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Abstract

In classical AI, perception relies on learning state-based representations, while
planning — temporal reasoning over action sequences — is typically achieved
through search. We study whether such reasoning can instead emerge from
representations that capture both perceptual and temporal structure. We show that
standard temporal contrastive learning, despite its popularity, often fails to capture
temporal structure due to its reliance on spurious features. To address this, we
introduce Contrastive Representations for Temporal Reasoning (CRTR), a
method that uses a negative sampling scheme to provably remove these spurious
features and facilitate temporal reasoning. CRTR achieves strong results on
domains with complex temporal structure, such as Sokoban and Rubik’s Cube.
In particular, for the Rubik’s Cube, CRTR learns representations that generalize
across all initial states and allow it to solve the puzzle using fewer search steps than
BestFS — though with longer solutions. To our knowledge, this is the first method
that efficiently solves arbitrary Cube states using only learned representations,
without relying on an external search algorithm.

Website: https://princeton-rl.github.io/CRTR/

1 Introduction

Machine learning has achieved remarkable progress in vision [52], control [21], and language
modeling [66, 33]. However, it still falls short on tasks that require structured, combinatorial
reasoning. Even relatively simple problems, such as planning in puzzles or verifying symbolic
constraints, remain challenging for end-to-end learning systems [61, 41]. The best methods for
solving these problems use computationally expensive search algorithms, such as A* or Best First
Search (BestFS) [29].

This work centers on the question: Can we learn representations that reduce or eliminate the need
for search in combinatorial reasoning tasks? To see how good representations can reduce test-time
search, consider checking whether a graph has an Euler path. This is true if and only if the graph
has exactly zero or two vertices of odd degree. A representation that encodes vertex degrees reduces
the task to a simple check—eliminating the need for graph traversal. We approach our question
by leveraging temporal contrastive learning [46, 56, 21, 19, 44]. These self-supervised techniques
are designed to acquire compact, structured representations that capture the problem’s temporal
dynamics, enabling efficient planning directly within the latent space.

While (Contrastive Learning) CL has shown promise in control tasks [59, 6], particularly through
methods like Contrastive Reinforcement Learning (CRL)[21], we observe that its effectiveness in
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Figure 1: CRTR makes representations reflect the temporal structure of combinatorial tasks. t-SNE
visualization of representations learned by CRTR (right) and CRL (left) for Sokoban. Colors correspond to
trajectories; three frames from two trajectories are shown in the center and linked to their representations. CRL
embeddings cluster tightly within trajectories, failing to capture global structure and limiting their usefulness for
planning. In contrast, CRTR organizes representations meaningfully across trajectories and time (vertical axis).

combinatorial domains is significantly limited. Specifically, we identify a critical failure mode where
contrastive representations overfit to instance-specific context, instead of reflecting environment
dynamics. Consequently, models fail to adequately capture the temporal structure that is vital for
effective decision-making. This failure mode — such as when the model overfits to wall layouts in
Sokoban (Section 4.1) — manifests as a collapse of trajectory representations into small, disconnected
clusters, as illustrated in Figure 1 (left).

To solve this, we introduce Contrastive Representations for Temporal Reasoning (CRTR), a simple,
theoretically grounded CL method that uses in-trajectory negatives. By design, CRTR forces the
model to distinguish between temporally distant states within the same episode. This mechanism
prevents it from exploiting irrelevant context — such as visual or layout cues — and instead encour-
ages learning temporally meaningful embeddings that reflect the problem’s relevant dynamics. This
echoes recent findings in neuroscience, where hippocampal representations of overlapping routes
diverge during learning despite visual similarity [10]. Our approach similarly prioritizes temporally
meaningful structure over reliance on visual cues.

We evaluate CRTR across challenging combinatorial domains: Sokoban, Rubik’s Cube, N-Puzzle,
Lights Out, and Digit Jumper. Due to their large, discrete state spaces, sparse rewards, and high
instance variability, they serve as challenging testbeds for evaluating whether learned representations
can support efficient, long-horizon combinatorial reasoning. In each case, CRTR significantly
improves planning efficiency over standard contrastive learning, and approaches or surpasses the
performance of strong supervised baselines.

Our main contributions are the following:

1. We identify and analyze a critical failure mode in standard contrastive learning, showing its inabil-
ity to capture relevant temporal or causal structure in problems with a complex temporal structure.

2. We propose Contrastive Representations for Temporal Reasoning (CRTR), a novel and
theoretically grounded contrastive learning algorithm that utilizes in-trajectory negative
sampling to learn high-quality representations for complex temporal reasoning.

3. We demonstrate that CRTR outperforms existing methods on 4 out of 5 combinatorial reasoning
tasks, and that its representations, even without explicit search, enable solving the Rubik’s Cube
from arbitrary initial states using fewer search steps than BestFS—albeit with longer solutions.

2 Related Work

We build upon recent advances in self-supervised RL and contrastive representation learning.
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Contrastive learning. Contrastive learning is widely used for discovering rich representations
from unlabeled data [12, 11, 32, 54] to improve learning downstream tasks [64]. Contrastive
learning has enabled effective learning of large-scale models in computer vision [70, 9, 52, 40]
and language [60, 24]. Contrastive learning acquires representations by pulling representations
of similar data points, i.e., ones that belong to the same underlying concept, closer together and
pushing dissimilar ones further apart in the representation space [63]. This idea is reflected in
various contrastive objectives, including Triplet Loss [30], NCE [26], InfoNCE [58], and conditional
InfoNCE (CCE) [42]. Our work is most closely related to prior work that uses contrastive learning to
obtain representations of time series data [46, 56, 21, 3].

Contrastive representations for sequential problems. Self-supervised contrastive learning has
also been applied to sequential (or temporal) problems, including goal-conditioned RL [21, 62, 44],
skill-learning algorithms [48, 73, 18], and exploration methods [25]. Contrastive representations
also excel at symbolic reasoning for simple mathematical problems [50]. Most temporal-based
contrastive algorithms are based on optimizing the InfoNCE objective [58] to distinguish real future
states in the trajectory from random states in other trajectories. Interestingly, Eysenbach et al.
[19] demonstrate that intermediate state representations can be effectively approximated via linear
interpolation between the initial and final embeddings. Based on these findings, we hypothesize that
such representations might also reduce or eliminate the need for search in complex combinatorial
problems.

Combinatorial problems. Combinatorial environments are characterized by discrete, compact
observations that represent exponentially large configuration spaces, often associated with NP-
complete problems [35]. Recent RL advancements address these challenges using neural networks
to learn efficient strategies, including policy-based heuristics [43, 5], graph neural networks for
structural exploitation [8, 36], and imitation learning with expert demonstrations [57]. Our work
shows that effective search-facilitating representations can be learned from suboptimal data, without
relying on expert demonstrations.

