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Abstract

When training a neural network, it will quickly
memorise some source-target mappings from
your dataset but never learn some others. Yet,
memorisation is not easily expressed as a bi-
nary feature that is good or bad: individual dat-
apoints lie on a memorisation-generalisation
continuum. What determines a datapoint’s po-
sition on that spectrum, and how does that spec-
trum influence neural models’ performance?
We address these two questions for neural ma-
chine translation (NMT) models. We use the
counterfactual memorisation metric to (1) build
a resource that places SM NMT datapoints on a
memorisation-generalisation map, (2) illustrate
how the datapoints’ surface-level characteris-
tics and a models’ per-datum training signals
are predictive of memorisation in NMT, (3) and
describe the influence that subsets of that map
have on NMT systems’ performance.

1 Introduction

When training neural networks, we aim for them
to learn a generic input-output mapping, that does
not overfit too much on the examples in the train-
ing set and provides correct outputs for new inputs.
In other words, we expect models to generalise
without memorising too much. Yet, adequately
fitting a training dataset that contains natural lan-
guage data inevitably means that models will have
to memorise the idiosyncracies of that data (Feld-
man, 2020; Feldman and Zhang, 2020; Kharitonov
et al., 2021). The resulting memorisation patterns
are both concerning and elusive: both memorisa-
tion and task performance increase with model size
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Figure 1: Illustrative summary of findings for different
areas of the memorisation map. Counterfactual memori-
sation subtracts the y-coordinate from the x-coordinate.

(Carlini et al., 2022); ChatGPT can recall detailed
information from its training data, such as named
entities from books (Chang et al., 2023); GPT-2
memorises personally identifiable information, in-
cluding phone numbers (Carlini et al., 2021); GPT-
2 and Transformer NMT systems fail to memorise
certain idioms (Dankers et al., 2022; Haviv et al.,
2023); and in the presence of some source prefixes,
NMT systems have memorised always to emit the
same translation (Raunak and Menezes, 2022).

These examples illustrate the multi-faceted re-
lation between memorisation and generalisation.
In machine learning, memorisation has tradition-
ally been associated with overfitting and over-
parameterisation; Dietterich (1995, p.326) already
discusses the concern of “fit[ting] the noise in the
data by memorizing various peculiarities”. Yet, for
deep learning, overfitting has even been referred to
as benign when models overfit the training data but
still have a low generalisation error (Zhang et al.,
2017; Bartlett et al., 2020). Besides, memorisation
is not just considered detrimental; for instance, it is
needed if the natural data distribution is long-tailed
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(Feldman, 2020) or if factual information needs to
be stored (Haviv et al., 2023). At the same time,
benign overfitting is still concerning if it makes
models less robust (Sanyal et al., 2021) and intro-
duces privacy concerns (Carlini et al., 2019).

In this work, we get a step closer to understand-
ing the relation between memorisation and data-
points’ characteristics for neural machine transla-
tion (NMT). Instead of focusing on cases that are
memorised verbatim, we take SM examples from
five language pairs, put them on a memorisation-
generalisation map, learn to predict examples’
places on the map and analyse the relation be-
tween the map and model performance. The map is
centred around the counterfactual memorisation
(CM) metric (Zheng and Jiang, 2022) (see §3), and
available to readers via our repository. Using the
map, we address the following research questions,
for which we illustrate takeaways and interesting
findings in Figure 1:

1. How do characteristics of datapoints re-
late to their position on the memorisation-
generalisation map? In §4, we compute 28
quantitative features and annotate a data sub-
set manually using 7 additional features. We
discuss how source-target similarity, input and
output length, token frequency and tokens’
segmentation relate to the memorisation map.

2. Can we approximate memorisation metrics
using datapoints’ characteristics? In §5, we
use datapoints’ characteristics to predict mem-
orisation values using multi-layer perceptrons
(MLPs) to consolidate findings from §4, to
compare different languages to one another
and to understand whether resource-intensive
memorisation computation has cheaper ap-
proximates. We find that the MLPs gen-
eralise cross-lingually: characteristics’ re-
lation to memorisation is largely language-
independent.

3. How does training on examples from differ-
ent regions of the memorisation map change
models’ performance? Finally, we relate
different parts of the map to the quality of
NMT systems in terms of BLEU, targets’ log-
probability and hallucination tendency (see
§6). Our results confirm previous work from
other tasks — examples with high CM are most
relevant for models’ performance — yet there
are caveats worth mentioning, in particular for
the hallucination tendency.

2 Related work

How has memorisation been measured in NLP, and
what have we learnt as a result? In this section,
we first dive into memorisation metrics from NLP
generically and then report on the limited set of
related work that exists for NMT.

Memorisation metrics in NLP In NLP, memo-
risation has most often been quantified via binary
metrics that identify examples that are memorised
verbatim. Carlini et al. (2021) measure k-eidetic
memorisation (i.e. a string appears at most k times
and can be extracted from the model). Other stud-
ies omit the constraints on k£ and simply exam-
ine whether, after feeding the context, parts of a
sentence can be extracted verbatim (Carlini et al.,
2019; Kharitonov et al., 2021; Carlini et al., 2022;
Mireshghallah et al., 2022; Tirumala et al., 2022;
Chang et al., 2023). Sometimes, the training data is
known or even modified to include ‘canaries’ (e.g.
Mireshghallah et al., 2022) while in other cases, the
training data is unknown (e.g. for ChatGPT, Chang
et al., 2023). These studies have raised privacy
concerns — by pointing out that personally identi-
fiable information and copyright-protected text is
memorised — and have identified potential causes of
memorisation, such as repetition, large vocabulary
sizes, large model sizes and particular fine-tuning
techniques.

A second approach has been to rate memori-
sation on a scale (Zhang et al., 2021; Zheng and
Jiang, 2022). Zhang et al. measure counterfactual
memorisation (CM), a metric from computer vi-
sion (Feldman and Zhang, 2020) that assigns high
values to examples a model can only predict cor-
rectly if they are in the training set. Zhang et al.
identify sources of CM in smaller language models
(trained with 2M examples), such as the presence of
non-English tokens in English sentences. Inspired
by the CM metric, Zheng and Jiang (2022) use
self-influence to quantify the change in parameters
when down-weighting a training example, to mea-
sure memorisation in sentiment analysis, natural
language inference and question answering.

