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ABSTRACT

Recommender system is capable of predicting preferred items for a user by integrating information
from similar users or items. A popular model in recommender system is the so-called two-tower
model, which employs two deep neural networks to embed users and items into a low-dimensional
space, and predicts ratings via the geometrical relationship of the embeddings of user and item in the
embedded space. Even though it is popularly used for recommendations, its theoretical properties
remain largely unknown. In this paper, we establish some asymptotic results of the two-tower model
in terms of its strong convergence to the optimal recommender system, showing that it achieves a
fast convergence rate depending on the intrinsic dimensions of inputs features. To the best of our
knowledge, this is among the first attempts to establish the statistical guarantee of the two-tower
model. Through numerical experiments, we also demonstrate that the two-tower model is capable
of capturing the effects of users’ and items’ features on ratings, leading to higher prediction accuracy
over its competitors in both simulated examples and a real application data set.

Keywords: Artificial neural networks, Collaborative filtering, Empirical process, Recommender system, Two-tower
model

1 INTRODUCTION

Recommender system has attracted great interest in machine learning community in the past two decades, mostly due
to its wide applications in e-commerce and precision marketing, such as movie recommendation (Miller et al., 2003),
news feeding (Li et al., 2016), online shopping (Romadhony et al., 2013) and restaurant selection (Vargas-Govea
et al., 2011). Existing recommender systems can be broadly categorized into three categories: content-based filter-
ing (Boratto et al., 2017; Lang, 1995), collaborative filtering (Koren, 2009; Hofmann and Puzicha, 1999), and hybrid
methods (Gunawardana and Meek, 2009). Content-based filtering methods entail preprocessing techniques to trans-
form unstructured item contents and user profiles into numerical vectors, which are used as inputs for classical machine
learning algorithms, such as decision tree (Middleton et al., 2004), SVM (Fortuna et al., 2010; Oku et al., 2006), and
kNN (Subramaniyaswamy and Logesh, 2017). Collaborative filtering methods predicts user’s ratings based on other
similar users or similar items, including singular value decomposition (SVD; Mazumder et al. 2010), restricted Boltz-
man machines (RBM; Salakhutdinov et al. 2007), probabilistic latent semantic analysis (Hofmann, 2004) and nearest
neighbors methods (Koren et al., 2009). Hybrid recommender systems seek out to combine collaborative filtering
and content-based filtering, including the unified Boltzmann machines (Gunawardana and Meek, 2009) and partial
latent vector model (Zhu et al., 2016). Gunawardana and Meek (2009) proposed a unified Boltzmann machines to
encode collaborative and content information as features for predicting ratings. Zhu et al. (2016) integrated additional
user-specific and content-specific predictors in partial latent vector model in an additive fashion to achieve a better
prediction accuracy.

In recent years, artificial neural network has been popularly employed in recommender system, and success has been
widely reported in various applications. One of the most popular neural network model for recommender system is
the so-called two-tower model (Yi et al., 2019), where two deep neural networks, referred to as towers, act as encoders
to embed high-dimensional users’ and items’ features into a low-dimensional space. A key advantage of the two-
tower model is that it is able to tackle the long-standing cold-start issue by incorporating users’ and items’ features to
produce accurate recommendations for brand new users or items. In literature, the two-tower model has been widely
employed in various applications, including video recommendation (Wang et al., 2021a; Yi et al., 2019), application
recommendation (Yang et al., 2020), book recommendation (Wang et al., 2021b), yet its theoretical foundation is still
largely unavailable.
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The main contribution of this paper is to establish some asymptotic properties of the two-tower model in terms of
its strong convergence to the optimal recommender system. Specifically, under the assumption that each embedding
dimension of user or item is a smooth function of the corresponding input features, we conduct an error analysis of
the approximation and estimation errors of the two-tower model. It can be showed that the strong convergence of
the two-tower model largely depends on the smoothness of the optimal recommender system as well as the intrinsic
dimension of user and item features. Its rate of convergence becomes faster as the underlying smoothness of the
true model increases or the maximum intrinsic dimensions of user and item features decrease. Particularly, when the
underlying smoothness goes to infinity, the convergence rate of the two-tower model becomes Op(|Ω|−1(log |Ω|)2)
with Ω denoting the observed rating set and |·| denoting the set cardinality, which is faster than most existing theoretical
results in literature Zhu et al. (2016). Most importantly, the established statistical guarantee for the two-tower model
provides some solid theoretical justification for the success of the two-tower model in various applications.

