STable >"\ Permutation-based Framework for Table Generation
in Sequence-to-Sequence Models

Anonymous Authors'

Abstract

We present a permutation-based text-to-table neu-
ral framework that unifies diverse NLP tasks into
table outputs. The framework uses a probabilis-
tic approach during training, maximizing the ex-
pected log-likelihood across all random permu-
tations of table content factorization. At the in-
ference stage, we optimize model uncertainties
and minimize error propagation by leveraging the
model’s ability to generate cells in any order. Our
method accelerates inference by up to 4 on some
datasets and improves text-to-table performance
by up to 15% over previous solutions, all while
preserving output quality.

1. Introduction

In Natural Language Processing, encoder-decoder models
unify various tasks by casting them as Question Answering
(Kumar et al., 2016; Raffel et al., 2020; McCann et al.,
2018; Khashabi et al., 2020; Powalski et al., 2021; Kim et al.,
2022). However, this overlooks tasks that demand structured
outputs like tables. The problem of accurately extracting
and structuring complex information from text into tables
is critically important in numerous fields, including data
analysis, machine learning, business intelligence, and more.
Given the exponential growth of unstructured data, solving
this problem is essential because it can help people find and
understand information more easily, positively impacting
areas of business and science.

‘We introduce STable, a framework that shifts from text-to-
text towards text-to-table inference, opening up new possi-
bilities for tasks like line items extraction and joint entity,
and relation extraction. Our model reduces error propa-
gation and eliminates the constraints of a fixed generation
order, offering an improvement in decoding speed and per-
formance across multiple datasets.

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the SPIGM workshop at ICML
2023. Do not distribute.

1.1. Limitation of Current Approaches

Existing models based on the transformer encoder-decoder
achieve remarkable results in generating complex outputs
(Chen et al., 2021; Townsend et al., 2021; Wang et al., 2019;
Dwojak et al., 2020). However, they often fail to guarantee
the formal validity of the outputs produced, due to error
propagation and suboptimal sequential order. Our model
uses token-based probabilities to guide the generation
process and learns the optimal order of generation without
human guidance.

1.2. Contribution

We offer three main contributions: (1) we enhance trans-
former models with permutation-based decoder training that
enables comprehending complex, position-dependent rela-
tionships within tables, (2) we develop a structured decoding
mechanism that generates table content cell-by-cell, follow-
ing a dynamic, data-dependent order, and (3) introduce ’tab-
ular attention bias’ to the decoder to improve performance
and accuracy.

1.3. Related Works

Decoding of Data Structures: Few studies have
approached table generation via an encoder-decoder
framework. Previous work, such as by Zhong et al. (2020),
separated table recognition and cell content generation.
Unlike those, we use a single decoder that understands both
table structure and content and operates effectively with or
without a provided table.

Flexible Generation: The technique of permutation-based
training allows output generation in any order. This method
has shown promise in areas like machine translation and
summarization. Unlike other models, such as by Stern et al.
(2019), that generate additional numbers to indicate posi-
tions in the output sequence, we sample all cells simultane-
ously and select the best-scored ones for insertion into their
locations.

Permutation-based Language Modeling: Permutation-
based language modeling, as demonstrated by Yang et al.
(2019), adapted the BERT-like model to work with an autore-
gressive objective. However, our table-decoding problem

There are toys colored
red, green, and blue on
the table. The square is

green, the triangle is blue,
and the circle is in the
remaining color.

0.9 red
0.9 green

Legend

Probability High-score candidate
1.0 blue

Decoding steps Outer loop with two candidates kept.

(1) Decoding starts with an empty table.
Six candidate values are generated.

(2) Two values from the previous step
are kept. We generate four candidates.

(3) Four values from the previous steps
are kept. We generate two candidates.

(4) Table generation is complete.
Its final form is presented below.

Figure 1. (Inference) A possible progression of decoding a table given the text on the input. The task is to fill in the pairs color-shape.
Since the probabilities guide the decoding order, the circle’s color that was not explicitly stated in the text is determined at the last step.

necessitates additional constraints, leading us to permute the
factorization order of blocks of tokens (representing cells),
while maintaining causal order within each cell.

2. STable: A Text-to-Table Framework

STable transforms text into serialized table data using a
unique approach that goes beyond a standard autoregres-
sive Transformer decoder. It recognizes table structure,
navigating the challenges of sequential expansion and unidi-
rectional context limitation.

The framework addresses the issues of interdependence
among table cells and balances the need for generating
cells in a non-specific order. It does this by generating
complex answers at later stages based on already generated
cells. Training the model to operate under varying order
generation conditions ensures the model’s flexibility during
inference.

2.1. Decoding Invariant Under Cell Order

STable’s novel decoder design maximizes the expected log-
likelihood of cell sequences over all possible orders rather
than using the typical top-down, left-to-right approach.
More specifically, suppose that we are given a document
containing a table with row labels r = (r1,...,7x), and
column labels ¢ = (cy, . .., ¢ar), which we will collectively
denote h = (r, ¢). Note that in practice, there are usually
no row labels; however, in the decoder, the special tokens
used for distinguishing rows take this role. A linear ordering
of the table cells can be represented with a bijection

o {1,2,...,CY > {1,...,N} x {1,..., M},

where C' = N M is the number of cells, so that o(n) = (i,)
are the row and column coordinates of the n-th cell in the
ordering. Given such a o and cell values v = (v;;)i<n,j<M>

<Cell>

Shape

circle

square
(C) Output after current step

triangle

(B) Gold standard red </Cell>

(D) Expected output

(A) Decoder prompt

Figure 2. (Training) An example depicting how the answer red is
produced based on the partially filled cells containing circle and
triangle. (A) The highlighted cell denotes a position where
the expected red </Cell> should be predicted autoregressively
starting from a <Ce 11> token. A successfully decoded cell will
lead to the state visible in (C), i.e., the partially decoded gold
standard table (B). The generation order of a table is random for
each example in the training.