Memorisation metrics in NMT For NMT, mem-
orisation is less well explored, but we still observe
a similar divide of metrics. Raunak and Menezes
(2022) propose extractive memorisation, a binary
metric that identifies source sentences with a prefix
for which models generate the same translation,
independent of the prefix’s ending. Raunak et al.
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(2021) compute CM scores in a low-resource NMT
setup to show that hallucinations are more promi-
nent among examples with higher CM values.

We, too, treat memorisation as a graded phe-
nomenon by using CM-based metrics. Whereas
Raunak et al. (2021) solely explore CM in the con-
text of hallucinations, we build a multilingual re-
source of memorisation metrics, examine the char-
acteristics of datapoints that influence their position
on the memorisation map, and investigate the rela-
tion to models’ performance.

3 Experimental setup

This section details the memorisation metrics em-
ployed and the experimental setup for the model
training that is required to compute those metrics.

Memorisation metrics To obtain a graded notion
of memorisation, we employ the counterfactual
memorisation (CM) metric of Feldman and Zhang
(2020) and Zhang et al. (2021).2 Assume an exam-
ple with input x and target y, and a model with the
parameters 0" trained on all training data, and 6"
trained on all examples except (z,y). CM can be
computed as follows:

CM(z,y)= per(ylz) —
——

training memorisation

post(y|w)
—_——

generalisation score

As leaving out individual datapoints is too expen-
sive, computationally, we leave out data subsets,
similar to Zhang et al. (2021). To then compute
the CM of an individual datapoint, one can collect
models and average the target probability pgm (y|z)
over all models 6 € ©™ in a collection, where
O and ©"! represent sets of models that did and
did not train on (z, y), respectively. Since we con-
sider the generation of sequences, we also aggre-
gate probabilities over tokens in the target sequence
of length ¢ using the geometric mean. We combine
averaging over models and averaging over tokens
in a likelihood metric (LL), that is computed for O
and ©"' to obtain the CM value of an example:

e

1
Z
LL(z,y,0™)= |@m| E <| [ Do (wely <t ))

In Appendix D.3, we replace the probability-based
measure with BLEU scores for greedily decoded

2We refer to it as counterfactual memorisation, following
work of Zhang et al. (2021). The metric is also known as label
memorisation in other articles.
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Figure 2: The memorisation map for EN-ES. Colours
indicate counterfactual memorisation from 0 (dark blue,
along the diagonal) to 1 (dark red, bottom right).

hypotheses and reproduce a subset of the findings
with those alternative maps.

CM thus consists of two components which we
refer to as training memorisation (TM, that ex-
presses how well a model performs on training
examples) and the generalisation score (GS, that
expresses how well a model performs on unseen
examples). CM — the difference between the two

— is thus high for examples that can be predicted

correctly if they are in the training set but that a
model cannot generalise to if they are not. Instead
of approaching CM as a one-dimensional metric,
we examine patterns that underlie all three metrics.

Data Even when leaving out data subsets, com-
puting the memorisation metrics is still resource-
intensive. To balance the efficiency of the compu-
tation with the quality of the NMT systems, we use
corpora with 1M examples for five language pairs:
English is the source language, and the target lan-
guages are German, Dutch, French, Spanish, and
Italian. To enable direct comparison between lan-
guages, we collect parallel data by taking sentence
pairs from the intersection of the OPUS corpora
for these languages (Tiedemann and Thottingal,
2020). Using multiple languages aids in assuring
that the conclusions are not language-specific. Ap-
pendix A.1 details how the corpora were filtered
and the 1M examples were selected. The resulting
data is relatively ‘clean’. What happens when us-
ing a random OPUS subset with much more noisy
data? Appendix D.1 elaborates on this.

Training models to obtain memorisation metrics
We train 40 models to compute our metrics repeat-
edly on a randomly sampled 50% of the training
data, while testing on the remaining 50%. The mod-



els are transformer-base models (Vaswani et al.,
2017), trained with fairseq for 100 epochs (Ott
et al., 2019). To ensure that this leads to reliable
CM scores, we compare the scores computed over
the first 20 seeds to those computed using the sec-
ond 20 seeds: these scores correlate with Pearson’s
r=0.94. When combining 40 seeds, the metrics are
thus even more reliable. We evaluate our models
using the FLORES-200 ‘dev’ set (Costa-jussa et al.,
2022), a dataset created by expert translators for
Wikimedia data. Appendix A.2 provides details on
model training and the development set’s BLEU
scores.

4 Data characterisation: what lies where
on the memorisation map?

We now have values for our memorisation met-
rics for SM source-target pairs across five language
pairs. We can view each source-target pair as a co-
ordinate on a map based on the train and test perfor-
mance associated with that example; the offset of
the diagonal indicates the CM. Figure 2 illustrates
the coordinate system for EN-ES. It represents dat-
apoints using scattered dots, coloured according to
CM. As is to be expected, the TM values exceed
the GS values, meaning that generating an input’s
translation is easiest when that example is in the
training set. Examples with high CM are rare: few
examples are very easily memorised during training
while also having a very low generalisation score.
Our interactive demo can be used to examine indi-
vidual instances on the map.

To better understand which characteristics influ-
ence a datapoint’s position on this map, we next
analyse the correlation between datapoints’ fea-
tures (automatically computed and manually anno-
tated ones) and different regions of this landscape.

4.1 Analysis of feature groups

We compute 28 language-independent features that
together we believe to cover a broad spectrum of
surface-level features from both the source and
target. 19 features describe the source and target
separately based on the length, word frequency,
the number of target repetitions, BPE segmenta-
tion, and digit and punctuation ratios. The nine
remaining features capture the source-target over-
lap with the edit distance, edit distance of the tar-
get’s back translation (computed with models from
Tiedemann and Thottingal, 2020), length differ-
ences, ratios of unaligned words, word/token over-
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Figure 3: Illustration of how four different features
relate to the three memorisation metrics. Appendix C
displays these graphs for additional features.

lap and the alignment monotonicity (as per the
Fuzzy Reordering Score, Talbot et al., 2011). For
each feature, we compute Spearman’s rank correla-
tion (p) for TM, GS and CM, combining datapoints
from all five language pairs. All correlations are
contained in Figure 14, and we report the most
prominent patterns in the remainder of this subsec-
tion. Appendix C provides implementation details
per feature.

