluation metrics.

2.1 Measuring bar-level similarity with the jaccard index

To quantify the similarity between symbolic music segments, we adopt the Jaccard index. Given two
segments x and y of the same time span (e.g., one bar), let N'(z) and N (y) denote the sets of notes
contained in each segment, where a note is represented by its onset time and pitch (duration is not
considered). The Jaccard index is defined as
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This index ranges from 0 (no common notes) to 1 (identical note content). The Jaccard index thus

provides a simple and interpretable measure of bar-level similarity based solely on shared onset—pitch
events.

J(z,y) = ey

2.2 Motif (bar-level) repetition in training data

To quantify repetition patterns in the training corpus, we compute pairwise similarities between bars
using the jaccard index. Let B(s) = {b1, ba, ..., by, } denote the set of bars extracted from a song
s. For each pair (b;, b;), we calculate J(b;, b;) and consider b; and b; instances of the same motif if
J(bi,b;) > 7, where 7 = 0.8 in all experiments. Based on this rule, we construct clusters of similar
bars using a union—find procedure. The repetition count of a bar b is then defined as

r(b) = [C(v)], @

where C(b) denotes the cluster containing b. This results in a motif-level repetition profile for the
training set, which characterizes how frequently each bar recurs within a piece.

2.3 Plagiarism-oriented metrics

To assess plagiarism-like behaviors, we employ two complementary metrics that link model behavior
to motif repetition.

First, we analyze the model’s likelihoods on training data. For each bar b, we compute its token-level
perplexity PPL(b) under the trained model. We then compare motifs, defined as bars with (b) > 5,
against non-motifs with r(b) = 1, by calculating a perplexity ratio

Ep:p(3)>5[PPL(b)]

PPLr = ————————.
]Eb:r(b)ZI [PPL(b)}
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A ratio below 1 indicates that motifs are predicted more confidently than non-motifs, suggesting local
memorization.



Table 1: Comparison of plagiarism-oriented (left) and performance-oriented (right) metrics across
different settings. For plagiarism metrics, higher originality indicates less plagiarism, a higher PPL-
ratio, the ratio of perplexity between motifs and non-motifs, reflects reduced motif memorization,
and a lower motif over-representation ratio (MORr), the relative prevalence of motifs in strongly
copied samples, indicates less copying. For performance metrics, higher values correspond to better
predictive accuracy on the test data.

Plagiarism \ Performance (1)
Method Origavg (1) Orig,oq (1) PPLr (1) MORr () ‘ Flyote Fl,.  GS CS PRS
Test data 0.665 0.472 - 0.906 ‘ 1.000 1.000 1.000 1.000 1.000
Baseline 0.590 0.376 0.759 1.463 0.191 0.254 0.787 0.570 0.882
+ Label smoothing 0.588 0.371 0.763 1.486 0.194 0.257 0.795 0.570 0.884
+ Transpose aug. 0.608 0.405 0.781 1.182 0.236 0.299 0.796 0.594 0.886
+ Top- K sampling 0.657 0.484 - 1.262 0.143 0.212 0.760 0.552 0.882

Second, we examine the originality of generated outputs. From each test piece, we condition on the
first 1 bar to generate continuations and randomly sample one bar from each. For a generated bar g,
we define originality as

Orig(g) = 1 — max J(g,b), “4)

€ Dtrain

where By, is the set of all training bars. Lower originality scores indicate closer matches to the
training set and thus a higher plagiarism risk. This idea to calculate originality is based on previous
approaches [6, 21} [17, [12]]. We report both the overall mean originality across all sampled bars
(Origavg) and the mean within the lowest-scoring 10% (Orig,,, ), which captures particularly strong
copying cases. Implementation details are provided in Appendix

Finally, to examine whether strongly copied outputs disproportionately involve repeated motifs, let
Birain be the set of all training bars, and Beopica € Birain the subset identified as strongly copied. We
then define the Motif Over-Representation ratio (MORr) as

— EbNBCOpied [1{T(b) > 5}]
By [1{r(b) = 5}]

where Ep.s[1{r(b) > 5}] denotes the proportion of bars in a set S whose repetition count r(b)
is at least 5. Thus, MORr compares the relative prevalence of highly repeated motifs between the
copied subset and the training corpus as a whole. Values greater than 1 indicate that repeated motifs
are overrepresented among copied outputs, reinforcing the link between plagiarism risk and motif
recurrence.