we factorize the likelihood of v given h as

c
po(vih) = H P60 (Vo(n)| (Vo))k<n: h), (1
n=1

and using this factorization, we maximize the expected log-
likelihood

c
1
Yol Z Z 108 P9 (Vo () | (Vor (k)) k<>))

o n=1

over §. The likelihoods pg (vg(n)|(vg(k))k<n,h) them-
selves can be factorized according to the standard auto-
regressive approach as

96 (Vo(n) | (Vo(k) Jh<n,) =

(V5 (n)) ‘ 3)
= H pe(vf,(n)|(vg(n))i<t7(vg(k))k<n,h)

t=1

Table 1. Results on public and private datasets (mean=std over three runs). The sequence-to-sequence baseline that learns and generates
tables as text are provided in the Linearized column. The T symbol denotes our TILT training. Underline signifies our model is significantly
better than baseline. We calculate speedup by timing the model run for various factors of cell decoding’s parallelization, while maintaining

performance within one standard deviation from the mean.

Dataset State-of-the-Art Reference Linearized Our Model Speedup
PWC* T5 2D (Borchmann et al., 2021) 26.8 |27.8 £1.0(30.8 0.5 T5 2D + STable 3.6
CORD TILT (Powalski et al., 2021) 96.3]92.4+0.7| 95.6 £ 0.2 TILT" + STable
Rotowire
Player Text-to-Table (Wu et al., 2022) 86.8 |84.5 +0.7| 84.5+ 0.2 T5 + STable 1.1x
Team (BART backbone) 86.3|83.8+0.9| 84.74+0.2 1.8%
DWIE KB-both (Verlinden et al., 2021) 62.9|60.2 +1.5| 59.2 £ 1.5 TS5 + STable 2.7
Recipe. .. 71.9160.1+0.3|75.5+1.6
Payment... TILT' 77.0(72.0+2.3|79.1 +0.9 TILT' + STable
Bank. .. 61.1|58.7+£4.9|69.9+48
Average 71.11674+1.5|72.4+1.2 | 2.3x

where £(v,(y,)) is the length of v, ;) represented as a se-
quence of tokens (v;(n))i<r. In practice, the expected log-
likelihood is estimated by sampling bijections o at random.
An example is provided in Figure 2.

2.2. Tabular Attention Bias

STable also introduces an element of tabular attention bias
to account for the table structure, building on the concept of
relative positional bias in the T5 model. This bias accommo-
dates the two-dimensional nature of tables, including row
and column positions, and adjusts for the relative sequential
position of tokens in the same cell.

The tabular bias 7;; encodes the relative position of table
cells in which the tokens lie, while the local sequential bias
Asj corresponds to the relative sequential position of tokens

belonging to the same cell.
R(ri —rj) + Clci — ¢5)

Tij = {RO +C(Ci _ Cj)
M = {L(i—j)

where (c;, ;) are cell coordinates as given by its 1-based
column and row indices (with O reserved for the header
row/column), and R(k), C'(k), L(k) and R, are trainable
weights. After adjusting for these biases, the final attention

A
score takes the form oj; = a;; + 745 + Ajj.

if?“j >0
if’f‘j = 0

4
if (ci, i) = (cj,75)

otherwise

2.3. Row Count Prediction

The model explicitly predicts the number of rows by passing
the embedding of the first token through a linear layer to
estimate it. This is contrary to the common practice of ceas-
ing generation on encountering a special token. Training
shows that predicting the row count improves results, and
that value is used to create a template during inference.

2.4. Model-guided Structured Decoding

As the model was trained with all potential permutations of
cell orderings, it inherently learned to handle any variant of
a partially-filled table. This gives it the capability to forecast
values for all remaining blank cells, as seen in Figure 1. The
order in which these cells are filled in the table may only be
influenced by fluctuations in the cell’s probabilities.

STable uses a model-guided structured decoding algorithm
for inference. It minimizes uncertainty by operating greed-
ily, selecting the least uncertain cell at each step. The in-
ference process includes an inner loop for generating cell
content and an outer loop for selecting which cell to fill next
based on a heuristic. By producing potential content for
each cell and then selecting the most likely cell to fill next,
the model ensures table validity. See Appendix 1 for details.

3. Experiments

We tested our STable decoder’s performance against TS, TS
2D, and TILT models, following the methodology of Wu
et al. (2022). Details on evaluation metrics and training
procedures are in Appendix.

Our decoder was applied to public datasets (PWC* and
CORD), used for extracting information into table format.
Additionally, we evaluated its performance on three pri-
vate datasets involving tasks like payment details extraction
from Payment Stubs and Recipe Composition, and account
balances from Bank Statements. As shown in Table, our
STable-equipped models outperformed the others by an av-
erage of +2.7%, maintaining high scores even on the solved
CORD dataset, excluded from our ablation studies.

We also tested our STable decoder on the DWIE dataset for
the task of joint entity and relation extraction. Our model
achieved close-to-top scores, demonstrating the feasibility
of an end-to-end encoder-decoder framework for this task.

Table 2. Results of studies (1), (2), (3), and (5) in relation to com-
plete STable (see also Appendix D).

Model Score Change
Complete STable 62.9+1.0 —
Semi-templated expansion 61.4+0.1 -1.5 (1)
Fixed causal order 60.0+0.4 —-2.9 (2
Decoding constraint 3)
Column-by-column 62.4 0.6 —0.5
Row-by-row 62.1£0.6 —-0.8
L—R and T—B 62.0£ 0.5 -0.9
No distant rows 62.2+0.5 -0.7
Sequential decoder bias only 3.9+0.1 —-59.0 (5
Sequential and header bias 33.24+0.3 —29.7

Despite some issues with returning entities in their most
extensive form, the performance on this dataset suggests a
less error-prone approach.