Frequency The frequency features are strong pre-
dictors for CM (e.g. for the minimum target log-
frequency feature, pcm=—0.46, depicted in Fig-
ure 3a). Examples with low-frequency tokens can
be learnt during training, but models are much less
likely to assign a high probability to targets with
low-frequency tokens during testing.

Length The length characteristics correlate more
strongly with CM than with TM or GS (e.g. for the
source length, pcpm=0.26, also visualised in Fig-
ure 3b). This means that longer sequences tend to
have a larger difference in performance between
training and testing time, compared to shorter se-
quences.
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Token segmentation Thirdly, the segmentation
of tokens into subtokens positively correlates with
CM (pcm=0.40/pcm=0.37 for source/target seg-
mentation, respectively), as is shown in Figure 3c.

The segmentation compares the number of white-
El
|sBpE| "

space-based tokens to BPE tokens: 1 —

Repetitions A feature that is a positive predic-
tor for TM and GS is the repetition of the target
(ptM=0.15, pGs=0.22, pcm=—0.15). This is ex-
pected, considering that similar targets have similar
sources and are thus more easily memorised. Pre-
vious work already noted that repetition-related
characteristics (repeated sentence ‘templates’) lead
to high TM (Zhang et al., 2021).

Source-target overlap The remaining features
that correlate rather strongly with TM and
GS are: the target’s backtranslation edit dis-
tance to the source (prm=-—0.49, pgs=-—0.56,
see Figure 3d), the source-target edit distance
(prMm=—0.30, pgs=—0.26), and the fraction of un-
aligned tokens (prm=—0.32, pgs=—0.32 for tar-
get tokens, prm=—0.28, pgs=—0.29 for source
tokens).? Apart from negative correlations, there
are weak positive predictors, e.g. token overlap
(prm=0.15, pgs=0.13) and digit ratio (prm=0.13,
pgs=0.07). These features express (a lack of)
source-target overlap: source words are absent in
the target, or vice versa. Because they are predic-
tive of both TM and GS, they are not that strongly
correlated with CM: they predict where along the
diagonal an example lies but not its offset to the
diagonal. While you might expect that examples
with little source-target overlap require memorisa-
tion, their TM values remain low throughout the
100 epochs. The only relation to CM we observe
is that, typically, examples in the mid-range (i.e.
with some overlap) have higher CM than examples
with extreme values (i.e. full or no overlap). CM
thus highlights what models can memorise in a rea-
sonable amount of training time. This provides a
lesson for NMT practitioners: models are unlikely
to memorise the noisiest examples, which might be
one of the reasons why semi-automatically scraped
corpora, rife with noisy data, have driven the suc-
cess behind SOTA NMT systems (e.g. Schwenk
etal., 2021a,b).

3Backtranslations are computed using Marian-MT models
trained on OPUS (Tiedemann and Thottingal, 2020) to ensure
the accuracy of the feature. Alignments are computed with
eflomal (Ostling and Tiedemann, 2016).
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Figure 4: Centroids and marginal distributions of exam-
ples grouped through the manual annotation for EN-NL.

4.2 Manual annotation

The previous subsection discussed coarse patterns
that relate datapoints’ features to memorisation
metrics. To understand whether similar patterns ap-
pear when we qualitatively examine source-target
pairs, we annotate 250 EN-NL examples, uniformly
sampled from different parts of the coordinate sys-
tem, with lengths ! for which 10 < I < 15. We
annotate them using the following labels: (nearly) a
word-for-word translation; paraphrase; target omits
content from the source; target adds content; inac-
curate translation; target uses different formatting
in terms of punctuation or capitalisation. Multiple
labels can apply to one example. For an elabora-
tion on how the labels were assigned and processed,
see Appendix C. Figure 4 summarises the results.
Firstly, these results consolidate the observation re-
garding source-target overlap: word-for-word trans-
lations, e.g. Example (1), are positioned closer to
the top right corner compared to inaccuracies, e.g.
Example (2), and paraphrases, e.g. Example (3).

(1) s EN: Leave a few empty rows and columns
on either side of the values.
t NL: Laat enkele rijen en kolommen leeg
aan beide zijden van de waarden. (TM=0.85,
GS=0.55)

(2) s EN: The last 2 years of my life has been one
big lie.
t NL: "De afgelopen twee jaren van mijn
leven zijn een grote leven geweest. (leven
= lie, TM=0.28, GS=0.14)

(3) s EN: Idon’t know how she did it, but she
did it.
t NL: Geen idee hoe, maar ze deed ’t. (under-
lined portions are paraphrases, TM=0.23,
GS=0.14)




Yet, paraphrases and inaccurate translations have
similar centroids on the map; the differences be-
tween those two types are subtle and are not well
reflected in the memorisation metrics. Lastly, what
is not that easily captured by one automated feature,
but does show up in these results, is that targets that
remove content from the source, e.g. Example (4),
are easier to memorise during training than those
that add content, e.g. Example (5).

(4) s EN: Then we had our little adventure up in
Alaska and things started to change.

t NL: Toen waren we in Alaska en begonnen

dingen te veranderen. (TM=0.80, GS=0.22)

(5) s EN: There are periods and stages in the col-
lective life of humanity.
t NL: Evenzo zijn er perioden en fasen
in het collectieve leven van de mensheid.
(TM=0.45, GS=0.34)

4.3 Comparing metrics for five languages

The trends of what complicates or eases memori-
sation are consistent for all five languages, upon
which we elaborate in §5. Does this mean that one
source sentence will have a very similar memorisa-
tion score across the five different languages in our
parallel corpus? Not necessarily, as is shown in Fig-
ure 5, which, for the three memorisation metrics,
reports the correlation between scores associated
with the same source sequence (but different target
sequences) across the different languages.

