
Constructing Multilingual CCG Treebanks from Universal Dependencies

Anonymous ACL submission

Abstract

This paper introduces an algorithm to con-001
vert Universal Dependencies (UD) treebanks002
to Combinatory Categorial Grammar (CCG)003
treebanks. As CCG encodes almost all gram-004
matical information into the lexicon, obtaining005
a high quality CCG derivation from a depen-006
dency tree is a challenging task. Our algo-007
rithm contains four main steps: binarization008
of dependency trees, functor/argument iden-009
tification, category assignment through hand-010
crafted rules, and category inference for unas-011
signed constituents. To evaluate our converted012
treebanks, we perform lexical, sentential, and013
syntactic rule coverage analysis, as well as014
CCG parsing experiments. We achieve over015
80% conversion rate on 68 treebanks of 44 lan-016
guages, and over 90% lexical coverage on 81017
treebanks of 52 languages.018

1 Introduction019

Combinatory Categorial Grammar (CCG, Steed-020

man, 2000) is a lexicalized grammar formalism021

that can capture both syntactic and semantic infor-022

mation, while allowing fast and efficient parsing.023

Derived syntactic structures and semantic represen-024

tations can be used for various downstream tasks025

without task-specific training data, such as question026

answering (Clark et al., 2004), relation extraction027

(Krishnamurthy and Mitchell, 2012), and recog-028

nizing textual entailment (Martínez-Gómez et al.,029

2017). The English CCGbank (Hockenmaier and030

Steedman, 2007), one of the first available tree-031

banks for CCG, plays an important role in the de-032

velopment of many wide-coverage CCG parsers033

for English. Having a similar resource for other034

languages and domains accelerates NLP research,035

in particular on resource-scarce languages/domains036

where one cannot rely on massive training data037

needed for training large neural network models038

(Peters et al., 2018; Devlin et al., 2019). Multi-039

lingual CCG resources also contribute to cross-040

linguistic research on syntactic/semantic theories 041

and multilingual CCG parsing. 042

Since manual annotation is expensive, conver- 043

sion from a source treebank is a preferable ap- 044

proach. Besides English, independent works have 045

been done in the past to create CCG treebanks for 046

several languages from source treebanks of dif- 047

ferent grammar formalisms, such as for German 048

(Hockenmaier, 2006), Italian (Bos et al., 2009), 049

Chinese (Tse and Curran, 2010), Japanese (Ue- 050

matsu et al., 2013), and Hindi (Ambati et al., 2018). 051

Such works often involve conversion rules that are 052

specific to the languages and treebanks being con- 053

verted, making the process difficult to adapt and 054

generalize to other languages. 055

In this paper, we propose a method to create a 056

multilingual collection of CCG treebanks by con- 057

verting from dependency treebanks. To minimize 058

the need for language-specific conversion rules, 059

we select the Universal Dependencies (UD, Nivre 060

et al., 2016) as our source treebanks. The UD, as of 061

v2.8, contains over 200 treebanks in 114 languages 062

that follow cross-linguistically consistent annota- 063

tion guidelines.1 Our goal is to develop a universal 064

set of hand-crafted rules that can be applied to a 065

wide range of languages in the UD, while sacrific- 066

ing as little as possible the conversion quality and 067

coverage of each converted treebank. Converted 068

CCG treebanks can be used directly to train mul- 069

tilingual CCG parsers as we demonstrate in the 070

experiments, while one can also use our resource 071

as a starting point to further improve the quality of 072

each treebank by adding language-specific conver- 073

sion rules. Our work thus opens up a new research 074

direction to the development of CCG resources, 075

parsers, and semantic analysis that uses them. To 076

obtain a CCG parser for a specific language or a 077

domain, one only needs to develop a dependency 078

treebank based on UD, possibly with additional 079

language-specific conversion rules. 080

1https://universaldependencies.org/.

1

https://universaldependencies.org/

Our job is to keep calm

root

nsubjdet
ccomp

xcompmark

Our job is to keep calm
S|NP??NP ??

?

S|NP

?

NP

S
<

>

>

>

>

Our job is to keep calm
S|NP((S|NP)/(S|NP))/((S|NP)/(S|NP))NP (S\NP)/(S|NP)NP/NP

(S|NP)/(S|NP)

S|NP

S\NP

NP

S
<

>

>

>

>
(S|NP)/(S|NP)

(1-2)	Binarization	&
functor/argument
identification

(3)	Category
assignment

(4)	Category	inference	for
unassigned	categories

nsubj

ccomp
funct

is
funct

xcomp
arg

mark
funct

calm
arg

to
funct

keep
arg

det
arg

Our
funct

job
arg

Figure 1: Example of our complete conversion process for an English sentence. The default slash direction is “|”.
Most slash directions (“/” or “\”) can be inferred through relative positions between functors and arguments. Any
undecided slash directions left at the end of the conversion process are decided via majority voting (Section 3.4).

A high-level overview of our conversion process081

is illustrated in Figure 1. Since CCG derivations082

are binary in nature, we first binarize dependency083

trees based on a pre-defined obliqueness hierarchy.084

Subsequently, for each relation in the dependency085

trees, we apply a hand-crafted rule that assigns086

CCG categories to associated constituents. To take087

into account the varied word-order tendencies of088

different languages, we use a neutral slash direc-089

tion “|” when designing our rules. Finally, we090

infer the categories of any unassigned categories091

in a top-down, recursive manner, following CCG’s092

combinatory rules. Section 3 discusses each of the093

above steps in more detail.094

We evaluate the effectiveness of our algorithm095

by performing coverage analysis and parsing exper-096

iments on the converted treebanks. Analysis results097

on a subset of 22 treebanks of 22 languages, as well098

as discussions on the strengths and limitations of099

our algorithm, are presented in Section 4. We in-100

clude our implementation and detailed experiment101

results in the supplementary materials.102

2 Background103

2.1 Combinatory Categorial Grammar104

CCG is a strongly lexicalized grammar formal-105

ism, in which words are assigned syntactic cat-106

egories that govern how they interact with other107

constituents. There are two types of categories:108

atomic categories, such as S and NP , and com-109

plex categories, which are usually in the form of110

X/Y or X\Y , with X and Y being categories111

themselves. X/Y (or X\Y) takes an argument Y112

to the right (or left), and yields a result X .113

CCG also contains a set of rules that defines114

how categories can combine with each other. Ta-115

ble 1 shows a list of basic combinatory rules used116

Forward Application (>) X/Y Y ⇒ X
Backward Application (<) Y X\Y ⇒ X
Forward Composition (>B) X/Y Y/Z ⇒ X/Z
Backward Composition (<B) Y\Z X\Y ⇒ X\Z
Forward Crossed Composition (>BX) X/Y Y\Z ⇒ X\Z
Backward Crossed Composition (<BX) Y/Z X\Y ⇒ X/Z
Forward Type-raising (>T) X ⇒ T/(T\X)
Backward Type-raising (<T) X ⇒ T\(T/X)

Table 1: Basic CCG combinatory rules.

