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ABSTRACT

Existing data influence analyses are static, measuring the global, cumulative in-
fluence of training data on fully trained models while leaving dynamic changes
during training a black box. We propose Time-varying Influence Measurement
(TIM), the first framework measuring how data influence changes during training.
TIM operates on arbitrary local windows, estimating how removing a training
point within a window affects model parameters, and then projects these parameter
deviations onto task-relevant functional responses (e.g., test loss) via query vectors.
We establish theoretical error bounds under non-convex and non-converged con-
ditions. Experiments show that: 1) TIM estimates loss changes more accurately
than prior methods and closely matches Leave-One-Out (LOO) retraining; 2) Data
influence is time-varying, exhibiting different patterns including Early Influencers,
Late Bloomers, Stable Influencers, and Highly Fluctuating patterns; 3) Global or
longer windows are not necessarily better, as small-window TIM achieves better
performance in corrupted data identification while reducing cost by 95%.

1 INTRODUCTION

Modern machine learning systems are trained on massive datasets of different quality. Understanding
which training data matter, when they matter during training, and how they affect the model, is
important for building trustworthy, efficient, and interpretable Artificial Intelligence (AI) systems.
However, most existing influence analyses Koh & Liang (2017); Ghorbani & Zou (2019) are static:
they estimate a single, aggregated/average influence of training data on a fully trained model, leaving
how data influence changes during training unexplored.

Current methods have fundamental limitations for measuring time-varying influence dynamics.
Leave-One-Out retraining (LOO) provides a gold standard but is computationally infeasible at scale.
Influence Functions (IF) Koh & Liang (2017); Guo et al. (2021) assume an optimal point, which is
fragile in non-convex, non-converged scenarios Basu et al. (2021); Bae et al. (2022). Custom scoring
methods compute task-related scores during training but fail to quantify actual loss changes. For
example, Shapley Value methods Ghorbani & Zou (2019) ensure fairness in data valuation tasks by
averaging marginal contributions, but only provide expected utility rather than true loss changes in
a specific run. TracIn Pruthi et al. (2020) similarly uses gradient inner products as a proxy, rather
than quantifying true loss changes. These methods fundamentally cannot capture how data influence
changes during training, which we term time-varying influence.

It is challenging to measure time-varying influence. First, it is computationally intensive, requiring
comparison of model states with and without each data point across training while the model
continuously evolves rather than remaining fixed at convergence. Second, a new theoretical framework
is needed for analyzing intermediate model states during training, as existing methods rely on model
convergence Basu et al. (2021). Third, it is difficult to connect training data, parameter updates,
and functional responses (e.g., test loss, predictions) during training, as this requires tracking high-
dimensional, time-dependent parameter-to-function mappings.

To address these challenges, we propose Time-varying Influence Measurement (TIM), a novel frame-
work that efficiently quantifies how training data influence changes during training. TIM operates
within arbitrary windows of the training process rather than only analyzing the final model. Specifi-
cally, TIM first estimates how excluding training data within a window affects model parameters,
then projects these parameter deviations onto task-relevant query vectors to measure functional

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Overview of the Time-Varying Influence Measurement (TIM) Framework. TIM’s two-stage
approach: (1) Parameter Influence Measurement uses recursive estimation with Influence Propagator
Pt = I − ηtH [t] to track parameter deviations; 2) Parameter Influence Projection maps parameter
changes to functional responses (e.g., test loss) via query vectors q. By analyzing data influence
across different training windows, TIM enables fine-grained temporal influence analysis.

responses (e.g., test loss). This projection mechanism provides an interpretable and computationally
efficient connection between parameter changes and functional responses. Figure 1 illustrates the
TIM framework.

Our experiments reveal three key insights: 1) The influence of training data is time-varying. Different
data have different patterns: Early Influencers, Late Bloomers, Stable Influencers, and Highly
Fluctuating (Figure 4). 2) Global scope or longer analysis windows do not mean better accuracy for
data influence analysis. Small-window TIM achieves superior performance with 95% cost reduction
(Table 6). 3) TIM matches LOO accuracy while significantly outperforming existing baselines.

Overall, the contributions of this paper are summarized as follows.

• We propose TIM, the first framework to measure time-varying data influence over training
windows. TIM connects parameter changes to functional responses via query vectors,
enabling understanding how different data contribute to learning at different training stages.

• We establish theoretical error bounds robust to non-convergence and non-convexity without
restrictive assumptions required by existing methods (Appendix B).

• Extensive evaluations demonstrate that TIM outperforms baselines while matching LOO
accuracy, reveals distinct time-varying influence patterns, and shows that small-window
analysis achieves superior performance with cost reduction.

2 RELATED WORKS

Data influence analysis methods can be broadly categorized into 1) LOO approximation methods,
which estimate true LOO retraining influence, and 2) custom scoring methods that provide heuristic
utility (e.g., outlier detection, data pruning) without approximating retraining loss. TIM belongs to
the first category, offering LOO estimates with an upper error bound (Appendix B).

LOO retraining is the gold standard for measuring data influence, but is prohibitively expensive, mo-
tivating the development of efficient approximation methods. Influence Functions (IFs) Koh & Liang
(2017) and recent extensions Guo et al. (2021); Schioppa et al. (2022); Choe et al. (2024); Grosse
et al. (2023) approximate LOO influence on the final converged model using Taylor approximations,
but their accuracy degrades in non-convex settings or under incomplete convergence Schioppa et al.
(2023); Basu et al. (2021). More importantly, recent analyses Bae et al. (2022) highlight that IFs fail
to approximate true LOO due to warm-start bias and proximal mismatch. SGD-influence Hara et al.
(2019) quantifies loss changes with a recursive approximation of parameter differences of the whole

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

training process, while DVEmb Wang et al. (2025b) uses a similar recursive framework to study the
influence of the data position in the training sequence, but their approach lacks theoretical analysis
and shows poor experimental results. Existing retraining approximation methods focus on explaining
the final trained model, without addressing how influence changes across training windows.

Custom influence score methods offer computational efficiency by focusing on practical proxies for
influence. These methods are highly effective for tasks like data valuation and data pruning/cleansing,
as these tasks do not require precise loss changes. Shapley value approaches Ghorbani & Zou (2019);
Jia et al. (2021); Wang et al. (2024; 2025a) and domain-specific adaptations Schoch et al. (2022);
Sun et al. (2023); Wang & Jia (2023); Li & Yu (2023) prioritize theoretical fairness by averaging
over run-specific stochasticity (e.g., data order). They only provide the expected contribution of
a data point to a learning algorithm, not its actual influence in a training process. OFA Li & Yu
(2024) accelerates convergence with optimized sampling, while Data-OOB Kwon & Zou (2023)
avoids retraining by reusing out-of-bag, but it is restricted to bagging ensembles. TracIn Pruthi et al.
(2020) is a representative method that measures influence by accumulating gradient products across
checkpoints. For data pruning/cleansing, GraNd and EL2N scores Paul et al. (2021) prune data by
ranking data according to the expected norm of their loss gradients. YOCO He et al. (2023) extends
EL2N with balanced dataset construction. MoSo Tan et al. (2024) prunes data using the inner product
between the data’s gradient and the average gradient. CGSV Xu et al. (2021) and cosine similarity
methods Fung et al. (2018); Xia et al. (2024) analyze gradient alignment at individual iterations.
These methods do not estimate LOO retraining loss, but are validated by downstream tasks.

TIM advances LOO approximation by providing the first framework to estimate LOO retraining
within any training window, capturing the time-varying influence of training data.

3 PRELIMINARIES AND PROBLEM FORMULATION

Preliminaries. Let Z = X × Y denote the space of observations, where X ⊆ Rd is the input
space and Y is the output space. Given a training dataset D = {zi}Ni=1 of i.i.d. observations
zi = (xi, yi) ∈ Z , a model f : X × Θ → Y parameterized by θ ∈ Θ ⊆ Rp, and a loss function
` : Z ×Θ→ R, we formulate the learning problem as θ̂ = arg minθ∈Θ

1
N

∑N
i=1 `(zi; θ).

Stochastic Gradient Descent (SGD) is a representative method for solving this optimization problem.
Most data influence analysis methods Koh & Liang (2017); Pruthi et al. (2020); Hara et al. (2019)
are built upon SGD, and we also adopt SGD for fair comparison. Let g(z; θ) = ∇θ`(z; θ), and the
initialization parameters is θ[0]. At each step t, a mini-batch St ⊆ {1, ..., N} is sampled and SGD
iteratively updates the parameters according to:

θ[t+1] = θ[t] − ηt
|St|

∑
i∈St

g(zi; θ
[t]), 0 ≤ t ≤ T − 1, (1)

where ηt is the learning rate at step t and T is the total number of SGD steps.

Problem Formulation. Fix a window [t1, t2] with 0 ≤ t1 < t2 ≤ T . Given a training process
{θ[t]}Tt=0, let {θ[t]

−j}Tt=0 be the LOO trajectory obtained by running the same SGD with shared

initialization θ[0]
−j = θ[0] but excluding zj from updates. We aim to quantify the time-varying influence

of zj in [t1, t2] on: 1) parameter-trajectory deviation ∆θ
[t1,t2]
−j =

(
θ

[t2]
−j − θ

[t1]
−j
)
−
(
θ[t2] − θ[t1]

)
; 2)

functional responses, such as test loss ∆`
[t1,t2]
−j =

(
`test(θ

[t2]
−j )−`test(θ

[t1]
−j )

)
−
(
`test(θ

[t2])−`test(θ
[t1])

)
.

4 TIME-VARYING INFLUENCE MEASUREMENT (TIM) FRAMEWORK

4.1 PARAMETER INFLUENCE MEASUREMENT

This section defines parameter influence as trajectory deviation, an approximation to the LOO
retraining influence, measuring the difference in the learning path with and without zj over [t1, t2].

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

To formalize this, we first define a LOO training process where zj is excluded. This process starts
from the same initialization θ[0]

−j = θ[0], and updates at each step t as:

θ
[t+1]
−j = θ

[t]
−j −

ηt
|St|

∑
i∈St\{j}

g(zi; θ
[t]
−j), 0 ≤ t ≤ T − 1. (2)

This allows us to formally define the parameter influence of zj over [t1, t2] as the difference between
these two trajectories:

∆θ
[t1,t2]
−j = (θ

[t2]
−j − θ

[t1]
−j )− (θ[t2] − θ[t1]), (3)

where (θ
[t2]
−j − θ

[t1]
−j ) denotes the parameter change on the LOO trajectory when zj is excluded during

[t1, t2], and (θ[t2] − θ[t1]) denotes the change on the original trajectory.