The rest of this paper is structured as follows. Section 1.1 introduces the notations and definitions to be used in the
sequel. Section 2 introduces the framework of the two-tower model. Section 3 establishes the asymptotic properties of
the two-tower model with respect to its approximation error and strong convergence. Section 4 conducts a variety of
numerical experiments and real applications to demonstrate the advantage of the two-tower model. A brief summary
is provided in Section 5, and all technical proofs are contained in a separate supplementary file.

1.1 NOTATIONS AND DEFINITIONS

For a probability measure µ, its support is denoted as Supp(µ). For a function g : RD → R, its L2(µ)-norm and
L∞(µ)-norm with respect to µ are ‖g‖L2(µ) =

( ∫
x
g2(x)dµ(x)

)1/2
and ‖g‖L∞(µ) = supx∈Supp(µ) g(x), respec-

tively. For a vector x, its l2-norm is ‖x‖2 = (
∑p
i=1 x

2
i )

1/2. For a set S, we define N (ε, S, ‖ · ‖) as the minimal
number of ε-balls needed to cover S under a generic metric ‖ · ‖.
Let f be an L-layer neural network,

f(x; Θ) = hL ◦ hL−1 ◦ · · ·h1(x),

where Θ =
(
(A1, b1), . . . , (AL, bL)

)
denotes all the parameters, ◦ denotes function composition, and hl(x) =

σ(Alx + bl) denotes the l-th layer. Here Al ∈ Rpl×pl−1 is the weight matrix, bl ∈ Rpl is the bias term, pl is the
number of neurons in the l-th layer, and σ(·) is a component-wise activation function, such as the sigmoid function
σ(x) = 1/(1+exp(−x)), or the ReLU function σ(x) = max(x, 0). For ease of notation, f(x; Θ) will be abbreviated
as f(x) when it causes no confusion in the sequel. To characterize the network architecture of f , we denote its number
of layers as U(f), its scale of parameters as D(f) = maxl=1,...,U(f) max{‖bl‖∞, ‖vec(Al)‖∞}, and its number of
effective parameters as

Z(f) =

U(f)∑
l=1

(
‖bl‖0 + ‖vec(Al)‖0

)
,

where vec(·) denotes the vectorization of a matrix.

Let β > 0 be a degree of smoothness, then the Hölder space is defined as

H(β, [0, 1]D) = {f ∈ Cbβc([0, 1]D)
∣∣‖f‖H(β,[0,1]D) <∞},

where Cbβc([0, 1]D) contains all bβc-times continuously differentiable functions on [0, 1]D, b·c is the floor function,
and the Hölder norm is defined as

‖f‖H(β,[0,1]D) = max
α:‖α‖1<β

sup
x∈[0,1]D

|∂αf(x)|+ max
α:‖α‖1=bβc

sup
x,x′∈[0,1]D,x 6=x′

|∂αf(x)− ∂αf(x′)|
‖x− x′‖β−bβc∞

,

with ∂αf = ∂α1
1 · · · ∂

αD

D f , α = (α1, . . . , αD), and αi ≥ 0 is an integer. Further, we let H(β, [0, 1]D,M) = {f ∈
H(β, [0, 1]D)|‖f‖H(β,[0,1]D) ≤ M} be a closed ball with radius M , and Hp(β, [0, 1]D,M) = H(β, [0, 1]D,M) ×
H(β, [0, 1]D,M)× · · · × H(β, [0, 1]D,M).

2 TWO-TOWER MODEL

Covariates in many recommender system are unstructured and high-dimensional, such as user profiles and textual item
description. It is generally believed that such information often has a low-dimensional intrinsic representation, and
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can be naturally integrated in the feature engineering phase in a deep learning model. Given a typical recommender
system with user covariates xu ∈ RDu and item covariates x̃i ∈ RDi , the two-tower model can be written as

R(xu, x̃i) = 〈f(xu), f̃(x̃i)〉, (1)

where f : RDu → Rp and f̃ : RDi → Rp are two deep neural networks mapping xu and x̃i into the same p-
dimensional embedded space. The recommendation mechanism of the two-tower model is based on the dot product
of f(xu) and f̃(x̃i), as illustrated in Figure 1.

