

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HOW DATA INFLUENCE CHANGES IN TRAINING? TIME-VARYING INFLUENCE MEASUREMENT

Anonymous authors

Paper under double-blind review

ABSTRACT

Existing data influence analyses are static, measuring the global, cumulative influence of training data on fully trained models while leaving dynamic changes during training a black box. We propose Time-varying Influence Measurement (TIM), the first framework measuring how data influence changes during training. TIM operates on arbitrary local windows, estimating how removing a training point within a window affects model parameters, and then projects these parameter deviations onto task-relevant functional responses (e.g., test loss) via query vectors. We establish theoretical error bounds under non-convex and non-converged conditions. Experiments show that: 1) TIM estimates loss changes more accurately than prior methods and closely matches Leave-One-Out (LOO) retraining; 2) Data influence is time-varying, exhibiting different patterns including Early Influencers, Late Bloomers, Stable Influencers, and Highly Fluctuating patterns; 3) Global or longer windows are not necessarily better, as small-window TIM achieves better performance in corrupted data identification while reducing cost by 95%.

1 INTRODUCTION

Modern machine learning systems are trained on massive datasets of different quality. Understanding *which* training data matter, *when* they matter during training, and *how* they affect the model, is important for building trustworthy, efficient, and interpretable Artificial Intelligence (AI) systems. However, most existing influence analyses Koh & Liang (2017); Ghorbani & Zou (2019) are *static*: they estimate a single, aggregated/average influence of training data on a fully trained model, leaving how data influence changes during training unexplored.

Current methods have fundamental limitations for measuring time-varying influence dynamics. Leave-One-Out retraining (LOO) provides a gold standard but is computationally infeasible at scale. Influence Functions (IF) Koh & Liang (2017); Guo et al. (2021) assume an optimal point, which is fragile in non-convex, non-converged scenarios Basu et al. (2021); Bae et al. (2022). Custom scoring methods compute task-related scores during training but fail to quantify actual loss changes. For example, Shapley Value methods Ghorbani & Zou (2019) ensure fairness in data valuation tasks by averaging marginal contributions, but only provide *expected utility* rather than true loss changes in a specific run. TracIn Pruthi et al. (2020) similarly uses gradient inner products as a proxy, rather than quantifying true loss changes. These methods fundamentally cannot capture how data influence changes during training, which we term time-varying influence.

It is challenging to measure time-varying influence. First, it is computationally intensive, requiring comparison of model states with and without each data point across training while the model continuously evolves rather than remaining fixed at convergence. Second, a new theoretical framework is needed for analyzing intermediate model states during training, as existing methods rely on model convergence Basu et al. (2021). Third, it is difficult to connect training data, parameter updates, and functional responses (e.g., test loss, predictions) during training, as this requires tracking high-dimensional, time-dependent parameter-to-function mappings.

To address these challenges, we propose Time-varying Influence Measurement (TIM), a novel framework that efficiently quantifies how training data influence changes during training. TIM operates within arbitrary windows of the training process rather than only analyzing the final model. Specifically, TIM first estimates how excluding training data within a window affects model parameters, then projects these parameter deviations onto task-relevant query vectors to measure functional