Source sequences with different positions on the
memorisation maps from two language pairs give
insight into how the relation between the source and
target affects memorisation. Examples that move
from the top right in one language to the bottom
left in another show how targets go from easily
learnable to unlearnable: in Examples (6) and (7)
target 2 (t2) seems misaligned. In Example (8) o
is contextually relevant but not a translation.

(6) s EN: She’s not a child anymore.
t1 ES: Ya no es una nifa.
to DE: Du hast das Kind verwohnt, Matthew.
(You spoiled the child, Matthew)

(7) s EN: Itis an international obligation.
t1 ES: Es una obligacion internacional.
to FR: Nianias sur 1’opportunité de cet em-
bargo. (Nianias on the advisability of this
embargo)

(8) s EN: It’s a long story.

WA 0.63 | 0.66 0.66

(2) TM (b) GS (c)CM

Figure 5: Comparison of the memorisation metrics
across the five languages, using Pearson’s r.

t1 NL: Het is een lang verhaal.
to IT: Sarebbe troppo lungo spiegarsi. (It takes
too long to explain)

What about examples that move from the top right
to the bottom right, i.e. go from easily learnable to
only learnable if they are in the train set? Generally,
they seem to deviate from source sequences in more
subtle ways — e.g. they are missing a term or phrase,
as is the case in Examples (9), (10) and (11).

(9) s EN: Kenneth, what are you doing here?
t1 ES: Kenneth, ;qué haces aqui?
ta FR: Que fais-tu ici (What are you doing
here?)

(10)s EN: Is this a hunting game?
t1 FR: C’est un jeu de chasse?
ta NL: Is dit een spelletje? (Is this a game?)

(11)s EN: We need a viable suspect.
t1 ES: Necesitamos un sospechoso viable.
to DE: Wir brauchen einen Verdichtigen. (We
need a suspect)

5 Approximating memorisation measures

Having examined correlations between datapoints’
features and memorisation values, we now go one
step further and treat this as a regression problem:
given the characteristics of a datapoint, can we
predict memorisation values? We include the pre-
viously mentioned features and additional ones ob-
tained from an NMT system during training. We
examine the performance of our feedforward pre-
dictors and explore how well the predictors gener-
alise across languages. The analysis aids in consol-
idating findings from §4 and improves our under-
standing of how language-independent our findings
are. Since computing CM is resource-intensive, the
predictors can also serve as memorisation approxi-
mators (we circle back to this in §6.2).
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Figure 6: Predicting memorisation using an MLP, based
on examples’ features and models’ training signals. The
MLP is trained on EN-DE and applied to all languages.

Experimental setup To extract training signals,
we train one Transformer model per language pair
on the full dataset, acting as our diagnostic run
from which we extract the following signals: 1)
the confidence and 2) variability of the target likeli-
hood (Swayamdipta et al., 2020, mean and standard
deviation computed over epochs), 3) the target like-
lihood in the final epoch, 4) a forgetting metric (a
counter that accumulates drops in target likelihood
during training, Toneva et al., 2019), 5) the hypothe-
ses’ likelihood in the final epoch, and 6) metric 1
subtracted from 3, since initial experiments sug-
gested those two correlated most strongly with GS
and TM. Next, we train a shallow MLP to predict
the memorisation metrics. We train one MLP on
the datapoints’ features from §4, and one on the
features and the training signals, and report their
performance using Pearson’s correlation and the ab-
solute difference between predictions and memori-
sation scores. Appendix B details the experimental
setup of training the MLPs.

Results Here, we show the results of MLPs
trained on EN-DE and applied to all other language
pairs only. The predictions of the MLP trained
only on datapoints’ characteristics already posi-
tively correlate with the memorisation metrics, with
Pearson’s 7 around 0.7 and a mean absolute differ-
ence around 0.1, see Figure 6a. Combining the
features and training signals further boosts perfor-
mance (see Figure 6b).

Since we applied the EN-DE MLPs to the other
languages, these figures illustrate that an MLP
trained on one language is transferrable to mod-

els trained with other target languages. Note that
this does not mean that models for the different
languages behave similarly for the same source
sentences, but instead that models trained on dif-
ferent language pairs behave similarly for source-
target pairs with the same features. In practice, this
means that we can make an educated guess about
the amount of memorisation required for a new
datapoint or the same source sequence in another
language, using predictors trained on a subset of
the data or using a different but related language.*

6 Memorisation and performance

Finally, we examine the relation that different re-
gions of the map have to models’ performance.
Firstly (in §6.1), by leaving out data subsets while
training using our training examples from §3, and,
secondly (in §6.2), by sampling specialised train-
ing corpora from a larger dataset of 30M examples.
The previous sections showed that results across
language pairs are highly comparable, which is
why in this section, we employ EN-NL data only.

6.1 Importance of different regions

How do examples from specific regions of the mem-
orisation map influence NMT models trained on
that data? We now investigate that by training mod-
els while systematically removing groups of exam-
ples.

Experimental setup We train models on datasets
from which examples have been removed based on
the coordinates from the memorisation map. For
55 coordinates (i, j), where i, 5 € {.1,.2,...,1},
j <1, we create training subsets by removing the
nearest examples (up to 750k source tokens total).
For each training subset, we then train models with
three seeds. Depending on the number of examples
surrounding a coordinate, the datapoints can lie
closer or further away before reaching the limit.
We evaluate models according to three perfor-
mance metrics: (i) BLEU scores for the FLORES-
200 dev set (Goyal et al., 2022); (ii) the mean log-
probability of a target, averaged over datapoints
from the FLORES-200 dev set; and (iii) halluci-
nation tendency computed using the approach of
Lee et al. (2018), which involves the insertion of
a token into a source sentence and repeating that
for more than 300 tokens (high-frequency, mid-
frequency and low-frequency subtokens and punc-

*We comment on the set of languages used in the limita-
tions section, see §7.
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Figure 7: The 10 worst- and 10 best-performing regions
on the memorisation map per performance metric.

tuation marks), and four token positions. A hal-
lucination is recorded if BLEU (Lee et al., 2018)
drops below 1 after an insertion. We apply this to
1000 examples (500 from FLORES, 500 from our
parallel OPUS) and, following Lee et al. (2018),
measure the ratio of source sequences which can
be perturbed to a hallucination.