Recursive Estimation. Computing ∆θ
[t1,t2]
−j directly requires costly model retraining. Instead, we

develop a recursive estimation approach that tracks parameter deviations step-by-step. The standard
SGD update for step t is:

θ[t+1] = θ[t] − ηt
|St|

∑
i∈St

g(zi; θ
[t]). (4)

When excluding data zj , the parameter update becomes:

θ
[t+1]
−j = θ

[t]
−j −

ηt
|St|

∑
i∈St\{j}

g(zi; θ
[t]
−j). (5)

For step t, the difference between the standard update and the update excluding zj is:

θ
[t+1]
−j − θ[t+1] = (θ

[t]
−j − θ

[t])− ηt
|St|

(
∑

i∈St\{j}

g(zi; θ
[t]
−j)−

∑
i∈St

g(zi; θ
[t])). (6)

To handle the gradient differences, we employ a Taylor expansion around θ[t]:

g(zi; θ
[t]
−j)− g(zi; θ

[t]) ≈ H [t]
i (θ

[t]
−j − θ

[t]), (7)

where H [t]
i = ∇2

θ`(zi; θ
[t]) is the Hessian of the loss for zi. In Section 5.1, our experiments show

that our method achieves superior accuracy than baselines, even with this approximation.

Averaging Eq. (7) over St and defining H [t] = 1
|St|

∑
i∈St
∇2
θ`(zi; θ

[t]), we obtain:

1

|St|
∑
i∈St

(g(zi; θ
[t]
−j)− g(zi; θ

[t])) ≈ H [t](θ
[t]
−j − θ

[t]). (8)

Influence Propagation. Substituting Eq. (8) into Eq. (6) and approximating H [t] ≈ H [t]
−j (see the

full derivation in Appendix A.1), we derive the core recurrence relation:

θ
[t+1]
−j − θ[t+1] ≈ (I − ηtH [t])(θ

[t]
−j − θ

[t]) + 1j∈St

ηt
|St|

g(zj ; θ
[t]), (9)

where 1j∈St
is an indicator function that equals 1 if j ∈ St, otherwise 0.

We define Pt := I − ηtH [t] as Influence Propagator, which characterizes how influence prop-
agates through training steps. This recurrence reveals that parameter deviation at step t + 1

comprises two components: 1) historical influence, which is the previous deviation (θ
[t]
−j − θ[t])

propagated forward and modulated by Pt; 2) instantaneous influence, which is new contribution
1̃

[t]
j = 1j∈St

ηt
|St|g(zj ; θ

[t]) from zj at the current step.

Final Estimator. Recursively applying the influence propagation Eq. (9) over the training window
[t1, t2] and accounting for accumulated influence before t1 (complete derivation in Appendix A.2),
we obtain our estimator:

∆̂θ
[t1,t2]

−j =

(
t2−1∏
k=t1

Pk − I

)(
t1−1∑
t=0

(
t1−1∏
k=t+1

Pk

)
1̃

[t]
j

)
+

t2−1∑
t=t1

(
t2−1∏
k=t+1

Pk

)
1̃

[t]
j . (10)
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To validate the robustness of this estimator, we provide a theoretical error bound in Appendix B. Our
analysis confirms the error holds for non-convex settings without requiring model convergence, and
is controlled by key training parameters like the learning rate and Hessian smoothness, making it
broadly applicable to modern deep learning. Our experiments in Section 5 also confirm this result
and show superior accuracy compared to baselines.

4.2 INFLUENCE PROJECTION USING QUERY VECTORS

While Section 4.1 quantifies how training data affects model parameters, it does not directly reveal
the influence on model functional responses, such as test loss, predictions, or feature importance.
To bridge this gap, we introduce a projection-based mechanism that connects parameter changes to
functional responses through query vectors. This approach is grounded in a well-established principle
that small parameter changes lead to approximately linear changes in model outputs Hampel (1974);
Hara et al. (2019). It is the foundation of influence function Koh & Liang (2017), and has been
empirically validated in various deep learning scenarios Park et al. (2023); Ilyas et al. (2022). This
enables us to predict functional changes from parameter deviations via directional derivatives, which
serve as our query vectors.

A query vector q(t) ∈ Rp encodes the sensitivity of a specific model response to parameter changes.
It defines a direction in parameter space, and the inner product 〈q(t),∆θ〉 measures how much the
parameter change ∆θ projects onto this response-relevant direction.
Definition 4.1 (Query-based TIM). Let q : [0, T ] → Rp be a query function that maps time t to a
query vector q(t) ∈ Rp. The query-based TIM for a training data zj over the time window [t1, t2] is
defined as:

Q
[t1,t2]
−j (q) = 〈q(t2),∆θ

[t2]
−j 〉 − 〈q(t1),∆θ

[t1]
−j 〉, (11)

where 〈·, ·〉 denotes the standard inner product in Rp, and ∆θ
[t]
−j = ∆θ

[0,t]
−j for brevity.

This definition provides a versatile framework for analyzing various model functional responses
(e.g., test loss, predictions) through different q. For example, using the test loss gradient, q(t) =
∇θ`(ztest; θ

[t]), we have:

Q
[t1,t2]
−j (q) = 〈∇θ`(ztest; θ

[t2]),∆θ
[t2]
−j 〉 − 〈∇θ`(ztest; θ

[t1]),∆θ
[t1]
−j 〉

≈ [`(ztest; θ
[t2]
−j )− `(ztest; θ

[t1]
−j )]− [`(ztest; θ

[t2])− `(ztest; θ
[t1])].

(12)

This directly approximates the change in test loss difference caused by excluding zj during [t1, t2]. Ad-
ditionally, we can use q = ∇θf(xtest; θ

[t]) to measure prediction changes, q(t) = ∇x∇θ`(ztest; θ
[t])

for feature importance, and q = ei (standard basis vector) for individual parameter importance.
Appendix C details how TIM can be applied to diverse functional responses. In this work, we focus
on test loss as a representative case, since it directly reflects model generalization and serves as a key
benchmark in prior influence analyses.

4.3 IMPLEMENTATION OF TIM

TIM efficiently computes data influence Q[t1,t2]
−j (q) by running a single backward sweep over the

targeted window and using Hessian–vector products (HVPs) only. Table 1 compares TIM with
baselines across computational complexity and robustness metrics. TIM achieves superior efficiency
while maintaining robustness to non-convex, non-converged training dynamics, making it practical
for large-scale applications. Detailed algorithms and implementations are provided in Appendix D.

Table 1: Comprehensive comparison of different data influence analysis methods
Aspect LOO IF TracIn LAVA DVEmb TIM

Computation Cost O(NCtrain) O(p3) O(KNp) O(NMd) O(|St|T p̃2) O(w|St|p)
Storage Cost O(p) O(p2) O(KNp) O(NM) O(|St|T p̃) O(w(|St|+ p))
Robustness to Non-convergence Yes No Yes Yes Yes Yes
Robustness to Non-convexity Yes No Yes Yes Yes Yes
Approximation LOO Yes Yes No No Yes Yes
T = total steps, p = param dimension, p̃ = projection dim.,d = projection dim., |St| = batch size, K = # checkpoints, w = window size.
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5 EXPERIMENTS

We evaluate TIM by first evaluating its accuracy (Sections 5.1 and 5.2), analyzing its ability to capture
evolving data influence (Section 5.3, secpattern and Appendix F.4), and demonstrating the significant
benefits of TIM’s unique time-varying perspective in downstream applications (Section 5.5). Full
specifications and baseline method descriptions are provided in Appendix F.1.

5.1 ACCURACY OF INFLUENCE MEASUREMENT

We evaluate TIM’s accuracy by comparing its influence estimates against the LOO gold standard
across two scenarios: 1) global analysis over the entire training trajectory [0, T ], and 2) local
analysis over temporal windows [t1, t2]. We compare TIM against Influence Functions (IF) Koh &
Liang (2017), LAVA Just et al. (2023), and DVEmb Wang et al. (2025b) using four complementary
metrics: Pearson and Spearman correlations (linear and monotonic consistency), Kendall’s τ (ordinal
ranking), and Jaccard similarity on the top 30% most influential points.

Comparison of Global Analysis. We first examine each method’s ability to approximate LOO loss
changes over the whole training trajectory [0, T ] for MNIST-DNN across 20 epochs. TIM consistently
achieves near-perfect agreement with LOO retraining (correlations > 0.9), significantly higher than
other baselines. In contrast, IF and DVEmb achieve only moderate agreement, while LAVA fails
with near-zero correlation due to its custom scoring rather than retraining-based influence estimates.
These results validate TIM’s recursive estimation approach and demonstrate that TIM can accurately
estimate global influence.

Table 2: Correlation with LOO for global influence analysis.

Method Pearson Spearman Kendall’s Tau Jaccard (Top 30%)

IF Koh & Liang (2017) 0.75±0.14 0.70±0.17 0.52±0.14 0.52±0.19
DVEmb Wang et al. (2025b) 0.58±0.12 0.49±0.29 0.35±0.21 0.34±0.20

LAVA Just et al. (2023) -0.07±0.10 0.03±0.10 0.02±0.07 0.22±0.06
TIM 0.96±0.03 0.94±0.06 0.83±0.08 0.78±0.15

Comparison of Local Window Analysis. We next examine how well methods capture time-varying
influence within local windows. Since IF, LAVA, and DVEmb only produce global influence, we
construct their local estimates by differencing the loss between [0, t2] and [0, t1]. While this is not
their original design, it provides the fairest possible adaptation for local settings; otherwise, these
methods cannot be applied. In contrast, TIM directly estimates influence within a window [t1, t2].
We evaluate on 21 consecutive windows [e, e+1] (e = 0, . . . , 20) and report the average correlation
with LOO. TIM again shows superior performance with both high accuracy, whereas IF and DVEmb
remain moderate, and LAVA remains ineffective. This confirms that TIM achieves accurate influence
estimates within local windows.

Table 3: Correlation with LOO for local analysis (averaged over 21 per-epoch windows [e, e+1]).

Method Pearson Spearman Kendall’s Tau Jaccard (Top 30%)

IF Koh & Liang (2017) 0.70±0.02 0.65±0.02 0.48±0.01 0.50±0.03
DVEmb Wang et al. (2025b) 0.56±0.02 0.48±0.05 0.35±0.03 0.35±0.04

LAVA Just et al. (2023) -0.06±0.01 0.05±0.01 0.04±0.02 0.21±0.01
TIM 0.95±0.01 0.93±0.01 0.81±0.02 0.77±0.02

5.2 SCALABILITY TO LARGE-SCALE MODELS

Corrupted data detection. To evaluate TIM on large-scale models, we conduct experiments on
BERT-IMDB sentiment classification with 50% randomly flipped labels. We measure the precision
of identifying corrupted data among the worst X% ranked points (X = 20, 30, 40, 50) across training
epochs (Figure 2).
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Figure 2: Precision of corrupted data detection on BERT-IMDB (left to right: 20%, 30%, 40%, 50%
selection thresholds).

Across all thresholds, TIM consistently achieves the highest precision and shows steady improvements
over training. The advantage is most evident under strict settings (X = 20), where detection is most
difficult, but TIM also maintains strong performance as the threshold expands to 50%. DVEmb
and IF deliver moderate performance, while LAVA remains consistently lowest, which is consistent
with the findings in the benchmark study OpenDataVal Jiang et al. (2023) on noisy-label detection.
These results confirm TIM’s robustness and scalability, demonstrating that it remains effective under
extreme noise and is well-suited for large-scale, non-convex models such as BERT.

Convergence Acceleration through Data Pruning. Beyond corrupted data detection, we evaluate
its effectiveness in accelerating model convergence through data pruning. Using the same BERT-
IMDB setup with 50% corrupted labels, we identify the 10% worst-performing data points using
different methods and remove them from training. We then measure training loss convergence when
training on the pruned datasets (Figure 3).