Planning in latent space. Efficient planning in complex environments can be achieved by learning
state representations that reflect the underlying structure of the problem. Prior work on world models
[27, 28] shows that compact representations of high-dimensional environments are critical for agent
performance. Another line of research [55, 22] focuses on learning representations that retain only
the features relevant for planning. In robotic settings, similar approaches train latent representations
to support movement and decision-making [31, 22]. We build on the approach of Eysenbach et al.
[21], which formulates goal-conditioned reinforcement learning as a representation learning problem,
with the key distinction that we focus on combinatorial reasoning tasks.

3 Preliminaries

Combinatorial problems and dataset properties. We focus on combinatorial problems, which
can be formulated as deterministic goal-conditioned controlled Markov processes (S,A, p, p0, rg, γ).
At each timestep t, the agent observes both the state st ∈ S and the goal g ∈ S, and performs an
action at ∈ A. We assume that the transition function p : A× S → S is known and deterministic.
Initial states are sampled from the distribution p0(s0). We define reward function rg(st) = 1 for
st = g and rg(st) = 0 otherwise.

The objective is to learn a goal-conditioned policy π(a | s, g) that maximizes the expected reward:
maxπ Ep0(s0),pg(g) [

∑∞
t=0 γ

trg (st, at)] . We study an offline learning setup with a dataset of success-
ful yet suboptimal trajectories τi = ((s1, a1), (s2, a2), . . . (g,−)). A state sn is defined as reachable
from s1 if there exist a path a1, a2, . . . , an, such that sn = p(an, p(an−1, p(. . . , p(a1, s1)))).

Contrastive reinforcement learning. We employ a contrastive reinforcement learning (CRL)
method [21] to train a critic f(s, g), which estimates the similarity between the current state s and
future state g (goal). The critic uses a single encoder network ψ to generate both representations of
the state ψ(s) and the goal ψ(g). Critic’s output measures a similarity between these representations
with a metric fψ(s, g) = ∥ψ(s) − ψ(g)∥ that reflects the closeness of the states. For details, see
Appendix C. To train the critic, we construct a batch B by sampling n random trajectories from the
dataset. For each trajectory, we select a state si uniformly and draw a goal gi using a Geom(1− γ)
distribution over future states. Negative pairs consist of state-goal pairs (si, gj) with goals sampled
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from different trajectories. We use the critic’s outputs in the InfoNCE objective [58], following prior
work in CRL [21, 20, 72, 71, 44, 6]. This objective provides a lower bound on the mutual information
between state and goal representations:

min
ψ

EB

[
−
∑|B|

i=1
log

(
efψ(si,gi)∑K
j=1 e

fψ(si,gj)

)]
.

Mutual information. The mutual information between random variables X and Y is the amount of
information the value of one conveys about the value of the other. Formally, this corresponds to how
much the entropy decreases after observing one of the random variables: I(X;Y ) = H[X]−H[X |
Y ]. The conditional mutual information I(X;Y | C) measures the extra information Y provides
about X once the context C is known: I(X;Y | C) = H[X | C]−H[X | Y,C]. The conditional
MI is zero when X and Y are conditionally independent given C.

Search-based planning. Several prior works use explicit search algorithms solving complex
environments [57, 7, 67, 47]. In our study, we focus on the Best-First Search (BestFS) [49]. BestFS
builds the search tree by greedily expanding nodes with the highest heuristic estimates, hence targeting
paths that are most likely to lead to the goal. In our approach, BestFS uses the representations of the
current state and goal, and relies on the critic to evaluate the distances between neighboring states
and the goal. While not ensuring optimality, BestFS provides a simple yet effective strategy for
navigating complex search spaces. The pseudocode for BestFS is outlined in Appendix B. In our
work, we use distances in the latent space as the heuristic, as detailed in Section 3.

4 Learning Temporal Representations that Ignore Context

The main contribution of this paper is a method for learning representations that facilitate planning.
We start by describing how naı̈ve temporal contrastive representations fail in combinatorial problems.
Using Sokoban as an example, we will highlight why this happens (Sec. 4.1), and use it to motivate
(Sec. 4.1) a different contrastive objective that better facilitates planning on many problems of interest.
Section 4.3 summarizes our full method, CRTR.

Problem definition. We use a neural network ϕ : S 7→ Rk to embed states into k-dimensional
representations. We define the critic f(s, g) = ∥ϕ(s) − ϕ(g)∥ as the norm between these learned
representations (see Appendix C). Our aim will be to learn effective representations from a dataset of
trajectories (st)t=1..N , collected from either suboptimal expert or random policies. We evaluate these
representations by testing whether their distances reflect the structure needed to solve combinatorial
tasks like Rubik’s Cube or Sokoban.

4.1 Failure of Naı̈ve Temporal Contrastive Learning in Combinatorial Domains

A straightforward approach to learning representations ϕ(s) is to use temporal contrastive learning [46,
56] (outlined in Sec. 3): positive pairs are sampled from nearby states within the same trajectory,
and negatives from different trajectories. However, applying this approach to a common benchmark
(Sokoban) reveals an important failure mode. This section introduces this failure mode and its
mathematical underpinnings, Sec. 4.2 introduces an idealized algorithm for fixing this failure mode,
and Sec. 4.3 turns this idealized algorithm into a practical one that we use for our experiments in
Sec. 5.

Sokoban is a puzzle game where an agent must push boxes to target locations in a maze. Each level
(or problem instance) is generated with a random wall pattern that is different from one trajectory
to another (see Fig. 1). Fig. 1 shows a t-SNE projection of representations learned by temporal
contrastive learning on this task. We observe that embeddings from different mazes form tight,
isolated clusters. Appendix Fig. 15 shows the same phenomenon happens on the Digit Jumper task.
Thus, the representations primarily encode the layout of the walls and not the temporal structure of
the task. The reason representations use those features is that they minimize the contrastive objective.
Each batch element typically comes from a different maze, so representations that use the wall pattern
to detect positive vs negative pairs achieve nearly perfect accuracy. Thus, we will need a different
objective to learn representations that primarily focus on temporal structure, and ignore static features
(like the walls in Sokoban). To do this, we will first provide a mathematical explanation for this
failure mode, which will motivate the new objective in Sec. 4.2.
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A mathematical explanation. The failure of temporal contrastive learning can be explained with a
context variable c:
Definition 4.1. Let D = {τ1, τ2, . . . , τn} be a dataset of trajectories, where each trajectory τ =
(s1, . . . , sT ) is a sequence of states. Assume that each state can be written as si = (ci, fi), where ci
is a component that remains constant over the whole trajectory: c = c1 = · · · = cT . Then we can
write the trajectory as (c, (f1, . . . , fT )). We refer to c as the context variable, and (f1, . . . , fT ) as the
temporal part of the trajectory.

For instance, in Sokoban, in each trajectory, we can take the context to be the positions of walls and
box goals and the temporal part to be the positions of the player and boxes. It is always possible to
decompose a trajectory into a context and temporal part by setting c = (), but we will be primarily
interested in cases where the context is disjoint from the temporal part:
Assumption 4.2. Let c be a context and (s1, . . . , sT ) ∼ D a trajectory. Then for any time steps
i < j, the state sj and the context c are conditionally independent given si: sj ⊥ c | si.