MORr (5)

3 Experiments

3.1 Experimental Setup

We conducted experiments on the POP909 dataset [[19] using an event-based Transformer model with
relative attention [[14}[9]. Musical sequences were represented in an event-based format following
REMI [10], where each note was serialized into tokens of beat, position, track, pitch, and duration.
Further details of dataset preprocessing, model configuration, and training procedure are provided in

Appendix
3.2 Results

The baseline row in Table|l{summarizes the results of this setting. The model exhibits substantially
lower originality scores than the test data, both in terms of average (Orig,,,) and the lowest 10%
(Orig,49,), indicating a strong tendency to copy training fragments. Moreover, the perplexity ratio
(PPLr) is below 1.0, suggesting that the model predicts motifs more confidently than non-motifs,
supporting the hypothesis of motif-level memorization. The perplexity ratio (PPLr) is below 1.0,



which shows that motifs are predicted more confidently than non-motifs and supports the hypothesis
of motif-level memorization. Finally, the motif over-representation ratio (MORr) exceeds 1.0.
This means that motifs occur disproportionately often in strongly copied samples and further links
plagiarism risk to motif recurrence.

4 Exploring Mitigation Strategies

We examine three strategies for reducing plagiarism-like behaviors: (i) label smoothing [[16] with
smoothing coefficient e=0.1, which redistributes a fraction of probability mass from the target to
non-target classes to mitigate overconfidence during training, (ii) data augmentation via transposition,
where each training piece is randomly shifted by —5 to 45 semitones, and (iii) Top-K sampling,
where generation is performed by sampling from the top- K most probable tokens instead of greedy
decoding to promote diversity.

4.1 Additional performance evaluation

In addition to the plagiarism-oriented metrics introduced in Section we also evaluated the
predictive accuracy of the model. Following Inaba et al. [[11]], we used 15-bar excerpts from the
test set as prompts and measured how closely the next predicted bar matched the ground truth.
Five complementary metrics were employed: note-level F1 (F'1,,.) [8], pianoroll F1 (F'1,,) [8],
grooving similarity (GS) [[7, 20], chroma similarity (CS) [7, 20], and pitch range similarity (PRS).

4.2 Results & discussion

The results of mitigation strategies are also shown in Table[I] Label smoothing yields only marginal
changes: plagiarism-oriented metrics remain close to the baseline, and performance metrics also show
little improvement. In contrast, data augmentation via transposition improves originality scores and
reduces motif-level memorization, as reflected in higher PPLr and lower MORr, while also achieving
the best performance across all objective metrics. Top-K sampling substantially increases originality
and thus suppresses plagiarism, but this comes at the cost of decreased performance according to
our evaluation metrics. While these mitigation strategies demonstrate the possibility of enhancing
originality without severely degrading performance, the models still exhibit strong tendencies to
overfit and directly copy frequent motifs. Addressing this motif-level memorization therefore remains
an essential avenue for future research.

5 Conclusion & Future Work

This paper examined plagiarism-like behaviors in symbolic music generation with Transformer-
based models. Through motif-level analysis, we showed that plagiarism risk is closely linked
to local overfitting: motifs repeated in the training data are predicted with lower perplexity and
are disproportionately reproduced in generated outputs. We also examined the effectiveness of
preliminary mitigation strategies. These findings highlight the need for motif-based perspectives
when evaluating the reliability of generative music systems. Understanding the causes of plagiarism
and developing effective ways to suppress it are essential steps toward ethically reliable music
generation, and we hope this study provides a foundation for future research in this direction.

At the same time, our work leaves important limitations to be addressed. While we focused on bar-
level repetitions as a proxy for motifs, motifs in music theory are inherently variable-length phrases,
and thus our analysis does not fully capture motif-level phenomena. In addition, our evaluation of
model performance relied solely on objective metrics on the test data; more diverse assessments,
including subjective evaluations of the coherence and musicality of generated samples, are needed, as
originality scores alone can be inflated by random note sequences.
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A Related Work

Another active line of research concerns plagiarism and data replication in generative models.
Symbolic and audio-based systems alike have been observed to reproduce memorized content, raising
concerns about originality [21} 2} 3]]. Methods such as embedding-space mixup in MuseNet and beat-
synchronous mixup in MusicLDM [5]] acknowledge and attempt to mitigate these risks. Similar issues
have been studied extensively in language modeling, where models are known to memorize large
portions of training data [4]. These observations indicate that memorization is a recurring phenomenon
across domains, but the mechanisms that drive it—especially in music—remain underexplored.

