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Abstract
Foundation models have revolutionized language
modeling, while whether this success is repli-
cated in scientific computing remains unexplored.
We present OmniArch, the first prototype aim-
ing at solving multi-scale and multi-physics sci-
entific computing problems with physical align-
ment. We addressed all three challenges with
one unified architecture. Its pre-training stage
contains a Fourier Encoder-decoder fading out
the disharmony across separated dimensions and
a Transformer backbone integrating quantities
through temporal dynamics, and the novel PDE-
Aligner performs physics-informed fine-tuning
under flexible conditions. As far as we know,
we first conduct 1D-2D-3D united pre-training
on the PDEBench, and it sets not only new per-
formance benchmarks for 1D, 2D, and 3D PDEs
but also demonstrates exceptional adaptability to
new physics via in-context and zero-shot learning
approaches, which supports realistic engineering
applications and foresight physics discovery.

1. Introduction
Developing robust neural surrogate models for temporal
partial differential equations (PDEs) is crucial for various
scientific and engineering applications, including aircraft
design, weather forecasting, and semiconductor manufac-
turing (Allen et al., 2022; Pathak et al., 2022). These PDEs
describe spatial-temporal dynamic systems that are founda-
tional to these industries. Traditional scientific computing
methods, such as Finite Element Methods (FEMs) and Finite
Volume Methods (FVMs) (Oden, 1989), require extensive
handcrafted coding and are computationally intensive, even
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Figure 1: OmniArch achieves state-of-the-art performance
(nRMSE Loss) on 1D-2D-3D PDE tasks with single foun-
dation model. The baselines include the task-specific expert
models and the pre-trained models.

on state-of-the-art High-Performance Computing (HPC)
clusters. To expedite PDE solving, pioneers have explored
the construction of neural operators that learn mappings
between function spaces, offering the potential to generalize
across different discretizations. For the requisite precision,
neural operators are often enhanced with physics-informed
normalization techniques, such as customized loss functions
derived from the governing physical equations (Raissi et al.,
2019).

The primary limitation of neural operator methods lies in
their case-specific design, restricting their application scope
and hindering broad transferability across diverse physical
systems. Recent efforts aim to enhance the transferabil-
ity of neural operators by developing foundational models
that leverage advancements in learning strategies, archi-
tectural design, and data curation (Alkin et al., 2024; Sun
et al., 2024; Shen et al.). In terms of learning, the pre-train
and fine-tune paradigm, proven effective for Fourier Neural
Operator (FNO) models (Subramanian et al., 2023), has
been adapted to PDE contexts. Additionally, Lie group-
based self-supervised learning (Lie-SSL) (Mialon et al.,
2023) introduces physics-constrained transformations for
PDEs, primarily addressing inverse problems. Architec-
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turally, innovations like ICON_LM (Yang et al., 2023b),
and PITT (Lorsung et al., 2023) incorporate language
model principles to enhance neural operator learning, en-
abling generalization through equation captions. The Fact-
former (Li et al., 2023) introduces a scalable transformer
for multi-dimensional PDE data, with the Multi-Physics
Pre-training (MPP) (McCabe et al., 2023), Poseidon (Herde
et al., 2024) and DPOT (Hao et al., 2024) further extend-
ing this approach to 2D data pre-training. From a data-
centric viewpoint, resources such as PDEBench (Takamoto
et al., 2022), PDEArena (Gupta & Brandstetter, 2022) and
The-Well (Ohana et al., 2024) offer well-structured datasets
that facilitate pre-training and the establishment of rigorous
benchmarks.

While attempting unified learning of multiple PDE solvers
in a single model, multi-scale and multi-physics challenges
persist. The above surrogate models, often constrained by
the fixed mapping grid (MPP, Lie-SSL, ICON_LM) and
single-time step observation window (MPP, Factformer,
PITT, Poseidon), struggle with flexible spatial grid input
and long-sequence roll-out predictions.

In this work, we study how to frame the foundation model
learning paradigms for Scientific Computing tasks w.r.t
PDEs, namely OmniArch. For the pre-training stage, we de-
fine a flexible pipeline to deal with multiple-physics spatial-
temporal data and convert the forward problem learning into
popular auto-regressive tasks that can be scaled up easily.
For the pre-training stage, we devise a flexible pipeline to
handle multi-physics spatio-temporal data and reformulate
the forward problem as scalable autoregressive tasks. Specif-
ically, we employ a Fourier encoder to convert coordinate
and observation data into frequency components (modes).
We use truncated modes to form PDE token embeddings,
sequenced for processing by transformer blocks, and we
design the PDE-Aligner during fine-tuning to align predic-
tions with known physical laws and principles, improving
the model concordance to conventional physical constraints.

We release our models’ base and large variants1, concur-
rently addressing 1D, 2D, and 3D PDEs. Evaluating perfor-
mance across 11 PDE types from PDEBench and PDEArena,
our OmniArch achieves state-of-the-art results, as illustrated
in Figure 1. For the Computational fluid dynamics (CFD)
related tasks, we observe one to two orders of magnitude re-
ductions in normalized root mean squared error. Moreover,
our models exhibit emergent capabilities, such as zero-shot
generalization to novel PDE systems and in-context learn-
ing of neural operators. The representations learned by
OmniArch demonstrate versatility, readily adaptable to in-
verse problems. Notably, OmniArch facilitates multi-scale
inference, accommodating a range of input grid resolutions
with moderate precision trade-offs. In summary, our key

1https://openi.pcl.ac.cn/cty315/OmniArch

contributions and findings include:

• We introduce OmniArch, the first foundation model
to successfully conduct 1D-2D-3D united pre-training.
Using a Fourier Encoder-decoder, OmniArch allows
for flexible grid inputs, enabling unified multi-scale
training. The Temporal Mask effectively addresses
inconsistencies in multi-physics systems, allowing dif-
ferent physical quantities and time steps to be learned
simultaneously within a shared Transformer backbone.

• We develop the PDE-Aligner for physics-informed fine-
tuning, which leverages hidden representations of equa-
tions and other physical priors to align with observed
physical field dynamics.

• After fine-tuning, OmniArch achieves state-of-the-art
performance on 11 types of PDEs from the PDEBench
and PDEArena benchmarks. The model exhibits in-
context learning capabilities and demonstrates promis-
ing zero-shot performance.

2. Related Works
Learned PDE Solvers. Deep Learning for solving PDEs
has been a recent focal point of research (Lu et al., 2021b;
Karniadakis et al., 2021), including physics-informed meth-
ods (Raissi et al., 2019), GNN-based techniques (Veličković
et al., 2017; Pfaff et al., 2020), and neural operator models
like DeepONet (Lu et al., 2021a) and FNO (Li et al., 2020).
While effective, these models often require task-specific
training and struggle with generalization. ICON_LM (Yang
et al., 2023a), MPP (McCabe et al., 2023), PDEformer-
1 (Ye et al., 2024) aim to generalize across diverse physical
systems but limit to a single dimension.

Foundation Models for Science. The Foundation Mod-
els (Devlin et al., 2018; Brown et al., 2020; Radford et al.,
2019; 2018; Touvron et al., 2023; Radford et al., 2021) have
emerged as pivotal elements in the field of natural language
processing, computer vision, and cross-modal tasks. After
large-scale pre-trained with the transformer backbone, they
serve as the bedrock for a multitude of downstream tasks by
fine-tuning (Zhang et al., 2023) or in-context learning (Li,
2023). Recently, they have shown promise in scientific
fields, exemplified by FourcastNet (Pathak et al., 2022)
for weather forecasting, OpenLAM (Zhang et al., 2022)
for chemistry, and HyenaDNA (Nguyen et al., 2023) for
biomedical tasks. However, applying foundation models to
scientific computing, particularly PDE solving, remains an
emerging and pioneering area.

3. Method
The foundation models (Devlin et al., 2018; Brown et al.,
2020; Radford et al., 2019; 2018; Touvron et al., 2023;
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Figure 2: The overview of OmniArch. The Fourier Encoder converts coordinates and physical fields into frequency
domains, enabling unified training for 1D, 2D, and 3D data. Reserved frequency modes form PDE token embeddings for
Shared Transformer Blocks. Tokens are grouped by timestep to create a Temporal Mask for prediction. Predicted modes are
decoded using IFFT with zero padding to recover the physical field.