This Assumption holds for Sokoban, where the context is the wall layout, since the wall layout can
be fully determined by each of the states in the trajectory. We will use this assumption to motivate an
idealized algorithm in Sec. 4.2, but our practical method in Sec. 4.3 will not require this assumption.
Indeed, our experiments (Section 5) show that the approach also works when the context evolves
slowly over time (e.g., for the Rubik’s Cube).

4.2 Learning Representations that Ignore Context: An Idealized Algorithm

Based on this mathematical understanding of the context, we now introduce an idealized alternative
method for learning the representations, which makes use of information about the contexts. Sec. 4.3
introduces the practical version of this algorithm, which does not require any a priori information
about the context.

The key idea in our method is to sample negative pairs (x, x−) that have the same context, so that
the context features are not useful for distinguishing positive and negative pairs; thus, these context
features will not be included in the learned repersentations. Specifically, our idealized method
works by first sampling the context c ∼ P(C), then positive pairs (x, x+) from the conditional joint
distribution P(X,X+ | c) and negatives from the marginal conditional distribution x(i)− ∼ P(X | c)
for i ∈ {1, . . . , N − 1}. The resulting contrastive learning objective is:

max
f

L(f) ≜ Ec∼P(C),(xj ,xj+)∼P(X,X+|C),

xij−∼P(X|c)

 1

N

N∑
j=1

ef(xj ,xj+)

ef(xj ,xj+) +
∑N−1
k=1 e

f(xj ,xkj−)

 ,

max
f

L(f) ≜ E(xj ,xj+)∼P(X,X+),

xij−∼P(X)

 1

N

N∑
j=1

ef(xj ,xj+)

ef(xj ,xj+) +
∑N−1
k=1 e

f(xj ,xkj−)

 ,
where f(·, ·) is the learned similarity score between state pairs. For example, in Sokoban, this method
changes how negative examples are sampled so that they always have the same wall configuration.

Mathematically, this alternative objective is a lower bound on the conditional mutual information
I(X;X+ | C) [42], which can be decomposed using the chain rule for mutual information:

I(X+;X | C) = I(X+;C | X) + I(X+;X)− I(X+;C).

Combined with the assumption that X+ ⊥ C | X (so I(X+;C | X) = 0), we see that this new
objective is a lower bound on a difference of mutual informations:

L(f) ≤ I(X;X+)− I(X+;C).

The term I(X;X+) is what is usually maximized by temporal contrastive learning. The second term,
I(X+;C), is akin to adversarial feature learning [38, 16, 65], which aims to learn representations
that do not retain certain pieces of information. Our method achieves a similar effect without the
need for adversarial optimization. This context-invariance objective parallels mechanisms observed
in biological systems, where overlapping episodic memories are actively decorrelated to reduce
interference [10].
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Algorithm 1 CRTR performs temporal contrastive learning, but samples negatives in a different way
so that representations discard task-irrelevant context, boosting performance (See Fig. 2).

# dataset.shape == [num_traj, traj_len, obs_dim]

t0 = np.random.choice(dataset.shape[1], batch_size)

t1 = t0 + np.random.geometric(1 - discount, batch_size)

traj_id = np.random.choice(dataset.shape[0], batch_size)

# 1 new line of code for CRTR (our approach):

traj_id = np.repeat(traj_id[:batch_size // repetition_factor],

repetition_factor, axis=0)

batch = (dataset[traj_id, t0], dataset[traj_id, t1])

# further batch processing, the same for CRL and CRTR

4.3 A Practical Method

While the idealized method in Sec. 4.2 is useful for analysis, the main challenge with practically
implementing this method is that the context is not clearly separable from the observation. For
example, upon seeing a Sokoban board for the first time, how should one know that blocks are movable
(not part of the context) while walls are not (should be part of the context)? This section proposes
a practical algorithm that does not require the assumption from Definition 4.1; our experiments in
Sec. 5 will demonstrate that this practical method continues to work when this assumption is violated.

The key idea behind our practical method changes how training pairs are sampled for contrastive
learning: for each trajectory included in a batch, sample multiple positive pairs. Contrastive learning
treats each batch element as forming negative pairs with all other elements in the batch. When
multiple positives from the same trajectory are present, some negative pairs will consist of two states
from the same trajectory—but likely sampled from different points in time. These within-trajectory
negatives are drawn from a different distribution than the corresponding positives, often involving
greater temporal separation. As a result, the model is encouraged to focus on temporal distinctions
rather than features that are constant throughout a trajectory.

Implementing this idea in practice requires changing just a few lines of code from prior temporal
contrastive learning methods, as highlighted in Algorithm 1). The repetition factor governs the
proportion of such negatives, thereby providing a controllable mechanism to interpolate between the
standard and proposed objectives. Using data sampled in this way guarantees that some negative
training pairs in each batch come from the same trajectory. We compare with potential alternative
approaches in Appendix I.

4.4 What if the context is not constant?

While our theoretical analysis required that the context be clearly separable from the observation, the
key insight behind our practical method (Sec. 4.3) was to lift this assumption, allowing the method to
be applied without any knowledge of the context, even to problems without a constant context (e.g.,
the Rubik’s Cube).

While we empirically test how our method performs on problems without a fixed context in Sec. 5,
here we provide some intuition for why the method might be expected to work in such settings. In
the Rubik’s Cube, for instance, all states are mutually reachable, making it difficult to define the
context. Nevertheless, if we focus on the more shuffled portion of the trajectory, simple heuristics like
Hamming distance can classify state pairs with 90% accuracy. This suggests that while each move
introduces temporal change in some parts of the cube, others remain unchanged, implicitly forming a
type of context. As a result, networks may latch onto features that correlate with this pseudo-context
rather than true temporal proximity. In Section 5.2 we empirically demonstrate that our method can
also improve performance in settings without a constant context.

5 Experiments

Our experiments aim to answer the following specific research questions:
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1. Does learning representations that ignore context improve performance on combinatorial reason-
ing problems? (Sec. 5.2)

2. Do learned representations alone suffice for reasoning, or is explicit search essential? (Sec. 5.3)
3. Are representation learning methods that remove context competitive with successful prior

methods for combinatorial reasoning? (Sec. 5.2)
4. What is the relative importance of design decisions, such as how the negatives are sampled and

the number of in-trajectory negatives? (Sec. 5.4)

5.1 Experimental Setup

Environments. We evaluate all methods on five challenging combinatorial reasoning tasks:
Sokoban [17], Rubik’s Cube, N-Puzzle [34], Lights Out [2], and Digit Jumper [4]. Most of these
are NP-hard [15, 13, 53] and serve as standard RL benchmarks [1, 51, 69]. Sokoban is a grid-based
puzzle where an agent pushes boxes to targets while avoiding irreversible states. Rubik’s Cube
requires aligning each face of a 3D cube to a single color. N-Puzzle involves sliding tiles within a
4 × 4 grid to reach a goal configuration. Lights Out is a toggle-based puzzle aiming to switch all
cells to an off state. Digit Jumper is a grid game where each cell indicates the jump length from that
position. See Appendix A for full environment details.