Figure 3: Convergence comparison after pruning corrupted data identified by different methods.

TIM achieves the most significant acceleration in convergence, consistently reaching lower training
loss than both the original corrupted dataset and all baseline methods. DVEmb and IF provide
moderate improvements, while LAVA yields negligible gains and occasionally slows convergence
due to unstable pruning. These results highlight TIM’s practical value in identifying truly harmful
training data, enabling more efficient optimization in noisy, large-scale training settings.

5.3 PATTERNS OF DATA INFLUENCE DYNAMICS

While existing methods provide static data influence analysis, our study reveals that training data
have different time-varying influence patterns during training. To uncover this, we compute data
influence on test loss at each epoch throughout training. This results in a time series of influence
values for each data point, capturing its evolving influence on test loss. Full implementation details
are provided in Appendix F.2.

As model training progresses, test loss naturally decreases. This causes raw influence values to shrink
over time for all training data, masking how relative influence evolves during training. To address this,
we standardize the computed influence values at each epoch, preserving relative importance while

7
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removing the global declining scale effect. We then fit linear trends to each standardized time series
to analyze the long-term trend. By analyzing trend direction, statistical significance, and temporal
variability, we identify four distinct influence patterns (Early Influencers, Late Bloomers, Stable
Influencers, and Highly Fluctuating) as shown in Figure 4.

Figure 4: Time-varying influence patterns on
MNIST training using DNNs

• Early Influencers: High early influence that
diminishes over time.

• Late Bloomers: Influence increases as train-
ing progresses.

• Stable Influencers: Consistent influence
throughout training.

• Highly Fluctuating Influencers: Influence
varies significantly throughout training.

We further analyzed the pattern distribution across datasets and models, as shown in Table 4. These
results show several key insights. 1) Time-varying influence patterns exist across all dataset-model
combinations. This nature underscores the limitations of static influence analysis. 2) The presence
of Early Influencers and Late Bloomers reveals that models selectively emphasize different training
data at different stages. 3) Pattern distributions vary significantly across model architectures and data
modalities, emphasizing the necessity of dynamic influence analysis approaches.

Table 4: Distribution of influence dynamic patterns across datasets and models (percentage)
Model Dataset Stable Influencer Early Influencers Late Bloomers Highly Fluctuating

LR

Adult 64.75±7.20 11.67±3.27 20.15±5.87 3.42±1.82
20News 85.94±5.38 1.17±1.28 5.57±1.26 7.32±4.24
MNIST 80.16±12.10 0.79±0.96 10.78±9.35 8.27±3.36

EMNIST 75.49±8.40 0.70±0.53 13.77±6.77 10.04±2.75

DNN

Adult 97.91±2.66 0.313±1.12 1.00±1.55 0.78±0.89
20News 79.03±7.78 8.44±4.11 11.41±3.90 1.13±0.83
MNIST 66.56±13.26 10.34±4.65 20.59±9.44 2.50±0.93

EMNIST 78.16±14.48 7.09±7.678 7.47±9.87 7.28±3.55

CNN MNIST 83.76±19.91 0.34±0.42 11.74±16.60 4.15±3.94
EMNIST 86.50±7.50 1.87±5.15 1.59±3.91 10.03±2.48

5.4 PATTERN-SPECIFIC ACCURACY

We conducted a pattern-specific performance analysis comparing TIM with LOO as ground truth using
the MNIST with DNNs. We divided training data into Stable, Early, Late, and Highly Fluctuating
according to Section 5.3, and report correlations between TIM and LOO within each pattern cluster.
Table 5 presents the comparative results across multiple evaluation metrics.

Table 5: Pattern-specific accuracy of TIM approximating LOO.
Data Pattern Pearson Spearman Kendall’s Tau Jaccard (Top 30%)

Stable Influencers 0.95±0.03 0.96±0.03 0.87±0.05 0.82±0.12
Early Influencers 0.94±0.04 0.98±0.01 0.92±0.03 0.89±0.07

Late Bloomers 0.98±0.02 0.98±0.02 0.90±0.05 0.85±0.10
Highly Fluctuating 0.76±0.18 0.72±0.18 0.63±0.21 0.52±0.34
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The pattern-specific analysis reveals three key findings. First, TIM achieves excellent approximation
accuracy for LOO across patterns. All correlations for Stable, Early, and Late patterns exceed
0.94, with Late Bloomers showing the highest correlation (0.98). Second, TIM remains positively
correlated with LOO even for Highly Fluctuating patterns. Third, Stable/Early/Late patterns exhibit
low variance, while Highly Fluctuating patterns show high variance, suggesting sensitivity to seeds
and requiring smoothing or multi-seed aggregation. Influence dynamics across training stages are
detailed in Appendix F.4.

5.5 DIFFERENT WINDOW SELECTION

To investigate how different windows affect data influence measurement, we evaluated TIM’s ability
to identify corrupted data on MNIST binary classification task (digits ‘1’ and ‘7’). We randomly
selected and flipped labels for 5%, 10%, 15%, and 20% of training data (corresponding to 12, 25,
38, and 51 data points). For each corruption level, we trained models over 20 epochs and computed
influence using different temporal windows: full-training TIM, and epoch-window TIM (first, middle,
and last epochs). We compare against LOO retraining as the gold standard. Table 6 shows each
method’s precision, defined as correctly identified flipped labels among the top-k most negatively
influential data points, where k is the actual number of corrupted samples.

Table 6: Identification of corrupted data
Flipped Model LOO Full-training TIM First-epoch TIM Mid-epoch TIM Last-epoch TIM

12
LR 10.94 ± 0.90 10.94 ± 0.90 10.56 ± 1.22 10.88 ± 0.78 10.88 ± 0.78

DNN 8.81 ± 1.98 9.06 ± 1.85 8.25 ± 2.33 8.88 ± 2.09 9.38 ± 1.98
CNN 10.44 ± 1.32 10.50 ± 1.32 8.75 ± 2.11 10.69 ± 1.16 11.06 ± 1.32

25
LR 23.50 ± 1.00 23.50 ± 1.00 22.56 ± 1.54 23.50 ± 1.06 23.38 ± 1.00

DNN 19.94 ± 3.77 20.75 ± 3.01 20.31 ± 2.78 20.50 ± 3.22 21.31 ± 3.77
CNN 21.75 ± 3.11 21.81 ± 3.11 18.44 ± 4.37 22.19 ± 2.81 23.56 ± 3.11

38
LR 36.06 ± 1.14 36.06 ± 1.14 35.38 ± 1.62 35.69 ± 1.69 35.13 ± 1.14

DNN 32.50 ± 3.72 32.81 ± 3.47 32.19 ± 3.40 32.56 ± 3.61 33.31 ± 3.72
CNN 34.19 ± 4.17 34.19 ± 4.17 29.75 ± 5.93 34.56 ± 3.98 36.31 ± 4.17

51
LR 48.69 ± 1.16 48.69 ± 1.16 47.94 ± 1.52 46.56 ± 3.12 42.94 ± 1.16

DNN 43.94 ± 5.20 45.31 ± 3.29 44.13 ± 3.64 45.19 ± 3.30 45.56 ± 5.20
CNN 46.25 ± 4.35 46.19 ± 4.33 41.50 ± 7.66 47.13 ± 3.35 48.69 ± 4.35

First, TIM closely matches the LOO gold standard across all corruption levels, providing reliable
detection without retraining. Second, for convex models (LR), gradient dynamics remain stable,
making full-training TIM only marginally better. Third, for non-convex models (CNN, DNN), last-
epoch TIM achieves the best or near-best detection while reducing computation by 95% compared to
full-training TIM, since its window length is one epoch versus the entire training of 20 epochs. This
demonstrates that smaller temporal windows (Last-epoch TIM) can be more efficient and sometimes
more effective than analyzing the entire training trajectory (Full-training TIM), challenging the
assumption that longer analysis windows necessarily yield better influence estimates.

6 CONCLUSION

We presented TIM, a framework for measuring how training data influence evolves over time. Unlike
static methods, TIM approximates LOO within arbitrary training windows and projects parameter
deviations onto functional responses via query vectors. Our analysis establishes error bounds that
hold under non-convex and non-converged conditions, ensuring theoretical robustness. Experiments
show that TIM matches LOO accuracy, reveals distinct temporal patterns, and enables practical gains
such as corrupted data detection and accelerated convergence, while reducing computation by 95%.
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REPRODUCIBILITY STATEMENT

Our implementation and scripts are available at https://anonymous.4open.science/r/
TIM-DE8E/. Section 5 and Appendix F.1 describe datasets, model architectures, and hyperpa-
rameters. Proofs of theoretical results appear in Appendix B, and metric definitions are detailed in
Appendix F.1. Together, these ensure full reproducibility.
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A DERIVATION OF THE PARAMETER INFLUENCE ESTIMATOR

A.1 DERIVATION OF THE ONE-STEP RECURRENCE RELATION (EQ. 9)

We start from Eq. (6), which establishes the relationship:

θ
[t+1]
−j − θ[t+1] = (θ

[t]
−j − θ

[t])− ηt
|St|

(
∑

i∈St\{j}

g(zi; θ
[t]
−j)−

∑
i∈St

g(zi; θ
[t])) (13)

= (θ
[t]
−j − θ

[t])− ηt
|St|

(
∑

i∈St\{j}

g(zi; θ
[t]
−j)−

∑
i∈St\{j}

g(zi; θ
[t])− 1j∈Stg(zj ; θ

[t])) (14)

= (θ
[t]
−j − θ

[t])− ηt
|St|

(
∑

i∈St\{j}

g(zi; θ
[t]
−j)−

∑
i∈St\{j}

g(zi; θ
[t])) +

ηt
|St|

1j∈St
g(zj ; θ

[t]) (15)

= (θ
[t]
−j − θ

[t])− ηt
|St|

(
∑

i∈St\{j}

(g(zi; θ
[t]
−j)− g(zi; θ

[t]))) +
ηt
|St|

1j∈St
g(zj ; θ

[t]), (16)

where 1j∈St
is an indicator function that equals 1 if j ∈ St, otherwise 0.

Using Eq. (7), we have:∑
i∈St\{j}

(g(zi; θ
[t]
−j)− g(zi; θ

[t])) ≈
∑

i∈St\{j}

H
[t]
i (θ

[t]
−j − θ

[t]), (17)

Using Eq. (8) and Assumption (A4) detailed in Appendix B, we have:∑
i∈St\{j}

H
[t]
i (θ

[t]
−j − θ

[t]) ≈ |St|H [t]
−j(θ

[t]
−j − θ

[t]) ≈ |St|H [t](θ
[t]
−j − θ

[t]). (18)

Combining Eq. (17) and Eq. (18), we have:∑
i∈St\{j}

(g(zi; θ
[t]
−j)− g(zi; θ

[t])) ≈ |St|H [t](θ
[t]
−j − θ

[t]). (19)

Applying Eq. (19) to Eq. (16), we have the final result:

θ
[t+1]
−j − θ[t+1] = (θ

[t]
−j − θ

[t])− ηt
|St|

∑
i∈St\{j}

(g(zi; θ
[t]
−j)− g(zi; θ

[t])) +
ηt
|St|

1j∈St
g(zj ; θ

[t])

(20)

≈ (θ
[t]
−j − θ

[t])− ηt
|St|

(|St|H [t](θ
[t]
−j − θ

[t])) +
ηt
|St|

1j∈St
g(zj ; θ

[t]) (21)

= (θ
[t]
−j − θ

[t])− ηtH [t](θ
[t]
−j − θ

[t]) +
ηt
|St|

1j∈St
g(zj ; θ

[t]) (22)

= (I − ηtH [t])(θ
[t]
−j − θ

[t]) +
ηt
|St|

1j∈Stg(zj ; θ
[t]). (23)

This derivation confirms the correctness of Eq. (9), including the last term.

