
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ML-DEV-BENCH: COMPARATIVE ANALYSIS OF AI
AGENTS ON ML DEVELOPMENT WORKFLOWS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this report, we present ML-Dev-Bench, a benchmark aimed at testing agen-
tic capabilities on applied Machine Learning development tasks. While existing
benchmarks focus on isolated coding tasks or Kaggle-style competitions, ML-
Dev-Bench tests agents’ ability to handle the full complexity of ML development
workflows. The benchmark assesses performance across critical aspects includ-
ing dataset handling, model training, improving existing models, debugging, and
API integration with popular ML tools. We evaluate three agents - ReAct, Open-
hands, and AIDE - on a diverse set of 30 tasks, providing insights into their
strengths and limitations in handling practical ML development challenges. We
open source the benchmark for the benefit of the community.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) have demonstrated impressive capabilities in
code generation and software engineering tasks. This has led to the development of various bench-
marks like HumanEval Chan et al. (2024), MBPP Austin et al. (2021) that evaluate coding abilities,
and others like SWE-Bench Jimenez et al. (2024), that test LLM-based agents on software engineer-
ing tasks. However, while these benchmarks effectively assess general programming capabilities,
they don’t capture the unique challenges of Machine Learning development workflows,

Benchmarks like ML-Bench Tang et al. (2024), test agents’ abilities to generate code and commands
to interact with popular ML repositories, while MLE-Bench Chan et al. (2024) and MLAgentBench
Huang et al. (2024) focus on Kaggle-style tasks to evaluate the iterative and open-ended nature of
ML development. However, real-world ML development extends far beyond that, including the
complexity of working on top of existing codebases and models, integrating with third-party tools,
debugging complex issues that span multiple components of the ML pipeline and understanding and
balancing trade-offs like model performance and cost to come up with optimal design.

ML-Dev-Bench addresses this gap by providing a comprehensive evaluation framework that tests
an agent’s ability to handle real-world ML development scenarios. Our benchmark is particularly
relevant as ML development increasingly relies on large language models and AI agents to assist
developers. Understanding the capabilities and limitations of these agents in handling practical ML
development tasks is crucial for their effective deployment in production environments.

2 BENCHMARK DESIGN

ML-Dev-Bench comprises 30 carefully designed tasks that evaluate various aspects of ML develop-
ment. These tasks are structured to assess both specific technical capabilities (like handling datasets,
model implementation) and broader problem-solving skills (like model training and performance im-
provement) that are essential in real-world ML development. The tasks span several key categories
of ML development shown in Table 1:

1. Dataset Handling focuses on evaluating the ability to work with large datasets, inspect them
and apply pre-processing pipelines. An example is the noisy imagenette Howard & Others
(2019) dataset download task, where the agent needs to download the dataset, inspect its
contents to identify the labels file, only load the 50% noisy labels from it and generate class
summary statistics.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Category Description
Dataset Handling Downloading and preprocessing

datasets
Model Training Loading pretrained models, fine-tuning
Debugging Addressing errors in training files, ex-

ploding gradients, and incorrect imple-
mentations

Model Implementation Modifying and implementing on top of
existing model architectures

API Integration Integrating logging tools like WandB
Performance Improving baselines and achieving

competitive results

Table 1: Task Categories and Their Descriptions

Category ReAct-Sonnet OH-Sonnet Aide-4o ReAct-4o
Dataset Handling 100% (3/3) 100% (3/3) 33% (1/3) 0% (0/3)
Model Training 67% (4/6) 83% (5/6) 33% (2/6) 50% (3/6)
Debugging 57% (4/7) 57% (4/7) 29% (2/7) 14% (1/7)
API Integration 100% (1/1) 100% (1/1) 0% (0/1) 100% (1/1)
Model Implementation 29% (2/7) 29% (2/7) 0% (0/7) 0% (0/7)
Performance 0% (0/6) 0% (0/6) 0% (0/6) 0% (0/6)
Overall 47% (14/30) 50% (15/30) 17% (5/30) 17% (5/30)

Table 2: Category-wise Success Rates Across AI Agents

2. Model Training tests an agent’s ability to work with existing models, from loading pre-
trained weights to implementing training loops, logging metrics and managing the training
process. These tasks assess both technical skills and the ability to handle long-running
tasks.

3. Debugging presents common scenarios including shape errors, exploding gradients, in-
correct implementations, and integration errors. Agents must analyze large training logs,
metrics, and code across multiple files to identify and resolve issues.