Baselines. We compare against three baselines. The contrastive baseline performs temporal
contrastive learning [56, 46, 21], training representations without in-trajectory negatives. We will
refer to this baseline as contrastive RL (CRL) [21]. The supervised baseline [14, 68] predicts state
distances using a value network trained via imitation on demonstrations. Finally, the DeepCubeA [1]
baseline learns a value function via iterative one-step lookahead. As a lower bound, we also evaluate
the performance of representations from a randomly initialized network. For fairness, the CRL and
supervised baselines use the same architecture as CRTR.

We will evaluate methods in two settings: with and without search. When we use search, all methods,
including DeepCubeA, use BestFS for planning. During tree search, all actions are considered for
Rubik’s Cube, N-Puzzle, Digit Jumper, and Sokoban; for Lights Out, expansion is limited to the top
ten actions ranked by the value function. All the methods avoid loops by only considering states that
were not already processed. Further evaluation details are provided in Appendix D. When evaluating
methods without search, we greedily find the neighboring states with minimum predicted distance
and select the action leading to that state (recall, we assume dynamics are known and deterministic).

Metrics. We evaluate two key aspects of representation quality. Spearman’s rank correlation
measures the alignment between representation-space distance and the actual number of steps each
state is from the last state in a trajectory. We compute this for each trajectory in the test set, then
average the results over 100 trajectories. A high correlation indicates that states closer in time are
also closer in the representation space. We demonstrate that this correlation is a good measure of
representation quality in Appendix G. Success rate at a fixed computational budget measures the
fraction of initial states from which a complete solution is found. This metric reflects whether the
learned representations support effective planning.

The training details, including hyperparameters, network architectures, and dataset descriptions, are
specified in Appendix C. Code to reproduce our experiments is available online: https://github.
com/Princeton-RL/CRTR.

5.2 Context-Free Representations for Combinatorial Reasoning

We first analyze the representations learned by CRTR visually, using Sokoban as a testbed because
it contains obvious context features (the wall positions). Fig. 1 shows the representations learned
by CRTR and compares them with those learned by standard temporal contrastive learning (CRL),
which differs from our method by not using in-trajectory negatives. We use t-SNE to reduce
the representations down to 2D. The CRL baseline learns representations that cluster together,
likely focusing on static features – for each trajectory, all observations get encoded to very similar
representations. In contrast, the representations from CRTR likely focus on temporal structure – the
fact that observations from different trajectories but similar stages of solving get encoded to similar
representations indicates that the representations are ignoring context information (which is irrelevant
for decision making).
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Figure 2: CRTR performs well in all the evaluated domains. Success rate as a function of search budget
across five domains. CRTR compared to baselines: CRL [21], Supervised [14] and DeepCubeA [1].
Results are averaged over 5 seeds; shaded regions indicate standard error. For the Rubik’s Cube, both
the supervised and random baselines achieve a success rate of zero for all search budgets.
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Figure 3: Distances given by CRTR
representations reflect the temporal
structure well. Correlation (Spear-
man’s ρ) between the distance induced
by learned embeddings and actual dis-
tance across the training, CRTR com-
pared with CRL.

Our second experiment studies whether these CRTR represen-
tations are useful for decision making. To do this, we use the
representations to construct a heuristic for search, measuring
the fraction of problem configurations that are solved within
a given search budget (X axis). As shown in Figure 2, CRTR
consistently achieves among the highest success rates, with
the largest gains in Sokoban and Digit Jumper. The strong
performance relative to CRL highlights the importance of re-
moving context information from learned representations. In
Appendix E, we provide additional, smaller-scale experiments
showing that these improvements also hold when using a non-
greedy solver.

Our third experiment compares CRTR to supervised ap-
proaches [1, 14] for solving combinatorial problems. Again,
see Fig. 2. CRTR ranks among the top-performing methods in
each environment and is strictly the best in two environments.
In contrast, the supervised baselines perform much worse in
Rubik’s Cube and Lights Out. We conjecture that the improved performance of CRTR come from
how it represents values as distance between learned representations, rather than a number output by
a monolithic neural network.

The t-SNE visualizations (Figure 1) suggests that CRL focuses primarily on the static context, while
CRTR focuses on the temporal structure. Below, we present additional empirical evidence supporting
this interpretation.

We perform further analysis in Sokoban environments. Without negative pairs, the classification
task becomes nearly trivial: the model leverages context cues to achieve close to 100% accuracy
(Appendix E). Despite this, the learned representations exhibit low correlation with ground-truth
state-space distances (Figure 3), indicating that the model ignores temporal structure and instead
relies on static context. In contrast, CRTR prevents reliance on contextual shortcuts, resulting in
representations that better capture the underlying geometry of the environment (Figure 3). We provide
a similar analysis for Digit Jumper in Appendix E. We also demonstrate that using CRTR leads to
improved temporal structure in robotic domains (See Appendix F). In Appendix H we show that
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Figure 4: CRTR solves most tasks without requiring any search. Adding BestFS results in shorter
solutions. We plot the fraction of configurations solved with a solution length of at most x, while
limiting the number of nodes created to 6000. Surprisingly, on the Rubik’s cube CRTR achieves a
higher success rate without search, solving all board configurations within the budget. Figure 11 in
the Appendix E presents the same results, but for CRTR, as well as the Contrastive and Supervised
baselines.

CRTR results in representations that optimize conditional mutual information I(X,X+|C), while
CRL does not.

5.3 Is search necessary?

Do good representations allow us to solve combinatorial problems without search, or at least reduce
the amount of search required to get high success rates? We study this question by using the learned
representations to perform greedy planning (see Sec. 5.1) for up to 6000 search steps.

We present the results from this experiment in Figure 4, showing the fraction of problems solved with
fewer than a certain number of steps. We compare to the variant of CRTR used in Sec. 5.2 that uses
the representations to perform search. As an example of how to interpret this plot, the red line in the
leftmost plot shows that CRTR (without search) can solve about 50% of Rubik’s cube configurations
in less than 300 moves. We compare to the CRL and Supervised baselines in Appendix E.

On 4 / 5 tasks (Rubik’s Cube, Lights Out, 15-Puzzle, and Digit Jumper), CRTR solves nearly all
problem instances. The key takeaway is thus: for most problems, CRTR can find solutions without
needing any search at all. Perhaps the most interesting result is the Rubik’s cube, where we found
that our representations can solve all problem instances in less than 6000 moves. Surprisingly, using
search decreases the total fraction of Cube configurations that are solved. The main failure mode is
Sokoban, where success rates are low, likely due to the presence of dead-ends in the game.

However, avoiding search comes at a cost: the solutions found without search are typically longer
than those found with search. For example, on the Rubik’s Cube the average solution length is around
400 moves (see Appendix E) – much higher than the optimal of 26 moves and even higher than the
100 moves that beginner cube solving methods require.

Step 86
Solved!

Step 1
Fully scrambled.

Step 16
Assembled lower 

2x2x2 block.