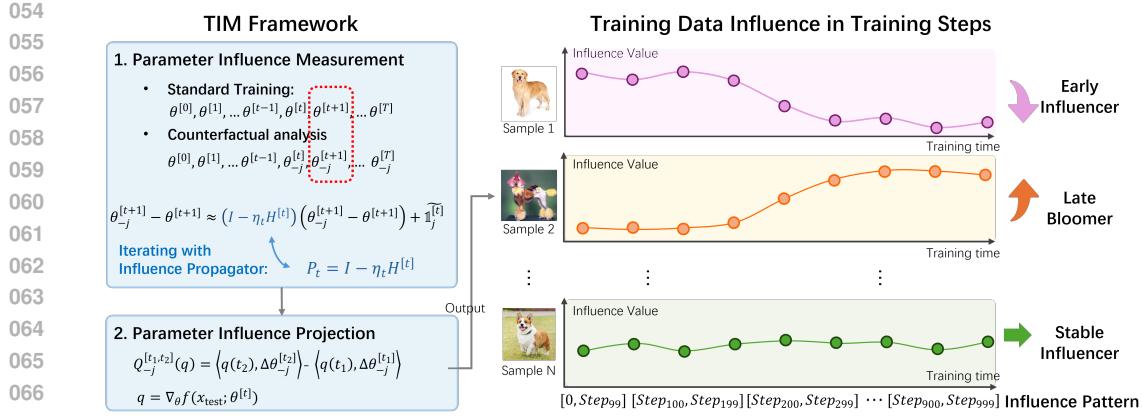


Figure 1: Overview of the Time-Varying Influence Measurement (TIM) Framework. TIM’s two-stage approach: (1) *Parameter Influence Measurement* uses recursive estimation with Influence Propagator $P_t = I - \eta_t H^{[t]}$ to track parameter deviations; 2) *Parameter Influence Projection* maps parameter changes to functional responses (e.g., test loss) via query vectors q . By analyzing data influence across different training windows, TIM enables fine-grained temporal influence analysis.

responses (e.g., test loss). This projection mechanism provides an interpretable and computationally efficient connection between parameter changes and functional responses. Figure 1 illustrates the TIM framework.

Our experiments reveal three key insights: 1) The influence of training data is time-varying. Different data have different patterns: Early Influencers, Late Bloomers, Stable Influencers, and Highly Fluctuating (Figure 4). 2) Global scope or longer analysis windows do not mean better accuracy for data influence analysis. Small-window TIM achieves superior performance with 95% cost reduction (Table 6). 3) TIM matches LOO accuracy while significantly outperforming existing baselines.

Overall, the contributions of this paper are summarized as follows.

- We propose TIM, the first framework to measure time-varying data influence over training windows. TIM connects parameter changes to functional responses via query vectors, enabling understanding how different data contribute to learning at different training stages.
- We establish theoretical error bounds robust to non-convergence and non-convexity without restrictive assumptions required by existing methods (Appendix B).
- Extensive evaluations demonstrate that TIM outperforms baselines while matching LOO accuracy, reveals distinct time-varying influence patterns, and shows that small-window analysis achieves superior performance with cost reduction.

2 RELATED WORKS

Data influence analysis methods can be broadly categorized into 1) LOO approximation methods, which estimate true LOO retraining influence, and 2) *custom scoring* methods that provide heuristic utility (e.g., outlier detection, data pruning) without approximating retraining loss. TIM belongs to the first category, offering LOO estimates with an upper error bound (Appendix B).

LOO retraining is the gold standard for measuring data influence, but is prohibitively expensive, motivating the development of efficient approximation methods. Influence Functions (IFs) Koh & Liang (2017) and recent extensions Guo et al. (2021); Schioppa et al. (2022); Choe et al. (2024); Grosse et al. (2023) approximate LOO influence on the final converged model using Taylor approximations, but their accuracy degrades in non-convex settings or under incomplete convergence Schioppa et al. (2023); Basu et al. (2021). More importantly, recent analyses Bae et al. (2022) highlight that IFs fail to approximate true LOO due to warm-start bias and proximal mismatch. SGD-influence Hara et al. (2019) quantifies loss changes with a recursive approximation of parameter differences of the whole

108 training process, while DVEmb Wang et al. (2025b) uses a similar recursive framework to study the
 109 influence of the data position in the training sequence, but their approach lacks theoretical analysis
 110 and shows poor experimental results. Existing retraining approximation methods focus on explaining
 111 the final trained model, without addressing how influence changes across training windows.

112 Custom influence score methods offer computational efficiency by focusing on practical proxies for
 113 influence. These methods are highly effective for tasks like data valuation and data pruning/cleansing,
 114 as these tasks do not require precise loss changes. Shapley value approaches Ghorbani & Zou (2019);
 115 Jia et al. (2021); Wang et al. (2024; 2025a) and domain-specific adaptations Schoch et al. (2022);
 116 Sun et al. (2023); Wang & Jia (2023); Li & Yu (2023) prioritize theoretical fairness by averaging
 117 over run-specific stochasticity (e.g., data order). They only provide the expected contribution of
 118 a data point to a learning algorithm, not its actual influence in a training process. OFA Li & Yu
 119 (2024) accelerates convergence with optimized sampling, while Data-OOB Kwon & Zou (2023)
 120 avoids retraining by reusing out-of-bag, but it is restricted to bagging ensembles. TracIn Pruthi et al.
 121 (2020) is a representative method that measures influence by accumulating gradient products across
 122 checkpoints. For data pruning/cleansing, GraNd and EL2N scores Paul et al. (2021) prune data by
 123 ranking data according to the expected norm of their loss gradients. YOCO He et al. (2023) extends
 124 EL2N with balanced dataset construction. MoSo Tan et al. (2024) prunes data using the inner product
 125 between the data’s gradient and the average gradient. CGSV Xu et al. (2021) and cosine similarity
 126 methods Fung et al. (2018); Xia et al. (2024) analyze gradient alignment at individual iterations.
 127 These methods do not estimate LOO retraining loss, but are validated by downstream tasks.