Radford et al., 2021) have shown significant success with
broad generation to various inputs and downstream tasks.
Building a similar model for scientific computing should
require addressing dynamic and complex physical systems
and learning intrinsic laws from wild physical phenomena.
We highlight the major challenges as three-fold:

Multi-Scale The ability to handle inputs of different dimen-
sions (1D, 2D, 3D), varying grid resolutions, and diverse
grid shapes. For example, fluid dynamics simulations can
range from simple one-dimensional pipe flow to complex
three-dimensional turbulent flow, and the model must main-
tain accuracy and consistency across these different scales.

Multi-Physics The capability to handle dynamic systems
involving different physical quantities. For instance, in me-
teorology, multiple physical quantities such as wind speed,
temperature, and humidity interact, requiring the model to
process these different physical fields simultaneously.

Physical Alignment Allowing flexible incorporation of
physical priors such as governing equations, symmetries,
conservation laws, and boundary conditions into the solu-
tion process. For example, in heat conduction problems, the
law of conservation of energy and boundary conditions is
crucial for predicting temperature distributions.

The proposed OmniArch Model follows the predominant
pre-training-then-fine-tune paradigm. In subsection 3.1,
we utilize Fourier Encoders and Decoders to address the
multi-scale challenge and employ the Temporal Attention
mechanism to handle multi-physics generalization problems.
In subsection 3.2, we leverage the PDE-Aligner in the fine-
tuning stage, allowing the incorporation of physical priors
in textual form into the model’s learning and adaptation
process.

3.1. Pre-training OmniArch: Flexibly Learning from
Different Dynamic Systems

The overall pre-training framework of OmniArch is illus-
trated in Figure 2. For physical data of different dimensions
(1D, 2D, 3D), we use separate Fourier Encoders to trans-
form their coordinates and observed physical field values
into the frequency domain. High and low frequencies are
truncated in the frequency domain so that data from differ-
ent grids have the same length of embedded representations.
Then, these representations are processed through shared
Transformer modules to model the integral operators along
the time axis. We leverage the Temporal Mask to ensure
that each physical quantity can simultaneously attend to all
physical quantities and previous time steps. Finally, the
predicted embedding representations are used to recover
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the predicted frequency domain signals. We involve zero-
padding to keep these signals with the target physical field
shape and perform individual inverse Fourier transforms to
output the corresponding physical field predictions.

3.1.1. ENCODER/DECODER IN FOURIER DOMAIN

The multi-scale challenge needs proper representation of
inputs from different dimensions, varying grid resolutions,
and shapes. Inspired by the Fourier transforms (Brigham,
1988) convert the sequential signals into frequency compo-
nents, we re-organize the multi-scale inputs in the spatial
domain into the multi-component ones in the frequency
domain. The traditional pipeline includes convolutional
encoders (Raonic et al., 2023), which capture the local
features in separated dimensions while the global infor-
mation exchange happens at the channels’ explicit mixing.
The results of Fourier transforms are complex coefficients
that measure the magnitude and phase of decomposed pe-
riodic components and the global information is naturally
weighted, which also applies to the complex boundary con-
ditions and heterogeneous grids. Based on that, we further
introduce the filter-like components selecting mechanism
that distinguishes the high-frequency (detailed variations)
and low-frequency (overall trends) ones in physical inputs,
which may maintain different patterns and distribution ratios
among the local and global representation. Thus, we can
build a universal representation with different resolutions
and grid shapes in one flexible network architecture.

From a computing-efficient perspective, the forward proce-
dure of Fourier Encoders can be implemented through the
Fast Fourier Transform (FFT) with the O(N logN) com-
plexity while the convolution operation ends in O(N2). The
sparsity and separability of frequency domain features fa-
cilitate the subsequent Transformer modules in efficiently
processing temporal information, reducing the model’s pa-
rameters and computational overhead for better training and
inference efficiency.

Let U ∈ RT×D×1 stand for the physical field inputs. If we
have a real-valued input u(x(d), t) ∈ R from d-th index and
t-th time step, the Fourier Encoder firstly applies FFT to
convert it from the spatial domain to the frequency domain.
Note that D is the total dimension and d denotes the sequen-
tial index (1, 2, 3 . . .), for example, D = D1+D2+D3 = 6
for 1D, 2D and 3D inputs. Then we have the frequency do-
main representation Û ∈ CT×F×1 after traversing through
all time steps and dimensions. As previously discussed, we
design a filter-like mechanism by applying the TopK selec-
tion on all F components (modes) in the frequency domain.
For the t-th time step, all the K significant (K < F ) compo-
nents ûK(t) are retained and form the truncated frequency
domain. To be clarifying, we can present the forward proce-

dure of k-th largest components ûK(k, t) as:

ûK(k, t) = TopK( FFT(Ψ[u(x(1), t), . . . , u(x(D), t)]⊤ ) ),
(1)

where TopK(·) denotes the selection operator over F com-
ponents, Ψ(·) denotes the linear projection for the dimen-
sion alignment and the FFT(·) operator is performed at the
individual time step.

In the decoding stage, the predicted frequency domain fea-
tures ûpred

K (k, t) are adapted to the target shape using zero
padding. Then, the inverse Fourier transform (IFFT) is
applied to revert the frequency domain features ûpred(k, t)
back to the spatial domain, ultimately obtaining the pre-
dicted physical field upred(x(d), t+ 1) as:

upred(x(d), t+ 1) =

Ψ
′
( IFFT( Zero-Padding( [ûpred

K (1, t), . . . , ûpred
K (K, t)] )) ).

(2)

This encoding and decoding process in the frequency do-
main is maintained throughout the whole OmniArch net-
work. Since the encoding and decoding operations are al-
ways conducted along specific dimensions, thus we omit the
d-th index indicator in the following context.

3.1.2. TRANSFORMER AS AN INTEGRAL NEURAL
OPERATOR

To achieve multi-physics versatility, we leverage the Trans-
former backbone to simulate integral neural operators. In
physics, multi-physics systems often exhibit complex spatio-
temporal dependencies, requiring effective long-range de-
pendency modeling. The multi-head self-attention mecha-
nism of the Transformer, with the introduction of the Tem-
poral Mask, allows each time step to attend to all physical
quantities at the same and previous time steps, enabling
efficient temporal information integration. This design en-
sures the robustness and adaptability of the model in multi-
physics systems. Additionally, by padding variable-length
sequences, systems with different numbers of physical quan-
tities can use the model for temporal regression predictions
in batches, ensuring accuracy and stability.

Moreover, the autoregressive mechanism of the Transformer
bears a strong mathematical resemblance to traditional multi-
step methods for solving equations. Traditional multi-step
methods approximate solutions iteratively, capturing the
dynamic changes of the system. Similarly, the multi-head
self-attention mechanism of the Transformer models the
global dependencies at each time step, achieving precise
capture of dynamic changes in the system.

Specifically, traditional multi-step methods for solving equa-
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tions can be expressed iteratively as:

upred(x, t+ 1) = u(x, t) + ∆t · f(u(x, t)). (3)

In contrast, the autoregressive mechanism of the Trans-
former updates the current state by a weighted sum of previ-
ous time steps through attention weights:

upred(x, t+ 1) = Σt
i=1αi,t · u(x, i)

= u(x, t) + Σt−1
i=1αi,t−1u(x, i),

(4)

where αi,t refer to the attention weights. Both approaches
update based on previous time steps, with the attention
mechanism acting as a neural surrogate (Sun et al., 2020)
for the integral operator f .