A.2 FROM THE RECURRENCE RELATION TO THE FINAL INFLUENCE ESTIMATOR (EQ. 28)

We start from

θ
[t+1]
−j − θ[t+1] ≈ (I − ηtH [t])(θ

[t]
−j − θ

[t]) + 1j∈St

ηt
|St|

g(zj ; θ
[t]), (24)

where 1j∈St is an indicator function that equals 1 if j ∈ St, otherwise 0. Recursively applying Eq.
(9) over the training window [t1, t2]:

θ
[t2]
−j − θ

[t2] ≈ Pt2−1Pt2−2 . . . Pt1(θ
[t1]
−j − θ

[t1]) +

t2−1∑
t=t1

Pt2−1Pt2−2 . . . Pt+11̃
[t]
j , (25)
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where 1̃
[t]
j = 1j∈St

ηt
|St|g(zj ; θ

[t]). Combining Eq. (3) and Eq. (25), we can get:

∆θ
[t1,t2]
−j ≈

(
t2−1∏
k=t1

Pk − I

)
(θ

[t1]
−j − θ

[t1]) +

t2−1∑
t=t1

(
t2−1∏
k=t+1

Pk

)
1̃

[t]
j . (26)

We use Eq. (26) for the interval [0, t1] with θ[0]
−j = θ[0] to get:

θ
[t1]
−j − θ

[t1] ≈
t1−1∑
t=0

(
t1−1∏
k=t+1

Pk

)
1̃

[t]
j . (27)

Substituting Eq. (27) into Eq. (26), we obtain our final approximation:

∆θ
[t1,t2]
−j ≈

(
t2−1∏
k=t1

Pk − I

)(
t1−1∑
t=0

(
t1−1∏
k=t+1

Pk

)
1̃

[t]
j

)
+

t2−1∑
t=t1

(
t2−1∏
k=t+1

Pk

)
1̃

[t]
j , (28)
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B ESTIMATION ERROR ANALYSIS WITHOUT CONVEXITY ASSUMPTIONS

Theorem B.1 (Error Bound for TIM Parameter Change). Let ∆θ
[t1,t2]
−j be the true influence of

excluding data zj on the model parameters over the interval [t1, t2] during SGD training. Let

∆̂θ
[t1,t2]

−j be its approximation using TIM. Under the following assumptions:

(A1) Lipschitz Continuity of Gradient: The gradient ∇`(zi; θ) is Lipschitz continuous with
constant Lg: ‖∇`(zi; θ1)−∇`(zi; θ2)‖ ≤ Lg‖θ1 − θ2‖, ∀θ1, θ2 ∈ Θ,∀i.

(A2) Lipschitz Continuity of Hessian: The Hessian ∇2`(zi; θ) is Lipschitz continuous with
constant LH : ‖∇2`(zi; θ1)−∇2`(zi; θ2)‖ ≤ LH‖θ1 − θ2‖, ∀θ1, θ2 ∈ Θ,∀i.

(A3) Learning Rate Bound: The learning rate satisfies ηt ≤ 1
LH

for all t.

(A4) Hessian Approximation Error: The Hessian approximation error is bounded: ‖H [t] −
H

[t]
−j‖ ≤ εH , ∀t, where H [t]

−j = 1
|St\{j}|

∑
i∈St\{j}∇

2`(zi; θ
[t]) is the empirical Hessian

over the mini-batch.

(A5) Gradient Norm Bound: For all θ ∈ Θ and all zi: ‖∇`(zi; θ)‖ ≤ G.

(A6) Parameter Difference Bound: There exists a constant M > 0 such that: ‖θ[t]
−j − θ[t]‖ ≤M ,

∀t ∈ [t1, t2].

(A7) Bounded Hessian Norm: For all θ ∈ Θ and all zi: ‖∇2`(zi; θ)‖ ≤MH .

Then, the expected estimation error is bounded as follows:

E
[∥∥∥∥∆θ

[t1,t2]
−j − ∆̂θ

[t1,t2]

−j

∥∥∥∥] ≤ B̃

MH

(
eMHηmax(t2+1) + eMHηmax(t1+1) − 2

)
(29)

where: ηmax = maxt∈[t1,t2] ηt, B̃ = LHM
2

2 + εHM , n is the total number of data in the dataset.

Proof. Step 1: Derivation of the Error Update Equation

Define the error at iteration t:
e[t] = (θ

[t]
−j − θ

[t])− ∆̂θ
[0,t]

−j (30)

where ∆̂θ
[0,t]

−j is the approximation of the true parameter change ∆θ
[0,t]
−j using the TIM method.

We aim to derive a recursive relation for e[t] and then bound its expected norm.

Consider the updates for θ[t], θ[t]
−j , and θ̂[t]

−j :

Original SGD Update:

θ[t+1] = θ[t] − ηtg̃[t], g̃[t] =
1

|St|
∑
i∈St

∇`(zi; θ[t]). (31)

Leave-One-Out SGD Update:

θ
[t+1]
−j = θ

[t]
−j − ηtg̃

[t]
−j , g̃

[t]
−j =

1

|St|
∑

i∈St\{j}

∇`(zi; θ[t]
−j). (32)

Approximate Leave-One-Out Update (TIM Method):

θ̂
[t+1]
−j = θ̂

[t]
−j − ηt

(
g̃[t] +H [t](θ̂

[t]
−j − θ

[t])− 1{j∈St}
1

|St|
∇`(zj ; θ[t])

)
. (33)

We derive the error update equation as follows:

e[t] − e[t−1] = ηt−1δ
[t−1], (34)
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where:

δ[t−1] =
(
g̃

[t−1]
−j − g̃[t−1]

)
−H [t−1]∆̂θ

[t−1]

−j + 1{j∈St−1}
1

|St−1|
∇`(zj ; θ[t−1]). (35)

or equivalently:

δ[t] =
(
g̃

[t]
−j − g̃

[t]
)
−H [t]∆̂θ

[0,t]

−j + 1{j∈St}
1

|St|
∇`(zj ; θ[t]). (36)

Step 2: Bounding ‖δ[t]‖

We decompose δ[t] and bound each term:

1. Difference in Stochastic Gradients:

g̃
[t]
−j − g̃

[t] =
1

|St|

 ∑
i∈St\{j}

(
∇`(zi; θ[t]

−j)−∇`(zi; θ
[t])
)
− 1{j∈St}∇`(zj ; θ

[t])

 . (37)

Applying a first-order Taylor expansion to∇`(zi; θ[t]
−j) for i 6= j:

∇`(zi; θ[t]
−j)−∇`(zi; θ

[t]) = ∇2`(zi; θ
[t])(θ

[t]
−j − θ

[t]) + r
[t]
i,j , (38)

where, by Assumption (A2):

‖r[t]
i,j‖ ≤

LH
2
‖θ[t]
−j − θ

[t]‖2 (39)

Thus, we have:

g̃
[t]
−j − g̃

[t] =
1

|St|
∑

i∈St\{j}

∇2`(zi; θ
[t])(θ

[t]
−j − θ

[t]) + r
[t]
i,j − 1{j∈St}∇`(zj ; θ

[t])

=
1

|St|

 ∑
i∈St\{j}

r
[t]
i,j − 1{j∈St}∇`(zj ; θ

[t])

+H
[t]
−j(θ

[t]
−j − θ

[t]) (40)

2. Hessian Approximation Error:

‖(H [t]
−j −H

[t])(θ
[t]
−j − θ

[t])‖ ≤ εH‖θ[t]
−j − θ

[t]‖ (41)

according to Assumption (A4).

3. Combining Terms: Substitute the approximations back into δ[t]:

δ[t] =
(
g̃

[t]
−j − g̃

[t]
)
−H [t]∆̂θ

[0,t]

−j + 1{j∈St}
1

|St|
∇`(zj ; θ[t])

=
(
g̃

[t]
−j − g̃

[t]
)
−H [t]

−j(θ
[t]
−j − θ

[t]) +
(
H

[t]
−j −H

[t]
)

(θ
[t]
−j − θ

[t]) + 1{j∈St}
1

|St|
∇`(zj ; θ[t])

=
1

|St|
∑

i∈St\{j}

r
[t]
i,j + (H

[t]
−j −H

[t])(θ
[t]
−j − θ

[t]) +H [t]((θ
[t]
−j − θ

[t])−∆θ̂
[t]
−j)

=
1

|St|
∑

i∈St\{j}

r
[t]
i,j + (H

[t]
−j −H

[t])(θ
[t]
−j − θ

[t]) +H [t]e[t]. (42)

4. Bounding ‖δ[t]‖:

• First Term: ∥∥∥∥∥∥ 1

|St|
∑

i∈St\{j}

r
[t]
i,j

∥∥∥∥∥∥ < LHM
2

2
. (43)
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• Second Term: ∥∥∥(H
[t]
−j −H

[t])(θ
[t]
−j − θ

[t])
∥∥∥ ≤ εHM. (44)

• Third Term: ∥∥∥H [t]e[t]
∥∥∥ ≤MH‖e[t]‖. (45)

Combining bounds, we can have:

‖δ[t]‖ < LHM
2

2
+ εHM +MH‖e[t]‖. (46)

Step 3: Error Update Equation

Using the error update:
e[t] = e[t−1] − ηtδ[t−1], (47)

we have:

‖e[t]‖ ≤ ‖e[t−1]‖+ ηt‖δ[t−1]‖ < ‖e[t−1]‖+ ηt

(
LHM

2

2
+ εHM +MH‖e[t−1]‖

)
. (48)

Define:

at = 1 + ηtMH , bt = ηt

(
LHM

2

2
+ εHM

)
. (49)

Then:
‖e[t]‖ < at‖e[t−1]‖+ bt. (50)

Step 4: Taking Expectations

Taking expectations over the mini-batch sampling:

E
[
‖e[t]‖

]
< atE

[
‖e[t−1]‖

]
+ bt. (51)

Define:

B̃ =
LHM

2

2
+ εHM. (52)

Then:
E
[
‖e[t]‖

]
< atE

[
‖e[t−1]‖

]
+ ηtB̃. (53)

Step 5: Solving the Recurrence Relation

Unfolding the recurrence:

E
[
‖e[t]‖

]
≤

t∏
k=0

ak · E
[
‖e[0]‖

]
+

t∑
s=0

(
t∏

k=s+1

ak

)
bs. (54)

Since e[0] = 0, we have:

E
[
‖e[t]‖

]
≤

t∑
s=0

(
t∏

k=s+1

ak

)
bs. (55)

Assuming ak ≤ eMHηmax , we get:
t∏

k=s+1

ak ≤ eMHηmax(t−s). (56)

Therefore:

E
[
‖e[t]‖

]
≤ B̃ηmax

t∑
s=0

eMHηmax(t−s). (57)
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Approximating the sum:

E
[
‖e[t]‖

]
≤ B̃ηmax ·

eMHηmax(t+1) − 1

eMHηmax − 1
. (58)

For small MHηmax, eMHηmax − 1 ≈MHηmax, yielding:

E
[
‖e[t]‖

]
≤ B̃

MH

(
eMHηmax(t+1) − 1

)
. (59)

Substitute t with t1 and t2 respectively:

E
[
‖e[t2]‖

]
≤ B̃

MH

(
eMHηmax(t2+1) − 1

)
, (60)

E
[
‖e[t1]‖

]
≤ B̃

MH

(
eMHηmax(t1+1) − 1

)
. (61)

Step 6: Final Bound

The estimation error is:

E
[∥∥∥∥∆θ

[t1,t2]
−j − ∆̂θ

[t1,t2]

−j

∥∥∥∥] ≤ E
[
‖e[t2]‖

]
+ E

[
‖e[t1]‖

]
≤ B̃

MH

(
eMHηmax(t2+1) + eMHηmax(t1+1) − 2

)
(62)

This completes the proof.

