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Abstract

Multimodal federated learning (MMFL) has gained increasing popularity due
to its ability to leverage the correlation between various modalities, meanwhile
preserving data privacy for different clients. However, recent studies show that
correlation between modalities increase the vulnerability of federated learning
against Gradient Inversion Attack (GIA). The complicated situation of MMFL
privacy preserving can be summarized as follows: 1) different modality transmits
different amounts of information, thus requires various protection strength; 2)
correlation between modalities should be taken into account. This paper introduces
an information theory perspective to analyze the leaked privacy in process of
MMEFL, and tries to propose a more reasonable protection method Sec-MMFL
based on assessing different information leakage possibilities of each modality by
conditional mutual information and adjust the corresponding protection strength.
Moreover, we use mutual information to reduce the cross-modality information
leakage in MMFL. Experiments have proven that our method can bring more
balanced and comprehensive protection at an acceptable cost.

1 Introduction

Federated Learning (FL) has emerged as a fundamental paradigm that enables collaborative model
training among multiple parties via parameter aggregation without sharing private datasets [31,
27,[14]. Owing to its privacy-preserving and communication-efficient nature, FL. has been widely
deployed in diverse applications, including smart healthcare [1}138] , financial analysis [[50} 30, S]]
and recommendation system[22]. Some of the major research directions in FL also include efficient
aggregation[45]], communication compression[20, [19} 18], continual learning[24} 25| 21} 23], and
knowledge distillation[44]].

However, FL is not immune to security threats. A notable attack, Gradient Inversion Attack (GIA),
aims to infer sensitive information from the shared model updates (gradients) [26]. Malicious
participants can exploit this to reconstruct private data or infer its properties, thereby breaching local
privacy [59, 113, 156].

To counter this risk, several defense methods have been proposed in FL [46] [15]. LDP-Fed [43]
optimizes local differential privacy (LDP) for FL, ensuring a lightweight and quantifiable privacy
measure. In [[7], regularization and sparsification techniques are employed to alleviate performance
degradation with user-level DP. FedDPA [51]] explores differential privacy in personalized FL through
dynamic Fisher personalization and adaptive constraints, while PrivateRec [28] focuses on federated
recommendation, aiming to improve model utility under DP guarantees.

Previous FL approaches are mainly trained using uni-modal data, yet real-world data is often multi-
modal. For example, videos typically come with audio tracks and text subtitles, and internet content
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like social media posts and news articles often blend text, images, videos, and audio. Multi-modal
federated learning (MMFL) tasks such as image annotation, visual question answering, and image-
text retrieval leverage complementary information from different modalities, resulting in a global
model that outperforms uni-modal counterparts [9, |6} [54].

While existing defense approaches may work well for uni-modal FL, they struggle in MMFL for two
key reasons:

First, applying the same pro-
tection strength across differ-
ent modalities is inappropri-
ate. Different modalities have
distinct representation formats
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with continuous, smoothly vary-
ing features that require coordi-
nated recovery of multiple pixels
to restore semantic content. In
contrast, text data is represented
by discrete words or embed-
dings (e.g., Word2Vec or BERT),
where recovering key words usu-
ally suffices to retain most se-
mantic information. As shown
in Figure [T} after 300 rounds of attack starting from random pseudo data, the recovered text is
completely consistent with the original, whereas the recovered image remains blurry. Uniform
protection can therefore either over-distort one modality—hindering the fusion of useful multi-modal
information and reducing accuracy—or under-protect another, leaving gradients vulnerable to leakage.
This discrepancy in data representation demands a nuanced approach to protection. By carefully
calibrating the level of noise or perturbation for each modality, one can better balance privacy preser-
vation and performance. In practice, determining the optimal protection strength requires a deep
understanding of each modality’s inherent characteristics.

Figure 1: Different recovery rates of data from various modali-
ties under attack. For each independent modality, starting from
random pseudo data, after 300 rounds under the same setting, the
recovered text perfectly matches the original, while the recovered
image remains blurry. However, when we let the information of
each modality interact to carry out cross modality attacks, under
the same attack iterations, the images can be recovered more simi-
lar using the information recovered from text modality.