Assume that we have a physical system with two physical
quantities u(x, t) and v(x, t), where the total number of
quantities is recorded by C = 2. In OmniArch’s computa-
tion, the frequency domain features ûK(k, t) and v̂K(k, t)
obtained from the Fourier Encoder are further transformed
into real-valued embeddings through R(·), resulting in the
input embeddings for the Transformer Ut and Vt. These
embeddings are grouped by time steps to form the input
sequence Zt. For each time step t,

Zt = {Ut,Vt} = {R(ûK(k, t)),R(v̂K(k, t))}. (5)

The Temporal Mask M ensures that each time step t can
access all physical quantities at the current and previous
time steps, which is defined as:

M(i, j) =

{
0 if

⌊
j
C

⌋
≤

⌊
i
C

⌋
−∞ if

⌊
j
C

⌋
>

⌊
i
C

⌋ , (6)

where i and j represent the i-th and j-th tokens in the se-
quence, and

⌊
i
C

⌋
represents the time step. Unlike standard

causal masking that enforces strict sequential dependencies,
our Temporal Mask enables all physical quantities within
the same timestep to attend to each other, addressing the
fundamental coupling inherent in multi-physics systems.
Specifically, for a system with C physical quantities at each
timestep, tokens {i, i+ 1, ..., i+ C − 1} corresponding to
timestep t have full visibility of each other (intra-timestep
attention), while maintaining causal relationships across
timesteps (inter-timestep attention). This hierarchical atten-
tion pattern ensures that coupled physical quantities—such
as velocity and pressure in fluid dynamics—can jointly
evolve while respecting temporal causality. The design
is particularly crucial for systems where physical variables
must satisfy simultaneous constraints (e.g., continuity equa-
tions in Navier-Stokes) that cannot be properly modeled
through sequential token processing.

The input sequence then passes through multiple shared
Transformer blocks, outputting the shifted right predicted
feature sequence for each time step {Ẑt}T+1

t=2 :

{Ẑt}T+1
t=2 = TransformerBlocks( {Zt}Tt=1,M ). (7)

Due to numerical differences between dynamic systems, we
use nRMSE to calculate the loss function Lsim for a batch
during training:

Lu
sim =

1

|B|

√
Σ(x,t)∈B

(
upred(x, t)− u(x, t)

σu

)2

,

Lsim =
1

C
Σj∈CL

j
sim.

(8)
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This design can effectively capture the temporal evolution
of physical fields, achieving high-precision dynamic sys-
tem predictions and ensuring that systems with different
numbers of physical quantities can adapt to this model for
temporal regression predictions.

3.2. Fine-tuning OmniArch: Enabling Physics-Informed
Learning via Equation Supervision

The PDE equations are natural and intuitive ‘supervision’
methods for real-world physical phenomena. To perform
the physical alignment, we incorporate the PDE-Aligner to
achieve physics-informed learning. Unlike the pre-training
stage, the OmniArch is designed to comply with specific
physical laws during fine-tuning. As illustrated in Figure
3 (left), the PDE-Aligner employs a contrastive learning
paradigm in the frequency domain.

The key insight is that physical evolution manifests dis-
tinctively in frequency space—conservation laws constrain
energy distribution across modes, while different PDEs ex-
hibit characteristic spectral signatures. By operating in
this domain, PDE-Aligner captures these fundamental pat-
terns more effectively than spatial approaches. It compares
the dynamic system’s semantics with statistical characters
of the frequency domain, where the dynamical system de-
scriptions, namely equations, boundaries, initial conditions,
and other physical priors, are encoded into a representation
Etext(P).

To characterize physical evolution, we acquire the ini-
tial state u(x, t0) and the current state u(x, ti) of the
physical field, applying the Fourier Encoder to obtain
their k-th frequency domain representations ûK(k, ti) and
ûK(k, t0). The phase difference ∆ϕ = (ûK(k, ti) ·
û∗
K(k, t0))/(|ûK(k, ti)||ûK(k, t0)|) captures wave propa-

gation and dispersion characteristics, while the magnitude
ratio R = |ûK(k, ti)|/|ûK(k, t0)| quantifies energy transfer
across scales—both serving as physics-aware fingerprints
of the underlying PDE. Thus, we have the alignment loss
function as:

LAlign = Leq + λLE,

Leq = S( Etext(P),Ψ[∆ϕ,R]⊤),

LE = |
∑

K
R− 1|.

(9)

where λ is a hyperparameter balancing the energy conserva-
tion loss. The energy term LE enforces Parseval’s theorem,
ensuring physical consistency in the frequency domain. By
minimizing the alignment loss function LAlign, the PDE-
Aligner aligns the changes in the physical field with the
textual descriptions within the constraints of energy conser-
vation.

In the fine-tuning stage (Figure 3 Right), the pre-trained

PDE-Aligner serves as a physics-aware discriminator,
helping OmniArch distinguish between different physical
regimes encountered during pre-training. The fine-tuning
loss Lft = Lsim − Leq encourages predictions that are both
accurate (via Lsim) and physically consistent with the spec-
ified PDE system (via Leq), effectively steering the model
toward the correct physical behavior among many learned
dynamics.

4. Experiments
4.1. Dataset and Baselines

Dataset. We collect 1D, 2D, and 3D datasets from the pub-
lic PDEBench and PDEArena. The 1D datasets include: (1)
CFD, generated by the compressible Navier-Stokes equa-
tion with velocity (Vx), density, and pressure. (2) Bur., the
Burgers’ equation with velocity. (3) Diff., the diffusion-
sorption equation with concentration (ρ). (4) Adv., the ad-
vection equation with velocity (Vx). (5) Reac. the reaction-
diffusion equation with concentration (ρ). The 2D datasets
include: (6) CFD, generated by the compressible Navier-
Stokes equation with velocities (Vx, Vy), density, and pres-
sure. (7) Reac., the reaction-diffusion equation with activa-
tor (u) and inhibitor (v). (8) SWE, the shallow-water equa-
tion with velocities (h). (9) Incom., generated by 2D Inho-
mogeneous, Incompressible Navier-Stokes equations, with
velocities (Vx, Vy) and particles. The 3D datasets include:
(10) CFD, generated by the compressible Navier-Stokes
equation with velocities (Vx, Vy, Vz), density, and pressure.
(11) Maxw., the Maxwell equation with electric displace-
ment (Dx, Dy, Dz) and magnetic field (Hx, Hy, Hz). More
details can be found in Appendix C.

Baselines. The baselines are divided into two categories:
(1) Task-specific expert models, which include Physics-
Informed Neural Networks (PINNs) (Raissi et al., 2019),
U-Net (Ronneberger et al., 2015), and Fourier Neural
Operator (FNO) (Li et al., 2020), all of which require
training from scratch for each specific case (each equa-
tion/coefficient, etc.). (2) Unified pre-training models,
which include PDEformer-1 (Ye et al., 2024), Multiple
Physics Pre-training (MPP) (McCabe et al., 2023), SWIN-
transformer (Liu et al., 2021) used for the ORCA task, the
large size pretrained checkpoint of Poseidon (Herde et al.,
2024) and DPOT (Hao et al., 2024). More details on the
baselines are provided in Appendix D.

Training Details. The OmniArch model uses single-layer
encoders and decoders for data of various dimensions, with
the LLaMA model (trained from scratch) as the shared
Transformer architecture. The PDE-Aligner employs the
pre-trained Fourier encoder from OmniArch to encode phys-
ical fields and the pre-trained BERT model to encode PDE
captions. Additional training details are in Appendix E.
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Table 1: The nRMSE on various PDEs. We evaluate base-size(-B) and large-size(-L). The previous state-of-the-art
performance is underlined and our best performance is bolded.

1D 2D 3DMethods CFD Adv. Bur. Diff. Reac. CFD Reac. SWE Incom CFD Maxw.

Baselines -Task specific Expert Models

PINNs / 0.8130 0.9450 0.2200 0.2140 / 1.6000 0.0170 / / /
U-Net 2.6700 0.7760 0.3201 0.1507 0.0026 1.0700 0.8401 0.0830 1.1200 0.7989 0.2999
FNO 1.4100 0.0091 0.0174 0.0017 0.0005 0.2060 0.1203 0.0044 0.2574 0.3052 0.1906

Baselines - Unified Pre-training and Fine-tuning

PDEformer-1 – 0.0043 0.0095 – 0.0009 – – – – – –
ORCA-SWIN-B – – – – – / 0.8201 0.0062 / – –

MPP-AVIT-B – – – – – 0.0227 0.0106 0.0024 / – –
MPP-AVIT-L – – – – – 0.0178 0.0098 0.0022 / – –
Poseidon-L – – – – – 0.1079 0.0949 0.0243 – – –

DPOT-L – – – – – 0.0112 0.0263 0.0451 – 0.4321 –

Full Pre-Training on 1D,2D,3D Data

OmniArch-B(Ours) 0.0340 0.0238 0.0089 0.0020 0.0006 0.0196 0.0158 0.0016 0.1726 0.5209 0.2834
OmniArch-L(Ours) 0.0250 0.0182 0.0063 0.0015 0.0004 0.0148 0.0105 0.0014 0.1494 0.4531 0.2268

+ PDE-Aligner Fine-tuning

OmniArch-B(Ours) 0.0302 0.0201 0.0071 0.0017 0.0003 0.0153 0.0102 0.0015 0.0955 0.4032 0.1813
OmniArch-L(Ours) 0.0200 0.0041 0.0032 0.0006 0.0002 0.0125 0.0084 0.0012 0.0827 0.3723 0.1671

std. ± 0.0031 0.0012 0.0004 0.0001 0.0001 0.0017 0.0004 0.0003 0.0023 0.0443 0.0197

Improvement ↑ 98.70% 4.65% 66.32% 64.75% 60.00% – 14.28% 45.45% 67.87% – 12.32%

Notes: Symbol ‘/’ means model did not converge while ‘–’ means model not applicable to this dataset.