Finally, using the Rotowire table-to-text dataset, we eval-
uated our approach on generating tables from text. Results
demonstrated that our T5+STable model surpassed the
Linearized TS model on Rotowire Team. Our performance
reflects the benefits of avoiding linearization, particularly
in datasets like Rotowire where finding an optimal column
order decoding is computationally expensive for linearized
baselines.

4. Unpacking the STable Method: A Study of
Variations and Constraints

We evaluated variations of the STable method on Rotowire,
DWIE, and PWC* datasets, repeating trials with different
random seeds to mitigate impact of randomness. Results are
in Table 3 and Appendices D and B.

(1) From Semi-Templated Expansion to Direct Row
Number Prediction: Using a standard approach, we added
a NULL-only row at each table’s end during training. The
resulting performance drop indicates explicit row number
prediction’s superiority over this method.

(2) Permutation-Based Training vs. Fixed Causal Order:
Without permutation-based training, we used a fixed causal
order for table reading, resulting in a 2.9 points performance
decrease. This reveals the value of bidirectional contexts.

(3) Investigating Constraints in Cell Decoding Order:
We examined various constraint methods for cell decod-
ing. Except for the column-by-column approach, all other
constraints resulted in performance decreases. Our find-
ings suggest the model-guided inference doesn’t require
specific decoding order constraints, and column-by-column
constraint is intrinsically included in our method.

(4) Effects of Parallelizing Cell Decoding on Performance
and Time: We experimented with parallel cell decoding

©4.00 PWC DWIE Player = Team

€

o

£ 3.00

=]

o

o

T 2.00

[

a

()

2 1.00

i

0.00+ 7 7 ; Y
2 4 6 8 10
Number of cells decoded in parallel

= 1.05

8

2 "

5 1.00 1 = S

L { '

2095

©

£ 0.901

<

S PWC DWIE Player = Team

n 085 1 T T T T T
2 4 6 8 10

Number of cells decoded in parallel

Figure 3. Results of decoding ablation (4). Three runs for 1, 2, 3,
5, and 10 cells decoded in parallel.

aiming to reduce inference time. Figure 3 shows results;
parallelization reduced processing time significantly, with-
out always affecting performance. Specific benefits varied
across datasets, therefore, we recommend its experimental
determination per dataset.

(5) Influence of Tabular Attention Biases on Model
Performance: Replacing inter-cell and intra-cell relations
with a singular 1D global bias affected performance
negatively. Adding attention to header names improved
performance, although it didn’t reach the full model’s levels.
Analysis showed tabular attention biases positively impact
table-modeling.

5. Summary

The cornerstone of our research is the innovation of 1) a
training method that randomizes the order of cell factoriza-
tion, 2) a parallel decoding technique that allows flexible
filling of table cells, guided by token probabilities for de-
termining the generation sequence, and 3) an explicit rep-
resentation of the table in the output. These advancements,
supported by our ablation studies, demonstrate that permit-
ting models to generate in any order yields significantly
better results than generating in a predetermined order.

Our STable model outperforms the state-of-the-art on the
PWC* dataset. It surpasses linearized models on the CORD
and Rotowire-Team datasets and reference models on confi-
dential datasets. Notably, we saw a 14.9% relative improve-
ment on the PWC* dataset and a 14.4% increase on the
Bank Statements dataset.

Interestingly, our model remained robust during parallel cell
decoding. This result implies the model’s resilience and
opens up potential avenues for exploring the advantages and
limitations of parallel processing in language models.

References

Borchmann, L., Pietruszka, M., Stanislawek, T., Jurkiewicz,
D., Turski, M., Szyndler, K., and Graliriski, F. DUE:
End-to-end document understanding benchmark. In Van-
schoren, J. and Yeung, S. (eds.), Proceedings of the Neu-
ral Information Processing Systems Track on Datasets
and Benchmarks, volume 1, 2021. URL https:
//datasets—-benchmarks—-proceedings.
neurips.cc/paper/2021/file/
06905907ef840f0c74a814ec9237bbec\
protect\discretionary{\char\
hyphenchar\font}{}{}-Paper-round2.
pdf.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P, Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings,
D., Plappert, M., Chantzis, F., Barnes, E., Herbert-
Voss, A., Guss, W. H., Nichol, A., Paino, A., Tezak,
N., Tang, J., Babuschkin, 1., Balaji, S., Jain, S., Saun-
ders, W., Hesse, C., Carr, A. N., Leike, J., Achiam,
J., Misra, V., Morikawa, E., Radford, A., Knight, M.,
Brundage, M., Murati, M., Mayer, K., Welinder, P., Mc-
Grew, B., Amodei, D., McCandlish, S., Sutskever, I.,
and Zaremba, W. Evaluating large language models
trained on code. CoRR, abs/2107.03374, 2021. URL
https://arxiv.org/abs/2107.03374.

Dwojak, T., Pietruszka, M., Borchmann, £.., Chtedowski, J.,
and Gralinski, F. From dataset recycling to multi-property
extraction and beyond. In Proceedings of the 24th Confer-
ence on Computational Natural Language Learning, pp.
641-651, Online, November 2020. Association for Com-
putational Linguistics. URL https://www.aclweb.
org/anthology/2020.conll-1.52.

Khashabi, D., Min, S., Khot, T., Sabharwal, A., Tafjord,
O., Clark, P, and Hajishirzi, H. UNIFIEDQA:
Crossing format boundaries with a single QA sys-
tem. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pp. 1896-1907, On-
line, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.findings-emnlp.
171. URL https://aclanthology.org/2020.
findings—-emnlp.171.