in CCG. In addition, non-combinatory rules such 117

as unary and binary type-changing rules are often 118

included (e.g. S\NP ⇒ NP\NP), as they have 119

been shown to alleviate the problem of category 120

proliferation during treebank conversion (Hocken- 121

maier and Steedman, 2002). 122

2.2 Universal Dependencies 123

UD is a project to create cross-linguistically consis- 124

tent dependency annotation guidelines. As of v2.8, 125

there are 202 treebanks in 114 languages. One 126

main difference between UD and other dependency 127

grammars is its treatment of function words. To 128

achieve better parallelism among annotations of 129

different languages, function words are treated as 130

dependents of content words (Nivre et al., 2016). 131

UD is being actively developed, with adjustments 132

to dependency definitions and new features such 133

as Enhanced Dependencies (Nivre et al., 2020). 134

The current version of UD consists of 37 universal 135

dependency relations, 17 universal part-of-speech 136

(POS) tags, and 24 universal features. 137

2.3 Related Work 138

The English CCGbank (Hockenmaier and Steed- 139

man, 2007) is one of the pioneering works to cre- 140

ate a treebank for CCG, by converting from the 141

Penn Treebank (Marcus et al., 1993). From then 142

2

on, there have been works to create CCG tree-143

banks for German (Hockenmaier, 2006), Italian144

(Bos et al., 2009), Chinese (Tse and Curran, 2010),145

Japanese (Uematsu et al., 2013), and Hindi (Am-146

bati et al., 2018). For works that involve converting147

from a dependency treebank, a common approach148

is to first convert to constituency trees, binarize149

the constituency trees, then apply conversion rules150

to the binarized trees. Due to a large number of151

cross-serial dependencies in the Hindi dependency152

treebank, Ambati et al. (2018) diverge from this153

approach by first extracting a CCG lexicon from154

the dependency treebank, then use a non-statistical155

CCG parser to attain CCG derivations. In gen-156

eral, all previous works involve conversion meth-157

ods that are specific to the languages and treebanks158

being converted, making it difficult to generalize159

to others. Moreover, source treebanks for German,160

Italian, and Japanese also contain additional infor-161

mation regarding phrase structures (German), or162

predicate-argument structures (Italian, Japanese),163

which help alleviate certain ambiguities, such as164

argument-adjunct distinction. This distinction, or165

lack thereof, is a big obstacle when converting UD166

treebanks to CCG derivations.167

Recently, Yoshikawa et al. (2019) propose a neu-168

ral network-based model to automatically convert169

dependency trees to CCG derivations for parser do-170

main adaptation. However, their method requires171

an existing CCG parser for fine-tuning, which is172

not available for most languages in UD. Evang173

and Bos (2016) propose an annotation projection174

approach to induce CCG via parallel corpora; how-175

ever, the relatively small number of parallel corpora176

available compared to UD makes its range of ap-177

plicability limited. Reddy et al. (2017) introduce178

an interface that converts UD dependency trees to179

logical forms. Compared to their work, our con-180

version to CCG allows more flexibility in the types181

of semantic representations that could be derived,182

such as first-order logic neo-Davidsonian represen-183

tations (Bos et al., 2004), or higher-order logic rep-184

resentations (Mineshima et al., 2015), while also185

retains the syntactic information encoded in UD.186

Moreover, we perform larger-scale experiments187

and analysis on 22 languages. Our binarization188

method takes inspiration from their work.189

3 The Conversion Process190

A simple, typical CCG derivation is illustrated in191

Figure 2. To obtain a unique and complete deriva-192

like books
NP(S\NP)/NP

S\NP

NP

S

>

<

I

like booksI

NPNP (S\NP)/NP

S\NP

S

(a) (b)

root
nsubj obj

Figure 2: (a) is a standard CCG representation. (b) is
an equivalent constituent structure.

tion from a dependency tree, we need to: 193

1. Identify constituents. 194

2. Identify functors and arguments. 195

3. Identify the category of each constituent. 196

The constituent structure of a CCG derivation 197

can be represented by a binary tree (Figure 2(b)). 198

Since dependency trees are structurally different, 199

a binarization step is required. As the binarized 200

trees also represent the constituent structures of the 201

sentences being converted, thus answering require- 202

ment (1), an obliqueness hierarchy is necessary to 203

impose a correct traversal order during binarization 204

of the dependency trees. The details of this step are 205

explained in Section 3.1. 206

Identifying functors and arguments is useful in 207

case we know the result of a CCG combination but 208

missing one of two component categories. How- 209

ever, the head-dependent relations between tokens 210

in dependency trees do not directly translate to 211

functor-argument relations between constituents in 212

CCG derivations. To meet requirement (2), we ap- 213

ply a set of rules to the binarized trees that assign 214

a functor/argument role to each node based on its 215

associated dependency label and the relationship 216

with its sibling. We describe these rules and how 217

we apply them in Section 3.2. 218

Finally, we fill in the category of each constituent 219

defined in the previous steps. Requirement (3) is 220

done in two stages: category assignment by hand- 221

crafted rules (Section 3.3), and category inference 222

for any unassigned categories (Section 3.4). 223

Preprocessing: We ignore most dependency sub- 224

types, such as obl:tmod, as these labels are not 225

used consistently across treebanks of different lan- 226

guages. We also remove quotation marks from de- 227

pendency trees, following Hockenmaier and Steed- 228

man (2007), and ignore empty nodes, which are 229

indexed with decimal numbers in UD. 230

3

I finally did it

nsubj

advmod

root

obj

finally I did it

advmod

nsubj

root

obj

I finally did it

finally I did it

(a)

(b)

(i)

(ii)

nsubj

advmod
obj

nsubj

obj

advmod

Figure 3: (a) and (b) show two sentences with a slight
difference in word order. Without position information,
both (a) and (b) would be binarized into (i) according to
the obliqueness hierarchy (obj > advmod > nsubj).
However, (i) leads to an invalid combination for (b),
as “finally” cannot combine with “did it” due to being
nonadjacent. (ii) shows the correct binarization for (b)
when the condition for words’ positions is applied, as
it puts nsubj before advmod in the traversal order.

3.1 Binarization231

We binarize dependency trees using a modified232

version of the binarization method proposed by233

Reddy et al. (2017). The method traverses the de-234

pendency trees recursively from top to bottom, and235

builds binarized trees by gradually adding subtrees236

in the order it traverses. Since a binarized tree de-237

cides which constituents combine with each other,238

their method depends on an obliqueness hierarchy239

to traverse in an order that can lead to syntacti-240

cally sound combinations. However, the original241

method is designed to extract logical forms, and242

thus does not take into account the position of each243

constituent in a sentence. This can lead to invalid244

CCG combinations, as combinatory rules in CCG245

are only applied to string-adjacent entities.246

We adapt Reddy et al.’s (2017) method to our247

task by adding a position-based condition: (1) for248

dependents of the same distance to the head, tra-249

verse in the order of the obliqueness hierarchy; (2)250

for dependents of different distances to the head,251

traverse closer dependents first. Here, “distance”252

is measured by the number of siblings between a253

dependent and its head (Figure 3).254

3.2 Identifying functors/arguments255

We use the binarized trees as skeletons to apply cat-256

egory assignment rules and category inference log-257

ics in later steps. To make category inference possi-258

ble, we need to identify how constituents should be259

combined, and thus identify the functor/argument260

I work on Sunday

case

obl

NP((S\NP)\(S\NP))/NP
>

(S\NP)\(S\NP)

S\NP

<
S\NP

NP

<
S

nsubj

root

私 は 説明 し

NP\NP
<

S\NPNP

<
S

ます

NP

case

nsubj aux

aux

root

"I explain"

I TOPIC explain do POLITE

Figure 4: Examples of situations where categories for
case markers may differ. On the left, case marker “on”
has category of the form X|Y , while on the right, case
marker “は” (topic marker) has category of the form
X|X to preserve the category of its head “私” (“I”).