4.2. Results and Analysis

OmniArch is designed to support multi-scale, multi-physics,
and flexible physics alignment. Table 1 presents the normal-
ized root mean square error (nRMSE) across various PDEs
for different methods.

Multi-Physics Results. (1) Compared with Task-specific
Expert Models. PINNs, U-Net, and FNO require training
from scratch for each specific equation or coefficient. While
FNO shows strong performance, PINNs and U-Net strug-
gle with convergence and accuracy in some cases (Like
the CFD-1D, and CFD-2D). (2) Compared with Unified
Pre-training Models. PDEformer-1 exhibits proficiency in
specific 1D equations but fails to generalize beyond its for-
mulation structure. MPP and ORCA-SWIN leverage 2D
pre-training and fine-tuning, improving generalization, yet
their effectiveness remains constrained by the diversity of
the pre-training data. Poseidon enables single-step infer-
ence at arbitrary timesteps, though its accuracy still leaves
room for improvement. DPOT successfully transfers knowl-
edge from 2D to 3D CFD through weight sharing, but it
lacks support for 1D CFD and its performance on non-CFD
physics systems requires further enhancement. (3) Om-

niArch Performance. OmniArch, pre-trained on 1D, 2D,
and 3D data, demonstrates superior performance across all
evaluated datasets. Both the base (B) and large (L) ver-
sions of OmniArch outperform existing models, validating
its robustness in multi-physics contexts. To validate our
architectural design choices, we conduct ablation studies
on the Temporal Mask mechanism (Table 2). The results
confirm that our Temporal Mask, which enables full atten-
tion among physical quantities within each timestep, sig-
nificantly outperforms standard causal masking across var-
ious multi-physics systems. (4) PDE-Aligner Fine-tuning.
Fine-tuning with PDE-Aligner significantly enhances Om-
niArch’s accuracy, particularly for complex datasets. This
step utilizes a pre-trained Fourier encoder and BERT-base-
cased model, ensuring precise alignment between physical
fields and PDE descriptions. Table 3 quantifies the impact
of PDE-Aligner across different dimensions, showing con-
sistent improvements of over 20% compared to pre-training
alone. OmniArch demonstrates substantial performance
gains over baselines, with up to 98.70% improvement on
CFD-1D and notable enhancements across other PDEs.

Ablation Study on Masking Strategies. As illustrated in
Table 2, the superiority of Temporal Mask (18-20% improve-
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Table 2: Ablation study on masking strategies

Dataset Causal Mask No Mask Temporal Mask

2D Incom. 0.0277 0.0285 0.0227
2D CFD 0.0198 0.0205 0.0148
3D CFD 0.1842 0.1923 0.1494

ment) reveals a fundamental insight: multi-physics systems
require simultaneous rather than sequential processing of
coupled variables. This advantage is most pronounced in
3D CFD, where the complex interplay between five physical
quantities (velocities, density, pressure) demands holistic
attention patterns.

Table 3: Impact of PDE-Aligner on model performance
(OmniArch-L)

Configuration 1D PDEs 2D PDEs 3D PDEs

Pre-training only 0.0103 0.0440 0.3399
Fine-tuning w/o Aligner 0.0073 0.0345 0.3432
Fine-tuning w/ Aligner 0.0056 0.0262 0.2697

Improvement 23.3% 24.1% 21.4%

Impact of PDE-Aligner. We report the impact of PDE-
Aligner in Table 3, where the consistent 22% improvement
across dimensions suggests that PDE-Aligner serves as
more than a physics constraint—it helps OmniArch dis-
ambiguate between different physical regimes learned dur-
ing pre-training. Notably, the similar improvement ratios
across 1D-3D indicate that physical alignment is dimension-
agnostic, validating our unified architecture design.

Multi-scale Results. In Figure 4, we present the multi-scale
inference performance of OmniArch-Base and OmniArch-
Large on the 2D Incom. Dataset. Due to the frequency
truncation capability of the Fourier Encoder, OmniArch
can handle inputs of varying grid sizes without requiring
re-training. In the red-shaded area, the nRMSE decreases
as the grid size becomes smaller. Conversely, in the blue-
shaded area, the nRMSE slightly increases. However, even
with a grid size of 512, the maximum nRMSE remains
below 0.2. In the rollout settings, a grid size of 256 some-
times leads to better or comparable performance to a grid
size of 128. The non-monotonic relationship between grid
resolution and error (red vs. blue regions in Figure 4) re-
veals an intriguing property of frequency-domain learning:
OmniArch naturally identifies the intrinsic resolution of
physical phenomena. The optimal performance at interme-
diate resolutions (128-256) suggests the model has learned
to distinguish between meaningful physical scales and nu-
merical artifacts. Additional visualizations are provided in
Appendix H.5.

Methods Shock KH OTVortex

FNO 0.7484 1.0891 0.5946
U-Net 1.6667 0.1677 0.4217

MPP-L 0.3243 1.3261 0.3025

OmniArch-L 0.2126 0.2763 0.1718

Table 4: The Performance on Zero-shot PDEs.

Figure 4: The multi-scale capability.kh_m_idx_4_c_1
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Figure 5: Zero-shot prediction results (Rollout) of
OmniArch-L and MPP-L on KH dataset. Displaying time
steps T+1 to T+6, the top row shows ground truth data,
while the middle and the bottom row illustrate MPP-L’s and
OmniArch-L’s predictions respectively.
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Table 5: nRMSE for Inverse Problems.

Methods Forcing Buoyancy

MPP 0.2± 0.008 0.78± 0.006
OmniArch 0.16± 0.005 0.73± 0.012

Scratch 0.39± 0.012 0.83± 0.027

Flexible Physics Alignment. To verify the PDE-Aligner’s
ability to perceive physical information, we equipped it
with a classification head to classify physical fields. In
Figure 7, the PDE-Aligner can perceive physical field cate-
gories based on equation text information and physical field
features, and the classification accuracy rate exceeds 0.94
on all ten categories. More details are in Appendix F.3.

Zero-shot Performance. Our examination of 2D PDE pre-
dictions, as illustrated in Figure 5, reveals that OmniArch
effectively captures both low- and high-frequency patterns
even in zero-shot scenarios, surpassing former 2D models
like MPP. MPP often misses key features, leading to er-
roneous representations of the primary physics and failed
rollouts. Details of zero-shot dataset are in Appendix C.2.

As shown in Table 4, nRMSE scores indicate that all mod-
els, except OmniArch, tend to underperform in zero-shot
transfer. This suggests that OmniArch’s use of Fourier En-
coders and unified training approach enhances its ability
to generalize across different PDEs. By leveraging flexi-
ble grid inputs and dynamic observation windows during
pre-training, OmniArch effectively captures the underlying
physics of the observed field states, which may not be ade-
quately addressed by methods adhering strictly to explicit
grid and temporal dependencies. The 4-7× error reduction
compared to MPP in zero-shot scenarios (Table 4) indicates
that OmniArch has learned transferable physical operators
rather than dataset-specific patterns. The success on shock-
dominated flows (Shock, KH)—notoriously difficult for
neural methods—demonstrates that frequency-domain rep-
resentations capture discontinuities more effectively than
spatial approaches.