Step 38
Assembled 2x2x3 block 

and aligned smaller 
1x1x3 blocks.

Step 66
Almost all pieces in 

correct configuration.

Figure 5: CRTR without search exhibits a block-building-like behavior. Intermediate states from solving
a randomly scrambled cube, illustrating how the algorithm gradually builds partial structure. The
average solve is about 400 moves, and we see similar block building behavior across solves.
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This simple greedy approach — just picking the neighbor closest to the goal — starts to show hints of
algorithmic behavior. On Rubik’s Cube, for example, it learns something that looks like a rudimentary
form of block-building (See Fig. 5, a common strategy used by humans for solving the cube. This
block building strategy was not programmed or explicitly rewarded, but instead emerged from training
the representations on random data.

5.4 Additional Experiments

Appendix I presents additional ablation experiments. We find that (1) our strategy for sampling
data (Alg. 1) outperforms several alternatives, and (2) CRTR is robust to the repetition factor
hyperparameter, with 2 being a good choice in all settings we have tested.

We report several unsuccessful attempts and negative results in Appendices K and E.

6 Conclusion

One way of reading this paper is as a story about search. While much of the early history of AI
was built upon search, and while search has regained popularity in recent years as an effective
strategy for sampling from language models, our paper shows that many sophisticated reasoning
problems can be solved without any search. The key catch is that this is only true if representations
are learned appropriately (by removing static context features). While we have only demonstrated
results on combinatorial problems, which have known and deterministic dynamics, we look forward
to extending these techniques to problems such as chemical retrosynthesis and robotic assembly —
problems that have a rich combinatorial structure, but which introduce additional complexity because
of unknown and stochastic dynamics.

Another way of reading this paper is as a story about the value of metric embeddings. Image
classifiers automatically identify patterns and structures in images (arrays of pixels), mapping images
to representations so that semantically-similar images are mapped to similar representations. Our
representation learning method does the same for combinatorial reasoning problems, automatically
identifying patterns and structures of observations so that the simplest possible decision rule (greedy
action selection) can solve some of the most complex reasoning problems (e.g., Sokoban in P-SPACE
complete [13]). The success of these representations raises the question of how much reasoning can
be done in the representation space. Can we think about compositional reasoning as vector addition?
Can we think of length generalization as rays in representation space? And, perhaps most alluringly,
can we exploit representational geometry to use the solutions to simple problems to find solutions to
hard problems, by using local rules to provide global structure on the space of representations?

Limitations Our results characterize the behavior of contrastive methods in deterministic combina-
torial environments. However, this work does not account for stochastic settings. Many real-world
applications, such as robotic manipulation and autonomous driving, are inherently stochastic, so
our findings may not directly generalize to these domains. Moreover, we focus exclusively on
fully observable environments with easily identifiable contextual information in the observations.
Evaluating whether our approach can be extended to partially observable environments is left for
future work.
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[25] Guo, Z., Thakoor, S., Pislar, M., Pires, B. Á., Altché, F., Tallec, C., Saade, A., Calandriello, D., Grill, J.,
Tang, Y., Valko, M., Munos, R., Azar, M. G., and Piot, B. (2022). Byol-explore: Exploration by bootstrapped
prediction. In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A., editors, Advances in
Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems
2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022.

[26] Gutmann, M. U. and Hyvärinen, A. (2012). Noise-contrastive estimation of unnormalized statistical
models, with applications to natural image statistics. Journal of machine learning research, 13(2).

[27] Ha, D. and Schmidhuber, J. (2018). World models. arXiv preprint arXiv:1803.10122.

[28] Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. (2023). Mastering diverse domains through world models.
arXiv preprint arXiv:2301.04104.

[29] Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for the heuristic determination of
minimum cost paths. IEEE Trans. Syst. Sci. Cybern., 4(2):100–107.

[30] Hoffer, E. and Ailon, N. (2014). Deep metric learning using triplet network. arXiv preprint arXiv:
1412.6622.

[31] Ichter, B. and Pavone, M. (2019). Robot motion planning in learned latent spaces. IEEE Robotics Autom.
Lett., 4(3):2407–2414.

[32] Jaiswal, A., Babu, A. R., Zadeh, M. Z., Banerjee, D., and Makedon, F. (2020). A survey on contrastive
self-supervised learning. Technologies.

[33] Jiang, A. Q., Ziarko, A., Piotrowski, B., Li, W., Jamnik, M., and Milos, P. (2024). Repurposing language
models into embedding models: Finding the compute-optimal recipe. In Globersons, A., Mackey, L.,
Belgrave, D., Fan, A., Paquet, U., Tomczak, J. M., and Zhang, C., editors, Advances in Neural Information
Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024,
Vancouver, BC, Canada, December 10 - 15, 2024.

[34] Johnson, W. W. and Story, W. E. (1879). Notes on the ”15” puzzle. American Journal of Mathematics,
2(4):397–404.

[35] Karp, R. M. (1972). Reducibility among combinatorial problems. In Miller, R. E. and Thatcher, J. W.,
editors, Proceedings of a symposium on the Complexity of Computer Computations, held March 20-22, 1972,
at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, USA, The IBM Research
Symposia Series, pages 85–103. Plenum Press, New York.

[36] Kool, W., van Hoof, H., and Welling, M. (2019). Attention, learn to solve routing problems! In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.
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(a) N-Puzzle. (b) Lights Out. (c) Digit Jumper.

Figure 6: Environments: Our experiments used Sokoban (Fig. 1), the Rubik’s Cube (Fig. 5), and the
three environments shown above.

A Environments

Sokoban. Sokoban is a well-known puzzle game in which a player pushes boxes onto designated
goal positions within a confined grid. It is known to be hard from a computational complexity
perspective. Solving it requires reasoning over a vast number of possible move sequences, making it a
standard benchmark for both classical planning algorithms and modern deep learning approaches [17].
Solving Sokoban requires balancing efficient search with long-term planning. In our experiments, we
use 12×12 boards with four boxes.

Rubik’s Cube. The Rubik’s Cube is a 3D combinatorial puzzle with over 4.3 × 1019 possible
configurations, making it an ideal testbed for algorithms tackling massive search spaces. Solving
the Rubik’s Cube requires sophisticated reasoning and planning, as well as the ability to efficiently
navigate high-dimensional state spaces. Recent advances in using neural networks for solving
this puzzle, such as [1], highlight the potential of deep learning in handling such computationally
challenging tasks.

N-Puzzle. N-Puzzle is a sliding-tile puzzle with variants such as the 8-puzzle (3×3 grid), 15-puzzle
(4×4 grid), and 24-puzzle (5×5 grid). The objective is to rearrange tiles into a predefined order by
sliding them into an empty space. It serves as a classic benchmark for testing the planning and search
efficiency of algorithms. The problem’s difficulty increases with puzzle size, requiring effective
heuristics for solving larger instances.

Lights Out. Lights Out is a single-player game invented in 1995. It is a grid-based game in which
each cell (or light) can be either on or off. Pressing a cell flips its state and those of its immediate
neighbors (above, below, left, and right). Corner and edge lights have fewer neighbors and therefore
affect fewer lights. The goal is to press the lights in a strategic order to turn off all the lights on the
grid.