Figure 1: The neural network structure of the two-tower model.

The cost function of optimizing the two-tower model can be organized as

min
f,f̃

1

|Ω|
∑

(u,i)∈Ω

(
kui − 〈f(xu), f̃(x̃i)〉

)2
+ λ{J(f) + J(f̃)}, (2)

where J(·) can be the L1-norm or L2-norm penalty for preventing the deep neural network from over-fitting. More-
over, it is interesting to note that (2) reduces to the classical SVD-based collaborative filtering method, when xu and
x̃i contain only one-hot encodings for users and items.

The optimization task in (2) can be implemented via some well developed neural network computing library, such
as Tensorflow (Abadi et al., 2015), which is an open-source library for large-scale machine learning algorithms. A
popular scheme is to employ the stochastic gradient descent to update parameters of f(xu) and f̃(x̃i) in parallel as
follows,

A
(t+1)
ljk = A

(t)
ljk +

α

|M|
∑

(u,i)∈M

(
kui − 〈f(xu), f̃(x̃i)〉

)
〈 d

dAljk
f(xu), f̃(x̃i)〉 − αλ

dJ(f)

dAljk
,

Ã
(t+1)
ljk = Ã

(t)
ljk +

α

|M|
∑

(u,i)∈M

(
kui − 〈f(xu), f̃(x̃i)〉

)
〈f(xu),

d

dÃljk
f̃(x̃i)〉 − αλ

dJ(f̃)

dÃljk
,

b
(t+1)
lj = b

(t)
lj +

α

|M|
∑

(u,i)∈M

(
kui − 〈f(xu), f̃(x̃i)〉

)
〈f(xu),

d

dblj
f̃(x̃i)〉,

b̃
(t+1)
lj = b̃

(t)
lj +

α

|M|
∑

(u,i)∈M

(
kui − 〈f(xu), f̃(x̃i)〉

)
〈f(xu),

df̃

db̃lj
(x̃i)〉,

where α is learning rate andM is a subset sampled uniformly from Ω. Even though the optimization task in (2) is
non-convex, the algorithm is guaranteed to converge to some stationary point (Chen et al., 2012).

Compared with the classical collaborative filtering methods, the two-tower model is essentially a hybrid system by
leveraging collaborative filtering and content-based filtering through the low-dimensional representations for users
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and items. The deep neural network structure allows for flexible representation of users and items, and thus can fully
capture nonlinear covariate effect compared with linear modeling in literature (Bi et al., 2017; Mao et al., 2019). More
importantly, the two-tower model can greatly alleviate the cold-start issue, by embedding new users and items via
covariate representation (Van den Oord et al., 2013). It is also interesting to point out that the formulation in (2)
provides a general framework for constructing deep recommender system. Modification can be carried out on the two
neural network structures to adapt to various data sources, such as convolution neural network (CNN) for image data
(Yang et al., 2019; Yu et al., 2019) and recurrent neural network (RNN) for sequential data (Twardowski, 2016).

3 STATISTICAL GUARANTEES

This section establishes some theoretical properties of the two-tower model in terms of its strong convergence to the
true model, which, to the best of our knowledge, is among the first attempts to quantify the asymptotic behaviors of
deep recommender systems.

We assume that the observed data {(xu, x̃i, kui), (u, i) ∈ Ω} are generated from the following model,

kui = R∗(xu, x̃i) + εui = 〈f∗(xu), f̃∗(x̃i)〉+ εui, (3)

where xu ∈ [0, 1]Du , x̃i ∈ [0, 1]Di , εui are independently and identically distributed as a sub-Gaussian noise
bounded by Be with variance σ2, and f∗ = (f∗1 , . . . , f

∗
p ) and f̃∗ = (f̃∗1 , . . . , f̃

∗
p ) with f∗j ∈ H(β, [0, 1]Du ,M)

and f̃∗j ∈ H(β, [0, 1]Di ,M). In addition, it follows from the bounded Hölder norm that supx∈[0,1]Du |f∗j (x)| ≤ M

and supx∈[0,1]Di |f̃∗j (x)| ≤M for j = 1, . . . , p.