Kim, G., Hong, T., Yim, M., Nam, J., Park, J., Yim, J.,
Hwang, W., Yun, S., Han, D., and Park, S. Ocr-free docu-
ment understanding transformer. In Avidan, S., Brostow,
G., Cissé, M., Farinella, G. M., and Hassner, T. (eds.),
Computer Vision — ECCV 2022, pp. 498-517, Cham,

2022. Springer Nature Switzerland. ISBN 978-3-031-
19815-1.

Kumar, A., Irsoy, O., Ondruska, P., Iyyer, M., Bradbury,
J., Gulrajani, 1., Zhong, V., Paulus, R., and Socher, R.
Ask me anything: Dynamic memory networks for natural
language processing. In Balcan, M. F. and Weinberger,
K. Q. (eds.), Proceedings of The 33rd International Con-
ference on Machine Learning, volume 48 of Proceed-
ings of Machine Learning Research, pp. 1378-1387,
New York, New York, USA, 20-22 Jun 2016. PMLR.
URL https://proceedings.mlr.press/v48/
kumarl6.html.

Kwiatkowski, T., Palomaki, J., Redfield, O., Collins, M.,
Parikh, A., Alberti, C., Epstein, D., Polosukhin, I., Kel-
cey, M., Devlin, J., Lee, K., Toutanova, K. N., Jones,
L., Chang, M.-W., Dai, A., Uszkoreit, J., Le, Q., and
Petrov, S. Natural questions: a benchmark for question
answering research. Transactions of the Association of
Computational Linguistics, 2019.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207-1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

McCann, B., Keskar, N. S., Xiong, C., and Socher, R. The
natural language decathlon: Multitask learning as ques-
tion answering. CoRR, abs/1806.08730, 2018.

Park, S., Shin, S., Lee, B., Lee, J., Surh, J., Seo, M., and Lee,
H. CORD: A consolidated receipt dataset for post-ocr
parsing. In Document Intelligence Workshop at NeurIPS,
2019.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,
J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner,
B., Fang, L., Bai, J., and Chintala, S. Pytorch: An
imperative style, high-performance deep learning
library. In Wallach, H., Larochelle, H., Beygelzimer,
A., d'Alché-Buc, F., Fox, E., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems
32, pp. 8024-8035. Curran Associates, Inc., 2019.
URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style\
protect\discretionary{\char\
hyphenchar\font}{}{}-high-\protect\
discretionary{\char\hyphenchar\
font}{}{}performance-deep-learning-\
protect\discretionary{\char\
hyphenchar\font}{}{}library.pdf.

Powalski, R., Borchmann, L., Jurkiewicz, D., Dwojak,
T., Pietruszka, M., and Patka, G. Going full-TILT

https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/069059b7ef840f0c74a814ec9237b6ec\protect \discretionary {\char \hyphenchar \font }{}{}-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/069059b7ef840f0c74a814ec9237b6ec\protect \discretionary {\char \hyphenchar \font }{}{}-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/069059b7ef840f0c74a814ec9237b6ec\protect \discretionary {\char \hyphenchar \font }{}{}-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/069059b7ef840f0c74a814ec9237b6ec\protect \discretionary {\char \hyphenchar \font }{}{}-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/069059b7ef840f0c74a814ec9237b6ec\protect \discretionary {\char \hyphenchar \font }{}{}-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/069059b7ef840f0c74a814ec9237b6ec\protect \discretionary {\char \hyphenchar \font }{}{}-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/069059b7ef840f0c74a814ec9237b6ec\protect \discretionary {\char \hyphenchar \font }{}{}-Paper-round2.pdf
https://arxiv.org/abs/2107.03374
https://www.aclweb.org/anthology/2020.conll-1.52
https://www.aclweb.org/anthology/2020.conll-1.52
https://aclanthology.org/2020.findings-emnlp.171
https://aclanthology.org/2020.findings-emnlp.171
https://proceedings.mlr.press/v48/kumar16.html
https://proceedings.mlr.press/v48/kumar16.html
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style\protect \discretionary {\char \hyphenchar \font }{}{}-high-\protect \discretionary {\char \hyphenchar \font }{}{}performance-deep-learning-\protect \discretionary {\char \hyphenchar \font }{}{}library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style\protect \discretionary {\char \hyphenchar \font }{}{}-high-\protect \discretionary {\char \hyphenchar \font }{}{}performance-deep-learning-\protect \discretionary {\char \hyphenchar \font }{}{}library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style\protect \discretionary {\char \hyphenchar \font }{}{}-high-\protect \discretionary {\char \hyphenchar \font }{}{}performance-deep-learning-\protect \discretionary {\char \hyphenchar \font }{}{}library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style\protect \discretionary {\char \hyphenchar \font }{}{}-high-\protect \discretionary {\char \hyphenchar \font }{}{}performance-deep-learning-\protect \discretionary {\char \hyphenchar \font }{}{}library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style\protect \discretionary {\char \hyphenchar \font }{}{}-high-\protect \discretionary {\char \hyphenchar \font }{}{}performance-deep-learning-\protect \discretionary {\char \hyphenchar \font }{}{}library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style\protect \discretionary {\char \hyphenchar \font }{}{}-high-\protect \discretionary {\char \hyphenchar \font }{}{}performance-deep-learning-\protect \discretionary {\char \hyphenchar \font }{}{}library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style\protect \discretionary {\char \hyphenchar \font }{}{}-high-\protect \discretionary {\char \hyphenchar \font }{}{}performance-deep-learning-\protect \discretionary {\char \hyphenchar \font }{}{}library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style\protect \discretionary {\char \hyphenchar \font }{}{}-high-\protect \discretionary {\char \hyphenchar \font }{}{}performance-deep-learning-\protect \discretionary {\char \hyphenchar \font }{}{}library.pdf

boogie on document understanding with text-image-
layout transformer. In Lladés, J., Lopresti, D., and
Uchida, S. (eds.), Document Analysis and Recognition
— ICDAR 2021, pp. 732-747, Cham, 2021. Springer
International Publishing. ISBN 978-3-030-86331-9.
doi: 10.1007/978-3-030-86331-9_47. URL https:
//1link.springer.com/content/pdf/10.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov,

R.R,, and Le, Q. V. XLNet: Generalized autoregressive
pretraining for language understanding. In Wallach,
H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F.,,
Fox, E., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.