Digit Jumper. Digit Jumper is a grid-based game in which the objective is to get from the top-left
corner of the board to the bottom-right corner. At each point, the player can move n steps to the left,
right, up, or down, where n is determined by the number written on the current cell. Digit Jumper is
an example of an environment with a constant context, as is Sokoban.

B Best-First Search

Algorithm 2 Best-First Search [29]

while has nodes to expand do
Take node N with the highest value
Select children ni of N
Compute values vi for the children
Add (ni, vi) to the search tree

end while

Best-First Search (BestFS) greedily prioritizes
node expansions with the highest heuristic esti-
mates, aiming to follow paths that are likely to
reach the goal. Although it does not guarantee
optimality, BestFS offers a simple and efficient
strategy for navigating complex search spaces.
The high-level pseudocode for BestFS is pre-
sented in Algorithm 2.
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Figure 7: Grid of network’s depth, representation dimension and hidden dimension. The success rate is
evaluated on cubes scrambled with 10 random moves.
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Figure 8: Learning rate and batch size grid for Rubik’s
Cube. The success rate is evaluated on cubes scrambled
with 10 random moves after 700k training steps.
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Figure 9: CRTR is the only effective normalization
strategy in Sokoban. Effect of using negatives in con-
trastive learning in Sokoban. We compare the setting
where the distance to positives is normalized by the
sum over all batch elements or only the in-batch nega-
tives. The success rate is evaluated on cubes scrambled
with 10 random moves after 400k training steps.

C Training Details

Code to reproduce all results is available in the anonymous repository referenced in the main text.
Below, we document the training procedures for the supervised baseline, contrastive baseline, and
CRTR.

Training data. For Sokoban, we use trajectories provided by Czechowski et al. [14] and train on
a dataset of 105 trajectories. For 15-Puzzle, Rubik’s Cube, and Lights Out, we generate training
trajectories by applying a policy that performs n random actions, where n is set to 150, 21, and 49,
respectively. In the case of 15-Puzzle, we additionally remove single-step cycles from the dataset
to improve data efficiency. For Digit Jumper, we generate training data by sampling a random path
from the upper-left corner to the bottom-right corner on a standard 20× 20 grid. All grid cells not
required for this path are filled by sampling uniformly from the set 1, . . . , 6. The network for Digit
Jumper typically converges after a few hours of training, so we train until convergence is observed.
For Sokoban, Rubik’s Cube, Lights Out, and 15-Puzzle, we adopt an unlimited data setup and train all
models for two days. This results in the models performing approximately 8× 106 gradient updates
for Rubik’s Cube, 7× 106 for 15-Puzzle, and 9× 106 for Lights Out.

Training hyperparameters. We use the Adam optimizer with a constant learning rate throughout
training. A learning rate of 0.0003 was found to perform well across all environments, with the
exception of Lights Out, where this setting led to unstable training. For this environment, we instead
use a reduced learning rate of 0.0001. In all environments, we use a batch size of 512. The choice of
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Figure 10: Success rate on Rubik’s Cube scrambled with 10 random moves, for models trained with different
contrastive losses. Models using the backward loss consistently achieve better performance than those using
the symmetric variant. Using the dot product without in-trajectory negatives performs similarly to the ℓ2
metric, while combining the dot product with in-trajectory negatives yields the highest success rate. In contrast,
combining in-trajectory negatives with symmetric loss results in a drop in performance, likely because, in CRTR,
such negatives are often closer to the correct solution in the state-space.

learning rate and batch size was guided by the performance of the contrastive baseline on Rubik’s
Cube. Specifically, we evaluated solve rates on cubes shuffled 10 times, as shown in Figure 8. We
also conducted grid searches to find the optimal training parameters (learning rate and batch size)
for the supervised baseline on Sokoban, Lights Out, and Rubik’s Cube . We use the same batch
size and learning rate across all methods and environments, with the exception of Lights Out, where
increasing the batch size and learning rate in the supervised baseline led to a higher success rate.

Network architecture. We adopt the network architecture proposed by Nauman et al. [45], using 8
layers with a hidden size of 512 and a representation dimension of 64. This configuration was found
to yield optimal performance for the contrastive baseline on Rubik’s Cube, as illustrated in Figure 7.
We observed that this architecture performs well in all environments except for two cases:

• In Sokoban, a convolutional architecture was required to achieve strong performance.
• In Lights Out, the convolutional network was necessary to ensure training stability.

Test set. For Sokoban, we construct a separate test set comprising 100 trajectories, which is used
to compute evaluation metrics such as accuracy, correlation, and t-SNE visualizations. For all other
environments, a separate test set is unnecessary, as we train for only a single epoch. In this setting,
evaluation is performed directly on unseen data sampled during training.

Contrastive loss. We use the backward version of the contrastive loss, which we found to consis-
tently outperform the symmetrized variant on Rubik’s Cube as shown in Figure 10. We also found
the backward version to work better on 15-Puzzle and slightly better in the remaining environments.

For Rubik’s Cube, we use the dot product as the similarity metric. Performance across different
metrics is presented in Figure 10. While the contrastive baseline performs comparably under the ℓ2
metric, CRTR achieves significantly better results with the dot product. Based on similar empirical
evaluations, we use the following metrics for other environments:

• Lights Out: ℓ2 distance,
• Digit Jumper and 15-Puzzle: dot product,
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• Sokoban: squared ℓ2 distance.

We set the temperature parameter in the contrastive loss to the square root of the representation
dimension.

Supervised baseline. The supervised baseline takes as input a pair of states and predicts the
distance between them by classifying into discrete bins, where the number of bins corresponds to the
maximum trajectory length observed in the dataset.

In all environments, the supervised baseline uses the same architecture as the contrastive baseline.

D Evaluation Details

We evaluate all networks on 1000 problem instances per environment. For Rubik’s Cube, each
instance is a cube scrambled using 1000 moves. For 15-Puzzle, Lights Out, and Digit Jumper,
evaluation boards are sampled randomly. For Sokoban, we follow the same instance generation
procedure as described by Czechowski et al. [14].

E Additional Experiments

A* solver. To verify that the improvements achieved by CRTR are not specific to greedy solvers, we
conducted an additional experiment using the A* search algorithm. A* employs a heuristic function
of the form heuristic+α ·cost, where varying α allows trading off between the search budget required
to solve the problem and the average solution length. As shown in Table 1, for the Rubik’s Cube,
increasing α from 0 (equivalent to BestFS) to 500 consistently yields better performance for CRTR
compared to CRL. We therefore hypothesize that the improvement reported in Section 5.2 is not
specific to greedy solvers.

Table 1: CRTR effectiveness is not BestFS specific. A* search results on the Rubik’s Cube with a node budget
of 6000, varying α in the priority function. CRTR performs better than CRL for all values of α, achieving shorter
solution lengths and higher solved rates.