3.1 APPROXIMATION ERROR

We define two classes of bounded deep neural network for user and item as

FDu(W,L,B,M) = {f |Z(f) ≤W,U(f) ≤ L,D(f) ≤ B, sup
x∈[0,1]Du

max
j=1,...,p

|fj(x)| ≤ 2M},

FDi
(W̃ , L̃, B̃,M) = {f̃ |Z(f̃) ≤ W̃ , U(f̃) ≤ L̃,D(f̃) ≤ B̃, sup

x∈[0,1]Di

max
j=1,...,p

|f̃j(x)| ≤ 2M},

where the boundedness of f and f̃ is assumed to reduce the size of the parameter space for approximation. In the
following, FDu(W,L,B,M) and FDi(W̃ , L̃, B̃,M) will be abbreviated as FDu and FDi , respectively, when no
confusion is caused.

We further define the class of deep recommender system as

RΦ = {R(xu, x̃i) = 〈f(xu), f̃(x̃i)〉|f ∈ FDu(W,L,B,M), f̃ ∈ FDi(W̃ , L̃, B̃,M)},

where Φ = (W,L,B,M, W̃ , L̃, B̃) denotes the parameters determining the size ofRΦ. The estimate R̂ is then defined
as

R̂ = arg min
R∈RΦ

1

|Ω|
∑

(u,i)∈Ω

(
kui −R(xu, x̃i)

)2
+ λJ(R),

where J(R) =
∑L
l=1(‖Al‖2F + ‖bl‖22) +

∑L̃
l=1(‖Ãl‖2F + ‖b̃l‖22).

We first quantify the approximation error of the two-tower model in Theorem 1, which builds upon the theoretical treat-
ments in Nakada and Imaizumi (2020) to accommodate specific challenges in deep recommender system. Particularly,
the high-dimensional input for deep recommender system often live on a low-dimensional manifold, especially those
containing sparse binarized features such as bag-of-words or one-hot encoding. To quantify the intrinsic dimension of
the input space S, its upper Minkowski dimension of S (Falconer, 2004) is defined as

dim(S) = inf{d∗ ≥ 0| lim sup
ε→0

N (ε, S, ‖ · ‖∞)εd
∗

= 0}.

It is important to note that the upper Minkowski dimension of a discrete input space is always 0, and thus binarized fea-
tures normally do not increase the upper Minkowski dimension when integrated into the input for deep recommender
system.
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Theorem 1. Suppose dim
(
Supp(µu)

)
≤ du and dim

(
Supp(µi)

)
≤ di, where µu and µi denote the probability

measure of xu and x̃i, respectively. Then for any ε > 0, there exists Φ = (W,L,B,M, W̃ , L̃, B̃) with W =

O(ε−du/β), W̃ = O(ε−di/β), B = O(ε−s) and B̃ = O(ε−s), such that

inf
R∈RΦ

‖R−R∗‖L∞(µui) ≤ 3pMε,

where µui denotes the probability measure of (xu, x̃i) on Supp(µu)× Supp(µi).

Theorem 1 quantifies the approximation error of the two-tower model. Its proof as well as the proofs for all other
lemmas and theorems are provided in a separate supplementary file. The upper bound on the approximation error in
Theorem 1 assures that the true model can be well approximated by RΦ for some Φ, as long as the underlying true
functions f∗ and f̃∗ in (3) are sufficiently smooth. Furthermore, Theorem 1 holds true regardless of the value of L,
implying that the approximation error of the two-tower model can converge to 0 with any number of layers.

3.2 STRONG CONVERGENCE

We are now ready to lay out some preparatory lemmas that are necessary to quantify the strong convergence of the
two-tower model. Specifically, the following lemmas are established to measure the entropy ofRΦ, which plays a key
role in deriving the estimation error of R̂ and strikes a balance between its estimation and approximation errors.
Lemma 1. Let SB(c, d) = {(A, b)|A ∈ [−B,B]c×d, b ∈ [−B,B]c}, and

KD(W,L,B,M) = {f(·; Θ) : Θ ∈ SB(2W,D)× SL−2
B (2W, 2W )× SB(p, 2W ))}.