Results To express an example’s impact, we av-
erage the performance of all models for which that
example was not in the training set. The more
negatively the performance is affected, the more
important an example is. We aggregate over re-
gions of examples and exclude regions that repre-
sent <2k datapoints. We then compute the ten most
relevant regions (Figure 7a) and the ten least rel-
evant ones (Figure 7b). Most relevant means that
the BLEU score or log-probability decreases the
most if you remove this group or that the halluci-
nation tendency increases the most. Least relevant
means the opposite. In general, the figures suggest
that examples with a higher CM value are more
beneficial, and examples closest to the diagonal
are the least relevant. This is in accordance with
related work from computer vision (Feldman and
Zhang, 2020) and NLP classification tasks (Zheng
and Jiang, 2022), where examples with high CM
values had a larger (positive) contribution to the
accuracy than examples with lower CM values.
Why might this be the case? In image classi-
fication, Feldman and Zhang (2020) observe that
training examples with high CM usually are atyp-
ical ‘long-tail’ examples and mainly improve per-
formance on visually similar test examples. Anal-
ogous processes might be at play for translation.
Yet, there may be benefits to examples with high
CM values even without similar test examples. Pre-
liminary investigations (see Appendix D.2) sug-
gest that there is less redundancy among examples
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Figure 8: Areas from which we select examples when
specialising for a certain metric.

with high CM values (evidenced by more unique
n-grams), making them more informative training
data. Secondly, removing examples with a high
CM score negatively affects models’ predictions
for low-probability tokens, in particular; therefore,
including them as training material may quite lit-
erally reserve probability mass for the long tail of
the output distribution.

6.2 Specialising NMT systems using
memorisation metrics

In §6.1, we related the maps to models’ perfor-
mance, but all within our original 1M EN-NL dat-
apoints. To understand whether our findings ex-
trapolate to a larger dataset, we perform a proof-of-
concept study to show that we can put the lessons
learnt to use with new data: memorisation metrics
can be predicted using datapoints’ features and dis-
tinct regions of the map have different roles. We
now use these lessons for targeted model training.

Experimental setup We again train NMT sys-
tems in a low-resource setup, yet, different from the
previous sections, we now select examples from a
larger set of OPUS examples for EN-NL (30M ex-
amples) based on their memorisation score as pre-
dicted using the features-only MLP from §4. We
first sample 1M random examples, and then sample
one dataset based on the most beneficial region for
the log-probability metric, and one dataset based on
the region that is most beneficial for BLEU and the
hallucination tendency. We mark the regions on the
memorisation map in Figure 8. Examples are ran-
domly sampled from those areas until they match
the random dataset in the number of tokens. For
those three datasets, we train three model seeds.

Results We compare the specialised models to
a model trained on 1M random examples (Fig-
ure 9) and observe that, indeed, the models are
somewhat specialised, with the largest relative im-
provement observed for the hallucination tendency.
During training, examples with higher (predicted)
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CM scores can thus be beneficial. At the same
time, Raunak et al. (2021) reported that when try-
ing to elicit hallucinations from the model using its
training examples, examples with high CM scores
lead to more hallucinations. To determine whether
our results also reflect that, Figure 10 displays the
distribution of CM scores associated with each hal-
lucination from the current and previous subsection.
For the models from §6.1 (trained on these exam-
ples), but not §6.2 (not trained on these examples),
hallucinations are indeed more associated with ex-
amples with higher CM scores. Together, these re-
sults mean that the examples with high CM scores
are beneficial training examples, but when generat-
ing translations using models trained on them, they
are more likely to turn into a hallucination than
examples with lower CM scores.

All in all, the small-scale experiment presented
here provides a proof-of-concept: even when using
heuristics (i.e. applying the MLP to new datapoints)
we can start to use memorisation metrics in a delib-
erate way when training NMT systems. However,
the hallucination results underscore that the rela-
tion between examples with high CM scores and
model performance is not straightforward: exam-
ples that are most beneficial for systems’ quality
can introduce vulnerabilities at the same time.

7 Conclusion

Learning the input-output mapping that is repre-
sented by NMT training data involves so much

more than simply learning a function that trans-
lates words from one language into another and
rearranges words. It requires understanding which
words form a phrase and should be translated to-
gether, which words from the source should be
ignored, which words can be copied from source to
target, and in which contexts “eggs in a basket” are
no typical eggs. NMT systems need memorisation
of patterns that are out of the ordinary.

There are, however, many open questions re-
garding what memorisation is, when it is desirable
and how to measure it. In this work, we took a
step toward answering those by creating a map
of the memorisation landscape for 5M datapoints.
We used graded metrics based on CM to position
each example on the memorisation map. We iden-
tified salient features for each of the metrics (§4),
illustrated that we can approximate memorisation
metrics using surface-level features (§5) and drew
connections between models’ performance and re-
gions of the memorisation map (§6). We found
that findings from other tasks and domains about
CM transfer to NMT: CM highlights examples that
contribute most to models’ performance.

Furthermore, our results illustrate that memori-
sation is not one-dimensional: CM assigns simi-
lar scores to paraphrases and slightly inaccurate
translations, examples with high CM scores can be
beneficial and introduce vulnerabilities at the same
time, and there are nuances about which region of
the map is most beneficial depending on the perfor-
mance metric used. We recommend caution when
discussing different phenomena under the umbrella
term of ‘memorisation’. Instead, we encourage
future work examining more memorisation maps
to further our understanding of the intricacies of
task-specific memorisation patterns.

Limitations

We identify four main limitations with our work:

* The experimental setup used is rather com-
putationally expensive due to the repeated
model training as explained in §3. We coun-
teracted this by opting for a much, much
smaller dataset than state-of-the-art NMT sys-
tems would use (OPUS contains hundreds of
millions of examples per high-resource lan-
guage pair), but it still limits the applicability
of the methodology to other tasks and for other
researchers.



* We did not investigate the impact of major
changes to the experimental setup, such as
using a different model or model size or using
a different or a larger dataset. Even though
our findings are expected to extend beyond
our specific experimental setup, the precise
memorisation scores we obtained are specific
to our setup — e.g. a larger system is likely
to memorise more, and systems trained for
much much longer are likely to see increased
memorisation. We do experiment with the
data used in Appendix D.1.