Remark B.2. Note that TIM applies to non-converged and non-convex models. The exponential form
arises from the recursive nature of error propagation, where each SGD step compounds previous errors
multiplicatively. Our analysis is the first to guarantee error bounds for non-converged, non-convex
models during any time windows. The bounds are mathematical guarantees for the worst case, and
experimental results show that TIM can achieve near-zero errors empirically.
Remark B.3. The error bound provides several key insights:

• The error grows at most exponentially with both t1 and t2, highlighting the challenge
of long-range influence estimation. The impact of t2 is generally more significant as it
represents the end of the time window.

• The Hessian approximation error εH directly impacts the overall error, emphasizing the
importance of accurate Hessian estimation.

• The maximum learning rate ηmax affects the error bound exponentially, suggesting that
smaller learning rates might help control the estimation error.

• The bound depends on the Lipschitz constants of the gradient and Hessian (Lg and LH ),
indicating that smoother loss landscapes lead to more reliable influence estimates.

This theorem provides a theoretical foundation for understanding the limitations of influence estima-
tion without assuming convexity and guides practical considerations in its application to large-scale
machine learning problems.
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C TIM TOOLKIT

This appendix provides a practical analysis and implementation guide for common query vectors
used in TIM. These include gradient-based, prediction-based, and parameter-specific directions that
enable targeted investigation into model functional responses.

C.1 TIM FOR LOSS VALUE

Theorem C.1 (TIM for Loss Value). Given a loss function `(z; θ), a time window [t1, t2], a training
data zj , and a test data ztest, the TIM with query function q(t) = (∇θ`(ztest; θ

[t]) can be approximated
as:

Q
[t1,t2]
−j (q) ≈ [`(ztest; θ

[t2]
−j )− `(ztest; θ

[t1]
−j )]− [`(ztest; θ

[t2])− `(ztest; θ
[t1])], (63)

where θ[t]
−j denotes the model parameters at time t when trained without data zj , and θ[t] denotes the

parameters when trained with all data.

Proof. We begin with the definition of the query-based TIM:

Q
[t1,t2]
−j (q) =

〈
q(t2),∆θ

[t2]
−j

〉
−
〈
q(t1),∆θ

[t1]
−j

〉
(64)

where ∆θ
[t]
−j = θ

[t]
−j − θ[t].

Substituting q(t) = ∇θ`(ztest; θ
[t]) into Eq. (64):

Q
[t1,t2]
−j (q) =

〈
∇θ`(ztest; θ

[t2]), θ
[t2]
−j − θ

[t2]
〉
−
〈
∇θ`(ztest; θ

[t1]), θ
[t1]
−j − θ

[t1]
〉
. (65)

Apply the first-order Taylor expansion of `(ztest; θ) around θ[t2] and θ[t1]:

`(ztest; θ
[t2]
−j ) ≈ `(ztest; θ

[t2]) + 〈∇θ`(ztest; θ
[t2]), θ

[t2]
−j − θ

[t2]〉 (66)

`(ztest; θ
[t1]
−j ) ≈ `(ztest; θ

[t1]) + 〈∇θ`(ztest; θ
[t1]), θ

[t1]
−j − θ

[t1]〉 (67)

Rearranging Eq. (66) and Eq. (67):

〈∇θ`(ztest; θ
[t2]), θ

[t2]
−j − θ

[t2]〉 ≈ `(ztest; θ
[t2]
−j )− `(ztest; θ

[t2]) (68)

〈∇θ`(ztest; θ
[t1]), θ

[t1]
−j − θ

[t1]〉 ≈ `(ztest; θ
[t1]
−j )− `(ztest; θ

[t1]) (69)
Substituting these approximations back into Eq. (65):

Q
[t1,t2]
−j (q) ≈ [`(ztest; θ

[t2]
−j )− `(ztest; θ

[t2])]− [`(ztest; θ
[t1]
−j )− `(ztest; θ

[t1])] (70)

= [`(ztest; θ
[t2]
−j )− `(ztest; θ

[t1]
−j )]− [`(ztest; θ

[t2])− `(ztest; θ
[t1])] (71)

This completes the proof of Theorem C.1.

This theorem provides a foundation for understanding how individual training data affects the model’s
loss on specific test points over time. The right-hand side of Eq. (63) represents the difference
between the loss changes with and without data zj , offering a direct measure of the data’s influence
on model performance.

Extension to Test Sets: We can extend this concept to consider an entire test set Dtest =
{z1, . . . , zM}. Define the query function as:

q(t) =
1

M

M∑
i=1

∇θ`(zi; θ[t]), zi ∈ Dtest. (72)

With this choice, the TIM approximates the change in average test loss:

Q
[t1,t2]
−j (q) ≈ 1

M

M∑
i=1

[
`(zi; θ

[t2]
−j )− `(zi; θ[t1]

−j )
]
− 1

M

M∑
i=1

[
`(zi; θ

[t2])− `(zi; θ[t1])
]

=
[
Ltest(θ

[t2]
−j )− Ltest(θ

[t1]
−j )

]
−
[
Ltest(θ

[t2])− Ltest(θ
[t1])

]
,

(73)

where Ltest(θ
[t]) = 1

M

∑M
i=1 `(zi; θ

[t]) is the average test loss.
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C.2 TIM FOR PREDICTION CHANGES

Theorem C.2 (TIM for Prediction Changes). Given a model function f(x; θ), a time window [t1, t2],
a training data zj , and a test input xtest, the TIM with query function q(t) = ∇θf(xtest; θ

[t]) can be
approximated as:

Q
[t1,t2]
−j (q) ≈

[
f(xtest; θ

[t2]
−j )− f(xtest; θ

[t1]
−j )

]
−
[
f(xtest; θ

[t2])− f(xtest; θ
[t1])

]
, (74)

where θ[t]
−j denotes the model parameters at time t when trained without data zj , and θ[t] denotes the

parameters when trained with all data.

Proof. We begin with the definition of the query-based TIM:

Q
[t1,t2]
−j (q) =

〈
q(t2),∆θ

[t2]
−j

〉
−
〈
q(t1),∆θ

[t1]
−j

〉
(75)

where ∆θ
[t]
−j = θ

[t]
−j − θ[t].

Substituting q(t) = ∇θf(ztest; θ
[t]) into Eq. (75):

Q
[t1,t2]
−j (q) =

〈
∇θf(ztest; θ

[t2]), θ
[t2]
−j − θ

[t2]
〉
−
〈
∇θf(ztest; θ

[t1]), θ
[t1]
−j − θ

[t1]
〉
. (76)

We apply the first-order Taylor approximation of the model function around θ[t2] and θ[t1]:

f(xtest; θ
[t2]
−j ) ≈ f(xtest; θ

[t2]) + 〈∇θf(xtest; θ
[t2]), θ

[t2]
−j − θ

[t2]〉 (77)

f(xtest; θ
[t1]
−j ) ≈ f(xtest; θ

[t1]) + 〈∇θf(xtest; θ
[t1]), θ

[t1]
−j − θ

[t1]〉 (78)

Rearranging these equations:

〈∇θf(xtest; θ
[t2]), θ

[t2]
−j − θ

[t2]〉 ≈ f(xtest; θ
[t2]
−j )− f(xtest; θ

[t2]) (79)

〈∇θf(xtest; θ
[t1]), θ

[t1]
−j − θ

[t1]〉 ≈ f(xtest; θ
[t1]
−j )− f(xtest; θ

[t1]) (80)

Substituting these approximations back into Eq. (76):

Q
[t1,t2]
−j (q) ≈ [f(xtest; θ

[t2]
−j )− f(xtest; θ

[t2])]− [f(xtest; θ
[t1]
−j )− f(xtest; θ

[t1])] (81)

= [f(xtest; θ
[t2]
−j )− f(xtest; θ

[t1]
−j )]− [f(xtest; θ

[t2])− f(xtest; θ
[t1])] (82)

This completes the proof of Theorem C.2.

This theorem provides a formal justification for using TIM to analyze how excluding data zj influences
the model’s predictions on a test input xtest over the interval [t1, t2]. Compared to Theorem C.1, which
focuses on the loss value, Theorem C.2 focuses on specific model outputs. It enables the identification
of influential training data for specific predictions, aids in understanding model functional response
on particular inputs, and can help detect potential outliers or mislabeled data.

C.3 TIM FOR FEATURE IMPORTANCE

Theorem C.3 (TIM for Feature Importance). Given a loss function `(z; θ), a training data z =
(x, y), and a test data ztest = (xtest, ytest), the TIM for feature importance with query function
q(t) = ∇x∇θ`(ztest; θ

[t]) can be approximated as:

Q
[t1,t2]
−j (q) ≈ [∇x`(ztest; θ

[t2]
−j )−∇x`(ztest; θ

[t1]
−j )]− [∇x`(ztest; θ

[t2])−∇x`(ztest; θ
[t1])], (83)

where θ[t]
−j denotes the model parameters at time t when trained without data zj , and θ[t] denotes the

parameters when trained with all data.
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Proof. We start with the definition of the query-based TIM:

Q
[t1,t2]
−j (q) =

〈
q(t2),∆θ

[t2]
−j

〉
−
〈
q(t1),∆θ

[t1]
−j

〉
, (84)

where ∆θ
[t]
−j = θ

[t]
−j − θ[t].