There exists a mapping Q : FD(W,L,B,M) → KD(W,L,B,M) such that f(x) = Q(f)(x) for any f ∈
FD(W,L,B,M), where Z(Q(f)) ≤ 14LW logW .

Note that FDu
and FDi

contain neural networks with different layers and widths, making it difficult to carve out
analyzable forms for their entropy. Lemma 1 shows that both FDu

and FDi
can be embedded into some relatively

larger functional spaces KDu
and KDi

, consisting of deep neural networks of a unified size. Thus, the entropy of KDu

and KDi
can be computed directly as a parametric model (Zhang, 2002; Wang et al., 2016; Xu et al., 2021), providing

upper bounds for those of FDu
and FDi

, respectively. It is also important to point out that except for a negligible
logarithmic term, the number of effective parameters in KD is of the same order as that of FD.
Lemma 2. For any f(x; Θ),f ′(x; Θ′) ∈ KD(W,L,B,M), it holds true that

sup
‖x‖∞≤1

‖f(x; Θ)− f ′(x; Θ′)‖2 ≤ pC(W,L,B)ε,

provided that ‖Θ−Θ′‖∞ ≤ ε, where C(W,L,B) = (WB)L( LB + L
WB−1 )− (WB)L−1

(WB−1)2 .

Lemma 2 establishes a Hölder-type continuity property for the neural networks in KD(W,L,B,M), where
C(W,L,B) may diverge to infinity with W , L and B. This continuity property paves the road for computing the
entropy of the functional class for the user and item neural networks as in Lemma 3.

Lemma 3. For any Φ = (W,L,B,M, W̃ , L̃, B̃), it holds true that

logN[·]
(
ε,RΦ, ‖ · ‖L2(µui)

)
≤ C2(W logW + W̃ log W̃ ) log

(
ε−1C3(C(W,L,B) + C(W̃ , L̃, B̃))

)
,

where N[·](ε,RΦ, ‖ · ‖L2(µui)) is the ε-bracketing number of RΦ under the ‖ · ‖L2(µui) metric, C2 = 28 max{L, L̃},
C3 = 2p3/2M max{B, B̃}, and C(·, ·, ·) is defined as in Lemma 2.

Lemma 3 establishes an upper bound on the bracketing entropy of the two-tower model, which provides the key in-
gredient for deriving the estimation error of the two-tower model based on the empirical process theory and some
large-deviation inequalities. Similar entropy measures have also been used to quantify the richness of various func-
tional classes as in Zhou (2002) and Zhang (2002).
Theorem 2. Suppose all the assumptions in Theorem 1 are met. Then there holds truth that

P
(
‖R̂−R∗‖2L2(µui)

≤ Lui|Ω|−2β/(2β+dui)(log |Ω|)2
)
≥ 1− 24 exp(−C1|Ω|dui/(2β+dui) log |Ω|),
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provided that 4λ|Ω|J(R0) ≤ Lui|Ω|−2β/(2β+dui) log |Ω|, where Lui = max{L, L̃} with L = O(β log2 β/du) and
L̃ = O(β log2 β/di),C1 = 6 max{(50p2M4+4σ2), 1}(25p2M4+B2

e )/13,Be = O(|Ω|c) with c < dui/(4β+2dui),
dui = max{du, di}, W = O(|Ω|dui/(2β+dui) log |Ω|), W̃ = O(|Ω|dui/(2β+dui) log |Ω|), B = O(|Ω|2βs/(2β+du)),
and B̃ = O(|Ω|2βs/(2β+di)).