In-Context Learning. After autoregressively pre-trained on
various dynamic systems, we observe that OmniArch could
learn neural operators within the observations of several
time steps, which is similar to the in-context learning in
Large Language Models. Here, we define the given time-
series of observations as PDE Prompt. Our approach varies
the prompt length from 2 tokens (derived from a 50 time
step interval) to 100 tokens (from a 1 time step interval).
More details are in Appendix H.2.

Fine-tuning for Inverse Problems. Demonstrating a
model’s capability to infer hidden physical parameters from
known equations is a critical test of its ability to learn un-
derlying physics. The results in Table 5 demonstrate that

Figure 7: The confusion matrix of the PDE-Aligner classifi-
cation results.

OmniArch outperforms MPP in parameter estimation tasks,
with lower RMSE values indicating more accurate predic-
tions. Models trained from scratch yield the highest errors,
underscoring the effectiveness of our fine-tuning approach.
This evidence supports the notion that OmniArch is not only
proficient in forward simulations but also exhibits superior
performance in deducing hidden dynamics within complex
systems. More details are in Appendix H.3.

Other Results. In addition to the primary experiments,
we include more rollout case studies in Appendix H.4 and
report the inference-time GPU Memory usage compared
with baselines in Appendix H.7. We also include ablation
studies for training settings in Appendix G and the detailed
performance for CFD PDEs in Appendix H.6. These ad-
ditional evaluations highlight OmniArch’s robustness and
accuracy in complex physical simulations, surpassing other
state-of-the-art models.

5. Conclusion
In this study, we introduced a pioneering foundation model
for scientific computing, specifically tailored for the resolu-
tion of partial differential equations (PDEs). By integrating
this model with a novel PDE-Aligner for fine-tuning, we
have established new state-of-the-art benchmarks across a
comprehensive suite of tasks within the PDEBench. Addi-
tionally, we investigated the zero-shot learning capabilities
of our pre-trained model, uncovering a degree of transfer-
ability that mirrors the emergent properties found in large-
scale language models. Despite the successes, we recognize
the challenges posed by 3D PDE systems to our OmniArch
model, which may leave for future research. We envisage
that OmniArch will serve as a cornerstone for developing
foundation models in the domain of PDE learning, foster-
ing a significant convergence between scientific machine
learning (SciML) and broader deep learning disciplines.
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Table 6: Table of notations

Basic Notations

x, t Spatial and Temporal coordinate (time)
∆t Time interval
T Total time steps
D Total dimensions of physical fields
C Number of physical fields
B Batch size
U Physical field inputs

u(x(d), t) Physical field of dimension d at spatial coordinate x and time t
Ψ(·) Linear projection

OmniArch Related Notations

F ,F−1 Fourier transformation and its inverse
F Components (modes) in the frequency domain
Û Physical field frequency domain representation
k Frequency Variable
K Number of retained Fourier modes (cut-off frequency)

û(k, t) Fourier transform of u(x, t) at frequency k and time t
ûK(k, t) Truncated Fourier modes (TopK modes) at frequency k and time t

ûpred
K (k, t) Predicted Fourier modes at frequency k and time t

upred(x, t) Predicted physical field at spatial coordinate x and time t
f(·) Integral operator
αi,t Attention weights at spatial coordinate i and time t
R(·) Real-valued embedding function of the frequency domain features
Ut, Vt Physical field embedding token from R at time t
Zt Input sequence consist of grouped embeddings from Ut, Vt

Ẑt Shifted right predicted feature sequence
M Temporal mask used in Transformer Blocks
σu Normalization factor ∥u∥22 + ϵ for nRMSE calculation
Lu

sim Normalized RMSE loss:
√
E[(upred − u)2]/σu

Lsim Mean nRMSE across all physical fields

PDE-Aligner Related Notations

P PDE text description (captions)
Etext(·) Text encoder used for PDE captions
∆ϕ Phase difference between the initial state and current state
R Amplitude ratio between two states
λ The hyperparameter balancing the the energy conservation loss
Leq Similarity between text embedding and physical embedding
LE Energy conservation loss

LAlign PDE-Aligner training loss
Lft OmniArch fine-tune loss

A. Table of notations
A table of notations is given in Table 6.

B. Limitations
Despite its advancements, OmniArch remains fundamentally data-driven, and its interpretability requires further improve-
ment, even with the PDE-Aligner enhancing physical prior alignment. Constraints in computational power and data
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availability have limited OmniArch’s scalability, affecting its generalization capabilities, particularly in complex and abrupt
dynamical systems such as 3D tasks and shock wave PDEs. Addressing these limitations is crucial for further development
and broader applicability in scientific and engineering contexts.

C. Dataset details
C.1. OmniArch Pre-training Dataset

Pre-training Stage. We structured the PDEBench data into distinct training, validation, and testing subsets. For one-
dimensional (1D) PDEs, the training dataset comprises a selection from the CFD-1D, ReacDiff, Advection, Burgers, and
diff-sorp datasets. From these, we reserve a random 10% sample of trajectories as the in-domain test set for each respective
PDE equation. The Shock Tube Equation is designated as the out-of-domain test set. Additionally, the test portions of the
reacdiff and diff-sorp datasets are utilized as part of the test set.

In the two-dimensional (2D) PDE case, we allocate 90% of trajectories from the CFD, diff-react, NSincom, and shallow
water datasets for training. The remaining 10% form the in-domain test set. The Shock Tube, Kelvin-Helmholtz instability
(KH), and Tolman-Oppenheimer-Volkoff (TOV) scenarios are included as out-of-domain test sets.

For three-dimensional (3D) PDEs, 90% of trajectories from the CFD-3D dataset are utilized for training, with the remaining
10% serving as the in-domain test set. The complete datasets for blastwave and turbulence simulations are used as
out-of-domain test sets. The Details of our pre-training dataset can be found in Table 7.

Table 7: Data Statistics for OmniArch Pre-training

Dataset #Train #Validation #Physical quantities Nt Ns

1D

CFD 45000 5000 velocities Vx, density, pressure 100 1024
Reac. 144000 16000 concentration ρ 200 1024
Adv. 72000 8000 velocities Vx 200 1024
Bur. 108000 12000 velocities Vx 200 1024
Diff. 9000 1000 concentration ρ 100 1024

2D

CFD 39600 4400 velocities Vx, Vy , density, pressure 21 512
Reac. 900 100 activator u, inhibitor v 100 128
Incom 900 100 velocities Vx, Vy , particle 1000 256
SWE 900 100 velocities h 100 128

3D CFD 630 70 velocities Vx, Vy, Vz , density, pressure 21 128

Maxw. 8640 960
electric displacement Dx, Dy, Dz

magnetic field Hx, Hy, Hz
8 64

C.2. Dataset For Zero-shot Learning

We choose three test datasets from PDEBench to validate the zero-shot ability of our model. They all belong to two-
dimensional compressible Navier-Stokes equations but are different fluid phenomena that exhibit distinct physical mecha-
nisms and characteristics. Brief introductions and details of the datasets are as follows:

• OTVortex: The Orszag-Tang Vortex system is a compressible flow problem that generates highly complex vortex
structures through the careful selection of initial conditions. The dataset includes one example, which is a 1024× 1024
resolution physical field evolved over 101 time steps with a time interval of 0.01.

• 2D Shock: Shock waves are characterized by abrupt changes in flow properties resulting from sudden discontinuities
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in fluid flow, such as rapid changes in pressure, temperature, and density. The dataset includes one example, which is
also a 1024× 1024 resolution physical field evolved over 101 time steps with a time interval of 0.01.

• 2D KH: The Kelvin-Helmholtz instability is a fluid instability that occurs at the interface between two fluid layers
with different velocities or densities. This dataset consists of seven examples generated based on different parameters
M,dk, and Re. Each is a 1024× 1024 resolution physical field evolved over 51 time steps with a time interval of 0.1.
We conducted experiments on all samples and averaged the results.