* We discussed memorisation based on signals
that can be observed after model training
based on models’ outputs. There is the un-
derlying assumption that memorisation hap-
pens over time and can thus be observed post-
training. However, memorisation not only
happens over time, it is also expected to mani-
fest in a particular way in the space of the
model parameters (e.g. see Bansal et al.,
2022), which might not be observable by in-
specting output probabilities of tokens. We
recommend the analysis of spatial memorisa-
tion in NMT as future work.

* All the languages that we consider in this
article are considered to be high-resource
languages. While these might not be the
languages most in need of language technol-
ogy or analysis, the experimental setup of us-
ing a parallel corpus limited our possibilities
to include lower-resource languages. When
taking the intersection of existing NMT cor-
pora, there were not enough remaining exam-
ples when including low-resource languages.
In preliminary experiments, we also experi-
mented with Afrikaans (together with German
and Dutch), and many of the qualitative pat-
terns observed also applied to memorisation
measures computed for Afrikaans. If we had
used five languages but without the parallel
data, it would, however, have been hard to dis-
tinguish changes in the metrics due to differ-
ences in the dataset from differences between
the languages.
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A Experimental setup

A.1 Data collection

To construct a parallel corpus of 1M sentence pairs across five language pairs, we obtain the eng-deu,
eng-fra, eng-nld, eng-spa and eng-ita data from https://github.com/Helsinki-NLP/Tatoeba-Challenge/
tree/master/data (version v2021-08-07.md). The raw intersection contained 4M sentence pairs, from
which we select sentences based on four criteria:

1. The length of the source divided by the length of the target is between % and %

2. The punctuation ratio of the source and target sequence lies below 0.5.

3. Less than 30% of the words in the source can appear in the target, as well.

4. More than 90% of the numbers contained in the target should also appear in the source sequence.
The Tatoeba repository has the license Attribution-NonCommercial-ShareAlike 4.0
International, which allows us to use and redistribute the data, given appropriate attribution.

A.2  Model training

Before commencing training, we tokenise the data using the Moses tokeniser,’ and then compute subtokens
using byte pair encodings (BPE)® (Sennrich et al., 2016) to create a joint vocabulary per language pair,
with a size of 64k tokens. Model training was performed using Fairseq, version 0.12.1.7 We train
transformer-base: 6 encoder and 6 decoder layers, with embedding size and hidden size of 512, and a
feedforward size of 2048. All models were trained used the following setup, with the number of total
training steps being dependent on the experiment conducted:
* To obtain memorisation scores in §3, we trained for 100 epochs on training datasets of 500k sentence
pairs. This involves model training beyond the point of convergence to investigate memorisation.
* The remaining models discussed in the paper are all trained for 50 epochs.

We train using the following command, modelled after exemplar Fairseq translation setups. We did not
further tune hyperparameters but did increase max-tokens to better utilise the GPU capacity.
fairseq-train <DATA_DIR> \

--arch <MODEL> --save-dir <MODEL_DIR> --share-all-embeddings \

--fp16 --max-update 200000 \

--optimizer adam --adam-betas '(0.9,0.98)' --clip-norm 0.0 \

--1r 0.0005 --1lr-scheduler inverse_sqrt \

--warmup -updates 4000 --warmup-init-1lr 'le-07"' \

--label-smoothing 0.1 --criterion label_smoothed_cross_entropy \

--dropout 0.3 --weight-decay 0.0001 \

--max-tokens 10000 --update-freq 2 \

--save-interval 50 --max-epoch <MAXEPOCH> \

--seed <SEED> --validate-interval 5 \
--eval-bleu --eval-bleu-args '{"beam”:5}' --eval-bleu-remove-bpe

Tesla V100-SXM2-32GB GPUs are used for model train-

ing in §3. We train each model on a single GPU, on which 40

one epoch of a 500k training set lasted up to 4 minutes, and 530

full training approximately 6 hours. Training all seeds for §20 /0-=0=0=—0—0—0—0—0 &
the five language pairs thus cost 1.2k GPU hours. In §6 we ol
train 3 seeds for 54 coordinates using NVIDIA A100-SXM- 5 10 20 30 4°ep5:ch6° 70 80 90 100
80GB GPUs, and the training of one model can take up to

2.5 hours. This thus cost approximately 400 GPU hours. Figure 11: BLEU on the evaluation dataset

Figure 11 illustrates the BLEU scores on a development ~ FLORES-200, when training to obtain the
set over the course of training. At the time of writing, the memorisation scores.
top FLORES-200 ‘dev’ performances on the OPUS-MT leaderboard are 40.4, 27.1, 51.5, 28.0 and 29.2 for
DE, NL, FRr, ES and IT, respectively. Of course, our models trained on a fraction of SOTA MT datasets
underperform, but our relative differences in BLEU across languages are similar.

5https://github.com/moses—smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
Shttps://github.com/rsennrich/subword-nmt
7https://github.com/facebookr‘esearch/fairseq


https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/data
https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/data
https://github.com/facebookresearch/fairseq/tree/main/examples/translation
https://opus.nlpl.eu/leaderboard/
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
https://github.com/rsennrich/subword-nmt
https://github.com/facebookresearch/fairseq

B Extended discussion of approximating memorisation measures from §5

In §5, we questioned whether there is a way to predict memorisation metrics without actually computing
counterfactual memorisation and the generalisation score, which are ‘expensive’ since they can only
be computed when examples are not present in the training set. To do that, we trained one model per
language pair for 50 epochs, acting as our diagnostic run from which we estimate memorisation measures
using training signals obtained for the full dataset:

* Confidence and variability: the mean and standard deviation of the target likelihood averaged over
all epochs (adapted metrics from Swayamdipta et al., 2020);

¢ Final train likelihood: the likelihood of the target in the final training epoch;

* Forgetting: the sum of all decreases in target likelihood observed for consecutive epochs (adapted
metric from Toneva et al., 2019);

» Hypotheses’ likelihood obtained in the final epoch. Uncertainty can aid in detecting out-of-domain
data (D’souza et al., 2021), and hallucinations (Guerreiro et al., 2023);

* We also included final train likelihood - confidence since initial experiments suggested those two
correlated most strongly with training memorisation and generalisation score, and counterfactual
memorisation is known to be a combination of those two signals.