These technical concerns connect with ethical debates surrounding generative audio and music
systems. Questions of copyright, ownership, and fair use have been discussed from both legal
and engineering perspectives [15]], with recent surveys highlighting a lack of systematic attention
to the societal and ethical risks of generative audio models [[1]. Taken together, this body of
work underscores the importance of not only mitigating plagiarism but also developing a deeper
understanding of why and how it occurs, as a prerequisite for safe human—AlI co-creation.

B Implementation Details of Originality

Algorithm 1 BuildIndexFromTrainingBars

Require: Training bars B = {by,..., by}, where each b; is a set of notes (each note encoded as an
onset—pitch token).
Ensure: TrainingBarSets: BarSet[i] = .S; (unique note set for bar 7);
InvertedIndex: Postings[note] = {4 | note € S; } (note — list of bar IDs).
BarSet < empty array of length M
Postings <— empty hashmap from note to list
for ¢ < 1to M do
S; « set(b;) > deduplicate to a unique note set
BarSet|[i] < S;
for all note € .S; do
append i to Postings[note]
end for
end for
return (BarSet, Postings)
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Algorithm 2 OriginalityScore (Jaccard-based)

Require: Query note set () C Z in a bar, Candidate cap K
Require: InvertedIndex Postings, TrainingBarSets BarSet from Alg.
Ensure: Originality score € [0, 1].
votes — empty hashmap i — 0
: for all note € () do

for all € Postings[note] do

votes[i] < votes[i] + 1

end for
end for
Candidates + ToPK (votes, K) > indices of the K largest values
BestJ < 0
9: for all ¢ € Candidates do
10: S <+ BarSet][i]
11: Jaccard «+— |@ N S|/|QU S|
12: if Jaccard > bestJ then

PRI AR

13: bestJ + Jaccard
14: end if
15: end for

16: return 1 — bestJ




To efficiently compare generated bars against training data, we first build an index of training bars
(Algorithm|[T). Each bar is converted into a unique set of onset—pitch tokens, and for every note we
record the IDs of bars containing it. This yields two data structures: (i) BarSet, which stores the
deduplicated note set of each bar, and (ii) Postings, an inverted index mapping each note to the list
of bar IDs where it occurs.

Given a query bar, we compute its originality score using a Jaccard-based similarity measure
(Algorithm [2). First, using the inverted index, bars that share notes with @ are retrieved and assigned
votes proportional to the number of shared notes. Among the top-K candidates, we calculate the
Jaccard index between the query set and each bar’s set, and take the maximum similarity. The
originality score is then defined as 1 — max(Jaccard), yielding values closer to 1 for more novel bars
and closer to 0 for more plagiaristic ones.

C Experimental Details

C.1 Dataset

We used the POP909 dataset [19], which contains popular music with a wide variety of repetitive
structures. The dataset was filtered and split at the song level into training, validation, and test sets
with a ratio of 8:1:1 to avoid overlap between pieces. Each song was then segmented into 64-beat
excerpts with a stride of 4 beats for data augmentation, resulting in 47,306, 5,721, and 5,855 segments
for training, validation, and test, respectively.

C.2 Representation

Notes were first sorted in ascending order by beat, position, track, and pitch, and then serialized
into tokens of beat, position, track, pitch, and duration. Other token types such as tempo and chord
annotations were omitted.

C.3 Model and Training

We used a decoder-only Transformer [18]] with relative attention [14} 9], configured with a maximum
sequence length of 2048, 6 layers, 8 attention heads, an embedding dimension of 256, a dropout rate
of 0.1, a batch size of 16, and a learning rate of 0.001. Validation was performed every 200 steps,
and the checkpoint achieving the lowest validation loss was selected for evaluation (early stopping).
During generation, the temperature was set to 0.0, yielding greedy decoding.
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