role of each constituent. 261

Our rules for identifying functors and arguments 262

are designed around the relations between heads, 263

arguments, and modifiers. Specifically: 264

1. We set the head of a head-argument rela- 265

tion (nsubj, csubj, obj, iobj, xcomp, 266

ccomp, expl) as a functor, and its depen- 267

dent as an argument. 268

2. We set the head of a head-modifier relation 269

(the rest of the UD relations, with the excep- 270

tion of conj, cc, and punct) as an argu- 271

ment, and its dependent as a functor. 272

In general, the functor category in case (1) has 273

the form X|Y , where X and Y are usually different 274

categories. This means that it takes one category as 275

input and outputs a different category. Transitive 276

verbs ((S\NP)/NP) is one example. 277

In case (2), the functor category usually has the 278

form X|X , meaning it inputs and outputs the same 279

category. Nominal modifiers or multi-word expres- 280

sions (NP |NP) are typical cases. This rule is also 281

helpful in the later category inference step. Given 282

a CCG combination with the same result and ar- 283

gument category, we can easily infer the functor 284

category. One exception to rule (2) is case markers 285

(case). A case marker can have the form X|Y if 286

its head is a modifier to another constituent, and 287

the form X|X if its head is an argument to another 288

constituent (Figure 4). Figure 1 shows an example 289

of our functor/argument category assignment rules 290

applied to a binarized tree. 291

conj, cc, and punct are special cases that do 292

not belong to either of these rules. They follow sep- 293

arate non-combinatory rules for punctuations and 294

coordinations, similar to the design of the English 295

CCGbank (Hockenmaier and Steedman, 2007). 296

4

3.3 Category Assignment297

This section describes our hand-crafted rules for298

category assignment. Similar to previous works299

on CCG induction (Bisk and Hockenmaier, 2012),300

we assume two atomic categories S and NP for301

our target grammar. Categories are assigned to302

internal nodes of the binarized trees obtained in303

the previous steps. Due to the varied word-order304

tendencies of different languages, we set the default305

slash direction of complex categories to “|”, which306

can either take value “/” or “\”. This value is either307

decided through heuristic rules based on relative308

positions of functors and arguments, or through309

majority voting at the end of the conversion process.310

The rules discussed in this section do not depend311

on one another, and can be applied in any order.312

Root: We determine the category of a whole sen-313

tence through the root of the dependency tree. A314

sentence is assigned category NP if:315

• The root has one of the following UPOS316

tags: NOUN, NUM, PRON, PROPN, SYM,317

• The root does not have any nominal subject,318

clausal subject, or expletive children.319

The sentence is assigned category S|NP if:320

• The root does not have one of the following321

POS tags: NOUN, NUM, PRON, PROPN, SYM,322

• The root does not have any nominal subject,323

clausal subject, or expletive children.324

Otherwise, the sentence is assigned category S.325

Punctuations: We follow Hockenmaier and326

Steedman (2007) and set the category of each punc-327

tuation to be the punctuation mark itself.328

Exceptions include dashes, parentheses, and329

variants of open and closing brackets in different330

languages (e.g., “【】” in Japanese, “《》” in331

Japanese, Chinese, and Korean). These punctua-332

tions are treated like normal constituents and carry333

standard CCG categories.334

Adnominal clause: An adnominal clause (acl)335

modifies a nominal, and thus generally has category336

NP |NP . If an adnominal clause is not marked by337

any markers (mark), we apply a type-changing338

rule to change its original category to NP |NP339

(Figure 5). The original category of an adnominal340

clause excluding markers is set to S if it has a341

clausal or a nominal subject, and S|NP otherwise.342

Relative clause: A relative clause is tagged343

as a subtype of an adjectival clause in UD344

I saw him working

acl

NP S|NP

NP\NP

NP

the fact that I like

acl

NP

NP\NP

NP

coffee
S

< <

(NP\NP)/S
>

mark

Figure 5: On the left is an example of a unary type-
changing rule for acl. The slash direction of NP |NP
is by default “|”, but can be inferred to be “\” based
on the adjective clause’s relative position to its head.
On the right is an example of an adjectival clause with
a marker “that”, which absorbs category S of “I like
coffee” and changes it to NP |NP .

(acl:relcl), but it requires a separate rule to 345

produce a correct CCG derivation: 346

• The relative pronoun (identified through fea- 347

ture PronType=Rel) is assigned category 348

(NP |NP)|(S|NP), as it takes a sentence 349

missing a subject or an object as an argument, 350

and yields a nominal modifier. 351

• If a relative clause does not have a relative pro- 352

noun, its original category is set to (S|NP), 353

and is type-changed to (NP |NP). 354

• In case of an interrogative pronoun, the 355

constituent consisting of the interrogative 356

pronoun and its head is assigned category 357

(NP |NP)|(S|NP). 358

Adverbial clause: Similarly, an adverbial clause 359

advcl usually has category (S|NP)|(S|NP), as 360

it modifies a verb or a predicate. If an adverbial 361

clause does not have any markers (mark), we apply 362

a type-changing rule to change its original category 363

to (S|NP)|(S|NP). We set the original category 364

of an adverbial clause excluding markers to S if 365

it has a clausal or a nominal subject, and S|NP 366

otherwise. An adverbial clause can also appear 367

in sentential modifier locations, in which case its 368

category would be S|S. 369

Clausal complement: We assign category S to 370

a clausal complement (ccomp) if it has a subject, 371

and category S|NP otherwise. An open clausal 372

complement (xcomp) is assigned category NP if 373

its head element has one of the following UPOS 374

tags: NOUN, NUM, PRON, PROPN, SYM. Otherwise, 375

it is also assigned category S|NP (Figure 6). 376

Clausal subject: We only apply rules for a 377

clausal subject (csubj) if it has another subject 378

within. In this case, if a clausal subject is marked 379

5

He says

ccomp

(S|NP)/S

S|NP

S

that he likes teaMy job is

ccomp

(S|NP)/(S|NP)

S|NP

S|NP

to write papers

> >

She looks

xcomp

(S|NP)/(S|NP)

S|NP

S|NP

great

>

She becomes

xcomp

(S|NP)/NP

S|NP

NP

a doctor

>

Figure 6: Examples of our rules for ccomp/xcomp.

Whether I like it

csubj

S

S

S\S

does not matter

>

mark
nsubj

S/S

<
S

What happened

csubj

S

S\NP

was terrible

nsubj

NP
<

Figure 7: Examples of our rule applied to csubj.

by a marker (mark), it is assigned category S. Oth-380

erwise, it is assigned category NP (Figure 7). In381

other cases, clausal subjects are treated like normal382

core arguments, and their categories are inferred383

through the category inference step.384

Parataxis: The UD guidelines detail five differ-385

ent constructions where parataxis can appear: side-386

by-side sentences, reported speech, news article387

bylines, interjected clauses, and tag questions. We388

treat the dependent constituent in these construc-389

tions as a modifier to its head.390

Noun phrase: Category NP is assigned to to-391

kens that have one of the UPOS tags: NOUN, NUM,392

PRON, PROPN, SYM, or non-noun tokens with ac-393

companying determiners that act as nominal sub-394

jects or objects, if they do not modify any other395

constituents. Otherwise, their categories are in-396

ferred through the category inference step.397

Vocative/dislocated/discourse/overridden dis-398

fluency elements: Since these elements are399

optional to the grammar and meaning of a sentence,400

we treat them as modifiers to their head. As a401

result, they carry category X|X , where X is the402

category of their head.403

3.4 Category Inference404

Our rules described in Section 3.3 assign categories405

to only a subset of constituents. As a result, there406

are bound to be unassigned categories. In these407

situations, we follow CCG’s forward and backward408

application rules to infer the missing categories409

from existing ones. The category inference step410

is run top-down, and is repeated until no more 411

categories can be inferred. There are two situations 412

where additional logics are required for inference: 413

Punctuation: As mentioned in Section 3.3, 414

dashes, parentheses, and other brackets follow 415

the same CCG combinatory rules as normal con- 416

stituents. Other punctuations follow a separate rule 417

(e.g. , X ⇒ X), similar to the English CCGbank. 418

Coordination: We use the following non- 419

combinatory rules for coordination, also similar 420

to the English CCGbank: 421

conj X ⇒ X[conj] 422

, X ⇒ X[conj] 423

X[conj] X ⇒ X 424

Majority voting for slash direction: Through- 425

out the conversion process, slash direction in each 426

category is determined through relative positions 427

between functors and arguments. However, it is not 428

guaranteed that all cases are covered, as shown in 429

the example of “calm” and “to keep calm” in Fig- 430

ure 1. To handle these situations, we apply majority 431

voting based on corresponding dependency rela- 432

tions in the binarized tree for non-terminal nodes, 433

and on UPOS tags for terminal nodes. In the case 434

of “to keep calm”, which has a corresponding rela- 435

tion ccomp, votes are aggregated from other occur- 436

rences of ccomp in the whole treebank to decide a 437

more popular slash direction. Likewise, for “calm”, 438

we collect votes from nodes with ADJ UPOS tag. 439

Since rules are applied independently, we also 440

add a validation step to ensure the integrity of con- 441

verted CCG derivations. In principle, categories in- 442

ferred from applying CCG combinatory rules take 443

priority over categories assigned by hand-crafted 444

rules. If conflicts are found, categories inferred 445

from applying CCG combinatory rules will over- 446

ride the conflicting categories. 447

Unprocessed dependency trees: Dependency 448

trees with crossing arcs present a challenge for 449

binarization. Certain treebanks, such as Ancient 450

Greek and Latin treebanks, have a high number 451

of sentences with crossing dependencies, which 452

lead to significantly lower conversion rates. These 453

sentences are currently not being converted by our 454

algorithm, and will be the focus of our future work. 455

4 Evaluation 456

For the following experiments, treebanks with their 457

surface stripped off, or with more than 20% of their 458

6

0
20
40
60
80

100
co

nv
er

sio
n

ra
te

 (%
)

conversion rate

0
20
40
60
80

100

co
ve

ra
ge

 (%
)

lexical cov.
sentential cov.
rule cov.