α 0 100 200 300 400
CRTR Avg. Solution Length 56.76 46.35 38.42 32.84 29.16
CRTR Success Rate 0.63 0.62 0.59 0.54 0.33
CRL Avg. Solution Length 62.96 49.88 41.94 36.11 31.77
CRL Success Rate 0.54 0.50 0.44 0.40 0.30

No-search results. The no-search approach selects, at each step, the state that appears most likely
to lead toward the solution—based on the learned representation. If the representation were perfect,
this strategy would yield optimal solutions. In practice, however, suboptimal representations often
cause the agent to wander through latent states far from the goal before eventually converging. As
a result, the quality of the representation is reflected in the length of these trajectories: the better it
captures directionality in latent space, the shorter the resulting solutions.

Table 2 reports the average solution lengths for the no-search approach on Rubik’s Cube and 15-
Puzzle. The results suggest that the representations learned by CRTR are better suited to this approach
than those learned by the contrastive baseline, and they significantly outperform those derived from
the supervised method. This supports the conclusion that CRTR provides a more reliable notion of
direction in latent space. Notably, the average solution lengths for both CRTR and CRL are shorter
than the length of training trajectories in 15-Puzzle (150), indicating evidence of trajectory stitching.

We furthermore present the distributions of solution lengths for all the methods in Figure 11.

Accuracy in Sokoban training. During the training of CRL on the Sokoban environment, a perfect
accuracy is acquired almost immediately, due to the method relying on the context, as demostrated in
Figure 14.
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Figure 11: CRTR produces shorter solutions without explicit search in comparison to baselines. Search
can help reduce solution length further. Fraction of boards solved with a solution length of at most x,
comparing CRTR to baselines. Figure 4 in the main text presents analogous results, but only CRTR,
for clarity.

Table 2: Average solution length of the baselines and CRTR on Rubik’s Cube and 15-Puzzle without using
search. Supervised baseline fails to solve Rubik’s Cube without search.

Problem CRTR Contrastive
Baseline

Supervised
Baseline

Rubik’s Cube 448.7 1830.3 NaN
15-puzzle 82.4 119.5 1054.3

Digit Jumper analysis. Digit-Jumper is an example of another constant context (defined in Sec. 4.1)
environment, as is Sokoban. It is therefore another environment in which CRL fails rather spectacu-
larly and therefore, we observe a similar effect to that seen in Sokoban when comparing CRTR to
standard CRL. As shown in Figure 12, CRL rapidly achieves 100% training accuracy. However, de-
spite this perfect accuracy, the resulting representations exhibit poor correlation with actual temporal
structure (Figure 13). This is consistent with the t-SNE visualization (Figure 15): as with Sokoban,
CRL collapses each trajectory into a single point in the representation space, discarding temporal
information. In contrast, CRTR preserves a clear temporal structure within the latent space (see
Figure 15). For non-constant context environments, the difference in representation quality is also
visible in success rates, accuracy and correlation, it is however much less pronounced.

Results on SAT. To compare against GNN baselines, we conducted preliminary experiments
evaluating CRTR on the 3-SAT task from G4SATBENCH [39] (easy split). When trained on this
benchmark, CRTR was unable to achieve nonzero test performance, whereas GNN-based methods
reach nearly 90%. We attribute this discrepancy to the extremely low-data regime: networks in
this benchmark are evaluated after training on only 800 samples—orders of magnitude fewer than
those used to train CRTR on tasks where it excelled. Supporting this interpretation, we found that
simplifying the evaluation by restricting clauses to at most five independent variables (instead of
10–40) substantially improved results. Under this setting, performance increased from random level
(15%) to 52% after 5000 training steps, when running the evaluation with the no-search approach.
We therefore hypothesize that CRTR is less sample efficient than GNN-based methods, suggesting
that further work is needed to improve data efficiency in representation-learning approaches.

Results on Sudoku. Given Sudoku’s recent popularity as a benchmark for evaluating reasoning
in large language models, we also tested our method on this task. CRTR was unable to achieve
performance above random chance. We attribute this to the goal-conditioned nature of our approach:
solving a Sudoku puzzle requires reasoning toward an unknown final configuration, whereas our
method assumes access to a well-defined goal state during inference. While this assumption holds
for many of the tasks on which CRTR performs well, it is violated in Sudoku. To mitigate this, we
experimented with adding an artificial “solved state” shared across all trajectories, but this did not
substantially improve results. We view this limitation as a promising direction for future work on
extending goal-conditioned architectures to problems with implicit or unknown goals.
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CRL (dashed) for D4RL offline
datasets.
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Figure 15: CRTR makes representations reflect the structure of the combinatorial task. t-SNE visualization
of representations learned by CRTR (left) and CRL (right) for Digit Jumper. Colors correspond to trajectories.
CRL representations (right) cluster within trajectories, making them useless for planning.
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Figure 16: CRTR improves temporal
structure in robotics environments. Com-
parison of Spearman’s rank correlation met-
ric for CR2 (solid) and CRL (dashed) for
D4RL offline datasets.

To investigate whether CRTR also identifies temporal
features in non-combinatorial domains, we apply it to
a dataset of robotic manipulation trajectories (the Adroit
dataset from D4RL [23]). Those tasks require using a
high-dimensional robotic hand to perform fine motor ac-
tivities, and are designed to test fine motor control and
long-horizon planning. We quantify representation quality
by measuring the predicted distance from each state in
a trajectory to the final state in a trajectory. Specifically,
we look at the rank correlation between the time step and
predicted distance, with a correlation of 1 indicating that
the learned representations are highly predictive of the
temporal distance from each state to the final state.

We look at the correlation through training for CRTR and
CRL (Fig. 16). CRTR results in a higher correlation (more
than 0.9 in comparison to 0.5 – 0.8 depending on the en-
vironment), as well as visibly better training stability – for
standard CRL, the correlation is visibly unstable through
training and in some cases even becomes smaller as the training progresses. This result is a little
surprising, and it is not fully clear why does the improvement happen. We hypothesize that this is
because the initial position of the robot differs between trajectories and serves as a sort of slowly
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Figure 17: CRTR optimizes the conditional mutual information while CRL does not, confirming out
theoretical results 4.1. Conditional mutual information estimated in Sokoban (left) and Digit Jumper (right) for
representations learned by CRTR and CRL, for different values of nearest neighbors used for estimation.

changing context, similarly to the Rubik’s Cube case. We conclude that using CRTR results in a
better temporal structure in the representation space for non-combinatorial problems.

G Correlation as a Measure of Representation Quality

To assess whether Spearman rank correlation is a reliable indicator of representation quality, we
performed a grid of 96 short runs for each of three environments: Sokoban (12×12), Sokoban (16×16),
and the Rubik’s Cube. We varied four factors: network depth (8, 6, 4, 2), network width (1024, 16),
representation dimension (64, 32, 16, 8), and the distance metric used in the contrastive loss (dot
product, ℓ2, ℓ22).