Theorem 2 shows that the two-tower model converges to the true model at some fast rate, which is explicitly governed
by the values of du, di and β. Particularly, when β is sufficiently large, the convergence rate will be approximately
Op(|Ω|−1(log |Ω|)2), which is faster than most existing results in literature (Zhu et al., 2016). This advantage is mainly
due to the fact that the latent embeddings of user and item provide a smooth representation of covariates, and hence
the number of parameters of the two-tower model is significantly less than that of the classical collaborative filtering
methods, leading to a faster rate of convergence. Moreover, it is interesting to note that Lui is fixed when β, du, and di
are pre-specified, suggesting that finite depths of the two-tower model are sufficient for approximating the true model
with the widths of user network and item network increasing at the rate O(|Ω|dui/(2β+dui) log |Ω|).

4 NUMERICAL EXPERIMENTS

In this section, we examine the numerical performance of the two-tower model, denoted as TTM, in various synthetic
and real-life examples, and compare it against a number of existing competitors, including regularized SVD (rSVD;
Salakhutdinov et al., 2007), SVD++ (SVDpp; Koren, 2008), co-clustering algorithm (Co-Clust; George and Merugu,
2005), and K-nearest neighbors (KNN). Whereas TTM is implemented via TensorFlow, the implementations of all
other methods are available in the Python package “surprise” (Hug, 2020). Specifically, rSVD employs an alternative
least square (ALS) algorithm to estimate latent factors for users and items iteratively (Koren et al., 2009; Dai et al.,
2019); SVD++ employs stochastic gradient descent (SGD) to minimize a regularized square error objective; Co-Clust
divides users and items into clusters which are assigned different baseline ratings; SlopeOne is basically an item-based
collaborative filtering method in leveraging ratings of other similar items for prediction; KNN mainly utilizes the
weighted average of ratings of top-K most similar users for prediction.

The tuning parameters for all methods are determined by grid search. Particularly, we split each data set into two
subsets for training and testing. Then, the optimal model of SVDpp, KNN, rSVD and Co-Clust will be determined
via 5-fold cross-validation based on training data set, and that of TTM is determined by a validation set with ratio to
training set being 0.2 for saving computational cost encountered in cross-validation. The grids for the regularization
parameter λ in TTM and rSVD are set as {10−6+k/3; k = 0, . . . , 24}, and the grids for the number of clusters in
Co-Clust and neighborhood parameter K in KNN are set as {5, 10, 15, . . . , 50}. The similarity measure in KNN is set
as mean square similarity difference between common ratings for any pair of users or items (Hug, 2020). Furthermore,
as TTM replies on deep neural network, the learning rate of SGD is set as 0.01 in the beginning with decay rate and
minimal learning rate being 0.9 and 0.005, respectively, and an early-stopping scheme is employed to avoid over-
fitting.

4.1 SYNTHETIC EXAMPLES

We consider various scenarios of a synthetic example. First, the sizes of the rating matrix K = {kui}1≤u≤n;1≤i≤m
are set as (n,m) = (1500, 1500), (2000, 2000) and (3000, 3000), and the number of observed ratings is fixed at
100,000, which amounts to sparsity ranging from 0.011 to 0.044. Second, we set the nominal dimensions of xu
and x̃i as Du = Di = 50, representation dimension as p = 30, and the true functions for users and items as
f∗(xu) = (f∗1 (xu), . . . , f∗p (xu)) and f̃∗(x̃i) = (f̃∗1 (x̃i), . . . , f̃

∗
p (x̃i)), where f∗j (xu) =

∑Du

l=1 αjl sin(2πxul) +∑Du

l=1 βjl cos(2πxul) +
∑Du−1
l=1 ζjlxulxu(l+1) and f̃∗j (x̃i) =

∑Di

l=1 α̃jl sin(2πx̃il) +
∑Di

l=1 β̃jl cos(2πx̃ul) +∑Di−1
l=1 ζ̃jlx̃ulx̃u(l+1) with αjl, α̃jl, βjl, β̃jl, ζjl and ζ̃jl being uniformly sampled from [−0.15, 0.15]. To mimic the

low intrinsic dimension of covariates, we sample xul and x̃il from [0, 1] for l = 1, . . . , d, and set xul = xu(l−d) and
x̃il = x̃i(l−d) for l = d+ 1, . . . , 50, where the intrinsic dimension d ∈ {20, 30, 40}. Finally, the ratings are generated
from the following model,

kui = 〈f∗(xu), f̃∗(x̃i)〉+ εui,

where εui is set as a Gaussian distribution with mean 0 and variance 0.1.
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In each scenario, the neural networks for both user and item in TTM are set as 5-layer fully-connected neural network
with 50 neurons in each hidden layers and 30 neurons in the output layer. The averaged root mean square errors
(RMSEs) of each method as well as their standard errors are summarized in Table 1. Table 1 shows that TTM yields

Table 1: Averaged RMSE of various methods as well as their standard errors (in parentheses) over 50 replications.
The best performers in each case are bold-faced.