Bela
rus

ian

Cata
lan

ClsC
hin

ese
Czec

h
En

glis
h

Est
on

ian
Fin

nis
h

Fre
nch

Germ
an

Ice
lan

dic
Ita

lian
Ko

rea
n

Lat
in

Norw
eg

ian

OldF
ren

ch

OldE
ast

Sla
vic

Pe
rsi

an
Po

lish

Rom
an

ian

Russ
ian

Sp
an

ish

Tu
rki

sh
0

20
40
60
80

100

pa
rs

in
g

pe
rfo

rm
an

ce
 (%

)

unlabelled f1
labelled f1
supertagging acc.

Figure 8: Conversion statistics and CCG parsing results on 22 treebanks of 22 languages, sorted by alphabetical
order. Detailed numbers are reported in Table 5 of the Appendix.

sentences containing dependency dep or UPOS459

tag X, are excluded, as we depend on the surface460

for our punctuation rules, and treebanks having461

too many dep or X suggest an underlying problem462

with their annotation quality2. In addition, we also463

exclude treebanks without a proper train/test464

split, as it is necessary for our evaluation. To assess465

the conversion quality, we conduct lexical, senten-466

tial, and syntactic rule coverage analyses on the467

converted treebanks, which are commonly used468

metrics for evaluating induced grammar (Hocken-469

maier and Steedman, 2007; Tse and Curran, 2010;470

Uematsu et al., 2013). CCG parsing experiments471

are also performed on treebanks with more than472

10,000 complete derivations in the training set. For473

languages that have more than one such treebank,474

we choose the largest treebank available. Figure 8475

summarizes our conversion and parsing results on476

22 treebanks of 22 languages. Complete conver-477

sion statistics on 105 treebanks of 65 languages478

tested are reported in Table 4 of the Appendix.479

4.1 Conversion rate and coverage480

Conversion rate: A conversion rate of a tree-481

bank measures the percentage of its sentences that482

are fully converted to CCG derivations. We observe483

better than 80% conversion rates for 68 treebanks484

(out of 105) of 44 languages (out of 65).485

Most conversion errors can be attributed to cross-486

serial dependencies, dependency relation dep, and487

UPOS tag X. The abundance of dep and X suggests488

lower annotation quality of some treebanks in UD,489

2In UD, dep and X are only used when it is impossible to
assign a more precise label, or when there are problems with
the conversion/parsing software.

but it also means that conversion rates can further 490

increase by improving the source treebanks. 491

Lexical coverage: We treat the converted 492

train set of each treebank as the gold standard, 493

and the dev and test sets as unseen data. Lexi- 494

cal coverage measures how well the gold lexicon 495

covers the categories in unseen data. Standard 496

treatment of rare words is applied; tokens that ap- 497

pear less than five times are replaced by “UNK”. 498

Unassigned categories are not included in the anal- 499

ysis. We achieve over 90% lexical coverage on 81 500

treebanks of 52 languages (Table 4, Appendix). 501

Sentential coverage: Sentential coverage mea- 502

sures the percentage of sentences in unseen data 503

that can be fully assigned with categories from the 504

gold lexicon. We use fully converted sentences 505

in the dev and test sets for sentential coverage 506

analysis. The majority of our converted treebanks 507

achieve between 55% and 70% coverage. In real- 508

ity, we observe that most sentences in the dev and 509

test sets contain only a small number of tokens 510

not covered by the gold lexicon. This explains the 511

high lexical coverage and average sentential cover- 512

age, and also suggests that sentential coverage can 513

greatly benefit from minor manual correction. 514

Syntactic rule coverage: Syntactic rule cover- 515

age on unseen data is measured by calculating the 516

percentage of CCG rule instantiations in dev and 517

test sets that exist in the train set. We are able 518

to achieve near-perfect coverage for all languages. 519

Parsing performance: We use an off-the-shelf 520

CCG parser depccg (Yoshikawa et al., 2017) on 521

22 treebanks with more than 10,000 sentences in 522

7

Frequency Rule
30577 NP → NP/NP NP
13201 NP → NP NP\NP
13078 S\NP → (S\NP)/(S\NP) S\NP
10905 S → NP S\NP
10262 S\NP → S\NP (S\NP)\(S\NP)
8369 S\NP → (S\NP)/NP NP
6460 S → S .
5569 (S\NP)\(S\NP) → ((S\NP)\(S\NP))/NP NP
5330 NP\NP → (NP\NP)/NP NP
3767 S → S/S S

Table 2: Most frequent rule instantiations in the train-
ing set of converted English-EWT treebank.

UPOS Category Pct. UPOS Category Pct.
VERB (S\NP)/(S\NP) 0.301 ADP (NP\NP)/NP 0.387

(S\NP)/NP 0.293 ((S\NP)\(S\NP))/NP 0.240
S\NP 0.086 (S\NP)/(S\NP) 0.092

NOUN NP 0.752 ADV (S\NP)/(S\NP) 0.227
NP/NP 0.095 ((S\NP)\(S\NP))/NP 0.109
NP\NP 0.023 NP/NP 0.103

ADJ NP/NP 0.583 DET NP/NP 0.947
S\NP 0.134 (NP\NP)/(NP\NP) 0.014
NP 0.059 (S\NP)/(S\NP) 0.011

Table 3: Most common categories for each UPOS tag
in the training set of converted English-EWT treebank.

the training set. We run the training script for 20523

epochs on each treebank, keeping all other default524

hyper-parameter settings. No pre-trained language525

model is used. Parsing performance is evaluated526

on the test split of each treebank. While the stan-527

dard evaluation metric for CCG parsing is in terms528

of predicate-argument structure recovery, such in-529

formation is not trivial to obtain from UD. As a530

result, we choose a more traditional metric, PAR-531

SEVAL (Black et al., 1991). With over 80% unla-532

belled PARSEVAL F1 and supertagging accuracy533

on almost all tested treebanks, our experiments534

show the viability of obtaining a good CCG parser535

for many languages from the converted treebanks.536

4.2 Quality of obtained treebanks537

To ensure the validity of our converted derivations,538

we automatically check for rule application errors539

at the end of the conversion algorithm. We also ran-540

domly sample and manually check 100 sentences541

from each dev set of the obtained English-EWT,542

Japanese-GSD, and Vietnamese-VTB treebanks:543

• For English, we find 7 cases of incorrect bina-544

rization of coordination structures, one case545

of an incorrect category assigned to a transi-546

tive verb in a relative clause, and one case547

of an incorrect category assigned to a clausal548

subject. A side-effect of using UD is the lack549

of phrasal information, leading to ambiguous 550

constituency structures in some cases. 551

• For Japanese, we find 48 cases of categories 552

having incorrect slash directions, and one case 553

of an incorrect category assigned to a noun 554

phrase. Since Japanese sentences often lack 555

an explicit subject, many S|NP categories re- 556

main by the end of the conversion process, and 557

are subsequently majority-voted into S/NP . 558

As Japanese sentences are dominantly verb- 559

final, this error can easily be handled by ap- 560

plying a language-specific rule that sets “\” as 561

the default slash direction. 562

• For Vietnamese, we find 7 cases of incorrect 563

binarization of coordination structures (simi- 564

lar to English), 8 cases of incorrect categories 565

assigned due to annotation errors, and 4 cases 566

of incorrect categories assigned due to errors 567

in conversion rules. 568

In general, our conversion method benefits from 569

additional language-specific rules and minor man- 570

ual correction. The quality of the converted CCG 571

treebanks is also tied to the quality of the source 572

treebanks, as shown in the case of Vietnamese. 573

Similar to Bisk and Hockenmaier (2012), we 574

also compare our obtained English CCG treebank 575

to the English CCGbank, and observe that our in- 576

duced grammar and lexicon match what we gen- 577

erally expect for English, with the most common 578

rules showing high similarity to those of the En- 579

glish CCGbank (Table 2 and 3). 580

Besides the limitations listed in Section 3.4, the 581

lack of composition rules also leads to a possible 582

proliferation of complex categories in our deriva- 583

tions. For example, in Japanese and Korean tree- 584

banks, the categories of auxiliary words can be 585

set to simply S\S in many cases (Lee, 2000), 586

which can then be combined with their heads via 587

backward composition. This also suggests how 588

language-specific rules can improve our algorithm. 589

5 Conclusion 590

We introduced an rule-based algorithm to create 591

CCG treebanks from UD. We believe the CCG 592

derivations obtained from our algorithm can serve 593

as a good starting point for CCG treebank develop- 594

ment and CCG parsing research in many languages, 595

from which further improvement can be made by 596

applying additional language-specific rules or man- 597

ual fine-tuning to the converted treebanks. 598

8

References599

Bharat Ram Ambati, Tejaswini Deoskar, and Mark600
Steedman. 2018. Hindi CCGbank: CCG Treebank601
from the Hindi Dependency Treebank. Language602
Resources and Evaluation, 52:67–100.603