Across all environments, the final Spearman correlation (computed with a budget of 1000 nodes)
showed a strong relationship with the final success rate: 0.89 for 12×12 Sokoban, 0.80 for 16×16
Sokoban, and 0.90 for the Rubik’s Cube. These results support the conclusion that Spearman rank
correlation is a good measure of representation quality.

H Mutual Information Analysis

To estimate the conditional mutual information, we use NPEET package, which implements the
method proposed in [37] that uses k-nearest neighbours for entropy estimation. We conduct the
analysis using trajectories collected from the Sokoban or Digit Jumper environment, utilizing all
transitions within these trajectories (> 45k transitions for Sokoban and > 20k for Digit Jumper).
The variables used in the experiment are defined as follows:

• X: Current state embeddings, standardized using z-score normalization (mean 0, standard
deviation 1) across the dataset. These embeddings are then projected onto a 3-dimensional
subspace using Principal Component Analysis (PCA).

• X+: Next state embeddings corresponding to transitions from X . The same standardization
parameters and PCA transformation applied to X are used for X+ to ensure consistency.

• C: Trajectory identifiers (traj_id) encoded as 2-dimensional vectors sampled from a
standard bivariate Gaussian distribution (i.e., N (0, I2)).

To mitigate the effects of the curse of dimensionality and ensure reliable performance of k-nearest
neighbor (kNN)-based estimators, we reduce all high-dimensional representations to low-dimensional
spaces (3D for state embeddings, 2D for trajectory identifiers). The conditional mutual information
for CRTR and contrastive baseline is reported in Figure 17.

I Ablations
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Repetition factor. Our method introduces a single ad-
ditional hyperparameter: the repetition factor R. This
parameter controls the proportion of in-trajectory nega-
tives and is critical for achieving strong performance. As
shown in Figure 18, the impact of increasing R varies by
environment. For Sokoban, higher values of R lead to
only a slight decline in performance. In contrast, in many
other environments, excessive repetition can significantly
degrade results. WhileR = 2 is not always optimal, it con-
sistently improves performance across all environments
we evaluated and serves as a strong default choice.

In Figure 19, we present detailed results showing how
varying the repetition factor influences the success rate.
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Figure 19: Influence of the repetition factor depends on the environment type. Increasing the repetition
factor for Sokoban, N-Puzzle, and Rubik’s Cube, respectively.

Negatives. We explored alternative methods for incorpo-
rating in-trajectory negatives into the contrastive loss. The
first approach mimics the standard addition of hard negatives: given a batch B = (xi, xi+)i∈{1..B},
we sample additional negatives (xi−)i∈{1..B}, and compute the loss as

L =
1

B

∑
i

log

(
exp (f(xi, xi+))∑

j ̸=i exp(f(xi, xj+)) + exp(f(xi, xi−))

)
.

We considered three strategies for selecting in-trajectory negatives: sampling a state uniformly at
random, choosing the first state, or choosing the last state of the trajectory. For Rubik’s Cube, instead
of choosing the last state—which is identical for all trajectories—we sample a random state farther
from the solution to serve as a negative.
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Figure 20: In Rubik’s Cube, CRTR outperforms all negative sampling strategies, when the number of
scrambles increases. Comparison of different methods for introducing in-trajectory negatives in the Rubik’s
Cube environment, with an increasing number of cube scrambles. While normalized negatives perform similarly
to CRTR for a small number of scrambles, their performance deteriorates as the number of scrambles increases.
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Figure 21: We compare various methods for introducing in-trajectory negatives in the Sokoban environment
and find that only CRTR yields effective results.

As shown in Figures 20 and 21, training with this approach did not yield strong performance. We
hypothesized that the large prediction error introduced by the in-trajectory negatives (xi−) caused
excessively large gradients, destabilizing training. To mitigate this, we applied a normalization
scheme: ensuring that the vector [f(x1, x1−) · · · f(xB , xB−)] has the same Frobenius norm as
the B ×B matrix f(x1, x1+) f(x1, x2+) . . . f(x1, xB+)

...
...

. . .
...

f(xB , x1+) f(xB , x2+) . . . f(xB , xB+)

 .
This normalization enabled achieving comparable performance to CRTR on Rubik’s Cube scrambled
10 times (Figure 20). However, CRTR still outperforms all negative sampling strategies on cubes
scrambled 15 and 20 times.

For Sokoban, the only approach that consistently improved performance is CRTR, as demonstrated in
Figure 21. We hypothesize that this is because removing contextual information is more challenging
in Sokoban than in Rubik’s Cube. In the latter, the context is more local and changes gradually
over time, making it softer, while the context in Sokoban is constant throughout a trajectory. This is
discussed in detail in Section 4.1.

While at first glance, repeating trajectories in a batch may seem equivalent to sampling in-trajectory
hard negatives, the two approaches are different. In standard contrastive learning (as in CRL), an
anchor x pulls its positive x+ closer and pushes negatives (e.g., y+) away. However, negatives like
y+ are simultaneously pulled by their own anchors (e.g., y), which limits how far they are pushed
by x. In contrast, when using in-trajectory negatives without anchoring them (e.g., x pushes x−
away, but x− has no anchor), these states can drift arbitrarily far in representation space. This is
problematic, especially since in-trajectory negatives are harder (closer in structure), which results in
stronger gradient updates. Our proposed method, CRTR, addresses this by anchoring all in-trajectory
negatives. This keeps trajectories coherent and prevents such drift.

J Computational Resources

All training experiments were conducted using NVIDIA A100 GPUs and took between 5 and 48
hours each. The solving runs ranged from 10 minutes to 10 hours. In total, the project required
approximately 30,000 GPU hours to complete.

K Things We Tried That Did Not Work

• Using separate encoders for future and present states did not improve performance.
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• Adding extra layers to encode the action led to lower success rates.
• Using only in-trajectory negatives degraded performance.
• Modifying how current states are sampled in CRL (e.g., deviating from uniform sampling)

did not yield improvements.
• Using A∗ solver with our representations could be greatly improved. Because distances in

the latent space are only monotonically correlated—not linearly correlated—with actual
distances, a modification to A∗ that would account for these discrepancies could bring huge
gains.

• Distances between Rubik’s Cube states, measured by the number of actions, almost always
satisfy the triangle inequality with equality. Consequently, this metric cannot be faithfully
embedded in Euclidean space, where equality in the triangle inequality occurs only for
collinear points.

• Since Rubik’s Cube actions are not commutative, a faithful Cayley graph structure could
only emerge in a Euclidean space where vector addition is noncommutative—which would
require a highly non-standard space.
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• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Paper provides the full set of assumptions and complete proof for the one
theoretical claim it makes.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully discloses all the information needed to reproduce the main
results. The code is provided as well as scripts needed for data generation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides open access to the data and code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper does specify the training and test details, partially in Section 5 and
partially in Appendices C and D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In Figure 2, we present the results obtained from three random seeds. With
one exception, the training exhibits consistently stable performance, which supports the
reliability of the remaining plots.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the details in Appendix J.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper states that the societal impacts are the standard societal impacts
resulting from developing machine learning models, which is true.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators and original owners of all assets used are properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release the code which is well documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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