1007%2F978-3-030-86331-9_47.pdf. neurips.cc/paper/2019/file/

dc6a7e655d7e5840e66733e9eeb67ccb69-Paper.
Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., pdf.

Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. JMLR, 21(1), jan 2020. ISSN 1532-4435.

Zaporojets, K., Deleu, J., Develder, C., and Demeester, T.
DWIE: An entity-centric dataset for multi-task document-
level information extraction. Information Processing

Stern, M., Chan, W., Kiros, J., and Uszkoreit, J. Insertion & Management, 58(4):102563, 2021. ISSN 0306-
transformer: Flexible sequence generation via insertion 4573. doi: https://doi.org/10.1016/j.ipm.2021.102563.
operations. In Chaudhuri, K. and Salakhutdinov, R. (eds.), URL https://www.sciencedirect.com/
Proceedings of the 36th International Conference on Ma- science/article/pii/s0306457321000662.
chine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 5976-5985. PMLR, 09-15 Jun
2019. URL https://proceedings.mlr.press/
v97/sternl9a.html.

Zhong, X., ShafieiBavani, E., and Jimeno Yepes, A. Image-
based table recognition: Data, model, and evaluation.
In Vedaldi, A., Bischof, H., Brox, T., and Frahm, J.-
M. (eds.), Computer Vision — ECCV 2020, pp. 564-580,
Cham, 2020. Springer International Publishing. ISBN

Townsend, B., Ito-Fisher, E., Zhang, L., and May, M.
978-3-030-58589-1.

Doc2dict: Information extraction as text generation.
CoRR, abs/2105.07510, 2021. URL https://arxiv.
org/abs/2105.07510.

Verlinden, S., Zaporojets, K., Deleu, J., Demeester, T., and
Develder, C. Injecting knowledge base information into
end-to-end joint entity and relation extraction and coref-
erence resolution. In Findings of the Association for
Computational Linguistics: ACL-IJCNLP 2021, pp. 1952—
1957, Online, August 2021. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2021.findings-acl.
171. URL https://aclanthology.org/2021.
findings—-acl.171.

Wang, X., Tu, Z., Wang, L., and Shi, S. Self-attention
with structural position representations. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pp. 1403—-1409, Hong Kong, China,
November 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/D19-1145. URL https:
//aclanthology.org/D19-1145.

Wu, X., Zhang, J., and Li, H. Text-to-Table: A new way of
information extraction. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 2518-2533, Dublin, Ireland,
May 2022. Association for Computational Linguistics.
doi: 10.18653/v1/2022.acl-long.180. URL https://
aclanthology.org/2022.acl-1long.180.

https://link.springer.com/content/pdf/10.1007%2F978-3-030-86331-9_47.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-030-86331-9_47.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-030-86331-9_47.pdf
https://proceedings.mlr.press/v97/stern19a.html
https://proceedings.mlr.press/v97/stern19a.html
https://arxiv.org/abs/2105.07510
https://arxiv.org/abs/2105.07510
https://aclanthology.org/2021.findings-acl.171
https://aclanthology.org/2021.findings-acl.171
https://aclanthology.org/D19-1145
https://aclanthology.org/D19-1145
https://aclanthology.org/2022.acl-long.180
https://aclanthology.org/2022.acl-long.180
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0306457321000662
https://www.sciencedirect.com/science/article/pii/S0306457321000662

LUCIWERICM Tables with ¢ sampled columns, ¢ € [1, n]

Table with n columns
C A B B
A B C
11 1 A C 1 A
1 1 1
2 2 2 2
2 2 2 [[!
2 2 2

Figure 4. Change in training illustrated as augmentation of permuted sub-tables from the original table.

A. Table Decoding Algorithm

The algorithm presented above operates on the output of the encoder model and reuses the cached encoded representations that
are considered to be a part of the DECODERMODEL for brevity. Another important characteristic of the DECODERMODEL
introduced for conciseness of the pseudocode is that it produces all cell tokens and handles the sequential text decoding on
its own.

The decoding employs an OUTERLOOP, parametrized by the k parameter (denoting the parallelization of cell decoding) that
progresses cell-by-cell, the INNERLOOP function that generates each cell that is yet to render, and OUTERCRITERION — a
selection heuristics that determine which cell, from all the finalized in the inner loop, should be added to the outer loop. The
INNERCRITERION is a heuristic we utilize that selects the cell with the maximum probability for its tokens’ predictions.

In the INNERLOOP, each cell is decoded until the special token determining the end of cell generation is placed. As
the INNERLOOP generates each cell autoregressively and independently from other cells, the process can be treated as
generating multiple concurrent threads of an answer and is well parallelizable. In the worst case, it takes as many steps as
the number of tokens in the most extended cell.

After the selection by the OUTERCRITERION heuristic, the cell from the inner loop is inserted into the outer loop, and made
visible to all other cells, while the cells that were not selected are to be reset and continuously generated in the future steps
until they are chosen by the OUTERCRITERION heuristics.

B. Negative Result: Prevention of Column Order Leakage

In STable, the sequence of column labels ¢, on which the likelihoods are conditioned, may leak additional unwanted
information to the decoder. If the data in the document are indeed formatted as a table, and the order of labels in ¢ matches
the column order, the model might learn to extract cells by location, instead of using the actual semantics of the cell label.
However, during inference, while we know which entities we want to extract from the document, we are not given the order
in which they appear, which can be perceived as a serious train-inference discrepancy.

To remedy this problem, we tried to further modify the training objective (See Figure 4). Denote by C the set of all non-empty
sequences of distinct column labels. Instead of all the cells v, we can predict only the cells v, corresponding to a sequence
c € C of columns, in the order defined by the order of columns in c. The expected log-likelihood over all ¢ € C can be then
expressed as

log pp(v|h) = Z log pp(Velr, ©),)
ceC

c|

where py(ve|r, ¢) decomposes according to original STable.