D. Baseline implementation details
In our experiments, we adopt the benchmarking framework provided by PDEBench (Takamoto et al., 2022) and select three
well-established methods for comparative analysis. Furthermore, we have incorporated the Multiple Physics Pre-training
(MPP) model into our comparative analysis to address the need for retraining that is inherent to the aforementioned methods
when faced with novel sets of conditions, the detailed training hyperparameters of FNO, U-Net, and PINN is provided in
Table 8, following PDEbench (Takamoto et al., 2022). The first hyperparameter of U-Net is the unroll steps (denoted as
us), and the second is the train steps (denoted as ts). The hyperparameters shared by both FNO and U-Net are the initial
steps (denoted as is) and batch size (denoted as bs). The hyperparameter in PINNs is the hidden size (denoted as hid). The
learning rate, shared by FNO, U-Net, and PINNs, is denoted as lr.

Table 8: Setting details when training FNO, U-Net, and PINN, * means shared setting for FNO and U-Net, shared setting for
FNO, U-Net, and PINN is denoted with a symbol †.

FNO U-Net is* bs* PINNs lr†
modes width us ts hid

1D

Adv. 12 20 20 200 10 50 40 0.001
Bur. 12 20 20 200 10 50 40 0.001
CFD 12 20 20 100 10 50 40 0.001
Diff. 12 20 20 101 10 50 40 0.001
Reac. 12 20 20 101 10 50 40 0.001

2D
CFD 12 20 20 21 10 20 40 0.001
Reac. 12 20 20 101 10 5 40 0.001
SWE 12 20 20 101 10 5 40 0.001
Incom 12 20 20 101 10 20 40 0.001

3D CFD 12 20 20 21 10 5 40 0.001
Maxw. 12 20 7 8 7 5 40 0.001

Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019). PINNs utilize neural networks to solve differential
equations by embedding physical laws into a multi-objective optimization framework, minimizing PDE residuals and
boundary/initial condition errors (Cuomo et al., 2022).

U-Net (Ronneberger et al., 2015). U-Net, designed for biomedical image segmentation, uses an encoder-decoder structure
for context capture and precise localization (Siddique et al., 2021; Du et al., 2020). We adapt U-Net into 1D and 3D forms
to analyze spatio-temporal patterns in physical fields.

Fourier Neural Operator (FNO) (Li et al., 2020). FNO pioneers in learning function-to-solution mappings by parameter-
izing integral kernels in the Fourier domain, enabling efficient and accurate resolution-invariant neural operators.

PDEformer-1 (Ye et al., 2024). PDEformer-1 is a neural solver capable of simultaneously addressing various types of 1D
partial differential equations. It uses a graph Transformer and implicit neural representation (INR) to generate mesh-free
predicted solutions.

Multiple Physics Pre-training (MPP) (McCabe et al., 2023). MPP extends PDEBench’s 2D physics scenarios to learn
versatile features for predicting dynamics across various physical systems and comprises pre-training and fine-tuning phases,
warranting its inclusion in our comparative analysis.
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ORCA-SWIN (Shen et al., 2023; Liu et al., 2021). ORCA fine-tunes the SWIN Transformer for different PDEs by first
aligning the embedded feature distribution of the target PDE data with the pre-training modality, and then refining the model
on this aligned data to effectively leverage shared knowledge across various PDEs.

E. OmniArch implementation details
E.1. Pre-training OmniArch

In our training process, the following strategies or decisions were made:

• Pre/Post Norm: Pre-norm

• Norm Type: RMS Norm Type

• Architecture: Decoder-Only

• Attention-Type: Multi-scaled Attention

• Position Embedding: RoPE

• Casual Masking: True- We only evaluate the loss on the T + 1 physical fileds prediction.

• Hidden Size: 1024

• initializer_range: 0.02

• intermediate_size: 4096

• num_attention_heads: 16

Table 9: Detailed setting of hyperparameters in pre-training the base and large models. The batch sizes, modes, and widths
are provided as lists, with values corresponding to 1D, 2D, and 3D data respectively.

Hyperparameters Base Large

#Layers 12 24
Hidden Size 768 1024

#Heads 12 16
Intermediate Size 3072 4096

Batch Sizes [42,3,1] [32,2,1]
Modes [12,12,12] [12,12,12]
Widths [8,8,8] [8,8,8]

Learning Rate 0.0001 0.0001
Scheduling Method Cosine Annealing Cosine Annealing

We trained two different sizes of model: base and large, which primarily differ in the number of layers, hidden sizes, number
of heads, and intermediate sizes, as detailed in Figure 9. For the base model, we selected batch sizes of [42, 3, 1] for the
1D, 2D, and 3D trajectories, respectively. These batch sizes represent the maximum capacities our acceleration devices
could handle while maintaining the ratio of data trajectories. This configuration allows for optimal training efficiency
by minimizing idle time and maximizing device utilization. For the large model, due to its significantly increased size,
we adjusted the batch sizes to [32, 2, 1] to ensure that the GPU memory is fully utilized. This reduction in batch sizes
accommodates the larger model’s memory requirements while still enabling effective training across the different dimensions
of data trajectories.
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E.2. Fine-tuning OmniArch

Fine-tuning is performed on an A40 GPU cluster, which has 40GiB of memory per device. The fine-tuning settings for
each dataset are shown in Table 10. We set the learning rate to 1e-5, which results in fast convergence. Using 2 GPUs in
Distributed Data-Parallel mode, we fine-tune each dataset for a maximum of 30 epochs and apply early stopping.

Table 10: Detailed Fine-tuning Settings: The table provides the learning rate, width, modes, and batch size for 1D, 2D, and
3D data.

Dims learning rate width modes batch size Scheduling Method

1D 1e-5 8 12 64 Cosine Annealing
2D 1e-5 8 12 8 Cosine Annealing
3D 1e-5 8 12 2 Cosine Annealing

E.3. Parameter Efficiency Analysis

Table 11: Static Parameter Distribution (Millions)

Model Component OmniArch-B (316M) OmniArch-L (672M)

Shared Backbone 138 (43.7%) 435 (64.7%)
1D Encoder/Decoder 0.3 0.4
2D Encoder/Decoder 7.0 9.0
3D Encoder/Decoder 171 227

Table 12: Active Parameters During Task Execution (Millions)

Model PDE Type

1D PDEs 2D PDEs 3D PDEs

OmniArch-B 138 144 308
OmniArch-L 435 445 663

As illustrated in Table 11 and Table 12, the parameter distribution reveals OmniArch’s hierarchical design philosophy.
Three key observations emerge: (1) The shared backbone dominates the parameter count (43.7–64.7%), facilitating cross-
dimensional knowledge transfer while requiring only modest modality-specific additions (0.3–227M). (2) For 2D tasks
(MPP’s primary domain), OmniArch-B activates merely 144M parameters—a 24.1% increase over MPP-B’s 116M that
brings three key advantages: (a) unified architecture reduces system complexity, (b) enables latent cross-modal learning,
and (c) provides future-proof extensibility. (3) The scaling pattern shows intelligent allocation—3D processing requires
2.1–2.7× more dedicated parameters than 2D, reflecting its inherent higher dimensionality while maintaining efficient reuse
of the shared backbone.

F. PDE-Aligner implementation details
F.1. PDE-Aligner Pre-training Dataset

PDE-Aligner equation augmentation. Given the significant imbalance between equation caption data and physical field
data, a single equation can yield a multitude of physical field simulations. To augment equation captions effectively, it is
crucial to preserve the equation’s solutions and boundaries while adhering to physical laws and exploring a wide array of
possible substitutions. To achieve this, we have developed a five-step augmentation pipeline: Equation Rewriting, Form
Transformation, Linear Combination, Symbol Substitution, and Physical Checking:

• Equation Rewriting. We apply mathematical identities to modify the equation, ensuring the core properties remain
intact.
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• Form Transformation. We transform equations between differential and integral forms and employ techniques such
as Green’s functions to broaden the equation’s representations.

• Linear Combination. For systems of equations, we derive new variants through linear combinations, enriching the
dataset without altering the system’s nature.

• Symbol Substitution. We systematically swap variables with alternative symbols, such as replacing x with ξ, to
maintain consistency and avoid ambiguity.

• Physical Checking. A panel of GPT-4-based experts evaluates the augmented equations, filtering out those that do not
align with physical principles.

Leveraging the first four steps, we generate 200 augmented instances per equation type. Subsequently, during the Physical
Checking phase, we select the top 50% of these examples based on quality for pre-training. Representative samples of the
augmented examples are available in Appendix F.2.