Second, inter-modal data correlation can intensify the impact of GIAs. In MMFL, training data
for different modalities are paired, leading to a “barrel effect” where the most vulnerable modality
is breached first, accelerating leakage across all modalities. Models typically align features from
different modalities (e.g., images and text) into a common space to capture their relationships. This
alignment increases cross-modal semantic associations in the gradients, enabling attackers to infer
more precise information and even deduce the content of one modality from another[29]. Furthermore,
the close coupling of modalities means that even a minor breach in one channel may compromise
the security of the entire system. Understanding and mitigating these risks is essential to developing
robust privacy-preserving techniques in MMFL. Such cross-modal alignment thus broadens the scope
of privacy leakage.

To address these challenges, we propose Sec-MMFL, which secures MMFL both effectively and
efficiently. We begin by analyzing the causes and flow of training information leakage in MMFL.
Integrating information theory, we propose a method to measure leakage risk across modalities,
allowing for modality-specific protection strengths. Additionally, we study the impact of inter-modal
correlations on privacy leakage and develop methods to mitigate the heightened risk of cross-modal
gradient inversion attacks without sacrificing training accuracy.

* We analyze the causes of training information leakage in MMFL and propose a novel
information-theoretic framework to quantify leakage risk across modalities, allowing us to
assign appropriate protection based on each modality’s vulnerability to gradient inversion
attacks.



* We introduce Sec-MMFL, an adaptive protection framework that assigns modality-specific
protection strengths to mitigate privacy risks from inter-modal correlations while maintaining
high model performance.

* Extensive experiments on benchmark datasets like CIFAR-10, CIFAR-100, Hateful-Memes
and CrisisMMD demonstrate that Sec-MMFL outperforms traditional methods under equiv-
alent privacy guarantees, effectively balancing privacy preservation and model utility.

2 Related Work

2.1 Multimodal Federated Learning

Multimodal federated learning (MMFL) has emerged as a promising paradigm that synergizes the
privacy-preserving nature of federated learning [8, [16]] with the representational power of multimodal
learning [39, [34]]. This framework has demonstrated significant potential in real-world applications
ranging from affective computing [[11}[33]] to distributed healthcare systems [42, [36]], particularly
through its deployment in IoT sensor networks [35, 137, I58]. The fusion methodology in MMFL
typically operates through three principal approaches: early fusion that combines raw feature rep-
resentations, late fusion that aggregates model outputs, and hybrid strategies that integrate both
paradigms [2} [10, 14} [12]. Our investigation focuses on the fundamental dichotomy between early and
late fusion to elucidate their distinct impacts on privacy-preserving mechanisms.

2.2 Gradient Inversion Attack

The security vulnerabilities of federated learning systems have been extensively documented, with gra-
dient inversion attacks [49]] representing one of the most potent threats to data privacy. These attacks
exploit the mathematical properties of shared gradients to reconstruct private training data through
iterative optimization of pseudo-inputs [59]]. Recent methodological advancements have significantly
enhanced attack efficacy through innovations in prior-informed initialization [17], ground-truth label
recovery [S7]], and specialized regularization techniques [[13} 53], enabling successful breaches even
against large-batch training scenarios and complex architectures like vision transformers [53]]. This
evolving threat landscape underscores the critical need for robust defensive countermeasures.

2.3 Privacy Protection in Distributed Learning

Contemporary privacy-preserving techniques employ multi-layered protection strategies. Differ-
ential privacy mechanisms inject calibrated noise into gradient updates [43}47], and similar noise
perturbation strategies have also been explored to defend against backdoor attacks[52]. Secure
aggregation protocols enable encrypted parameter aggregation without exposing individual updates
[3]. Homomorphic encryption further extends protection by permitting computations on ciphertexts
[S5]. Although recent work by [41] proposes an information-theoretic framework for privacy leakage
assessment in unimodal settings, the unique challenges posed by multimodal data interactions in
MMEFL remain largely unaddressed, highlighting a crucial gap in existing literature.

3 Preliminaries and Problem Statement

3.1 FL Procedures.

We aim to collaboratively train a global model for K total clients in FL. We consider each client k
can only access to his local private dataset Dy, := {z;,y; }, where x; is the i-th input data sample
and y; € {1,2,---,C} is the corresponding label of x; with C classes. Specifically in MMFL,
x; = {x},xF, ...,z }, where 21" is the i-th input data sample of the m-th modality. The global
dataset is considered as the composition of all local datasets D = Zszl Dy;. The objective of the FL
learning system is to learn a global model w that minimizes the total empirical loss over the entire

dataset D:

| Dy |

K
min £(w) := Z @Lk(w), where L, (w) = ‘D71k| Z Lop(w; i, yi), (1)
k=1 i=1
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Figure 2: The information flow of GIA in MMFL. Information from the benign client’s training data
flows into the embedding after being processed by different modality encoders. Following fusion and
classification, it is then incorporated into the gradient through the loss function. A malicious attacker
can recover the information from the different modalities of the training data by eavesdropping on
the gradient.

where L (w) is the local loss in the k-th client and Lcg is the cross-entropy loss function that
measures the difference between the prediction and the ground truth labels.