(n,m, d) TTM rSVD KNN SVDpp Co-Clust

(1500,1500,20) 0.496(0.011) 1.566(0.008) 1.990(0.013) 1.507(0.008) 1.815(0.012)
(1500,1500,30) 1.330(0.010) 1.742(0.009) 2.063(0.011) 1.704(0.007) 1.944(0.010)
(1500,1500,40) 1.604(0.011) 1.845(0.007) 2.075(0.012) 1.806(0.007) 2.015(0.011)
(2000,2000,20) 0.438(0.022) 1.908(0.010) 2.074(0.016) 1.849(0.008) 1.907(0.013)
(2000,2000,30) 1.358(0.013) 2.041(0.013) 2.120(0.012) 1.995(0.011) 2.027(0.013)
(2000,2000,40) 1.703(0.009) 2.110(0.010) 2.150(0.010) 2.073(0.009) 2.089(0.010)
(3000,3000,20) 0.373(0.010) 2.105(0.023) 2.301(0.024) 2.198(0.021) 2.149(0.022)
(3000,3000,30) 1.353(0.013) 2.196(0.012) 2.311(0.012) 2.204(0.012) 2.246(0.015)
(3000,3000,40) 1.862(0.010) 2.209(0.020) 2.338(0.021) 2.219(0.019) 2.291(0.021)

smallest test errors in all cases with improvement ranging from 12.6% to 81.3%. Particularly, the improvement be-
comes more substantial when n and m increase and the rating matrix becomes sparser. This is expected as the existing
method suffers from the severe cold-start issue in sparse rating matrix. By sharp contrast, TTM is much more robust to
sparse rating matrix when the intrinsic dimensionality of covariates is small, and hence that it can greatly circumvent
the cold-start issue. This provides numerical support for the established theoretical results in Theorem 2, which shows
that the convergence rate of TTM increases as d decreases.

4.2 YELP DATASET

In this section, we apply the two-tower model to the Yelp challenge dataset, which is publicly available at https:
//www.yelp.com/dataset. The data set has four interrelated parts relating to “user”, “business”, “review”,
and “check-in”, respectively. In “user” part, personal information about almost 5,200,000 users in Yelp community
is available, including number of reviews, fans count, elite experience, and personal social network. Additionally,
users’ behavior like averaged stars of reviews and voting obtained from other users like “useful”, “funny” and “cool”
are also given. In “business” part, the location, latitude-longitude, review counts, and categories of almost 174,000
businesses are given. In “review”, each review consists of user, business, textual comment, and corresponding stars
for the business. In “check-in” part, the counts of check-ins at each business are provided. We construct profiles of
users and businesses by using parts “user”, “business”, and “review” for constructing profiles for users and businesses,
which will be used as covariates in the TTM.

To process the data set, we focus cities with at least 20 businesses and businesses with at least 100 reviews, which
amounts to 15,090 businesses in the item set. For each business, we numericalize “location” and “category” by
one-hot encoding and use them as part of item covariates. For users, we collect their binarized elite experience
indicating whether they have ever acted as elite user in Yelp community and overall feedbacks they obtained including
“useful”, “cool”, and “funny”. Furthermore, we construct covariates for users and businesses based on textual reviews.
Specifically, we collect all textual reviews and employ term frequency-inverse document frequency (tf-idf) to extract
300 most significant 1-gram, 2-gram, and 3-gram. In this manner, each review is converted into an integer covariate
vector of length 300 based on bag-of-words technique. For a specific user or business, we averaged all the bag-of-
words representations of its reviews, and then concatenate it with covariates constructed in the earlier step.