4. Model Implementation tests the ability to modify existing architectures and implement
new features. An example is the ChannelViT related tasks, which follow three levels of
increasing difficulty: Level 1 provides complete specifications with examples and tests;
Level 2 includes specifications and tests but omits examples; Level 3 gives specifications
but tests and examples are hidden

5. API Integration assesses the ability to work with essential ML development tools, particu-
larly for logging and experiment tracking.

6. Performance optimization challenges agents to improve baseline implementations through
iterative experimentation and hypothesis testing.

2.1 EVALUATION METRICS

Tasks are evaluated based on binary success (✓) or failure (×). The aggregate success rate for each
agent is calculated as Success Rate = Total Successful Tasks

Total Tasks × 100%

Agents are assessed on their ability to complete tasks accurately without introducing errors.

3 EVALUATION FRAMEWORK

In this section we briefly describe the design of our evaluation framework, called Calipers, for
running the benchmark. The framework consists of three components: agents, evaluation tasks, and

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

metrics. Agents are evaluated on various Machine Learning tasks to generate metrics. We designed
Calipers to allow easy addition of new evaluation tasks, agents and metrics, ensuring the benchmark
can evolve alongside advances in ML development practices and tooling.

3.1 EVALUATION TASK

Each evaluation task consists of a task description, a set of input code and data files, and a validation
logic which checks agent generated outputs and artifacts for correctness. Depending on the type of
task, we implement various types of validation checks including

• Running tests on generated code to check for correctness
• Checking for the presence of all required output files and artifacts
• Evaluating agent generated model checkpoints for required performance

3.2 AGENTS

Each agent is provided with two inputs in an evaluation run, the description of the task and a working
directory populated with initial input files. The agent’s outputs are task-specific artifacts which are
saved in the working directory. These outputs are validated to determine success or failure. We
generate the evaluation metrics discussed in the previous section for each evaluation run. We use
litellm callbacks to capture metrics like number of steps, tokens, and cost.

4 AGENT SETUP

We evaluate three agents on ML-Dev-bench. The agents and their setup is described below. Each
agent uses an LLM and a set of tools to execute various actions. All agents execute their code in a
runtime environment which is either a local python or docker environment depending on the agent.
We customized the runtime environments for all agents to pre-install common ML frameworks like
scikit-learn, pytorch, transformers, lightning, wandb, etc to ensure smooth execution.

1. ReAct: We created a simple ReAct agent Yao et al. (2023) as a baseline which takes actions
by calling tools. We used the LangGraph framework for the agent and Composio toolset
which provides tools for common use cases. We customized the tools to reliably capture
large command outputs, handle long running commands and ensure consistency across
different tools like file and shell tools. All the tool calls were executed in a local python
environment which was pre-installed with common ML frameworks as mentioned earlier
and had access to the relevant api keys. No custom prompts were used, and the agent was
allowed to run for a maximum of 50 steps. We tested the agent with Claude Sonnet 3.5
10-2022 and OpenAI GPT-4o.
(a) Command line tools

i. Shell Tool - to execute short running commands
ii. Spawn Tool - to execute long running commands like training in the background

iii. Sleep and execute tool - to wait and monitor long running processes
(b) File tools like create files, list files and edit files

2. Openhands: Openhands Wang et al. (2024) is a popular open-source coding agent with
state-of-the-art performance on SWE-Bench-Full Jimenez et al. (2024). We used Open-
hands agent v0.21.1 and customized the runtime build to install common ML frameworks
listed above. We tested the agent with Claude Sonnet 3.5 10-2022 model which is the cur-
rent best performing model with the agent on SWE Bench. The agent was allowed to run
for a maximum of 50 steps.

3. AIDE: AIDE is an agent purpose-built for data science tasks like Kaggle competitions
Chan et al. (2024) and performs a tree search over solutions. AIDE scaffolding performs
better in comparison to other agents like Openhands on MLEBench using o1, GPT-4o.
Unlike other general purpose agents which output any artifact, AIDE outputs an evaluation
metric and code as its final output. All other artifacts are considered intermediate outputs
and saved in a custom working directory.