In practice, we found it to have no relevant impact on the training process. It did not lead to significant changes in evaluation
scores when used in the supervised pretraining stage or on a downstream task. Consequently, we abandoned the idea and did
not use it for any of the models reported in the paper. This study helps us state that the model learns the semantics of the cell
labels without a need for regularization.

Algorithm 1 Table Decoding Algorithm of our proposal.

procedure OUTERLOOP(k)
T <= Opm,1 {n x m table with [padding tokens per cell }
C < 0y, {current cell status (decoded or not)}
while SUM(C) < nm do {while there is a cell to decode}
T’, L + INNERLOOP(T, C) {create complete table candidate 7" and cell scores}
B < OUTERCRITERION(L) {sequence of coordinates sorted according to scores}
for c + 1,k do {for k best cells from T’ }
i,J < B, {get coordinates}
T;j < Tl’ ; {...copy values to table 7" accordingly}
C}; + 1 {...and mark the appropriate cell as already decoded}
end for
end while
return T’
end procedure

procedure INNERLOOP(T, C)
L < 0y, {scores for each cell in n x m table}
T’ < T {inner loop’s table copy}
parfor i < 1,n do {for each table row}
parfor j < 1, m do {...and each table cell processed in parallel}
if C; ; = 0 then {...if it was not decoded yet}
s,t + DECODERMODEL(T, %, j) {produce cell tokens ¢ and their scores s}
L; ; + INNERCRITERION(s) {aggregate per-token scores into cell score}
T ; < t {update table copy}
end if
end parfor
end parfor
return (77, L)
end procedure

procedure INNERCRITERION(S)
/¥ Any R™ — R function. STable assumes max, but we test other in the ablation studies. */
end procedure

procedure OUTERCRITERION(L)
/% Some R™*™ — (N x N)™" function returning a permutation of indices of the input
matrix L. STable assumes sort of matrix coordinates according to descending values of its
elements, but we test other functions in the ablation studies. */

end procedure

Table 3. Results of studies on decision criteria. Modified models in relation to complete STable. See Appendix D for per-dataset results.

Model Score Change
Complete STable 629+ 1.0 —
Criteria (inner, outer)
min max 61.7+0.7 —1.2
mean max 62.7 £ 0.7 —0.2
mean min 60.8 + 0.7 —2.1
min min 62.1 +£0.4 —0.8
max min 61.2+0.2 —1.7

C. Inner/Outer Loop Decision Criteria

The heuristic we test selects the cell in the outer loop based on the minimal or maximal inner score. Such inner score
is calculated in three different ways: by taking the minimal, maximal, and mean of the token’s logits score. The results,
presented in Table 3, point to the lesser importance of choosing the inner scoring method, while the choice of the outer
loop heuristics impacts results more significantly. The former is the desired behavior since the STable’s algorithm is based
on the assumption that it is beneficial to decode cells starting from those with the model’s highest confidence. On the other
hand, as there is a significant variance depending on the dataset chosen, these and other inference parameters can be subject
to cost-efficient, task-specific hyperparameter optimization.

D. Details of Experiments and Ablation Studies

All models were trained three times with different random seeds. We relied on /arge variants of the models for experiments
in Table 1, and on base variants for the ablation studies. These are analyzed in Table 3 given the average results over
Rotowire, PWC*, and DWIE datasets (see Table 4 for detailed scores).

Metrics. We rely on the original metrics for all but the DWIE dataset, i.e., GROUP-ANLS for PWC*, F1 for CORD, and
non-header exact match cell F1 for Rotowire (other variants proposed by the authors are reported in Table 7). Use of the
original DWIE metric was not possible, as it assumes a step-by-step process. In contrast, we tackle the problem end-to-end,
i.e., return (object, relation, subject) tuples without detecting all entity mentions within the document and their locations. To
ensure a fair comparison, we use the F1 score calculated on triples; that is, we require the model to return the exact match of
the triple. Such a setup is very demanding for encoder-decoder models as the convention in DWIE is to require object and
subject to be returned in the longest form of appearance in the document.

Pretraining/adaptation. Due to the switch to permutative training and the addition of the regression head, there is a
significant change in the model objective. Consequently, we anticipated the necessity of the model adaptation phase. It
consists of the pretraining stage equivalent to the one conducted by authors of the TILT model (Powalski et al., 2021)
extended by Natural Questions (Kwiatkowski et al., 2019) and WebTables' datasets. To utilize WebTables we rendered
webpages, from which the tables were scraped and taught models to extract table contents from webpages. The said stage is
applied to all T5+STable, TS 2D+STable, and TILT+STable models.

Hyperparameters. We use task-independent hyperparameters that roughly follow these proposed by the authors of the TS
model for its finetuning, as during our initial experiments, they turned out to be a robust default (see Table 5).

Maximal input sequence lengths were chosen in such a way a fair comparison with reference models was ensured. In
particular, we use T5+2D’s limit despite the fact one can achieve better results when consuming a more significant part of
the input document. Similarly, the max number of updates follows the limit in reference models except for the DWIE dataset,
where the state-of-the-art solution is based on the incomparable multi-step pipeline. See Table 6 for these task-specific details.

Software and hardware. All experiments and benchmarks were performed on DGX-A100 servers equipped with eight
A100-SXM4-80GB GPUs that feature automatic mixed precision. Our models and references were implemented in PyTorch
1.8.0a0 (Paszke et al., 2019) with CUDA 11.4 and NVIDIA drivers 470.82.01.

"https://webdatacommons.org/webtables/

Table 4. Per-dataset results of studies (1), (2), (3), and (4). Modified models in relation to Complete STable.