128 TIM advances LOO approximation by providing the first framework to estimate LOO retraining
 129 within any training window, capturing the time-varying influence of training data.

131 3 PRELIMINARIES AND PROBLEM FORMULATION

132 **Preliminaries.** Let $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$ denote the space of observations, where $\mathcal{X} \subseteq \mathbb{R}^d$ is the input
 133 space and \mathcal{Y} is the output space. Given a training dataset $D = \{z_i\}_{i=1}^N$ of i.i.d. observations
 134 $z_i = (x_i, y_i) \in \mathcal{Z}$, a model $f : \mathcal{X} \times \Theta \rightarrow \mathcal{Y}$ parameterized by $\theta \in \Theta \subseteq \mathbb{R}^p$, and a loss function
 135 $\ell : \mathcal{Z} \times \Theta \rightarrow \mathbb{R}$, we formulate the learning problem as $\hat{\theta} = \arg \min_{\theta \in \Theta} \frac{1}{N} \sum_{i=1}^N \ell(z_i; \theta)$.

136 Stochastic Gradient Descent (SGD) is a representative method for solving this optimization problem.
 137 Most data influence analysis methods Koh & Liang (2017); Pruthi et al. (2020); Hara et al. (2019)
 138 are built upon SGD, and we also adopt SGD for fair comparison. Let $g(z; \theta) = \nabla_{\theta} \ell(z; \theta)$, and the
 139 initialization parameters is $\theta^{[0]}$. At each step t , a mini-batch $S_t \subseteq \{1, \dots, N\}$ is sampled and SGD
 140 iteratively updates the parameters according to:

$$144 \quad \theta^{[t+1]} = \theta^{[t]} - \frac{\eta_t}{|S_t|} \sum_{i \in S_t} g(z_i; \theta^{[t]}), \quad 0 \leq t \leq T-1, \quad (1)$$

145 where η_t is the learning rate at step t and T is the total number of SGD steps.

146 **Problem Formulation.** Fix a window $[t_1, t_2]$ with $0 \leq t_1 < t_2 \leq T$. Given a training process
 147 $\{\theta^{[t]}\}_{t=0}^T$, let $\{\theta_{-j}^{[t]}\}_{t=0}^T$ be the LOO trajectory obtained by running the same SGD with shared
 148 initialization $\theta_{-j}^{[0]} = \theta^{[0]}$ but excluding z_j from updates. We aim to quantify the time-varying influence
 149 of z_j in $[t_1, t_2]$ on: 1) parameter-trajectory deviation $\Delta\theta_{-j}^{[t_1, t_2]} = (\theta_{-j}^{[t_2]} - \theta_{-j}^{[t_1]}) - (\theta^{[t_2]} - \theta^{[t_1]})$; 2)
 150 functional responses, such as test loss $\Delta\ell_{-j}^{[t_1, t_2]} = (\ell_{\text{test}}(\theta_{-j}^{[t_2]}) - \ell_{\text{test}}(\theta_{-j}^{[t_1]})) - (\ell_{\text{test}}(\theta^{[t_2]}) - \ell_{\text{test}}(\theta^{[t_1]}))$.
 151

152 4 TIME-VARYING INFLUENCE MEASUREMENT (TIM) FRAMEWORK

153 4.1 PARAMETER INFLUENCE MEASUREMENT

154 This section defines parameter influence as trajectory deviation, an approximation to the LOO
 155 retraining influence, measuring the difference in the learning path with and without z_j over $[t_1, t_2]$.