3

https://www.langchain.com/langgraph
https://github.com/ComposioHQ/composio
https://github.com/WecoAI/aideml


162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

5 PERFORMANCE COMPARISON

Performance of the agents across different task categories, Table 2 and individual tasks Table 3
reveals a consistent pattern. Performance decreases as tasks become more open-ended and complex.
The success rates are highest in well-defined categories like dataset handling and basic debugging,
but drop significantly in performance optimization tasks where no agent succeeded. OpenHands-
Sonnet (OH-Sonnet) and ReAct-Sonnet are the two best performing agents with 50% and 47%
success rate respectively, while AIDE-4o and React-4o achieve 17% success rate.

5.1 REACT-SONNET

ReAct-Sonnet achieved a success rate of 47%, demonstrating strong performance in specific, well-
defined tasks but struggling with more complex scenarios.

The agent’s token usage and costs varied significantly across tasks. Simple operations like dataset
downloads cost around 0.02 − 0.08$, while debugging tasks cost between 0.1 − 0.4$, some tasks
like ChannelViT-Easy debugging take more steps indicating potentially inefficient exploration in
complex scenarios.

A notable strength was ReAct-Sonnet’s systematic approach to debugging when provided with spe-
cific instructions and test cases. However, the agent showed several limitations such as excessive
verification seeking and premature task termination.

5.2 REACT-4O

ReAct-4o had some success with tasks with well-defined specifications (WandB logging, download-
ing a specific model from Torchvision), and certain debugging tasks. However it did struggle on
other tasks in the same categories. It also failed on the relatively easier tasks like dataset download
due to not following instructions, ran into indentation errors while attempting to debug code and
failing to produce output artifacts as required by certain tasks.

5.3 OPENHANDS-SONNET

OpenHands-Sonnet demonstrated the highest success rate at 50% (15/30 tasks), showing robust
performance across most categories. The agent successfully completed all dataset handling tasks
and showed strong performance in model training and debugging.

The agent particularly excelled in structured tasks and showed better persistence in long-running
operations. However, it struggled with performance optimization tasks, indicating limitations in
open-ended problem-solving scenarios requiring iterative improvement.

5.4 AIDE-4O

Aide-4o had a 17% success rate (5/30 tasks), demonstrating limitations across most categories.
The agent managed to complete some basic dataset handling and debugging tasks but struggled
with model training and completely failed in model implementation and performance optimization
categories.

6 CONCLUSION

We presented ML-Dev-Bench, a benchmark focused on ML development workflows consisting of
30 tasks. We evaluated 3 agents on this benchmark - ReAct (with Claude Sonnet and GPT-4o),
Openhands and AIDE; Openhands with Claude Sonnet performed the best out of these. Future
work can involve analysing the impact of scaling compute on these agents; computing variance in
success metrics across multiple runs; including reasoning models such DeepSeek-R1, O-1/O-3; and
expanding the problem categories to include areas such as label collection. We open-source the
evaluation framework for the benefit of the broader community.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, Lilian Weng, and Aleksander Madry.
Mle-bench: Evaluating machine learning agents on machine learning engineering, 2024. URL
https://arxiv.org/abs/2410.07095.

Jeremy Howard and Others. Imagenette. https://github.com/fastai/imagenette,
2019.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Mlagentbench: Evaluating language
agents on machine learning experimentation, 2024. URL https://arxiv.org/abs/
2310.03302.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

Xiangru Tang, Yuliang Liu, Zefan Cai, Yanjun Shao, Junjie Lu, Yichi Zhang, Zexuan Deng, Helan
Hu, Kaikai An, Ruijun Huang, Shuzheng Si, Sheng Chen, Haozhe Zhao, Liang Chen, Yan Wang,
Tianyu Liu, Zhiwei Jiang, Baobao Chang, Yin Fang, Yujia Qin, Wangchunshu Zhou, Yilun Zhao,
Arman Cohan, and Mark Gerstein. Ml-bench: Evaluating large language models and agents for
machine learning tasks on repository-level code, 2024. URL https://arxiv.org/abs/
2311.09835.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for ai software
developers as generalist agents, 2024. URL https://arxiv.org/abs/2407.16741.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.
org/abs/2210.03629.