Yonatan Bisk and Julia Hockenmaier. 2012. Simple604
robust grammar induction with combinatory catego-605
rial grammars. In Twenty-Sixth AAAI Conference on606
Artificial Intelligence.607

E. Black, S. Abney, D. Flickenger, C. Gdaniec, R. Gr-608
ishman, P. Harrison, D. Hindle, R. Ingria, F. Jelinek,609
J. Klavans, M. Liberman, M. Marcus, S. Roukos,610
B. Santorini, and T. Strzalkowski. 1991. A proce-611
dure for quantitatively comparing the syntactic cov-612
erage of English grammars. In Speech and Natural613
Language: Proceedings of a Workshop Held at Pa-614
cific Grove, California, February 19-22, 1991.615

Johan Bos, Cristina Bosco, and Alessandro Mazzei.616
2009. Converting a Dependency Treebank to a Cat-617
egorial Grammar Treebank for Italian. In Proceed-618
ings of the Eighth International Workshop on Tree-619
banks and Linguistic Theories (TLT8), pages 27–38,620
Milan, Italy.621

Johan Bos, Stephen Clark, Mark Steedman, James R.622
Curran, and Julia Hockenmaier. 2004. Wide-623
coverage semantic representations from a CCG624
parser. In COLING 2004: Proceedings of the 20th625
International Conference on Computational Linguis-626
tics, pages 1240–1246, Geneva, Switzerland. COL-627
ING.628

Stephen Clark, Mark Steedman, and James R. Curran.629
2004. Object-extraction and question-parsing using630
CCG. In Proceedings of the 2004 Conference on631
Empirical Methods in Natural Language Processing,632
pages 111–118, Barcelona, Spain. Association for633
Computational Linguistics.634

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and635
Kristina Toutanova. 2019. BERT: Pre-training of636
deep bidirectional transformers for language under-637
standing. In Proceedings of the 2019 Conference638
of the North American Chapter of the Association639
for Computational Linguistics: Human Language640
Technologies, Volume 1 (Long and Short Papers),641
pages 4171–4186, Minneapolis, Minnesota. Associ-642
ation for Computational Linguistics.643

Kilian Evang and Johan Bos. 2016. Cross-lingual644
learning of an open-domain semantic parser. In Pro-645
ceedings of COLING 2016, the 26th International646
Conference on Computational Linguistics: Techni-647
cal Papers, pages 579–588, Osaka, Japan. The COL-648
ING 2016 Organizing Committee.649

Julia Hockenmaier. 2006. Creating a CCGbank and a650
wide-coverage CCG lexicon for German. In Pro-651
ceedings of the 21st International Conference on652
Computational Linguistics and 44th Annual Meet-653
ing of the Association for Computational Linguistics,654

pages 505–512, Sydney, Australia. Association for 655
Computational Linguistics. 656

Julia Hockenmaier and Mark Steedman. 2002. Acquir- 657
ing compact lexicalized grammars from a cleaner 658
treebank. In Proceedings of the Third International 659
Conference on Language Resources and Evaluation 660
(LREC’02), Las Palmas, Canary Islands - Spain. Eu- 661
ropean Language Resources Association (ELRA). 662

Julia Hockenmaier and Mark Steedman. 2007. CCG- 663
bank: A corpus of CCG derivations and dependency 664
structures extracted from the Penn Treebank. Com- 665
putational Linguistics, 33(3):355–396. 666

Jayant Krishnamurthy and Tom Mitchell. 2012. 667
Weakly supervised training of semantic parsers. In 668
Proceedings of the 2012 Joint Conference on Empir- 669
ical Methods in Natural Language Processing and 670
Computational Natural Language Learning, pages 671
754–765, Jeju Island, Korea. Association for Com- 672
putational Linguistics. 673

Kihwang Lee. 2000. A CCG fragment of Korean. 674
In Proceedings of the 14th Pacific Asia Conference 675
on Language, Information and Computation, pages 676
219–230, Waseda University International Confer- 677
ence Center, Tokyo, Japan. PACLIC 14 Organizing 678
Committee. 679

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann 680
Marcinkiewicz. 1993. Building a large annotated 681
corpus of English: The Penn Treebank. Computa- 682
tional Linguistics, 19(2):313–330. 683

Pascual Martínez-Gómez, Koji Mineshima, Yusuke 684
Miyao, and Daisuke Bekki. 2017. On-demand injec- 685
tion of lexical knowledge for recognising textual en- 686
tailment. In Proceedings of the 15th Conference of 687
the European Chapter of the Association for Compu- 688
tational Linguistics: Volume 1, Long Papers, pages 689
710–720, Valencia, Spain. Association for Computa- 690
tional Linguistics. 691

Koji Mineshima, Pascual Martínez-Gómez, Yusuke 692
Miyao, and Daisuke Bekki. 2015. Higher-order log- 693
ical inference with compositional semantics. In Pro- 694
ceedings of the 2015 Conference on Empirical Meth- 695
ods in Natural Language Processing, pages 2055– 696
2061, Lisbon, Portugal. Association for Computa- 697
tional Linguistics. 698

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin- 699
ter, Yoav Goldberg, Jan Hajič, Christopher D. Man- 700
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo, 701
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman. 702
2016. Universal Dependencies v1: A multilingual 703
treebank collection. In Proceedings of the Tenth In- 704
ternational Conference on Language Resources and 705
Evaluation (LREC’16), pages 1659–1666, Portorož, 706
Slovenia. European Language Resources Associa- 707
tion (ELRA). 708

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin- 709
ter, Jan Hajič, Christopher D. Manning, Sampo 710

9

https://www.aclweb.org/anthology/H91-1060
https://www.aclweb.org/anthology/H91-1060
https://www.aclweb.org/anthology/H91-1060
https://www.aclweb.org/anthology/H91-1060
https://www.aclweb.org/anthology/H91-1060
https://www.aclweb.org/anthology/C04-1180
https://www.aclweb.org/anthology/C04-1180
https://www.aclweb.org/anthology/C04-1180
https://www.aclweb.org/anthology/C04-1180
https://www.aclweb.org/anthology/C04-1180
https://www.aclweb.org/anthology/W04-3215
https://www.aclweb.org/anthology/W04-3215
https://www.aclweb.org/anthology/W04-3215
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/C16-1056
https://www.aclweb.org/anthology/C16-1056
https://www.aclweb.org/anthology/C16-1056
https://doi.org/10.3115/1220175.1220239
https://doi.org/10.3115/1220175.1220239
https://doi.org/10.3115/1220175.1220239
http://www.lrec-conf.org/proceedings/lrec2002/pdf/263.pdf
http://www.lrec-conf.org/proceedings/lrec2002/pdf/263.pdf
http://www.lrec-conf.org/proceedings/lrec2002/pdf/263.pdf
http://www.lrec-conf.org/proceedings/lrec2002/pdf/263.pdf
http://www.lrec-conf.org/proceedings/lrec2002/pdf/263.pdf
https://doi.org/10.1162/coli.2007.33.3.355
https://doi.org/10.1162/coli.2007.33.3.355
https://doi.org/10.1162/coli.2007.33.3.355
https://doi.org/10.1162/coli.2007.33.3.355
https://doi.org/10.1162/coli.2007.33.3.355
https://www.aclweb.org/anthology/D12-1069
https://doi.org/http://hdl.handle.net/2065/12154
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/E17-1067
https://www.aclweb.org/anthology/E17-1067
https://www.aclweb.org/anthology/E17-1067
https://www.aclweb.org/anthology/E17-1067
https://www.aclweb.org/anthology/E17-1067
https://doi.org/10.18653/v1/D15-1244
https://doi.org/10.18653/v1/D15-1244
https://doi.org/10.18653/v1/D15-1244
https://www.aclweb.org/anthology/L16-1262
https://www.aclweb.org/anthology/L16-1262
https://www.aclweb.org/anthology/L16-1262