Substituting q(t) = ∇x∇θ`(ztest; θ
[t]):

Q
[t1,t2]
−j (q) =

〈
∇θ∇x`(ztest; θ

[t2]), θ
[t2]
−j − θ

[t2]
〉
−
〈
∇θ∇x`(ztest; θ

[t1]), θ
[t1]
−j − θ

[t1]
〉
. (85)

We apply the first-order Taylor approximation of∇x`(ztest; θ) around θ[t2] and θ[t1]:

∇x`(ztest; θ
[t2]
−j ) ≈ ∇x`(ztest; θ

[t2]) +∇θ∇x`(ztest; θ
[t2])

(
θ

[t2]
−j − θ

[t2]
)
, (86)

∇x`(ztest; θ
[t1]
−j ) ≈ ∇x`(ztest; θ

[t1]) +∇θ∇x`(ztest; θ
[t1])

(
θ

[t1]
−j − θ

[t1]
)
. (87)

Rearranging these equations:〈
∇θ∇x`(ztest; θ

[t2]), θ
[t2]
−j − θ

[t2]
〉
≈ ∇x`(ztest; θ

[t2]
−j )−∇x`(ztest; θ

[t2]), (88)〈
∇θ∇x`(ztest; θ

[t1]), θ
[t1]
−j − θ

[t1]
〉
≈ ∇x`(ztest; θ

[t1]
−j )−∇x`(ztest; θ

[t1]). (89)

Substituting these approximations back into Eq. (85):

Q
[t1,t2]
−j (q) ≈

[
∇x`(ztest; θ

[t2]
−j )−∇x`(ztest; θ

[t2])
]
−
[
∇x`(ztest; θ

[t1]
−j )−∇x`(ztest; θ

[t1])
]

=
[
∇x`(ztest; θ

[t2]
−j )−∇x`(ztest; θ

[t1]
−j )

]
−
[
∇x`(ztest; θ

[t2])−∇x`(ztest; θ
[t1])

]
. (90)

This completes the proof.

This theorem shows how TIM measures the impact of excluding a training data zj on the gradient of
the loss with respect to the input features at the test point ztest over the interval [t1, t2]. This provides
insights into how the importance of different input features evolves during training and how individual
training data influences this feature importance.

C.4 TIM FOR PARAMETER IMPORTANCE

Theorem C.4 (TIM for Parameter Importance). Given a model with parameters θ ∈ Rp, a time
window [t1, t2], a training data zj , and the i-th standard basis vector ei ∈ Rp, the TIM with query
function q(t) = ei is exactly:

Q
[t1,t2]
−j (q) =

(
θ

[t2]
−j,i − θ

[t1]
−j,i

)
−
(
θ

[t2]
i − θ[t1]

i

)
, (91)

where θ[t]
−j,i denotes the i-th component of the model parameters at time t when trained without data

zj , and θ[t]
i denotes the i-th component of the parameters when trained with all data.

Proof. We start with the definition of the query-based TIM:

Q
[t1,t2]
−j (q) =

〈
q(t2),∆θ

[t2]
−j

〉
−
〈
q(t1),∆θ

[t1]
−j

〉
, (92)

where ∆θ
[t]
−j = θ

[t]
−j − θ[t].

Substituting q(t) = ei, which is constant over time:

Q
[t1,t2]
−j (q) =

〈
ei, θ

[t2]
−j − θ

[t2]
〉
−
〈
ei, θ

[t1]
−j − θ

[t1]
〉
. (93)

Since ei is the i-th standard basis vector, the inner product selects the i-th component:

Q
[t1,t2]
−j (q) =

(
θ

[t2]
−j,i − θ

[t2]
i

)
−
(
θ

[t1]
−j,i − θ

[t1]
i

)
=
(
θ

[t2]
−j,i − θ

[t1]
−j,i

)
−
(
θ

[t2]
i − θ[t1]

i

)
. (94)

This matches the expression in Eq. (91), completing our proof.
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This theorem allows us to isolate the influence of a training data zj on specific model parameters
over the interval [t1, t2]. A large absolute value of Q[t1,t2]

−j (q) indicates that data zj has a significant
influence on the i-th parameter during the specified time window. This is particularly useful for
identifying which parameters are most affected by specific training data and understanding the
localized effects of training data on the model.

By analyzing how Q
[t1,t2]
−j (q) changes over different time windows, we can understand how the

influence of training data on specific parameters evolves throughout the training process.
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D IMPLEMENTATION OF TIM

D.1 STANDARD IMPLEMENTATION OF TIM

ComputingQ[t1,t2]
−j (q) for any query vector and training window without retraining is computationally

attractive, but naive implementation faces significant challenges: 1) prohibitive storage overhead
for tracking parameters and gradients across all training steps, 2) computational cost of Hessian
matrix operations, and 3) complex influence propagation requiring intensive matrix calculations
across multiple time steps.

We address these challenges with three technical innovations. For the storage challenge, we implement
a selective window storage strategy that stores information only within user-specified windows W
during SGD training. To avoid costly Hessian computations, we employ Hessian-vector product Pearl-
mutter (1994)that eliminates the need for explicit Hessian matrices. For the third challenge, we
develop a reverse-mode recursive propagation algorithm using auxiliary variables to track influence
propagation without explicitly computing ∆θ

[t1,t2]
−j .

The implementation of TIM consists of two main algorithms: the data collection process during
training (Algorithm 1) and the efficient influence computation (Algorithm 2).

Model Training During standard SGD training, we strategically collect and store essential informa-
tion {St, ηt, θ[t+1]} required for subsequent influence analysis. As shown in Algorithm 1, this process
is integrated seamlessly with standard training procedures while minimizing storage overhead.

The key feature is its selective storage strategy controlled by window W , which balances the period
available for influence measurement and storage cost. The optimal W depends on the task. Full-
training storage is essential for optimizing curriculum learning schedules, while targeted windows
covering convergence periods are sufficient for identifying corrupted data (see Table 6).

For scenarios with strict storage constraints, we design a checkpoint-based implementation (Appendix
D.2) that greatly reduces storage to O(Ep) while maintaining accuracy, E is the steps per epoch, and
p is the parameter dimension.

Algorithm 1 Standard Model Training
Require: Training dataset D = {zn}Nn=1,

learning rate ηt, batch size |St|, training
steps T , selectable storage window W

Ensure: Stored information A
1: Initialize model parameters θ[0]

2: Initialize an empty sequence A
3: for t = 0 to T − 1 do
4: St = DataBatch(D, |St|)
5: θ[t+1] = θ[t] − ηt

|St|
∑
i∈St

g(zi; θ
[t])

6: if t ∈W then
7: A[t] = {St, ηt, θ[t+1]}
8: end if
9: end for

10: return A

Algorithm 2 TIM Data Influence Computation
Require: Stored training information A, query

function q, time window [t1, t2], specified data
zj

Ensure: The influence Q of data zj
1: Initialize Q← 0, u[t2−1]

1 ← 0

2: Initialize u[t2−1]
2 ← q(t2)

3: for t = t2 − 1 downto 0 do
4: if j ∈ St then

5: Q← Q+

〈
(u

[t]
2 − u

[t]
1 ),

ηt
|St|

g(zj ; θ
[t])

〉
6: end if
7: u

[t−1]
1 ← u

[t]
1 − ηtH [t]u

[t]
1

8: u
[t−1]
2 ← u

[t]
2 − ηtH [t]u

[t]
2

9: if t = t1 then
10: u

[t−1]
1 ← q(t1)

11: end if
12: end for
13: return Q

Influence Computation Algorithm 2 implements the computation of query-based influence
Q

[t1,t2]
−j (q) in Eq. (11) using the stored training information. The algorithm employs a reverse-time
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recursive propagation approach that avoids explicitly computing the parameter influence ∆θ
[t1,t2]
−j ,

which would be prohibitively expensive for large models.

The algorithm uses u[t]
1 and u[t]

2 , which represent how earlier parameter changes propagate to the query
directions q(t1) and q(t2), respectively. They are recursively updated in reverse time by multiplying
with Pt, which models how parameter changes propagate through the optimization trajectory. When
zj appears in mini-batch St, its gradient is projected onto u[t]

2 − u
[t]
1 , capturing its relative influence

at that step. Appendix E provide a formal proof that Algorithm 2 correctly computes Q[t1,t2]
−j (q) as

defined in Eq. (11).

TIM avoids computing Hessian matrices directly, which would require O(Tp2) operations. p is the
parameter dimension, and T is the number of training steps. Instead, it uses efficient Hessian-vector
products H [t]u = ∇θ〈u, g(z; θ[t])〉 Pearlmutter (1994), reducing cost to O(|St|p) per step.
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D.2 CHECKPOINT-BASED IMPLEMENTATION OF TIM

To balance storage overhead and computational efficiency, we propose a checkpoint-based implemen-
tation of TIM. This implementation significantly reduces storage requirements while maintaining the
ability to compute accurate influence values for any time window.

Instead of storing parameters at every training step, we store checkpoints at regular intervals (e.g.,
epoch boundaries) along with essential training metadata (batch indices and learning rates). When
computing influence for a time window [t1, t2], we efficiently recover necessary parameters by
loading the nearest checkpoint before t1, reconstructing the parameter trajectory up to t2, and storing
intermediate parameters required for influence computation. The checkpoint interval provides a
configurable trade-off between storage overhead and computational cost. More frequent checkpoints
reduce recomputation but increase storage, while fewer checkpoints save storage at the cost of more
recomputation.

Algorithm 3 Training with Checkpoints
Require: Training datasetD = {zn}Nn=1, learn-

ing rate ηt, batch size |St|, training steps T ,
checkpoint interval C

Ensure: Stored checkpoints and metadata M
1: Initialize model parameters θ[0]

2: Initialize metadata storage M ← {} {Store
checkpoints, batch indices, learning rates}

3: for t = 0 to T − 1 do
4: St ← DataBatch(D, |St|)
5: θ[t+1] ← θ[t] − ηt

|St|
∑
i∈St

g(zi; θ
[t])

6: M.indices[t]← St {Store batch indices}

7: M.lr[t]← ηt {Store learning rate}
8: if t mod C = 0 or t = T − 1 then
9: M.checkpoints[t] ← θ[t+1] {Store

checkpoint}
10: end if
11: end for
12: return M

Algorithm 4 TIM Data Influence with Check-
points
Require: Metadata M , query function q, time

window [t1, t2], data zj
Ensure: Estimated influence Q

1: Q← 0, u[t2−1]
1 ← 0, u[t2−1]

2 ← q(t2)
2: c1 ← max{t : t ≤ t1 and t ∈
M.checkpoints} {Find nearest checkpoint
before t1}

3: θ[c1] ←M.checkpoints[c1]
4: {Compute and store all necessary parame-

ters from checkpoint to t2}
5: Initialize parameter storage P ← {}
6: for t = c1 to t2 − 1 do
7: St ←M.indices[t]
8: ηt ←M.lr[t]
9: if t ∈M.checkpoints then

10: θ[t] ←M.checkpoints[t]
11: end if
12: θ[t+1] ← θ[t] − ηt

|St|
∑
i∈St

g(zi; θ
[t])

13: P [t] ← θ[t] {Store parameter for influ-
ence computation}

14: end for
15: for t = t2 − 1 downto t1 do
16: if j ∈M.indices[t] then
17: Q ← Q +〈

(u
[t]
2 − u

[t]
1 ), M.lr[t]

|M.indices[t]|g(zj ;P [t])
〉

18: end if
19: H [t] ←

1
|M.indices[t]|

∑
i∈M.indices[t]∇θg(zi;P [t])

20: u
[t−1]
1 ← u

[t]
1 −M.lr[t]H [t]u

[t]
1

21: u
[t−1]
2 ← u

[t]
2 −M.lr[t]H [t]u

[t]
2

22: if t = t1 then
23: u

[t−1]
1 ← q(t1)

24: end if
25: end for
26: return Q
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E PROOF OF ALGORITHM 2

We begin by recalling the definition:

Q
[t1,t2]
−j (q) = 〈q(t2),∆θ

[t2]
−j 〉 − 〈q(t1),∆θ

[t1]
−j 〉 (95)

where ∆θ
[0,t]
−j ≈

∑t−1
s=0

(∏t−1
k=s+1 Pk

)
1̃

[s]
j , and Pt = I − ηtH [t], 1̃[t]

j = 1j∈St

ηt
|St|g(zj ; θ

[t]).