A APPENDIX

5

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2410.07095
https://github.com/fastai/imagenette
https://arxiv.org/abs/2310.03302
https://arxiv.org/abs/2310.03302
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2311.09835
https://arxiv.org/abs/2311.09835
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Task Category ReAct-
Sonnet

OH-
Sonnet

Aide-4o ReAct-
4o

Dataset download - Noisy
Imagenette

Dataset Handling ✓ ✓ × ×

Dataset download - dataset
does not exist

Dataset Handling ✓ ✓ ✓ ×

Dataset preprocessing Dataset Handling ✓ ✓ × ×
Pretrained model download
- Torchvision

Model Training ✓ ✓ ✓ ✓

Pretrained model download
- HuggingFace

Model Training ✓ ✓ × ×

Vision finetuning - classifi-
cation

Model Training ✓ ✓ × ×

Overfit on small dataset Model Training ✓ ✓ ✓ ✓
Large training logs Model Training × ✓ × ✓
CIFAR10 Training Model Training × × × ×
Fix problems in model and
dataloader

Debugging × × × ×

Model forward pass - shape
mismatches

Debugging ✓ ✓ ✓ ✓

Model Training - shape mis-
matches

Debugging ✓ ✓ ✓ ×

NaN losses Debugging ✓ ✓ × ×
Correct norm for pretrained
model

Debugging ✓ ✓ × ×

TinyBERT Eval Debugging × × × ×
ViT debugging Debugging × × × ×
Wandb integration API Integration ✓ ✓ × ✓
ChannelViT - Easy Model Implementation ✓ ✓ × ×
ChannelViT Model Implementation ✓ ✓ × ×
ChannelViT - No tests Model Implementation × × × ×
VAR implementation Model Implementation × × × ×
Multi-head Latent Attention Model Implementation × × × ×
Multi-head Latent Attention
- hidden tests

Model Implementation × × × ×

Proximal Policy Optimiza-
tion

Model Implementation × × × ×

Improve CIFAR-10 baseline
- existing model ckpt

Performance × × × ×

Noisy Imagenette Performance × × × ×
CIFAR-10 long tailed Performance × × × ×
Segmentation Performance × × × ×
BoolQ Performance × × × ×
CIFAR-100 baseline im-
provement

Performance × × × ×

Success Rate 47%
(14/30)

50%
(15/30)

17%
(5/30)

17%
(5/30)

Table 3: Performance Comparison Across AI Agents

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Task Token Cost ($) Total Tokens
ReAct OH ReAct OH

Vision finetuning - classification 0.176 0.124 67,034 54,434
ChannelViT 1.06 0.215 338,055 177,182
ChannelViT - Easy 1.090 0.318 352,141 267,508
ChannelViT - No tests 0.091 0.121 33,208 53,475
Dataset download - dataset does not exist 0.018 0.051 13,735 16,125
Dataset preprocessing 0.078 0.103 27,210 42,277
Model forward pass - shape mismatches 0.069 0.075 27,629 44,396
Pretrained model download - HuggingFace 0.096 0.063 36,592 24,738
CIFAR-10 long tailed 0.089 0.334 29,659 351,943
Fix problems in model and dataloader 0.376 0.556 146,826 785,182
NaN losses 0.124 0.212 40,385 193,801
Dataset download - Noisy Imagenette 0.129 0.068 67,426 25,429
Correct norm for pretrained model 0.380 0.265 136,831 313,149
Overfit on small dataset 0.093 0.133 25,642 52,791
Large training logs 0.023 0.185 35,189 114,903
Segmentation 0.118 0.383 39,662 395,127
Pretrained model download - Torchvision 0.058 0.044 22,289 30,596
CIFAR10 Training 0.209 0.288 71,409 253,445
Model Training - shape mismatches 0.289 0.147 115,568 92,262
Add implementation - VAR 0.051 0.139 12,473 59,863
Wandb integration 0.155 0.258 65,810 266,738
TinyBERT Eval 0.313 0.573 121,773 762,780
ViT debugging 0.277 1.496 84706 2,526,426
BoolQ 0.343 0.650 131,458 993,175
Improve CIFAR-10 baseline - existing model ckpt 0.115 0.401 29,232 366,660
Noisy Imagenette 0.582 0.288 192,275 253,445
Multi-head Latent Attention 3.164 1.910 1,022,125 1,706,146
Multi-head Latent Attention - no hidden tests 0.160 1.278 40,068 380,506
Proximal Policy Optimization 0.369 3.048 87,988 904,267
CIFAR-100 baseline improvement 0.123 3.531 30,493 1,133,630

Table 4: Comparison of Token Metrics between ReAct-Sonnet and OpenHands-Sonnet

7


	Introduction
	Benchmark Design
	Evaluation Metrics

	Evaluation Framework
	Evaluation Task
	Agents

	Agent Setup
	Performance Comparison
	ReAct-Sonnet
	ReAct-4o
	OpenHands-Sonnet
	Aide-4o

	Conclusion
	Appendix