To formalize this, we first define a LOO training process where z_j is excluded. This process starts from the same initialization $\theta_{-j}^{[0]} = \theta^{[0]}$, and updates at each step t as:

$$\theta_{-j}^{[t+1]} = \theta_{-j}^{[t]} - \frac{\eta_t}{|S_t|} \sum_{i \in S_t \setminus \{j\}} g(z_i; \theta_{-j}^{[t]}), \quad 0 \leq t \leq T-1. \quad (2)$$

This allows us to formally define the parameter influence of z_j over $[t_1, t_2]$ as the difference between these two trajectories:

$$\Delta\theta_{-j}^{[t_1, t_2]} = (\theta_{-j}^{[t_2]} - \theta_{-j}^{[t_1]}) - (\theta^{[t_2]} - \theta^{[t_1]}), \quad (3)$$

where $(\theta_{-j}^{[t_2]} - \theta_{-j}^{[t_1]})$ denotes the parameter change on the LOO trajectory when z_j is excluded during $[t_1, t_2]$, and $(\theta^{[t_2]} - \theta^{[t_1]})$ denotes the change on the original trajectory.

Recursive Estimation. Computing $\Delta\theta_{-j}^{[t_1, t_2]}$ directly requires costly model retraining. Instead, we develop a recursive estimation approach that tracks parameter deviations step-by-step. The standard SGD update for step t is:

$$\theta^{[t+1]} = \theta^{[t]} - \frac{\eta_t}{|S_t|} \sum_{i \in S_t} g(z_i; \theta^{[t]}). \quad (4)$$

When excluding data z_j , the parameter update becomes:

$$\theta_{-j}^{[t+1]} = \theta_{-j}^{[t]} - \frac{\eta_t}{|S_t|} \sum_{i \in S_t \setminus \{j\}} g(z_i; \theta_{-j}^{[t]}). \quad (5)$$

For step t , the difference between the standard update and the update excluding z_j is:

$$\theta_{-j}^{[t+1]} - \theta^{[t+1]} = (\theta_{-j}^{[t]} - \theta^{[t]}) - \frac{\eta_t}{|S_t|} \left(\sum_{i \in S_t \setminus \{j\}} g(z_i; \theta_{-j}^{[t]}) - \sum_{i \in S_t} g(z_i; \theta^{[t]}) \right). \quad (6)$$

To handle the gradient differences, we employ a Taylor expansion around $\theta^{[t]}$:

$$g(z_i; \theta_{-j}^{[t]}) - g(z_i; \theta^{[t]}) \approx H_i^{[t]} (\theta_{-j}^{[t]} - \theta^{[t]}), \quad (7)$$

where $H_i^{[t]} = \nabla_\theta^2 \ell(z_i; \theta^{[t]})$ is the Hessian of the loss for z_i . In Section 5.1, our experiments show that our method achieves superior accuracy than baselines, even with this approximation.

Averaging Eq. (7) over S_t and defining $H^{[t]} = \frac{1}{|S_t|} \sum_{i \in S_t} \nabla_\theta^2 \ell(z_i; \theta^{[t]})$, we obtain:

$$\frac{1}{|S_t|} \sum_{i \in S_t} (g(z_i; \theta_{-j}^{[t]}) - g(z_i; \theta^{[t]})) \approx H^{[t]} (\theta_{-j}^{[t]} - \theta^{[t]}). \quad (8)$$

Influence Propagation. Substituting Eq. (8) into Eq. (6) and approximating $H^{[t]} \approx H_{-j}^{[t]}$ (see the full derivation in Appendix A.1), we derive the core recurrence relation:

$$\theta_{-j}^{[t+1]} - \theta^{[t+1]} \approx (I - \eta_t H^{[t]}) (\theta_{-j}^{[t]} - \theta^{[t]}) + \mathbf{1}_{j \in S_t} \frac{\eta_t}{|S_t|} g(z_j; \theta^{[t]}), \quad (9)$$

where $\mathbf{1}_{j \in S_t}$ is an indicator function that equals 1 if $j \in S_t$, otherwise 0.

We define $P_t := I - \eta_t H^{[t]}$ as **Influence Propagator**, which characterizes how influence propagates through training steps. This recurrence reveals that parameter deviation at step $t+1$ comprises two components: 1) historical influence, which is the previous deviation $(\theta_{-j}^{[t]} - \theta^{[t]})$ propagated forward and modulated by P_t ; 2) instantaneous influence, which is new contribution $\tilde{\mathbf{1}}_j^{[t]} = \mathbf{1}_{j \in S_t} \frac{\eta_t}{|S_t|} g(z_j; \theta^{[t]})$ from z_j at the current step.