Pyysalo, Sebastian Schuster, Francis Tyers, and711
Daniel Zeman. 2020. Universal Dependencies v2:712
An evergrowing multilingual treebank collection.713
In Proceedings of the 12th Language Resources714
and Evaluation Conference, pages 4034–4043, Mar-715
seille, France. European Language Resources Asso-716
ciation.717

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt718
Gardner, Christopher Clark, Kenton Lee, and Luke719
Zettlemoyer. 2018. Deep contextualized word rep-720
resentations. In Proceedings of the 2018 Confer-721
ence of the North American Chapter of the Associ-722
ation for Computational Linguistics: Human Lan-723
guage Technologies, Volume 1 (Long Papers), pages724
2227–2237, New Orleans, Louisiana. Association725
for Computational Linguistics.726

Siva Reddy, Oscar Täckström, Slav Petrov, Mark Steed-727
man, and Mirella Lapata. 2017. Universal semantic728
parsing. In Proceedings of the 2017 Conference on729
Empirical Methods in Natural Language Processing,730
pages 89–101, Copenhagen, Denmark. Association731
for Computational Linguistics.732

Mark Steedman. 2000. The Syntactic Process. MIT733
Press, Cambridge, MA.734

Daniel Tse and James R. Curran. 2010. Chinese CCG-735
bank: extracting CCG derivations from the Penn736
Chinese treebank. In Proceedings of the 23rd Inter-737
national Conference on Computational Linguistics738
(Coling 2010), pages 1083–1091, Beijing, China.739
Coling 2010 Organizing Committee.740

Sumire Uematsu, Takuya Matsuzaki, Hiroki Hanaoka,741
Yusuke Miyao, and Hideki Mima. 2013. Integrat-742
ing multiple dependency corpora for inducing wide-743
coverage Japanese CCG resources. In Proceedings744
of the 51st Annual Meeting of the Association for745
Computational Linguistics (Volume 1: Long Papers),746
pages 1042–1051, Sofia, Bulgaria. Association for747
Computational Linguistics.748

Masashi Yoshikawa, Hiroshi Noji, and Yuji Matsumoto.749
2017. A* CCG parsing with a supertag and de-750
pendency factored model. In Proceedings of the751
55th Annual Meeting of the Association for Compu-752
tational Linguistics (Volume 1: Long Papers), pages753
277–287, Vancouver, Canada. Association for Com-754
putational Linguistics.755

Masashi Yoshikawa, Hiroshi Noji, Koji Mineshima,756
and Daisuke Bekki. 2019. Automatic generation757
of high quality CCGbanks for parser domain adap-758
tation. In Proceedings of the 57th Annual Meet-759
ing of the Association for Computational Linguis-760
tics, pages 129–139, Florence, Italy. Association for761
Computational Linguistics.762

10

https://www.aclweb.org/anthology/2020.lrec-1.497
https://www.aclweb.org/anthology/2020.lrec-1.497
https://www.aclweb.org/anthology/2020.lrec-1.497
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/D17-1009
https://doi.org/10.18653/v1/D17-1009
https://doi.org/10.18653/v1/D17-1009
https://www.aclweb.org/anthology/C10-1122
https://www.aclweb.org/anthology/C10-1122
https://www.aclweb.org/anthology/C10-1122
https://www.aclweb.org/anthology/C10-1122
https://www.aclweb.org/anthology/C10-1122
https://www.aclweb.org/anthology/P13-1103
https://www.aclweb.org/anthology/P13-1103
https://www.aclweb.org/anthology/P13-1103
https://www.aclweb.org/anthology/P13-1103
https://www.aclweb.org/anthology/P13-1103
https://doi.org/10.18653/v1/P17-1026
https://doi.org/10.18653/v1/P17-1026
https://doi.org/10.18653/v1/P17-1026
https://doi.org/10.18653/v1/P19-1013
https://doi.org/10.18653/v1/P19-1013
https://doi.org/10.18653/v1/P19-1013
https://doi.org/10.18653/v1/P19-1013
https://doi.org/10.18653/v1/P19-1013

A Appendix 763

Treebank
Conversion Rate Statistics Coverage (dev) Coverage (test)