Note that Pt is self-adjoint matrix, adhering to 〈x, Pty〉 = 〈Ptx, y〉 for all vectors x, y.

According to the update rules for u1 and u2 in the algorithm:

u
[t−1]
i = u

[t]
i − ηtH

[t]u
[t]
i = (I − ηtH [t])u

[t]
i = Ptu

[t]
i , i ∈ {1, 2} (96)

By recursive application of this update rule, we obtain for s < t:

u
[s]
i =

(
t−1∏

k=s+1

Pk

)
u

[t]
i , i ∈ {1, 2} (97)

According to the accumulation of Q in the algorithm, at each time step t, if j ∈ St, we have:

∆Qt =

〈
(u

[t]
2 − u

[t]
1 ),

ηt
|St|

g(zj ; θ
[t])

〉
(98)

The algorithm initializes u[t2−1]
2 = q(t2) and sets u[t1−1]

1 = q(t1) at time t1. Importantly, u1 is not
updated beyond t1. Using the result from Eq. (97), we can express u[t]

2 and u[t]
1 as:

u
[t]
2 =

t2−1∏
k=t+1

Pkq(t2), for 0 ≤ t < t2 (99)

u
[t]
1 =

{∏t1−1
k=t+1 Pkq(t1) for 0 ≤ t < t1

0 for t1 ≤ t < t2
(100)

Note that u[t]
1 = 0 for t1 ≤ t < t2 because u1 is not updated beyond t1, effectively removing its

contribution to ∆Qt in this range.

Substituting these expressions into Eq. (98):

∆Qt =


〈∏t2−1

k=t+1 Pkq(t2)−
(∏t1−1

k=t+1 Pkq(t1)
)
, 1̃

[t]
j

〉
for 0 ≤ t < t1〈∏t2−1

k=t+1 Pkq(t2), 1̃
[t]
j

〉
for t1 ≤ t < t2

(101)

The total Q is the sum of all ∆Qt: Q =
∑t2−1
t=0 ∆Qt.

Expanding this sum and recalling that Pt is self-adjoint, we get:

Q =

〈
q(t2),

t2−1∑
t=0

(
t2−1∏
k=t+1

Pk

)
1̃

[t]
j

〉
−

〈
q(t1),

t1−1∑
t=0

(
t1−1∏
k=t+1

Pk

)
1̃

[t]
j

〉
(102)

Note that u[t]
2 contributes to the first term over the entire interval [0, t2), while u[t]

1 only contributes
to the second term over [0, t1). This distinction arises from the algorithm’s design, where u1 is not
updated beyond t1.

Combined Eq. (102) are precisely the definitions of ∆θ
[t2]
−j and ∆θ

[t1]
−j , we have:

Q = 〈q(t2),∆θ
[t2]
−j 〉 − 〈q(t1),∆θ

[t1]
−j 〉 = Q

[t1,t2]
−j (q) (103)

Thus, we have rigorously demonstrated that the algorithm’s output Q is equivalent to the defined
Q

[t1,t2]
−j (q) in Eq. (95) under the stated assumption on ηt.
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F EXPERIMENTAL SUPPLEMENT

F.1 EXPERIMENTAL SETUP

Experiments were conducted on eight NVIDIA RTX A5000 GPUs (24GB each), dual Intel Xeon
Gold 6342 CPUs (2.80 GHz, 96 cores), and 503GB RAM. Implementation uses Ubuntu 22.04.3
LTS, PyTorch v2.4.1, CUDA 12.4, and Python 3.11.9. All results are reported as mean ± standard
deviation over 16 runs with different random seeds.

Datasets We employed four diverse datasets spanning various domains and complexities to evaluate
the robustness and generalizability of TIM.

• Adult Dua & Graff (2019): A tabular dataset with 48,842 instances and 14 features.

• 20 Newsgroups Lang (1995): A text classification dataset. Text data is converted to TF-IDF
vectors, and stop words are removed for cleaner feature representation.

• IMDB Movie Reviews Maas et al. (2011): A sentiment analysis dataset containing 50,000
movie reviews with binary sentiment labels (positive/negative). Reviews are tokenized using
WordPiece tokenization and truncated to a maximum sequence length of 512 tokens.

• MNIST LeCun et al. (2010): An image dataset with 70,000 grayscale images across 10
classes. We use a binary task distinguishing digits ‘1’ and ‘7’. Each image is 28× 28 pixels
and normalized.

• EMNIST Cohen et al. (2017): An image dataset containing 131,600 images across 47
classes. Each image is 28× 28 pixels and is normalized for consistency.

Model Architectures We evaluated TIM using different model architectures of varying complexity.

• BERT Devlin et al. (2019): For sentiment analysis on IMDB, we use BERT-base-uncased
as the pre-trained model with 110 million parameters. The model consists of 12 transformer
layers with 768 hidden dimensions and 12 attention heads.

• Vision Transformer (ViT): A compact vision transformer model with approximately 1.8
million parameters. Vision transformer adopts a multi-layer transformer architecture with
self-attention and MLP blocks, introducing substantial depth and non-linearity. Unlike
CNNs, its global receptive field and parameter-sharing across layers make optimization
highly non-convex.

• Convolutional Neural Network (CNN): This architecture is used for image datasets like
MNIST and EMNIST. It consists of two convolutional layers, with 32 and 64 filters, re-
spectively, each followed by ReLU activation and max-pooling. The final output from
the convolutional layers is flattened and passed through a linear layer to output a binary
classification value.

• Logistic Regression (LR): Implemented as a single-layer neural network without hidden
layers. The input dimension is flattened to accommodate various input shapes.

• Deep Neural Network (DNN): The architecture comprises two hidden layers, each with
eight units followed by a ReLU activation function. The second layer outputs a single value
for binary classification. The input is flattened, similar to logistic regression.

For non-image data like Adult and 20 Newsgroups, the input is a vector, while image data like
MNIST and EMNIST is reshaped into a single dimension for LR and DNN models. The CNN
processes image data in its original 2D format. All these models output a single value and use binary
cross-entropy loss with logits for classification, with input/output dimensions adapted to each dataset.

Compared Methods We compare TIM against the following influence measurement methods.

• Leave-One-Out (LOO) serves as ground truth, measuring influence by retraining without
data zj . ∆`LOO(zj) = 1

M

∑M
i=1 (`(zi, θ−j)− `(zi, θ)), where zi ∈ Dtest, M is the size of

the test set Dtest = {zi}Mi=1.
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• Influence Functions (IF) Koh & Liang (2017) estimates the influence of removing
a training data zj on the model’s overall loss for a test set Dtest: I(zj , Dtest) =

− 1
M

∑M
i=1∇θ`(zi, θ)TH−1∇θ`(zj , θ), where H is the Hessian of the model’s loss at

θ.
• TracIn Pruthi et al. (2020): TracIn(zj , zi) =

∑K
k=1 ηk∇`(θ[k], zj) · ∇`(θ[k], zi), where

θ[k] is checkpoints of model parameters.
• Lava Just et al. (2023): measures influence through optimal transport cost gradients between

training and validation datasets. The influence of training point (xi, yi) is quantified as:
φLAVA(xi, yi) := h∗i − 1

n−1

∑
j∈[n]\{i} h

∗
j , where (h∗1, . . . , h

∗
n) is part of the optimal dual

solution for the optimal transport problem between training and validation distributions.
• DVEmb Wang et al. (2025b) Estimates influence via an inner product DVEmb(zj , zi) ≈
vTj ∇θ`(zi, θ), where vj ∈ Rd is a low-dimensional vector. The embedding vj is updated
recursively at each step of the training trajectory to capture temporal dynamics.

• TIM measures influence by setting q(t) = 1
M

∑M
i=1∇θ`(zi; θ[t]), measuring

the impact on test set Dtest loss across time window [t1, t2]: Q
[t1,t2]
−j (q) ≈

1
M

∑M
i=1

[
`(zi; θ

[t2]
−j )− `(zi; θ[t1]

−j )
]
− 1

M

∑M
i=1

[
`(zi; θ

[t2])− `(zi; θ[t1])
]
.

Evaluation Metrics To comprehensively evaluate the performance of TIM, we employed a suite of
statistical metrics, each capturing different aspects of the relationship between the compared methods:

• Pearson Correlation Coefficient (r) Pearson (1895): The Pearson correlation coefficient
measures the linear relationship between two variables. For two sets of data, X and Y, it is
calculated as:

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
∑n
i=1(Yi − Ȳ )2

where X̄ and Ȳ are the means of X and Y respectively, and n is the number of data
points. This metric is valuable for identifying direct proportional or inversely proportional
relationships within the data. r ranges from -1 to 1, where 1 indicates a perfect positive
linear relationship, -1 indicates a perfect negative linear relationship, and 0 indicates no
linear relationship.

• Spearman’s Rank Correlation Coefficient (ρ) Spearman (1987): Spearman’s rank corre-
lation assesses monotonic relationships by comparing the rank orders of data points:

ρ = 1−
6
∑n
i=1 d

2
i

n(n2 − 1)

where di is the difference between the ranks of corresponding values Xi and Yi, and n is the
number of data points. ρ ranges from -1 to 1, with values close to 1 or -1 indicating strong
monotonic relationships (positive or negative, respectively) and values close to 0 indicating
weak monotonic relationships.

• Kendall’s Tau (τ ) Kendall (1938): Kendall’s Tau evaluates ordinal relationships by measur-
ing the number of concordant and discordant pairs:

τ =
2(nc − nd)
n(n− 1)

where nc is the number of concordant pairs, nd is the number of discordant pairs, and n is
the total number of pairs. τ ranges from -1 to 1, with 1 indicating perfect agreement between
two rankings, -1 indicating perfect disagreement, and 0 indicating no relationship.

• Jaccard Similarity (J) Jaccard (1912): The Jaccard similarity coefficient compares the
overlap between the top 30% of influential points as determined by different methods:

J(A,B) =
|A ∩B|
|A ∪B|

where A and B are the sets of top 30% influential points identified by different methods. J
ranges from 0 to 1, with 1 indicating perfect overlap between the sets and 0 indicating no
overlap.
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By capturing linear relationships (Pearson), monotonic relationships (Spearman), ordinal relationships
(Kendall’s Tau), and set-based similarities (Jaccard), we ensure a multifaceted evaluation of influence
analysis methods.

To ensure transparency and reproducibility, all code, including detailed hyperparameter settings and
training procedures, is available on our GitHub repository https://anonymous.4open.science/r/TIM-
DE8E/. This repository contains scripts and configuration files that define the exact setup for each
model used in our experiments, encompassing learning rates, batch sizes, regularization strategies,
and any other model-specific training details.