Additionally, we randomly sample the numerical distributions of different physical quantities at two distinct time steps
within the physical field to represent the field’s temporal variations. Each set of two-step physical field data is paired with a
corresponding enhanced equation text to form a single data instance. This approach is used to compile a comprehensive
pre-training dataset for the PDE-Aligner.

F.2. Examples of Generated PDEs

F.2.1. BURGERS 1D

• Original form:
∂tu(t, x) + ∂x(u

2(t, x)/2) = ν/π∂xxu(t, x), x ∈ (0, 1), t ∈ (0, 2],

u(0, x) = u0(x), x ∈ (0, 1),

• After augmented:

0.77

∫ (
∂

∂t
v(t, x) +

∂

∂x

v2(t, x)

2

)
dt =

0.77ν
∫

∂2

∂x2 v(t, x) dt

π

0.73tv(0, x) = 0.73tv0(x)

• Explanation: We replace u with v and ∂t with ∂
∂t . We integrate and multiply some factors on both sides of the equation

at the same time.

F.2.2. ADVECTION

• Original form:
∂tu(t, x) + β∂xu(t, x) = 0, x ∈ (0, 1), t ∈ (0, 2],

u(0, x) = u0(x), x ∈ (0, 1),

• After augmented:

1.45

∫ (
c
∂

∂x
A(t, x) +

∂

∂t
A(t, x)

)
dt = 0

A(0, x) = A0(x)

• Explanation: We replace u with A, ∂t, ∂x with ∂
∂t ,

∂
∂x , and β with c. We integrate and multiply some factors on both

sides of the equation at the same time.
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F.2.3. CFD-1D

• Original form:

∂tρ+∇ · (ρv) = 0,

ρ(∂tv + v · ∇v) = −∇p+ η△v + (ζ + η/3)∇(∇ · v),

∂t

[
ϵ+

ρv2

2

]
+∇ ·

[(
ϵ+ p+

ρv2

2

)
v − v · σ′

]
= 0,

• After augmented:

ϱ(t, x)
∂

∂x
w(t, x) +

∂

∂t
ϱ(t, x) = 0 (10)

0.61

(
w(t, x)

∂

∂x
w(t, x) +

∂

∂t
w(t, x)

)
ϱ(t, x) =

0.61η
∂2

∂x2
w(t, x) + 0.61

(
χ+

η

3

) ∂2

∂x2
w(t, x)− 0.61

∂

∂x
p(t, x) (11)

• Explanation: We replaced many symbols, such as replacing ∇ with ∂t and △ with ∂2

∂x2 ,. We integrate and multiply
some factors on both sides of the equation at the same time. We also swapped the order of some items, such as ζ + η/3.

Table 13: Detailed Data Information: The total amounts of training data, sampled training data, total validation data, and
sampled validation data are presented as lists. These lists correspond to 1D, 2D, and 3D data respectively.

Dims Total training Sampled training Total validation Sampled Validation

1D 218T 378K 269M 42K
2D 3.13T 42K 38M 5K
3D 748K 0.63K 9K 0.07K

F.3. Pre-training process of PDE-Aligner

In our architecture, the PDE-Aligner is divided into two components: a text encoder and a physics encoder. The text encoder
utilizes the pre-trained albert-math model (Reusch et al., 2022), which is highly capable of processing LaTeX-encoded PDE
captions due to its extensive training on a large corpus of LaTeX data. For the physics encoder, we employ the pre-trained
Fourier encoder from OmniArch, known for its strong ability to capture physical field features. We adopt a large-batch
contrastive learning approach similar to SimCLR (Chen et al., 2020). The training involves a stochastic sampling strategy
with an equal probability (50%) of selecting either canonical PDE captions sourced directly from textbooks or augmented
PDE captions. The latter is assumed to enhance the text encoder’s generalization capabilities while retaining critical PDE
information in textual form. The weights of the text encoder and physics encoder are fixed during the PDE-Aligner training
process. The training data details for PDE-Aligner are shown in Table 13, and the hyperparameter settings are provided in
Table 14.

During the fine-tuning phase, the PDE-Aligner evaluates the alignment of gold-standard PDE captions with the state of
physical fields at each step of generator G’s decoding process. The resulting rewards are averaged over the temporal
dimension and finalized upon the completion of inference. The intuition behind the PDE-Aligner fine-tuning is to help
OmniArch distinguish the patterns behind different PDE systems. To verify the PDE-Aligner’s ability to perceive physical
information, we equipped it with a classification head to classify physical fields. The results, shown in Figure 8, indicate
that the PDE-Aligner effectively aligns with physical laws.
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Table 14: Detailed Hyper-parameters Settings: The init learning rate, optimizer, scheduler, hidden size, trainable params,
total params, steps, and GPU hrs are presented as lists.

Hyper-parameters Value

Init Learning Rate 1e-4
Optimizer Adam
Scheduler Cosine Annealing

Hidden Size 768
Trainable Params 1.2M

Total Params 195M
Steps 37k

GPU hrs 75

Figure 8: The confusion matrix of the PDE-Aligner classification results. PDE-Aligner can perceive physical field
categories based on equation text information and physical field features, and the classification accuracy rate exceeds 0.94
on all ten categories.
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Figure 9: The training loss curve using different metrics.
Figure 10: Zero-shot learning nRMSE for T+1 timesteps with
varying context lengths.

G. Further ablation study
We have conducted an ablation study on batch-wise nRMSE. We use nRMSE, RMSE, and MSE respectively as loss
functions in the training process. We found that nRMSE leads to a more unified loss scale for different PDEs, benefiting
OmniArch’s convergence. Table 15 shows nRMSE yielded lower training losses compared to MSE and RMSE (up to 9.3%
improvement). While we did encounter gradient calculation issues in extreme cases, these were mitigated by adding a small
ϵ to the squared norm of the true labels (averaged over the spatial dimension) . Utilizing nRMSE as a training loss function
aims to simultaneously reduce all channels, irrespective of their relative numerical values. The loss curve is shown in Figure
9.

Table 15: Training loss metrics ablation study.

Steps MSE RMSE nRMSE

10K 0.3624 0.3458 0.3386 (-2.08%)
20K 0.3371 0.3289 0.3175 (-3.47%)
30K 0.3240 0.3225 0.3005 (-6.82%)
40K 0.3181 0.3183 0.2887 (-9.83%)

H. More results
H.1. Zero-shot Learning Capability

Our examination of 2D PDE predictions reveals that, in contrast to task-tuned models, the OmniArch model adeptly
captures both low- and high-frequency patterns in in-domain PDEs such as Reaction Diffusion, CFD, Shallow Water,
and Incompressible NS. Task-tuned models often miss key features, occasionally leading to erroneous representations
of the primary physics. For out-of-domain PDEs, delineated by a red-dotted box in the figure, we evaluated the models’
ability to predict unseen PDEs without fine-tuning or parameter adjustment. While task-tuned models consistently failed
at this zero-shot learning task, OmniArch successfully predicted essential low-frequency background patterns, though it
struggled with high-frequency details. Details on the zero-shot dataset, including shock wave, Kelvin-Helmholtz (KH), and
Orszag-Tang Vortex (OTVortex) phenomena, are provided in Appendix C.2.
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In our zero-shot learning evaluation, we explore the minimum number of time steps necessary to formulate accurate
neural operators. We also probe the OmniArch model’s ability to generalize to new physics scenarios without parameter
adjustments. As indicated in Table 4 and Figure 10, a longer temporal context typically enhances model performance,
resulting in lower nRMSE scores across tasks. Notably, our model exhibits impressive zero-shot learning capabilities,
maintaining robustness against mesh and temporal interpolation variations, even with fewer than 20 time steps of context.

H.2. Dynamic Prompt Length for Efficient Inference

We examine the trade-off between inference speed and accuracy using dynamic prompt lengths in our model. The goal is to
determine whether shorter prompts can accelerate inference times on the CPU without significantly sacrificing precision.

Our approach varies the prompt length from 2 tokens (derived from a 50 time step interval) to 100 tokens (from a 1 time
step interval) to predict physical fields at u101. As shown in Figure 6, longer prompts yield higher precision with less
variance, while shorter prompts can expedite inference by up to 10 times compared to full-length prompts. In particular, our
model demonstrates an inherent ability to learn temporal differences from the input sequence, negating the need for explicit
time-step inputs.