#Sent. %Converted %Cross. #Tok. #Cat. #Cat.>1 #Cat./Tok. #Rules #U. Rules %Lex. %Sent. %Rule %Lex. %Sent. %Rule
Ancient_Greek-PROIEL 17080 55.56 37.52 16478 504 317 1.76 78222 795 91.06 68.16 99.40 90.79 69.43 99.62
Ancient_Greek-Perseus 13919 35.76 62.38 13655 442 278 1.54 43467 799 91.78 42.12 95.74 93.14 51.25 95.97
Armenian-ArmTDP 2502 82.37 7.15 11413 467 276 1.62 37669 967 90.74 51.23 98.13 90.32 44.21 98.61
Basque-BDT 8993 65.25 31.52 18228 433 263 1.80 64082 829 92.54 60.39 99.09 93.00 63.44 98.87
Belarusian-HSE 25231 83.10 5.08 46768 568 361 1.61 217110 1165 94.31 75.81 99.81 93.83 70.96 99.59
Bulgarian-BTB 11138 92.17 3.06 27506 358 244 1.62 130639 676 94.97 73.29 99.57 95.53 76.49 99.76
Buryat-BDT 927 89.54 8.20 3871 164 102 1.38 8279 340 _ _ _ 73.47 28.01 64.94
Catalan-AnCora 16678 72.30 5.57 28626 764 462 2.14 340561 1374 91.24 57.38 99.83 90.97 60.48 99.74
Chinese-GSD 4997 76.99 2.24 16602 516 303 1.94 92432 937 90.07 42.82 99.54 89.83 45.14 99.66
Chinese-GSDSimp 4997 78.37 0.02 16841 519 311 1.94 94353 934 90.11 43.64 99.53 89.95 45.24 99.67
Classical_Chinese-Kyoto 55514 99.04 0.01 7920 327 229 4.22 221786 504 78.36 86.05 99.89 78.98 86.74 99.85
Coptic-Scriptorium 1873 72.98 13.24 2179 242 160 2.85 31056 357 85.59 51.70 99.01 85.04 52.08 99.43
Croatian-SET 9010 80.81 8.47 32938 628 389 1.74 147870 1177 93.41 55.02 99.56 93.17 57.55 99.54
Czech-CAC 24709 73.85 12.71 55370 1089 668 1.68 308130 2213 93.58 63.98 99.63 92.46 62.40 99.67
Czech-FicTree 12760 82.12 11.40 25135 676 393 1.76 110793 1293 91.65 67.99 99.37 91.14 67.24 99.12
Czech-PDT 87913 79.79 11.49 123512 1924 1146 2.18 1024644 4094 90.01 65.55 99.78 90.22 65.97 99.79
Danish-DDT 5512 68.03 21.35 13168 711 372 1.72 52217 1189 91.52 55.58 98.46 90.94 52.77 98.36
Dutch-Alpino 13603 80.69 14.33 24389 550 364 1.68 142284 878 91.40 62.70 99.72 90.33 59.48 99.67
Dutch-LassySmall 7341 90.98 6.05 14612 322 223 1.69 75899 550 91.41 66.84 99.45 92.45 75.40 99.62
English-EWT 16621 89.58 3.29 21211 504 319 2.15 197299 918 89.50 75.05 99.75 89.53 75.58 99.87
English-GUM 7402 86.81 4.80 14543 367 220 1.95 101034 702 91.07 66.05 99.68 91.88 68.74 99.76
English-LinES 5243 86.42 8.07 9633 405 253 2.21 72267 772 90.37 63.12 99.34 90.78 64.36 99.65
English-ParTUT 2090 88.52 1.82 6922 277 183 1.78 39614 450 92.34 52.78 99.46 91.54 54.17 99.63
Estonian-EDT 30972 91.13 3.22 80980 1154 723 1.86 365722 2428 89.97 55.16 99.60 89.45 53.22 99.67
Estonian-EWT 5536 88.31 4.28 15051 444 286 1.76 52672 844 90.59 59.31 99.27 90.32 54.00 98.69
Faroese-FarPaHC 1621 69.83 0.19 2852 393 218 2.56 22681 755 84.84 25.50 96.95 86.89 34.20 97.42
Finnish-FTB 18723 90.36 7.70 42166 440 306 1.56 122110 971 93.16 75.60 99.54 92.95 71.85 99.65
Finnish-TDT 15136 87.15 6.14 50632 759 465 1.56 156264 1562 92.81 62.61 99.52 92.27 61.34 99.56
French-GSD 16341 89.24 4.06 41377 485 325 1.62 330766 880 94.76 71.94 99.88 94.25 66.85 99.76
French-ParTUT 1020 81.67 5.10 3627 219 136 1.66 19660 337 91.74 58.59 98.54 95.11 64.65 98.76
French-Sequoia 3099 90.32 2.13 9063 290 195 1.87 56401 490 93.98 68.48 99.50 93.94 65.30 99.56
French-Spoken 2837 82.23 9.02 3732 367 210 2.26 22313 499 90.29 64.03 98.46 90.27 62.07 98.38
Galician-TreeGal 1000 71.60 11.20 4023 204 130 1.54 14340 366 _ _ _ 95.44 58.30 98.53
German-GSD 15590 84.33 9.30 44634 615 380 1.54 219328 1123 90.62 60.03 99.53 90.28 59.60 98.98
German-HDT 189928 86.65 6.76 173381 1380 921 1.99 2590192 2202 92.41 82.46 99.96 92.58 82.59 99.96
Gothic-PROIEL 5401 72.38 17.57 6071 315 190 2.10 28428 489 88.88 63.44 98.60 91.30 70.68 99.21
Greek-GDT 2521 88.62 5.63 10927 325 216 1.71 51344 613 94.78 59.67 99.45 94.67 62.09 99.42
Hungarian-Szeged 1800 74.67 21.11 10290 289 182 1.46 28629 649 95.24 50.00 98.48 95.29 54.76 98.74
Icelandic-IcePaHC 44029 69.69 0.37 47189 1603 927 2.34 505869 3248 84.33 51.38 99.48 86.62 51.89 99.44
Icelandic-Modern 6928 56.78 0.38 6153 399 397 2.61 63630 746 93.65 84.45 99.50 92.93 78.51 99.48
Indonesian-CSUI 1030 88.54 1.84 4492 282 176 2.15 23730 437 _ _ _ 87.89 32.83 98.90
Indonesian-GSD 5593 80.05 0.97 18011 437 251 1.82 82675 880 91.52 56.10 99.55 91.28 58.85 99.29
Irish-IDT 4910 45.21 15.05 8519 362 214 1.67 36505 628 90.93 54.71 99.05 90.29 60.59 97.92
Italian-ISDT 14167 92.07 1.36 27493 592 363 1.75 245285 1011 93.60 68.76 99.74 94.45 70.23 99.87
Italian-ParTUT 2090 89.47 2.01 8165 301 182 1.60 45495 478 93.16 58.74 97.56 95.36 66.91 99.02
Italian-TWITTIRO 1424 72.61 1.05 5394 230 148 1.59 21240 417 90.87 37.86 99.09 91.68 42.72 98.79
Italian-VIT 10087 85.37 3.48 22299 705 415 1.93 208443 1190 89.53 46.79 99.88 90.03 57.27 99.58
Japanese-GSD 8100 89.02 0.32 19689 227 155 1.84 163124 414 94.24 66.45 99.90 93.66 65.94 99.92
Kazakh-KTB 1078 88.96 7.33 4000 151 96 1.28 8283 327 _ _ _ 89.93 61.65 84.52
Korean-Kaist 27363 73.61 21.70 73374 1187 687 1.61 241994 2498 91.76 59.43 99.48 91.29 53.06 99.41
Kurmanji-MG 754 72.02 8.49 2229 155 93 1.40 6442 256 _ _ _ 88.77 25.38 80.44
Latin-ITTB 26977 58.25 36.26 13736 623 386 2.44 200633 1252 85.89 73.15 99.77 84.52 74.05 99.68
Latin-LLCT 9023 69.46 28.86 5601 397 284 2.07 102255 727 90.88 85.26 99.45 89.97 87.48 99.69
Latin-PROIEL 18411 60.63 28.39 16757 435 290 1.83 74966 763 90.30 70.30 99.39 91.10 74.59 99.44
Latin-Perseus 2273 49.05 48.13 4597 217 131 1.36 9597 397 _ _ _ 95.48 67.36 97.01
Latin-UDante 1721 38.76 48.17 5045 302 185 1.67 15982 629 92.92 32.70 97.22 90.31 26.52 97.06
Latvian-LVTB 15351 83.71 6.65 43753 672 419 1.77 185104 1395 91.12 58.56 99.63 91.04 57.83 99.61
Lithuanian-HSE 263 76.81 14.07 1815 159 92 1.39 3753 338 90.81 42.50 90.51 92.29 37.78 92.84
Livvi-KKPP 125 84.00 12.80 652 73 51 1.19 1101 140 _ _ _ 80.84 25.00 67.61
Maltese-MUDT 2074 84.62 3.86 7385 233 153 1.83 33081 448 92.30 50.72 99.47 92.35 49.17 99.16
Marathi-UFAL 466 93.13 4.08 897 84 49 1.55 3176 166 93.92 70.45 98.94 89.47 65.91 95.78

11

Treebank
Conversion Rate Statistics Coverage (dev) Coverage (test)