Model RW Player = RW Team pwC* DWIE
Complete STable (reference) 82.7+0.3 84.1£0.7 27.54+22 56.0+1.4
Semi-templated expansion 80.4+0.5 841405 25.04+08 56.1+1.0 (1)
Fixed causal order 83.2+04 84.3+03 263+16 46.5+05 (2)
Decoding constraint 3)

Column-by-column 825+04 84.0+0.5 28.4+15 54.8+0.8

Row-by-row 80.2+04 838+04 276+£16 56.8£0.8

L—R and T—B 83.1+0.5 84.1+0.7 27.7+18 53.2+0.5

No distant rows 82.7+0.5 838+06 28.1+£1.0 5H4.2+£1.2
Decision criteria (inner X outer) (@]

min max 81.9+04 83.7x£0.5 265+£20 54.2+£08

mean max 83.0+0.3 838+08 27.8+14 56.1+1.1

mean min 81.2+1.1 83.7x£06 264+£19 51.9£05

min min 82.8+0.6 838+0.5 27.6+13 54.0£0.5

max min 823+0.3 845+£1.0 20.7£16 52.7£04
Sequential decoder bias only 0.3£0.1 06=+£03 14.1+0.3 06£01 (5
Sequential and header bias 16.0£04 451+£04 277£20 442412

Table 5. Task-independent hyperparameters used across all experiments.

Hparam | Dropout Batch Learningrate Weight decay Label smoothing Optimizer
Value 1 64 le-3 le-5 1 AdamW

Table 6. Task-dependent hyperparameters and training details. (*) Length equal to the one consumed by the baseline model.

Max steps Max input

Dataset Ablation Final length
PWC* 500 1,000 6,144
Rotowire 3,000 8,000 1,024
CORD — 36,000 1,024
DWIE 4,000 8,000 2,048
Recipe Composition — 400 2600
Payment Stubs —

Bank Statements — 200 7000

Table 7. Detailed results of experiments on reversed Rotowire dataset. See Wu et al. (2022) for metrics’ specification.

Row header F1 Column header F1 Non-header F1
Exact Chrf BERT Exact Chrf BERT Exact Chrf BERT

Team 949 952 978 889 858 887 847 856 903
Player 935 953 95.1 88.1 912 945 845 86.8 904

Table 8. Summary of the confidential datasets.

Recipe Composition ~ Payment Stubs Bank Statements

train documents 119 80 111
val documents 16 10 10
test documents 30 20 10
avg doc len (words) 0.6k 0.3k 1.3k
max doc len (words) 1.6k 2k 4.9k
avg doc len (characters) 3.3k 2k 8.3k
max doc len (characters) 10k 14.2k 37.9k
properties total 64 11 10
properties in tables (tables columns) 64 4 4
properties outside of tables 0 7 6
mean number of table rows 12 5 2
max number of rows 60 15 5
mean length of cell (characters) 12 8 9
max length of cell (characters) 308 44 36

E. Business Datasets

Due to the sparsity of public benchmarks for complex information extraction, we decided to provide results on three
confidential datasets. They assume, respectively, (1) the extraction of payments’ details from Payment Stubs, (2) Recipe
Composition from documents provided by multinational snack and beverage corporation, as well as (3) account balances
from Bank Statements. Their details are covered in the present section and Table 8.

Recipe Composition. The problem faced is extracting proprieties of food ingredients from confidential food manufacturer’s
documentation. This dataset contains 165 annotated fragments from 55 documents, three pieces for each document, with
annotations sourced from the corporation’s CRM system.

For each file, there are five tables to be extracted. The first one describes the ingredient’s physical and chemical parameters
(i.e., parameter name, testing method, range of allowed values, unit of measurement, and testing method details). The
second one describes sub-components of the ingredient (i.e., its quantity, name, allergens, ingredient function, and country
of origin). The third table informs about the presence of allergens (e.g., their names and binary information about their
presence). The last two tables contain a quantity of the allergens (e.g., names and their qualities) as sub-components and
caused by contamination retrospectively.

The first table needs to be extracted from the first document fragment, the second table — from the second fragment, and the
three last tables — from the third document fragment. Input documents feature tables and fulfilled forms, where properties
are presented in the form of text or check-boxes.

The analysis of expected outputs shows a high level of variability concerning the factors of table length (1 to 60 rows) and
answer type (either a binary value, number, complex chemical name, or a more extended description).
Payment Stubs. The second of our private datasets consists of 110 American payment stubs, i.e., documents obtained by

an employee regarding the salary received.

We aim to extract employee and employer names, dates, and payment tables, where each row consists of payment type,
hours worked, and payment amount. Since documents come from different companies, their layouts differ significantly.

Due to the straightforward form of information to be extracted, a single annotator annotated each document. We state these

were annotated ethically by our paid co-workers.

Bank Statements. The last dataset consists of 131 annotated bank statements. The goal here is to extract bank and
customer name, date of issue, and table of account balances (e.g., account number, balance at the beginning of the period,
and balance at the end).

Data to be comprehended is partially presented in the document’s header and partially in multiple forms (each for one

account).

Similar to the Payment Stubs dataset, documents here were issued by different banks and represent a broad spectrum of
layouts. The annotation process was the same as for the Payment Stubs dataset.

F. Adaptation to Table Structure Recognition Task

Our method by design does not generate the table header since we assume that the names of the datapoints to infer are given
in advance. To tackle problems such as table structure recognition where the set of possible header values is not limited,
one needs to slightly modify the proposed solution. However, we do not consider it a serious limitation as the required
modification is relatively straightforward, and for the sake of completeness, we describe it below.

To adjust the proposed method to be applicable to the task of Table Structure Recognition, one must understand the
differences in framing the problem between the tasks here.

Table Structure Recognition or Table Extraction aims to generate headers and the table content based on the document
with the table provided explicitly. STable described in the main part of this paper can generate the table given any text and
its position on pages. This capacity generalizes well to any input, including when the table is provided on the input. The
difference is that the output form in STable assumes the headers are known upfront, while for Table Structure Recognition,
inferring them is a part of the task. STable can achieve such capabilities to solve the Table Structure Recognition task by (1)
adding a linear layer to predict the number of columns, (2) treating headers as the values to be inferred in the first row, (3)
using dummy names of the columns, e.g., "first column," "second column," and (4) increasing the predicted number of rows
by 1.