H.3. Fine-tuned for Inverse Problems

Demonstrating a model’s capability to infer hidden physical parameters from known equations is a critical test of its ability
to learn underlying physics. Following the methodology of MPP (McCabe et al., 2023), we evaluate our model on two
inverse problems for incompressible Navier-Stokes equations: 1) Forcing Identification, and 2) Buoyancy Determination.

Table 16: RMSE for Parameter Estimation in Inverse Problems.

Methods Forcing Buoyancy

MPP 0.2± 0.008 0.78± 0.006
OmniArch 0.16± 0.005 0.73± 0.012

Scratch 0.39± 0.012 0.83± 0.027

The results in Table 16 demonstrate that OmniArch outperforms MPP in parameter estimation tasks, with lower RMSE values
indicating more accurate predictions. Models trained from scratch yield the highest errors, underscoring the effectiveness of
our fine-tuning approach. This evidence supports the notion that OmniArch is not only proficient in forward simulations but
also exhibits superior performance in deducing hidden dynamics within complex systems.

H.4. Rollout Predictions

We perform rollout experiments to compare the performance of the Fourier Neural Operator (FNO) model and our proposed
OmniArch model, as depicted in Figure 11, 12, 13, 14. Our findings indicate that OmniArch demonstrates superior adherence
to the underlying physics laws in the initial timesteps, as opposed to merely replicating patterns from other trajectories. This
improved fidelity is likely a result of fine-tuning with PDE-Aligner, which isolates the model from the influences of alternate
PDE systems, thereby enhancing the model’s ability to generalize physical dynamics.

H.5. Multi-scale Inference Results

To thoroughly evaluate the multi-scale forecasting capabilities of OmniArch, extensive experiments were conducted across
four different grid resolutions: 32× 32, 64× 64, 128× 128, and 256× 256. Figure 15 presents the visualization results at
T + 50 time step on the Incom dataset. These results demonstrate OmniArch’s robust ability to accurately capture local
patterns across varying grid sizes, confirming its effectiveness in handling multi-scale data without losing detail or accuracy.

H.6. More results in different problem settings

We tested our model on CFD-2D problems under various settings of the Navier-Stokes equations to evaluate its performance
across different scenarios. The goal was to determine the robustness and adaptability of our model, OmniArch, compared to
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Figure 11: Prediction results of OmniArch on CFD-2D dataset. Displaying time steps T+1 to T+6, the top row shows ground
truth data, and the bottom row illustrates OmniArch’s predictions.

Figure 12: Prediction results of OmniArch on CFD-2D dataset. Displaying time steps T+1 to T+6, the top row shows ground
truth data, and the bottom row illustrates OmniArch’s predictions.

Figure 13: Prediction results of OmniArch on SWE dataset. Displaying time steps T+5 to T+30, the top row shows ground
truth data, and the bottom row illustrates OmniArch’s predictions.
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Figure 14: Prediction results of OmniArch on Incom dataset. Displaying time steps T+1 to T+6, the top row shows ground
truth data, and the bottom row illustrates OmniArch’s predictions.

Grid Size = 64 Grid Size =128 Grid Size =256Grid Size = 32

Label

Pred

Figure 15: Multi-scale results of OmniArch-Large with different grid sizes.
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other state-of-the-art models like MPP, FNO, and U-Net.

Table 17 summarizes the performance results of our model, OmniArch (FT), against MPP (FT), FNO, and U-Net across
multiple problem settings. These settings include variations in Mach number (M ), viscosity (η), and diffusivity (ξ), both in
inviscid and turbulent conditions with random periodic boundary conditions.

Table 17: The different problem settings in 2D Navier Stokes equation performance.

Problem Settings OmniArch(FT) MPP(FT) FNO U-Net

M = 0.1, inviscid Rand periodic 0.1600 0.5866 0.38 0.66
M = 0.1, η = ξ = 0.01 Rand periodic 0.1215 0.5286 0.17 0.71
M = 0.1, η = ξ = 0.1 Rand periodic 0.0273 0.5761 0.36 5.1
M = 1.0, η = ξ = 0.01 Rand periodic 0.1301 0.5096 0.196 0.36

M = 1.0, inviscid Rand periodic 0.1387 0.5391 0.35 0.47
M = 1.0, η = ξ = 0.1 Rand periodic 0.0308 0.5033 0.098 0.92

M = 0.1, inviscid Turb periodic 0.2219 0.3949 0.16 0.19
M = 1.0, inviscid Turb periodic 0.1624 0.5412 0.43 0.14

These results consistently show that OmniArch performs better across various settings, demonstrating its robustness and
effectiveness. The performance advantage of OmniArch is evident across different Mach numbers, viscosity, and diffusivity
settings, both in inviscid and turbulent conditions. These findings highlight the model’s capability to generalize and maintain
high accuracy in diverse and challenging CFD scenarios.

H.7. GPU Memory Usage and Inference Time

We also report the runtime and memory usage in Table 18. OmniArch consistently uses less GPU memory than MPP across
all model sizes, demonstrating its efficiency in resource utilization. While FNO and U-Net have lower GPU memory usage
and faster inference times, OmniArch’s performance remains competitive, particularly considering its ability to handle a
wider range of PDE tasks across 1D, 2D, and 3D domains.

Table 18: The runtime and memory usage between different models.

Model Size GPU Memory Inference Time

OmniArch

Tiny 671MB 0.0125s
Small 866MB 0.0129s
Base 1591MB 0.0136s
Large 3109MB 0.0248s

MPP

Tiny 1378MB 0.0387s
Small 1532MB 0.0390s
Base 1620MB 0.0391s
Large 3270MB 0.0831s

FNO - 690MB 0.0018s

U-Net - 830MB 0.0027s

H.8. Comparison with Traditional Solvers

Our benchmarks reveal three key advantages of OmniArch over traditional solvers:

• Resolution Invariance: While FDM computation time scales quadratically (O(n2)) with grid resolution, OmniArch
maintains nearly constant inference time (23-26ms) due to its fixed-frequency processing in the spectral domain. This
yields exponential speedup (155× at 512×512) for high-resolution simulations.

27



OmniArch: Building Foundation Model For Scientific Computing

Table 19: Computational Efficiency Comparison (2D Advection)

Resolution FDM Time/Step (ms) OmniArch Time (ms) Speedup Relative Error

64×64 1.123 23.567 0.048× 1.24×
128×128 15.264 23.820 0.641× 1.18×
192×192 75.360 24.098 3.128× 1.15×
256×256 254.027 24.083 10.55× 1.12×
320×320 583.218 23.866 24.44× 1.09×
384×384 1130.561 23.453 48.20× 1.07×
448×448 2272.206 23.677 95.96× 1.05×
512×512 4073.472 26.212 155.4× 1.03×

• Accuracy Preservation: Despite dramatic speed improvements, OmniArch maintains comparable accuracy with
relative error consistently below 1.25× of FDM results. The error margin decreases at higher resolutions (1.03× at
512×512), suggesting better performance in practical high-fidelity scenarios.

• Generalization Capability: Unlike traditional methods requiring re-discretization for new PDEs, OmniArch’s unified
architecture achieves this performance across multiple physics domains (Navier-Stokes, Advection-Diffusion, etc.)
without algorithmic modifications, as demonstrated in Section 4.2.

The results validate our design choice of spectral-domain processing - while sacrificing some interpretability inherent to
mesh-based methods, OmniArch gains orders-of-magnitude efficiency improvements crucial for large-scale multi-physics
simulations. This trade-off aligns with emerging trends in scientific ML where learned simulators complement (rather than
replace) traditional methods for specific high-throughput applications.

I. More Discussions
I.1. Meta-Learning vs. Scaling Laws in PDE Solving

While meta-learning methods (Chen et al., 2022; Huang et al., 2022; Cho et al., 2023) address generalization through
gradient-based adaptation, OmniArch explores an orthogonal axis: scaling laws for in-context learning. The distinction
mirrors “learning to optimize" versus “learning from data" paradigms—meta-PINNs refine their optimization trajectory for
new PDEs, whereas foundation models leverage scale to discover physics-aware primitives. These approaches need not
compete; future work might hybridize them. We may imagine meta-learning the hypernetworks of a foundation model.
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