Each client updates its model parameters using gradient descent:
wiy = wp =0V L (wy), by

where 7) is the learning rate, and V L, (w) represents the gradient of the loss function with respect to
the parameters, denoted as G k.

The central server aggregates the gradients from all clients to update the global model parameters:

Dy |

D) G}, 3)

Wi41 = W — ’I]th, where Gt Z ‘

3.2 GIA Procedures.

GIA exploit the information encoded in the gradients to reconstruct the original data D. The attacker’s
process can be summarized as follows:
1. Initialize a random guess D for the data.

2. Iteratively refine D by minimizing the difference between the gradients computed from D
and the observed gradients G:

D D=0V (IG - VE(Dw)|?) @
3. The refined D converges to an estimate of the original data.

This process highlights how gradients can leak sensitive information, and the way attackers obtain
information about training data from it. The whole process of data of each modality in MMFL
flowing to the attacker through GIA is shown in Figure 2}

3.3 Information-Theoretic Preliminaries

The conditional entropy of X given Y represents the remaining uncertainty of X after observing Y:

HX|Y)=- > plx,y)logp(xly) Q)

reX,yey

The mutual information between X and Y quantifies the amount of information shared between the
two random variables:
[(X;Y) = H(X) - HX|Y) ©)
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Figure 3: The overall architecture of Sec-MMFL. After calculating the gradient of the multimodal
model, the local training data is processed by the Leakage Risk Estimator to compute the conditional
mutual information between the original data of each modality and the gradient. This is used to
assess the risk of data leakage for each modality through the gradient. Based on this, the Noise Scale
Adjustment module adjusts the privacy budget assigned to each modality, achieving a better balance
between privacy protection and model effectiveness. Meanwhile, the Cross Modality MI Reduction
module reduces the mutual information between gradients of different modalities, thereby mitigating
cross-modal privacy leakage risks.

3.4 Local Differential Privacy

A perturbation algorithm M satisfies (e, §)-Local Differential Privacy ((e, §)-LDP) if, for any pair of
adjacent datasets D and D’, and for all possible output subsets .S, the following inequality holds:

PriM(D) e S] < e PriM(D") € S| +6 (7

where € is the privacy budget of M, which quantifies the privacy protection level, and ¢ is the
probability of the privacy guarantee being violated. A smaller value for € indicates a smaller gap
between two probabilities and thus a stronger privacy.

4 Proposed Method

The workflow of the proposed framework is shown in Algorithm [T} and Fig. [3] illustrates the
Sec-MMFL approach.

4.1 Leakage Risk Assessment

While assessing the information leakage of the gradient through GIA and applying corresponding
protection before sending gradients to servers and evaluating the similarity between reconstructed
data and real data offers direct insights, it is computationally expensive due to its iterative nature,
often requiring thousands of iterations to converge. Mutual information serves as a more efficient
approach to quantify the information leakage in scenarios like MMFL; it can not only measure the
information dependence between the raw data and the gradient but also consider the correlation
between the modalities.

It is essential to formalize the description of the complete information leakage channel. In the whole

process, we consider the dataset D as the sender and the estimated data D obtained through the
attacker’s iterative optimization as the receiver. The complete information leakage channel can be
described as a process from the data D to the gradients (&, and subsequently from the gradients G to

the estimated data D.
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Algorithm 1: Sec-MMFL

Input : 7": number of communication rounds; /: number of clients; 7: learning rate; {Dk}szl:
distributed datasets; w: initial model parameters; A\: hyperparameter for MI reduction.
Output : Trained global model parameters w
Initialize the parameter w;
fort =11 T do
Server randomly selects client subset S; and sends w to them;
for each selected client k € S; do
compute the gradient G of model;
Leakage Risk Assessment:
for each modality do
Assess the risk R; of leakage of data from i-th modality using conditional mutual
information with 3}
end
Noise Scale Adjustment:
for each modality do
| Adjust the scale of noise added for i-th modality with[O10][1Thnd
end
Cross Modality MI reduction:
Reduce the mutual information between gradient of encoders across modalities with

and

Update local model parameters;
Send the updated model w” back to the server;

end
At server side:;

Aggregate the received models w* from clients in S; to update the global model w;

end

However, the channel from gradients G back to the estimated data Dis subject to the attacker’s attack
methods and prior knowledge, which we cannot fully evaluate and control. Therefore, we focus on
the controllable part of the channel, which is from the data D to the gradients G.