In this setup, the model will predict the number of columns and the number of rows, while the first row will represent the
values of header names. The dummy headers will have to be removed during postprocessing, and the values in the first row
should be treated as valid headers.

G. Sample Input-Output Pairs

Multipage scientific article, e.g.:

Output Reported results

Task Dataset Metric Model Value
Document Classification ~ Reuters En-De Accuracy BilBOWA 86.5
Document Classification =~ Reuters De-En Accuracy BilBOWA 75.0

Leaderboard entries

Figure 5. An example from PWC* dataset considered in the document-to-table paradigm.

PWC* (Borchmann et al., 2021). Input in the PWC* consists of born-digital, multipage PDF files containing an article
from the machine learning field. The expected output is a list of tuples describing achieved results on arbitrary datasets (see
Figure 5).

CORD (Park et al., 2019). Input in the dataset is a single scanned or photographed receipt. From our point of view, the

Photographed receipt, e.g.: (OlliVi@ Content of receipt casted as two tables
menu.nm menu.cnt menu.price

Property Value

REDBEAN BREAD 1 10,000
total.cashprice 100,000

[MD] MINI CASTELLA ORIGIN 1 10,000
total.changeprice 51,000

[MD] SOFT STEAMED CHEESEC 1 11,000
total.total_price 49,000

[MD] SOFT STEAMED CHOCOCA 2 18,000

Simple key-val]
imple key-value pairs Line items

Figure 6. Sample document from CORD dataset and its expected output as interpreted in our approach.

Plain-text article, e.g.:

Final four square off in German Cup semifinals. Bremen's
unprecedented four-match battle with Hamburg gets

[ONj{Vi@ Relations between normalized entities

underway with the Cup semifinal on Wednesday. But Object Relation Subject
before .that Leverku;en try.to seize their last chance for Germany EREE German Cup
some silverware against Mainz.
German Cup appears in Bremen
(...)
s UEFA Cup appears in Bremen
The Vvisitors will be bolstered by the return of superstar . .
Bundesliga appears in Bremen

playmaker Diego who was rested with a perhaps fictional
injury in the league last weekend. Hamburg, meanwhile,
are third in the league and have an outside shot at winning s
a triple. But they should beware, if they think they're bound

to be victorious in something. As recently as 2002, Bremen member of, player of Diego
Leverkusen had a chance to win the Bundesliga, the Cup '
and the Champions League -- only to emerge, in the end, Relati

elations

empty-handed.

Figure 7. Sample input-output pair from the DWIE dataset. The table was shortened and consisted of 29 rows in our approach. Suppose
multiple relations appear in the same direction between the pair of object-subject. In that case, we predict a list of them in a single cell,
reducing the number of rows generated (see the example of the Bremen-Diego pair).

output here is twofold — there are simple data points that can be considered key-value pairs and data points that take the
structured form of line items. We approach the problem as the generation of two tables from the document — one for each
data kind (see Figure 6).

DWIE (Zaporojets et al., 2021). Input in the dataset is a plain-text article. The final goal is to extract the normed object,
relation, and subject triples (though the original formulation assumes several intermediate stages). Triples are always
complete (i.e., there are no NULL values, as we understand them (see Figure 7 for an example).

Reversed Rotowire (Wu et al., 2022). Input in the reversed Rotowire dataset, as reformulated by (Wu et al., 2022), is a
plain-text sport news article. The task is to generate tables with team and player statistics. The number of rows in the Team
table is from zero (if no team is mentioned in the text) to two, whereas the number of rows in the Player is highly variable
and content-dependent. Figure 8 present sample pair of document and tables to generate.

|

The horse face emoji we feature is a part of Noto Emoji distributed under the Apache License 2.0. Copyright by
Google Inc. No animals were harmed in the making of this article.

Plain-text sport-related article, e.g.:

The Milwaukee Bucks (1 - 3) defeated the Chicago Bulls (3 - 1), 92 - 90, on a buzzer beating shot
Saturday in Game 4 of their Opening Round Series. In a potential close - out game for Chicago, it
was Milwaukee who did the closing Saturday at the BMO Harris Bradley Center. The Bucks were able
to put Thursday's gutting double overtime defeat behind them with a thrilling win at the buzzer to
extend the series for at least one more game. When O.J Mayo canned a three pointer to put the
Bucks up six with 1:44 remaining, it looked as though the Bucks were on their way to a victory in front
of the home crowd.

()

0.J Mayo led the Bucks in scoring with 18 points in 24 minutes and John Henson had a huge impact
on the defensive end with four blocks and a steal. Henson also pulled down three offensive rebounds
and five boards overall. Three of Milwaukee's bench players scored as many or more points than all
of its starters individually. The Bucks will look to use the momentum from Saturday's victory to stay
alive in the series Monday.

Output Statistics of teams and players performance

Team Losses Total points Wins Points in 1st quarter No. of team assists
Bucks 3 92 1 NULL oo NULL
Bulls 1 90 3 NULL NULL

Team statistics (for values that were not present there is a NULL variable in the column)

Player Assists Blocks 3-pointers attempted Points Turnovers
Jimmy Butler NULL NULL NULL 33 NULL
Derrick Rose 6 NULL NULL 5 8
Nikola Mirotic NULL NULL NULL NULL oo NULL
John Henson NULL 4 NULL NULL NULL
0.J. Mayo NULL NULL 6 18 NULL

Player statistics (for values that were not present there is a NULL variable in the column)

Figure 8. Input-output example from the reversed Rotowire dataset. We present shortened forms of tables than in real have 13 columns for
Team and 20 columns for Player tables. Note that there is a NULL value in the column for values not present in the input text.