Apart from the hypotheses’ likelihood, these signals are ones you would naturally obtain while training
a model using teacher forcing. Firstly, we inspect to what extent these signals naturally correlate with
memorisation measures. Afterwards, we train shallow MLPs to predict the memorisation metrics: firstly
only using the datapoints’ features discussed in §4, and, secondly, using the features and training signals.
Those MLPs were trained for 20 epochs maximum, using Adam according to default hyperparameters
in the sklearn.neural_network.MLPClassifier class. The MLP takes 28 inputs when training with
features only, and 28 + 6 when adding the training signals, and has two hidden layers of 100 units. It
predicts all memorisation metrics at the same time.

Results Do these signals correlate with memorisation measures? Figure 12a shows this for EN-NL. The
strongest correlations (around 0.95 Pearson’s 7) is observed between the confidence and the generalisation
score. The confidence score expresses when an example is learnt during training, as it will be high for
examples that are learnt immediately, low for examples that are learnt very late, and close to zero for
examples that are not learnt at all. These results suggest that that temporal indication of when an example
is learnt, strongly correlates with the performance a model would have on an example, if that example had
been in the test set.

For counterfactual memorisation, correlations are much lower (understandably so since it depends
both on train and test likelihood), even when we look at the combined feature. As discussed in the main
text, we can improve upon this by training an MLP to predict the memorisation measures from both the
features and the training signals. The main text discussed this for MLPs trained on EN-DE and applied to
other languages, but we can train on any language and still obtain strong results on the other languages.
Figure 12b illustrates this for CM.
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C Extended data characterisation feature analysis from §4

Experimental setup

* Counterfactual memorisation is capped at O since a negative counterfactual memorisation score is
likely to be a side effect of noise in the estimation of the memorisation measures, and typically the
train likelihood of the target should outperform the test likelihood. The examples for which we had
to cap this measure are rare.

* The features we analyse fall into three categories:
(1) Source/target-only features

— |s| source length (x2, BPE tokenised and white space tokenised)

— |¢| target length (x2, BPE tokenised and white space tokenised)

- % (x2, BPE tokenised and white space tokenised)

— Average log frequency of source tokens (x2, BPE tokenised and white space tokenised)
— Average log frequency of target tokens (x2, BPE tokenised and white space tokenised)

— Minimum log frequency of source tokens (x2, BPE tokenised and white space tokenised)
— Minimum log frequency of target tokens (x2, BPE tokenised and white space tokenised)

— Number of repetitions of this target

|sws|
lsePE|’
— Segmentation of the target: 1 — | t‘?}”j;‘ , 0 means no segmentation beyond the token level
— Digit ratio: how many tokens in the source are digits

— Punctuation ratio: how many tokens in the source are punctuation

— Segmentation of the source: 1 —

0 means no segmentation beyond the token level

(2) Source-target interaction features

— Token-level Levenshtein edit-distance between source and target

— Comparison by backtranslation, obtained with Marian-MT models trained on OPUS by Tiede-
mann and Thottingal (2020), by computing the token-level Levenshtein edit-distance between
source and target

— |s| — |t| (2x, BPE tokenised and white space tokenised)

— Ratio of unaligned source words, alignments are obtained with eflomal (Ostling and Tiedemann,
2016)

— Ratio of unaligned target words, alignments are obtained with eflomal (Ostling and Tiedemann,
2016)

— Alignment monotonicity, computed as the Fuzzy Reordering Score, implementation obtained
from Voita et al. (2021)

— Token overlap: how many tokens from the source also occur in the target

— Word overlap: how many words from the source also occur in the target, excluding punctuation



Additional feature visualisations We provide the correlations between these features and our memori-
sation metrics (see Figure 13a), along with the correlations between features (see Figure 13b), and also
include additional feature visualisations in Figure 14.
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(a) Correlations between memorisation metrics and features.
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(b) Correlations among features, displaying correlations >0.5 or <-0.5. The figure is mirrored in the diagonal, but both sides are
shown to ease inspection by the viewer.

Figure 13: Correlations between memorisation metrics and features, and correlations among features.
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Figure 14: Visualisation of various features. We show their distribution over the three memorisation metrics

employed.



Manual annotation We uniformly sample 250 examples from the EN-NL memorisation map, with
source lengths [ such that 10 < | < 15. We annotate them using the following labels, where multiple
labels can apply to the same example:

* (Almost) Word for word: if the target is almost a word-for-word translation of the source, with very
minor rephrasing or change in word order. For example “In only days, without food or water, Society
collapses into chaos.” < “In slechts enkele dagen, zonder eten of drinken, stort de maatschappij in
chaos.”

» Paraphrase: if the target generally expresses the same meaning as the source, but using different
wording, e.g. “Let me now make two observations concerning the Green Paper on sea ports.” <+ “Tot
slot wil ik nog enkele opmerkingen maken over het Groenboek over havens”.

 Inaccurate: if the target is an incorrect translation or discusses something that the source does not
warrant, e.g. ‘sancties’ in this source-target pair “We ask you to form a worldwide front against war
and NATO.” +» “Wij vragen u om een wereldwijd front tegen de oorlog en sancties te vormen.”

* Adds content: if the target introduces new information. “And My curse will be upon you until
the Day of Judgment.” <+ “En voorwaar, op jou rust Mijn vervloeking, tot de Dag des Oordeels.”
Depending on how relevant the added content is, the pair can still be word-for-word / paraphrase /
inaccurate.

* Removes content: if the target removes content from the source, as is the case in “He married his
beloved wife, Penny, in 1977 and raised a family.” <+ “In 1977 trouwde hij met Penny en samen
brachten ze een gezin groot.” Here ‘his beloved wife’ is removed in the target. Depending on how
relevant the removed content is, the pair can still be word-for-word / paraphrase / inaccurate.