When we evaluate the risk of data leakage from each modality, if we directly calculate mutual
information between D? and G, it reflects the direct relationship between data and gradients without
any additional conditions. But in MMFL, the influence of data from one modality on the gradient
may be influenced or supplemented by data from other modalities; therefore, we choose conditional
mutual information to evaluate the information sent by raw data D* and received by gradients G in
the channel which reflects the risk of leakage R; of data from that modality:

R, =I1(G;D'|D™")=H(G| D)~ H(G | D) ®)

where H(G | D~%) is the entropy of the gradients given all modalities except D, and H (G | D) is
the entropy of the gradients given all modalities.

The conditional mutual information I(G; D* | D~*) serves as a key metric for quantifying the privacy
leakage of each modality. A higher value indicates that more information about D? is encoded in
the gradients G, even when the data from other modalities D~ is known. This can be particularly
concerning if an adversary can access these gradients, as it indicates the potential to reconstruct or
infer sensitive attributes of D?.

4.1.1 Noise Scale Adjustment

To balance privacy preservation and model utility in Sec-MMFL, we allocate noise scales o; for each
modality using Rényi Differential Privacy (RDP), leveraging an information-theoretic approach to
achieve tighter privacy accounting under composition. The leakage risk for modality ¢ is given by R;,
as defined in Eq. (§). We compute a normalized risk weight for each modality via softmax:



_ exp(—R;)
S exp(—Ry)

where M is the total number of modalities. To ensure higher-risk modalities receive stronger
protection, we define a scaling factor s; = 1/,/w;, which amplifies noise for modalities with larger
R; (and thus smaller w;). The noise scale for modality 7 is then set as:

w;

&)

1
VWi

The global scaling factor ¢ is determined via binary search to satisfy the target (egarges,d)-DP
guarantee. The total RDP cost at order « is:

o, =c-8;, with s; = (10)

M
Protal () = Zpi(a)> where  p;(a) = compute_rdp(g;, ¢ - s;, S;, @) (11)
=1

Here, g; is the sampling rate, .S; is the gradient clipping norm, and « > 1 is the Rényi order for
modality ¢. This summation is valid for each fixed & > 1 due to the additive composition property of
RDP under independent Gaussian mechanisms. We enforce the privacy budget by ensuring:

log(1/6)

< €target, for afixed & (12)
a—1

€ = min a
P |:ptota1( ) +
This optimization ensures the camulative RDP across all modalities satisfies the target privacy level.

The resulting o; values are applied to each modality’s PrivacyEngine in Opacus, enabling efficient
privacy-preserving training with minimal utility loss.

4.2 Cross Modality MI reduction

In MMFL, the close relationship between different modalities can lead to increased privacy leakage
risks. For instance, if images and text pairs are closely related, and the text typically describes the
image, then the ability to infer the text information could accelerate and increase the probability of
the text being extracted by an attacker. Due to the interconnection between different modalities, the
mutual information between their encoders’ gradients is also high. To address this issue, we propose
a method that, in addition to calculating the task loss related to the accuracy (e.g., cross-entropy
loss), includes an additional term to reduce the mutual information between the gradients of different
modality encoders before propagating the gradients back for model updates.

Let L, be the task-specific loss, such as cross-entropy loss, and Ly be the loss term designed to
reduce the mutual information between the gradients of different modality encoders. The total loss
function Ly is then given by:

Lot = Leask + AL 13)

where A is a hyperparameter that balances the importance of reducing mutual information against the
task-specific loss.

The mutual information reduction loss Ly can be defined based on the gradients of the different
modality encoders G', G2, ..., G™ as follows:

m—1 m

i=1 j=i+1
where I(G*; G’) denotes the mutual information between the gradients of the i-th and j-th modality
encoders.

By minimizing Ly, we aim to reduce the dependency between the gradients of different modality
encoders, thereby reducing the risk of privacy leakage in MMFL.



5 Experiments

5.1 Datasets

We conduct MMFL experiments using both synthesized and native multimodal datasets. For image-
text modality studies, we employ CIFAR-10/100 with text descriptions generated from image labels,
following standard GIA experimental protocols. Additionally, we validate our method on authentic
multimodal benchmarks: Hateful-Memes for social media content analysis and CrisisMMD for
disaster response.