Additionally, we notice an interesting phenomena that users usually comment on aspects of restaurants using words
with polarity such as “Oh yeah! Not only that the service was good, the food is good the serving is good and the service
is amazing”, “Jamie our waitress is so sweet and attentive.”, and so on. In the first example, the user uses “good” and
“amazing” to describe “food” and “service” in this restaurant, and in the second example the user uses “sweet” and
“attentive” to describe “waitress”. Intuitively, comments on aspects characterize features of restaurants, and also
aspects appearing frequently in a user’s reviews also indicate what he/she cares most in the process of consumption.
To capture such information, we utilize the Python package “Spacy” to capture entities and corresponding sentiment
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words given by the function “SentimentIntensityAnalyzer” in the Python package “nltk”. As shown in Table 2, users
are apt to provide feedbacks over “food”, “service”, “place” and “staff” in reviews as expected. Additionally, it is
interesting to note that “price” obtains a relatively lower averaged polarity score in reviews, which is only 0.28 in stark
contrast with other aspects. This implies that reviews containing “price” are more likely to have lower ratings. Finally,
we select 200 most common aspects in reviews and construct vectors of length 200 with elements being averaged
polarity scores of associated aspects in reviews of a user or business.

Table 2: Descriptive statistics of polarity scores of 10 most common aspects of in selected reviews.

aspect frequency mean std 25% 50% 75%

atmosphere 7096 0.42 0.21 0.40 0.44 0.56
food 66879 0.39 0.27 0.36 0.44 0.57
fries 7772 0.39 0.28 0.42 0.44 0.57
place 32201 0.34 0.32 0.32 0.43 0.57
prices 7179 0.28 0.32 0.23 0.43 0.44
salad 6508 0.38 0.27 0.32 0.44 0.57
sauce 7081 0.41 0.28 0.44 0.46 0.57
server 11874 0.43 0.24 0.42 0.49 0.56
service 71755 0.40 0.30 0.44 0.49 0.57

staff 29270 0.45 0.19 0.42 0.49 0.49

After the pre-processing step, we obtain a data set containing 15,090 business, 35,906 users and 688,960 ratings. We
replicate the numerical experiments 50 times, and in each replication, we randomly choose 15,000 users and 10,000
businesses, as well as their observed ratings for experiment. We split the selected data set in training and testing sets
with the ratio 70-30, and follow the tuning process as described in the beginning of Section 4. Moreover, the remaining
reviews will be used for evaluating the performance of the TTM in the cold-start setting.

Table 3: Averaged RMSE of various methods as well as their standard errors (in parentheses) over 50 replications.
The best performers in each case are bold-faced.

TTM rSVD KNN SVDpp Co-Clust

Overall
0.9624 1.0325 1.0544 1.0338 1.0573

(0.0004) (0.004) (0.0004) (0.0003) (0.0004)

Warm-Start
0.9547 0.9655 1.0449 0.9703 1.0553

(0.0007) (0.0007) (0.0008) (0.0006) (0.0008)

Cold-Start
0.9654 1.0581 1.0581 1.0581 1.0581

(0.0004) (0.0002) (0.0002) (0.0002) (0.0002)

Table 3 shows that TTM yields the smallest test errors in terms of overall recommendations, with improvement ranging
from 6.79% to 8.98%. These improvements are mostly due to the improved recommendation accuracy on the cold-start
pairs, for which all other methods yield the same RMSE as 1.0581. This clearly demonstrates that TTM is capable of
leveraging high-dimensional user and item covariates to capture underlying interaction between users and items, and
thus enable accurate recommendations for cold-start pairs without any observed ratings.

5 SUMMARY

This paper quantifies the asymptotic convergence of the two-tower model to the optimal recommender system, which
integrates multiple covariate sources of information to improve recommendation accuracy. The two-tower model
consists of two deep neural networks to embed users and items in a low-dimensional numerical space, and estimates
ratings through the well-established collaborative filtering structure. It takes advantages of the learning capability of
deep neural network to extract informative representations of covariates in an non-linear fashion. Most importantly,
this paper provides statistical guarantee of the two-tower model by quantifying its asymptotic behaviors in terms of
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both approximation error and estimation error. To the best of our knowledge, our established results are among very
few theoretical guarantees about the deep recommender systems.
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