F.2 METHOD OF DATA INFLUENCE DYNAMICS

To investigate how the influence of individual training data evolves, we conduct a systematic analysis
using LOO as ground truth. The method for analyzing data influence dynamics consists of the
following steps:

1. Influence Tracking: We randomly select 256 training data points and track their influence.
For each selected data point zj , we compute its LOO influence on test loss at every epoch by
comparing the standard model trained on the complete dataset and a modified model trained
with identical settings but excluding zj . The LOO influence is quantified as the difference
in test loss between these two models. By repeating this measurement across all training
epochs, we can directly observe how each data point’s influence on model performance
evolves over time, revealing dynamic influence patterns that static methods cannot capture.

2. Standardization: We standardize the influence values separately within each epoch using
scikit-learn’s StandardScaler, which transforms values to have zero mean and unit variance
using the formula z = x−µ

σ , where x is the original influence value, µ is the mean influence
across all data points at that epoch, and σ is the standard deviation. This epoch-wise
standardization preserves relative influence relationships while removing the global declining
scale effect.

3. Time-Varying Pattern Categorization: For each data point, a linear regression is per-
formed on its standardized influence values over time. The slope of this regression line
indicates the overall trend direction (increasing or decreasing influence). The p-value of
the regression determines whether this trend is statistically significant. Training data are
categorized based on their statistical properties, including a) Trend significance (determined
by the p-value) b) Trend direction (positive or negative slope) c) Standard deviation of
influence values (a measure of fluctuation).

4. Pattern Analysis: We calculate the proportion of data in each category and compute the
centroid of each category by averaging the standardized influence values of all data within
that category. These centroids represent the typical trend of each pattern and are plotted in
Figure 4 to visually demonstrate the characteristics of each influence pattern. We also report
the distribution of patterns across datasets and model architectures in Table 4, showing that
influence dynamics vary significantly depending on both model and data modality.

F.3 ADDITIONAL ANALYSIS FOR SECTION 5.1

We evaluate the accuracy of TIM in measuring data influence on test loss by comparing it against
IF, using LOO as ground truth. Since IF operates only on the final model, we use TIM with a
full training window to match its global influence scope and ensure a fair comparison. We report
four agreement metrics with LOO: Pearson and Spearman correlations for linear and monotonic
relationships, respectively, Kendall’s tau for ordinal relationships, and Jaccard similarity for the
top 30% influencers. Detailed metric descriptions are in Appendix F.1. Qualitative scatterplots are
deferred to Appendix F.3.

Table 7 shows several key findings. First, TIM consistently surpasses IF in accuracy across all
datasets and model architectures, achieving correlations of up to 0.99 (Pearson and Spearman) for LR
models. Second, TIM’s advantage is most significant in complex settings like non-convex DNN and
MNIST, where it maintains high correlations while IF’s performance drops significantly. Third, TIM
shows superior robustness and reliability, with lower standard deviations (typically ±0.01) across
runs compared to IF (up to ±0.33).
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Table 7: Comparison of TIM and IF accuracy against LOO across models and datasets. Higher is
better. Means and standard deviations are over 16 random seeds.
Model Dataset Pearson Spearman Kendall’s Tau Jaccard

TIM IF TIM IF TIM IF TIM IF

LR
Adult 0.99±0.01 0.91±0.04 0.99±0.01 0.93±0.02 0.95±0.01 0.79±0.04 0.91±0.04 0.71±0.06

20News 0.99±0.01 0.90±0.13 0.99±0.01 0.94±0.08 0.97±0.01 0.84±0.13 0.95±0.03 0.78±0.16
MNIST 0.93±0.10 0.76±0.14 0.98±0.01 0.61±0.22 0.95±0.02 0.49±0.21 0.91±0.05 0.48±0.14

DNN
Adult 0.95±0.02 0.88±0.04 0.95±0.03 0.86±0.04 0.83±0.06 0.69±0.05 0.75±0.08 0.56±0.07

20News 0.85±0.07 0.77±0.05 0.85±0.08 0.80±0.06 0.71±0.08 0.62±0.07 0.67±0.08 0.55±0.07
MNIST 0.96±0.03 0.75±0.14 0.94±0.06 0.70±0.17 0.83±0.08 0.52±0.14 0.78±0.15 0.52±0.19

Furthermore, we conducted a pattern-specific accuracy analysis comparing TIM against IF. For each
dataset–model pair, we compute the per-example influence on test loss using TIM (full-window) and
IF, and compare it against LOO retraining as ground truth. Each point is a training example; the
x-axis is the LOO loss difference, and the y-axis is the estimated loss difference from TIM (blue) or
IF (red). The dashed line denotes y = x (perfect agreement).

(a) LR, adult (b) LR, 20news (c) LR, MNIST

(d) DNN, adult (e) DNN, 20news (f) DNN, MNIST

Figure 5: TIM and IF influence measurements compared to LOO ground truth. The x-axis shows
LOO values; the y-axis shows the measured influence from TIM (blue) and IF (red). Points closer to
the diagonal (y = x) indicate higher accuracy.

TIM consistently aligns more closely with the y = x line than IF, indicating better alignment with
the ground truth. This advantage is particularly pronounced in complex, non-convex deep learning
settings.

F.4 INFLUENCE DYNAMICS AND SIMILARITY ACROSS TRAINING STAGES

After validating TIM’s accuracy in estimating data influence, we used it to analyze the similarity
of different training stages. The training process was adaptively divided into early, middle, and
late stages using change points identified in the overall training loss trajectory. Specifically, we
modeled the training loss using an exponential decay curve to capture the overall trend and reduce
noise. This approach helps to smooth out fluctuations and emphasize underlying trends in the training
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loss. Then, we compute residuals as the differences between the actual loss values and the values
predicted by the exponential model. These residuals highlight where the actual training deviates
from the predicted trend. Third, we identified peaks in the absolute residuals as change points. A
minimum distance criterion was applied to ensure these change points were evenly distributed across
the training timeline. Finally, based on the identified change points, the training process was divided
into three stages: early, middle, and late. We set time windows based on stages and used TIM to
compute data influence within these windows. We then used Kendall’s tau correlation to quantify the
similarity of influence rankings between stages, with higher values indicating greater stability. Table
8 presents these correlations.

Table 8: Kendall’s Tau correlations across training stages across datasets and models
Model Dataset Early-Middle Early-Late Middle-Late Early-Full Middle-Full Late-Full

LR
Adult 0.64 ± 0.14 0.62 ± 0.08 0.79 ± 0.14 0.81 ± 0.05 0.82 ± 0.12 0.79± 0.05
20News 0.79 ± 0.12 0.78 ± 0.10 0.79 ± 0.09 0.91 ± 0.02 0.88± 0.10 0.86± 0.12
MNIST 0.43 ± 0.14 0.15 ± 0.12 0.35 ± 0.14 0.71 ± 0.08 0.72± 0.09 0.30 ± 0.14
EMNIST 0.73 ± 0.04 0.40 ± 0.16 0.51 ± 0.18 0.83 ± 0.03 0.89± 0.02 0.49 ± 0.17

DNN
Adult 0.61 ± 0.11 0.41 ± 0.15 0.70 ± 0.06 0.7 ± 0.09 0.87 ± 0.04 0.69 ± 0.08
20news 0.66 ± 0.06 0.57± 0.07 0.76 ± 0.05 0.81 ± 0.03 0.82 ± 0.04 0.76 ± 0.04
MNIST 0.56 ± 0.06 0.18 ± 0.21 0.20 ± 0.25 0.74 ± 0.03 0.81± 0.04 0.20 ± 0.25
EMNIST 0.60 ± 0.12 0.40 ± 0.20 0.59 ± 0.21 0.69 ± 0.11 0.84± 0.07 0.63± 0.17

Table 8 shows several key insights. First, data influence evolves significantly throughout training, as
evidenced by the consistently low correlations between early and late stages (Early-Late column).
This challenges the static influence measurement methods and highlights the necessity for time-aware
methods like TIM. Second, mid-training influence strongly correlates with full-training influence
across all datasets and models. This suggests that influential data can be identified before convergence.
Mid-training analysis can approximate full-training data influence, potentially reducing computational
costs. These insights have significant implications for data selection and curriculum learning strategies.
Third, for a given dataset, the patterns of influence ranking changes at different stages are similar
across different model architectures when accounting for standard deviations. This consistency
suggests that the influence of data is largely determined by the inherent dataset rather than being
heavily model-dependent.

F.5 SCALABILITY TO VIT

To evaluate TIM’s scalability, we compare TIM and TracIn using a Vision Transformer (ViT). This
setting significantly exceeds prior influence analysis work in model complexity. We compare TIM
against TracIn Pruthi et al. (2020), a representative method for large-scale, non-convex models.
Traditional approaches such as IF and LOO are excluded due to their prohibitive computational cost
at this scale.

We evaluate corruption detection capability by randomly flipping 2%, 4%, 6%, and 8% of training
labels (160, 320, 480, and 640 corrupted data points, respectively). For each scenario, we train the
ViT model on the corrupted dataset, compute influence scores using last-epoch TIM and TracIn, and
rank data points by their negative influence.

(a) 2% corrupted data (b) 4% corrupted data (c) 6% corrupted data (d) 8% corrupted data

Figure 6: Comparison of TIM and TracIn for corrupted data detection on EMNIST using ViT.
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Figure 6 shows that TIM consistently outperforms TracIn, achieving higher detection accuracy by
identifying more corrupted data when examining the same number of training data. These results
confirm that TIM scales effectively to modern deep architectures and complex datasets, providing
reliable influence analysis beyond existing methods.

F.6 ACCELERATING CONVERGENCE

Data influence analysis can accelerate model convergence through strategic data pruning. We
evaluated this on an MNIST classification task (distinguishing between digits ‘1’ and ‘7’) using a
DNN with 30% flipped labels. We compared three strategies: 1) training with corrupted data; 2) full-
training TIM prune, which removes the bottom 30% influential data points based on global influence
measured over the entire training trajectory; and 3) per-epoch TIM prune, which dynamically removes
the bottom 30% influential data at each epoch.

Figure 7: Comparison of model convergence rates with different pruning strategies on MNIST-DNNs.

As shown in Figure 7, per-epoch TIM pruning achieves 85% accuracy within six epochs, far ahead
of other methods. This reveals key benefits of time-varying influence measurement. First, TIM
enables significantly faster convergence by pruning data at each epoch. Second, the performance
gap between per-epoch TIM and full-training TIM pruning validates our finding that data influence
patterns evolve throughout training, making window-specific analysis superior to global influence
measurement. Third, TIM can be used as an adaptive curriculum learning approach, automatically
identifying optimal training data for each epoch without requiring manual curriculum design.

LLM USAGE DISCLOSURE

We used Large Language Models (LLMs) in limited ways during the preparation of this work.
Specifically, LLMs were employed to polish the language for clarity and conciseness, rephrase
sections to better match the academic style expected in machine learning venues, and assist in
exploring potentially relevant related work by suggesting references and keywords for further manual
inspection. All conceptual contributions, methodological innovations, theoretical analyses, and
experimental designs were conceived and validated solely by the human authors. Similarly, all
implementations, data analyses, and reported results were conducted and verified by the authors.
Suggested related works from LLMs were cross-checked manually to ensure correctness.
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