#Sent. %Converted %Cross. #Tok. #Cat. #Cat.>1 #Cat./Tok. #Rules #U. Rules %Lex. %Sent. %Rule %Lex. %Sent. %Rule
North_Sami-Giella 3122 92.60 4.39 7398 212 141 1.52 21054 414 _ _ _ 93.60 61.35 97.60
Norwegian-Bokmaal 20044 82.65 7.39 30539 693 408 1.81 218696 1204 92.18 73.58 99.68 91.73 72.23 99.78
Norwegian-Nynorsk 17575 80.29 7.71 28516 720 423 1.81 205739 1209 91.76 70.75 99.66 92.05 72.13 99.73
Old_Church_Slavonic-PROIEL 6338 74.77 16.31 7138 299 198 2.01 31777 471 91.24 73.16 99.03 91.06 72.23 99.14
Old_East_Slavic-RNC 957 63.22 30.72 4360 215 136 1.38 12165 441 _ _ _ 94.38 43.39 94.45
Old_East_Slavic-TOROT 16944 77.82 15.20 23770 467 297 1.63 87124 765 92.70 78.53 99.57 93.35 74.72 99.58
Old_French-SRCMF 17678 82.29 15.06 15417 535 321 2.20 110552 787 87.24 72.76 99.77 88.34 74.35 99.70
Persian-PerDT 29107 80.58 14.22 28743 629 400 2.35 345299 1171 92.53 74.05 99.87 92.04 73.36 99.85
Persian-Seraji 5997 76.84 5.45 12507 601 345 2.51 99863 1022 88.65 48.18 99.58 86.87 40.69 99.67
Polish-LFG 17246 98.24 0.64 32501 369 262 1.51 112232 571 95.22 83.60 99.78 93.99 76.98 99.38
Polish-PDB 22152 85.50 6.25 56756 790 483 1.66 264893 1607 94.28 70.60 99.68 94.14 70.75 99.67
Portuguese-Bosque 9364 72.86 18.25 21552 436 281 1.60 132130 791 94.38 73.01 99.75 94.61 70.39 99.62
Portuguese-GSD 12078 83.73 5.20 29470 624 374 1.88 242474 1127 93.41 64.24 99.87 93.85 65.53 99.81
Romanian-Nonstandard 26225 84.10 5.43 31821 1104 676 2.20 439787 2035 89.39 67.48 99.87 88.38 59.31 99.59
Romanian-RRT 9524 82.38 8.82 30510 641 416 1.73 169375 1153 93.29 55.23 99.73 94.42 63.71 99.76
Romanian-SiMoNERo 4681 77.57 14.61 15734 370 249 1.86 101366 688 91.96 52.87 99.73 93.12 56.86 99.78
Russian-GSD 5030 90.14 6.12 27675 384 252 1.44 80866 755 95.62 66.41 99.39 96.00 67.53 99.60
Russian-SynTagRus 61889 88.55 7.05 115101 1181 767 1.95 897395 2440 91.83 68.13 99.84 92.01 67.61 99.84
Russian-Taiga 17870 90.41 6.12 36352 541 332 1.51 150354 1069 93.60 70.05 99.61 93.65 72.76 99.72
Sanskrit-Vedic 3997 75.06 23.42 5386 239 151 1.63 15093 424 _ _ _ 92.69 71.92 97.82
Scottish_Gaelic-ARCOSG 3798 55.32 7.11 3722 286 172 2.14 21447 432 89.48 64.12 98.69 86.06 58.51 98.17
Serbian-SET 4384 87.11 3.19 17933 403 258 1.70 79033 753 94.34 58.12 99.51 94.26 59.52 99.52
Slovak-SNK 10604 91.94 3.27 26470 490 321 1.49 85921 903 96.00 74.36 99.43 95.53 72.86 99.08
Slovenian-SSJ 8000 83.06 12.00 29524 415 280 1.54 105267 678 94.41 62.77 99.66 94.24 64.06 99.65
Slovenian-SST 3188 88.55 4.49 4955 288 180 1.93 20231 423 _ _ _ 89.53 66.50 98.46
Spanish-AnCora 17680 79.00 5.57 36064 874 566 2.11 392705 1584 91.31 54.32 99.81 91.09 55.87 99.76
Spanish-GSD 16013 82.56 5.85 42462 750 439 1.68 318965 1320 93.41 63.55 99.78 93.37 58.60 99.86
Swedish-LinES 5243 88.08 5.61 13258 524 318 1.93 70357 921 90.89 55.39 98.99 91.61 60.69 99.43
Swedish-Talbanken 6026 91.74 2.99 15156 478 299 1.83 79649 770 88.39 46.28 99.35 90.67 57.19 99.22
Tamil-TTB 600 97.83 1.67 3515 244 144 1.67 9079 435 89.71 45.57 95.19 89.46 31.90 95.70
Telugu-MTG 1328 99.77 0.15 2046 92 63 1.43 5410 163 96.10 91.60 98.02 96.61 91.03 99.00
Turkish-BOUN 9761 88.85 3.34 33475 628 358 1.61 98665 1523 91.38 61.14 99.11 91.58 59.91 99.27
Turkish-FrameNet 2698 96.85 0.26 8155 154 101 1.36 17020 276 95.20 81.31 99.44 94.74 77.11 99.10
Turkish-IMST 5635 88.61 6.35 16247 520 301 1.73 43696 1148 92.09 60.00 98.47 91.73 64.34 98.34
Turkish-Kenet 18687 93.40 2.23 46523 586 343 1.71 157843 1371 90.54 55.80 99.53 91.07 57.55 99.62
Turkish-Penn 9557 95.47 1.31 21467 422 256 1.68 76148 844 88.68 55.23 99.57 90.46 65.65 99.68
Turkish-Tourism 19749 98.72 0.51 4898 202 140 2.56 74151 394 89.61 91.71 93.63 87.52 88.92 99.87
Turkish_German-SAGT 2184 77.20 13.42 5684 339 208 2.15 24823 557 91.49 36.28 97.29 91.53 35.98 97.81
Ukrainian-IU 7060 87.31 7.69 28985 493 299 1.52 94522 1038 94.86 62.67 99.49 94.63 64.60 99.26
Upper_Sorbian-UFAL 646 82.82 11.30 3746 149 99 1.26 8155 299 _ _ _ 93.01 43.60 90.23
Uyghur-UDT 3456 91.38 4.98 11007 288 174 1.71 34969 708 93.41 59.98 98.37 93.17 58.55 97.66
Welsh-CCG 1833 49.37 1.91 3688 153 97 1.81 13904 289 95.96 58.29 98.23 95.76 57.28 98.15
Western_Armenian-ArmTDP 1780 81.85 9.72 8383 353 205 1.61 25019 750 95.01 54.91 97.31 94.33 47.49 97.64
Wolof-WTB 2107 83.91 2.99 5227 361 214 2.23 33500 594 87.90 39.33 98.83 87.72 41.86 98.61

Table 4: Conversion results on 105 treebanks of 65 languages in UD v2.8. Column names from left to right: (1)
Treebank, (2) Number of sentences, (3) Conversion rate, (4) Percentage of sentences with cross-serial dependen-
cies, (5) Number of distinct tokens, (6) Number of distinct categories, (7) Number of distinct categories that appear
more than once, (8) Average number of categories per token, (9) Number of CCG rule instantiations, (10) Number
of unique CCG rules, (11) Lexical coverage on dev, (12) Sentential coverage on dev, (13) Syntactic rule cover-
age on dev, (14) Lexical coverage on test, (15) Sentential coverage on test, (16) Syntactic rule coverage on
test.

12

Treebank
#Train

samples
#Test

samples
PARSEVAL Unlabelled PARSEVAL Labelled Supertagging

accuracy%Precision %Recall %F1 %Precision %Recall %F1

Belarusian-HSE 18878 947 89.21 73.27 80.46 69.76 57.30 62.92 82.19
Catalan-AnCora 9511 1341 92.64 76.84 84.00 80.21 66.52 72.73 88.23
Cls_Chinese-Kyoto 45315 4412 94.72 94.20 94.46 72.62 72.21 72.41 79.59
Czech-PDT 54698 8090 92.90 86.79 89.74 77.08 72.01 74.46 86.69
English-EWT 11116 1929 92.74 88.63 90.64 79.25 75.74 77.45 86.76
Estonian-EDT 22467 2920 89.64 75.04 81.69 65.31 54.67 59.52 75.41
Finnish-FTB 13538 1705 88.73 79.04 83.6 62.07 55.29 58.49 69.33
French-GSD 12890 359 93.16 81.00 86.65 82.22 71.49 76.48 90.13
German-HDT 132361 16104 96.25 94.15 95.19 88.38 86.45 87.40 94.74
Icelandic-IcePaHC 24363 3386 92.28 67.49 77.96 70.85 51.81 59.85 76.79
Italian-ISDT 12094 440 91.73 85.74 88.63 79.48 74.29 76.80 88.48
Korean-Kaist 16839 1764 91.59 72.91 81.19 61.63 49.06 54.63 78.72
Latin-ITTB 13114 1318 93.38 80.02 86.18 73.08 62.62 67.45 83.44
Norwegian-Bokmaal 12957 1595 93.37 86.92 90.03 78.75 73.31 75.93 86.39
Old_French-SRCMF 11428 1622 92.47 80.66 86.16 68.73 59.94 64.04 76.12
Old_East_Slavic-TOROT 10400 1425 88.82 73.51 80.44 54.89 45.44 49.72 72.28
Persian-PerDT 21109 1186 94.69 90.54 92.57 81.91 78.32 80.08 89.55
Polish-PDB 15144 1904 91.90 79.79 85.42 72.06 62.57 66.98 82.12
Romanian-Nonstandard 20183 924 90.58 55.37 68.72 67.25 41.11 51.02 83.01
Russian-SynTagRus 43271 8898 92.82 77.30 84.35 76.14 63.41 69.19 88.98
Spanish-AnCora 11283 1389 92.15 72.62 81.23 78.57 61.92 69.26 87.33
Turkish-Tourism 15173 2147 98.05 97.71 97.88 74.23 73.97 74.10 81.25

Table 5: CCG parsing performance measured on the converted test sets of 22 treebanks of 22 languages that have
more than 10,000 sentences in the training sets.

13