5.2 Evaluation Metrics

Following [46] 26, [29]], we evaluate: (1) Privacy protection via Peak Signal-to-Noise Ratio (PSNR)
between original/reconstructed images on CIFAR datasets, and LPIPS for complex images in
CrisisMMD/Hateful-Memes; (2) Text Recovery Rate (TRR) measuring semantic similarity be-
tween original and recovered texts; (3) Except for employing AUC as the evaluation metric on the
Hateful Memes dataset and F1-score on the CrisisMMD dataset, classification accuracy is utilized to
measure model performance across all other datasets.

5.3 Attack Methods

We implement two gradient inversion attacks: (1) DLG [59] for CIFAR datasets with cross-modal
label recovery, following the method in [29]] and (2) IG [[13]] enhanced with stable diffusion generators
for CrisisMMD/Hateful-Memes, where limited label semantics in these two datasets necessitate
accelerated text-guided image reconstruction. Both methods optimize pseudo-inputs by minimizing
the cosine distance between real and synthetic gradients through iterative backpropagation.

5.4 Baselines

Our method is compared against: DP-FedAvg [32] applying uniform noise across modalities; NbAFL
[48] with client-side parameter noising; LDP-FL [40] using random response mechanisms; and
DP-FedAvg-MI adjusting noise scales via mutual information analysis.

The model used in the experiment has two encoders
and a classifier layer. On CIFAR-10 and CIFAR-100,
the text encoder is based on LeNet-5 and the image
encoder is based on TextCNN. Qn Crisis MMD and g« Method CIFAR-10 CIFAR-100
Hateful Memes, the text encoder is based on Bert and

Table 1: Conditional mutual information com-
parison.

the image encoder is based on Resnet-50. For early ~ Text Early Fusion 0.2539 0.2439
fusion, the features generated by the encoders are  Text Late Fusion 0.5383 0.3909
fused by concatenation, and for late fusion, logits will  Image Early Fusion 0.0100 0.0120
be output after passing through the fully connected Image Late Fusion 0.0180 0.0390

layer and fused by averaging at the decision level.
We take \ as le-2 chosen via grid search,  as le-5 and clipping norm as 1.0. The batch size during
training is set to 128. The learning rate 7 is set to le-3 and the training is conducted for 200 rounds.
We use neural estimators to calculate mutual information. We run all experiments on Intel Xeon Gold
6133 CPU, RTX4090 GPU.

5.5 Conditional mutual information can help measure leakage risk differences

We compare the text and image conditional mutual information between early fusion and late fusion
MMFL on different datasets. It can be seen from Table [T] that for the model we used on the two data
sets, the conditional mutual information of text modality is larger than that of the image modality, this
trend is consistent with our observation in the actual attack experiment that the speed of text recovery
is much faster than that of image recovery, which proves that conditional mutual information can be
successfully applied to measure the difference of information leakage risk among different modes.
Moreover, the conditional mutual information of each modality of the late fusion is higher than that
of the early fusion. This may be because each encoder of the late fusion model is more independent
than that of the early fusion model, so it has a greater impact on the overall gradient of the model



Table 2: Defense performance on CIFAR-10 and CIFAR-100.

CIFAR-10 | €=025 | e=05 | e=1 | =2
Method | Acct PSNRL TRR| | Acct PSNR| TRR| | Acct PSNR| TRR| | Acct PSNR| TRR}
DP-FedAvg 05219 6563 057 | 0.6957 7.845 059 | 07336 8.166 0.61 | 0.8275 10836 0.83
NbAFL 0.5654 7.039  0.61 | 07845 7.134 062 | 0.8031 8998 072 | 0.8724 11.794 0.88
LDP-FL 0.1992 4341 041 | 02173 6931 051 | 04213 6491 053 | 09037 7.713  0.68
DP-FedAvg-MI 05013 6148 050 | 0.6724 7.073 052 | 07148 7.394 054 | 0.7987 9.757  0.76
Sec-MMFL 0.7875 4192 039 | 0.8159 4.824 042 | 0.8624 5142 051 | 09201 6912  0.69