* Different formatting: if the target changes the punctuation or the capitalisation, e.g. “It is difficult
to negotiate with people who CONFUSE AUSTRIA WITH AUSTRALIA.”++“Samenwerken met
mensen die Oostenrijk verwarren met Australi€ is lastig.” This can co-occur with other changes.

To create the visualisation in Figure 4, we post-process the labels in the following way: (1) we create a
separate label ‘word for word’. This contains the examples that are only annotated with the ‘almost word
for word’ label and no others to filter the examples that are literally word for word, from the ones that do
have slight changes, such as formatting changes or the removal of a few words. (2) we restrict ‘addition’
and ‘removal’ of content to cases that are not labelled as ‘almost word for word’, since in those cases the
addition/removal is considered very minor and non-essential. This helps us to identify the cases where
addition/removal actually affects the meaning difference between the source and target.



D Additional results

D.1 Noisy memorisation continuum

In §3 and Appendix A.1 we detailed how we obtained the parallel OPUS data, that has targets for the
same source sequences in five different languages, and filters noisy data in the process, such as data that
has a lot of overlap between the source and target, data with an extreme length difference between source
and target, etc. What happens if we compute memorisation measures on a random OPUS subset, instead?
We take the OPUS-100 subset for EN-NL that Zhang et al. (2020) released, containing 1M randomly
sampled examples.

Differences Figures 15a and b show the memorisation maps for parallel OPUS and OPUS-100, re-
spectively. The two most striking differences are: (1) OPUS-100 has many more datapoints with a
counterfactual memorisation score close to 1 (dark red, in the bottom right corner). (2) There are many
more examples with a low generalisation score. This might appear unintuitive to the reader, but it does not
necessarily mean the OPUS-100 models are worse in terms of their translations’ quality; it just means the
dataset is more heterogeneous, and there are more source-target pairs with unexpected tokens in the target
(remember that we are computing a geometric mean over the target tokens’ probabilities).

These two sets of 1M examples actually have some examples in common. In Figure 15c, we illustrate
how the scores compare between parallel OPUS and OPUS-100. These scores do strongly positively
correlate, but are still quite different in terms of absolute numbers. Hence, how many examples will be
memorised, and what exact score is assigned to an individual example does depend on dataset composition.

Similarities Yet, what is perhaps more relevant is that when we measure the correlations between the
features we assigned to datapoints and the memorisation metrics — as is illustrated in Figure 16 — the same
patterns emerge as we pointed out in §4, with stronger correlations across the board: (backtranslation)
edit distance and unaligned words matter for training memorisation and generalisation score, and length,
word frequency and segmentation features matter most for counterfactual memorisation.
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Figure 16: Correlations between memorisation metrics and features.



D.2 Performance impact

In §6 we observed that examples with higher CM scores tend to be more beneficial for multiple MT
performance metrics. In general, this fits with the long tail theory of Feldman (2020); Feldman and Zhang
(2020) but why might this be the case? In computer vision classification tasks, Feldman and Zhang (2020)
observe that examples with high CM scores are beneficial when making predictions for visually similar
test examples. We would like to highlight two additional patterns observed in relation to high CM scores.

Firstly, we would like to examine the log-probability performance impact more closely. Figure 18
provides the log-probability per coordinate, where darker means more relevant. Why are the bottom
rows, and the examples with high CM in particular, most relevant? This metric is computed using the
target tokens’ probabilities, that are easily negatively affected if there are some unexpected target tokens.
Coordinates in the bottom right might be relevant because they include somewhat ‘noisy’ data, which
increases uncertainty in the model during training, which thus smooths the output probability distribution.
To examine whether our data reflects that, we put tokens from the FLORES ‘dev’ set in buckets based on
the mean token probability that they have in the predictions of all models trained in §6.1. We compare
these token probabilities to those from models that leave out examples with a certain CM. If examples
with high CM are removed during model training (e.g. row 0.7 in Figure 18), the token probabilities for
buckets with a relatively low probability decrease. Vice versa, when removing examples with low CM, the
token probabilities for buckets with a relatively low probability increase. This suggests that by removing
examples with a high CM, the output distribution becomes less smooth.

Secondly, we would like to point out that examples with a high CM score generally have less redundancy
than examples with a low CM score (in particular, compared to examples with a high training memorisation
and generalisation score). The corpus that we constructed has 1M unique source sentences, so none of
them are repeated, but, nonetheless, there are sentences that are more alike than others in terms of n-gram
count, explaining that redundancy. To illustrate that, Figure 19 conveys the ratio of unique trigrams vs. all
trigrams in the data from a particular coordinate.
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D.3 Replacing likelihood with BLEU

Counterfactual memorisation is the difference between the train and test probability of the target. Yet, in
NMT, we generate a sequence, and we typically do not use the probability of the target as an adequate
measure of success since that metric is severely affected by the sequence length. In the main paper, we
instead used the geometric mean of the target token probabilities to compute the memorisation metrics.
Here, we consider generating sequences using greedy decoding and replace the train and test probabilities
with BLEU scores.

Figures 20a and 20b illustrate how the memorisation map changes when we switch to BLEU-based
metrics, using the EN-NL data. The examples generally lie closer to the diagonal, and the computation of
the memorisation metrics is less stable across models: comparing CM scores from models with 20 seeds to
those of 20 other seeds leads to Pearson’s 7=0.84 (it was 0.94 for the LL-based scores). When comparing
the two sets of LL- and BLEU-based memorisation metrics, the TM and GS metrics correlate strongly with
p = 0.89, p = 0.80, although the CM’s correlation is substantially lower (p = 0.54). Examples that the
model fully memorises (BLEU>99 or LL>0.9) do reside in the same area on the two maps, as shown by
Figures 20c and 20d.
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Figure 20: Illustration of how the memorisation map changes when we compute the memorisation metrics using
BLEU instead of LL as a performance metric, for EN-NL. Colour represents CM scores.

In §4, we discussed how various surface-level features of the source and target correlate with the
different memorisation metrics. Figure 21 provides the same results, but then for the BLEU-based metrics.
Although the majority of the correlations are lower in terms of absolute p, the same patterns apply in
terms of the previously identified positive/negative correlations.
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Figure 21: Feature correlations for the BLEU-based memorisation metrics.