CIFAR-100 | e=1 | e=2 | e=5 | e=10
Method | Acet PSNR| TRR| | Acet PSNR| TRR| | Acct PSNR| TRR| | Acct PSNR| TRR|
DP-FedAvg 03811 8372 051 | 05233 12592 074 | 06783 14674 082 | 07538 17.515 0091
NbAFL 04467 8699 053 | 06185 11482 071 | 07225 14.645 078 | 0.8321 18.014 0.89
LDP-FL 0.1089 6255 045 | 04451 9265 063 | 05154 11.197 066 | 05218 14226 0.71
DP-FedAvg-MI 03704 7.628 049 | 04921 10243 0.66 | 0.6561 13.588 079 | 0.7497 15691 0.78
Sec-MMFL 04578 6387 043 | 0.6759 9241 059 | 0.8028 10.136 0.64 | 0.9214 12.891  0.67

and leaks more information, thus the barrel effect will be even stronger. Since it can be seen that the
risk of privacy disclosure of all modalities of late fusion MMFL may be greater, we mainly use late
fusion MMFL for privacy disclosure risk analysis in the following experiments.

5.6 Conditional mutual information can provide better protection

To measure the capability of Sec-MMFL to pro-

vide more balanced and reasonable privacy pro- Method |__ HstetulMemes | CrissMMD
tection in MMFL, we compare the accuracy , | AUCT LPIPS{ TRR| | FIT LPIPS] TRR]
similarity of the recovered text and similarity —DP-Fedavg 0433 0766 062 | 0338 0536 055
of the recovered image compared to the origi- NbAFL 0617 0573 077 | 0384 0572 058
nal training data. From Table []it can be seen LDPFL 0376 0934 051 10263 0583 051
that existing methods exhibit fragile protection ~DPPFedAveML | 04170871 059 1 0.321 0,627 045
Sec-MMFL 0.564 0975 047 | 0385 0801 039

capabilities because they fail to account for the
differing information carried by different modal-  Taple 3: Comparison of defense performance.
ities and varying recovery rates. For instance,

higher text recovery ability can leak more information to the image modality, leading to higher image
similarity — a sign of insufficient privacy protection. The method of using simple mutual information
between the data of each modality and the gradient(DP-Fed Avg-MI) can make the protection ability
of each mode of MMFL more balanced. However, it does not take into account the relationship
between the input of other modalities and the gradient, it sometimes cannot correctly reflect the real
leakage risk of each modality, resulting in the protection effect is not balanced enough. Sec-MMFL
using conditional mutual information can reasonably measure the risk of privacy breach, make
the protection effect of the two modes more balanced, and achieve the minimum loss of accuracy
simultaneously. In fact, not only when using LDP in MMFL, this method of using conditional
mutual information to leakage risk assessing and noise adjusting can also be applied on other defense
methods in MMFL such as directly adding Gaussian noise on source data, which can also help to
achieve a more balanced distribution of noise and more reasonable protection. Same trend is shown
in Table [3]and Figure

5.7 Task performance loss of Sec-MMFL

In order to explore the task performance cost for more balanced MMFL privacy protection under
different settings, we conducted experiments with different client number, privacy budget amount,
and different client data heterogeneity distribution. As shown in Figure [5al and [5b|that as the number
of clients goes up from 5 to 30, the performance loss has not changed much, but when the privacy
budget € tightens from 1 to 0.5, the performance loss increases slightly, we think it may be because
smaller privacy budgets will bring more noise and let MMFL model be more sensitive to noise
reallocation. As for the performance loss when the data distribution heterogeneity of each client
changes, we conducted experiments on the two data sets at the setting of e = 1 on CIFAR-10 and
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Figure 4: Attack effect visualization.
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Figure 5: Parameter Sensitivity Analysis.

¢ = 5 on CIFAR-100 for 10 clients. It can be seen from Figure [5c|that when data heterogeneity is
low (i.e., larger Dirichlet parameter «, such as 0.9 or 0.7), Sec-MMFL has relatively small impact on
performance; as heterogeneity increases (smaller o, down to 0.1), accuracy remains stable on both
datasets, with slightly larger fluctuations on CIFAR-100 likely due to its more complex task.

6 Conclusion and Future Work

We propose Sec-MMFL, a framework that help enhance privacy preservation in MMFL. By leveraging
information theory, Sec-MMFL can reasonably assess the privacy leakage risk of each modality
in MMFL and properly adjust the privacy protection intensity of each modality, making MMFL
more robust against GIA attacks. Extensive experiments conducted on various settings show that
Sec-MMFL strikes the best balance between defensive effect and utility. Although our method has
shown significantly more balanced and robust protection in MMFL of image and text modalities,
there is currently no work to perform better privacy protection studies on more modalities, and future
work can be carried out on more baseline models and other modalities.
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