Final Estimator. Recursively applying the influence propagation Eq. (9) over the training window $[t_1, t_2]$ and accounting for accumulated influence before t_1 (complete derivation in Appendix A.2), we obtain our estimator:

$$\widehat{\Delta\theta}_{-j}^{[t_1, t_2]} = \left(\prod_{k=t_1}^{t_2-1} P_k - I \right) \left(\sum_{t=0}^{t_1-1} \left(\prod_{k=t+1}^{t_1-1} P_k \right) \tilde{\mathbf{1}}_j^{[t]} \right) + \sum_{t=t_1}^{t_2-1} \left(\prod_{k=t+1}^{t_2-1} P_k \right) \tilde{\mathbf{1}}_j^{[t]}. \quad (10)$$

To validate the robustness of this estimator, we provide a theoretical error bound in Appendix B. Our analysis confirms the error holds for non-convex settings without requiring model convergence, and is controlled by key training parameters like the learning rate and Hessian smoothness, making it broadly applicable to modern deep learning. Our experiments in Section 5 also confirm this result and show superior accuracy compared to baselines.

4.2 INFLUENCE PROJECTION USING QUERY VECTORS

While Section 4.1 quantifies how training data affects *model parameters*, it does not directly reveal the influence on *model functional responses*, such as test loss, predictions, or feature importance. To bridge this gap, we introduce a projection-based mechanism that connects parameter changes to functional responses through query vectors. This approach is grounded in a well-established principle that small parameter changes lead to approximately linear changes in model outputs Hampel (1974); Hara et al. (2019). It is the foundation of influence function Koh & Liang (2017), and has been empirically validated in various deep learning scenarios Park et al. (2023); Ilyas et al. (2022). This enables us to predict functional changes from parameter deviations via directional derivatives, which serve as our query vectors.

A query vector $q(t) \in \mathbb{R}^p$ encodes the sensitivity of a specific model response to parameter changes. It defines a direction in parameter space, and the inner product $\langle q(t), \Delta\theta \rangle$ measures how much the parameter change $\Delta\theta$ projects onto this response-relevant direction.

Definition 4.1 (Query-based TIM). Let $q : [0, T] \rightarrow \mathbb{R}^p$ be a query function that maps time t to a query vector $q(t) \in \mathbb{R}^p$. The query-based TIM for a training data z_j over the time window $[t_1, t_2]$ is defined as:

$$Q_{-j}^{[t_1, t_2]}(q) = \langle q(t_2), \Delta\theta_{-j}^{[t_2]} \rangle - \langle q(t_1), \Delta\theta_{-j}^{[t_1]} \rangle, \quad (11)$$

where $\langle \cdot, \cdot \rangle$ denotes the standard inner product in \mathbb{R}^p , and $\Delta\theta_{-j}^{[t]} = \Delta\theta_{-j}^{[0, t]}$ for brevity.

This definition provides a versatile framework for analyzing various model functional responses (e.g., test loss, predictions) through different q . For example, using the test loss gradient, $q(t) = \nabla_{\theta} \ell(z_{\text{test}}; \theta^{[t]})$, we have:

$$\begin{aligned} Q_{-j}^{[t_1, t_2]}(q) &= \langle \nabla_{\theta} \ell(z_{\text{test}}; \theta^{[t_2]}), \Delta\theta_{-j}^{[t_2]} \rangle - \langle \nabla_{\theta} \ell(z_{\text{test}}; \theta^{[t_1]}), \Delta\theta_{-j}^{[t_1]} \rangle \\ &\approx [\ell(z_{\text{test}}; \theta_{-j}^{[t_2]}) - \ell(z_{\text{test}}; \theta_{-j}^{[t_1]})] - [\ell(z_{\text{test}}; \theta^{[t_2]}) - \ell(z_{\text{test}}; \theta^{[t_1]})]. \end{aligned} \quad (12)$$

This directly approximates the change in test loss difference caused by excluding z_j during $[t_1, t_2]$. Additionally, we can use $q = \nabla_{\theta} f(x_{\text{test}}; \theta^{[t]})$ to measure prediction changes, $q(t) = \nabla_x \nabla_{\theta} \ell(z_{\text{test}}; \theta^{[t]})$ for feature importance, and $q = e_i$ (standard basis vector) for individual parameter importance. Appendix C details how TIM can be applied to diverse functional responses. In this work, we focus on test loss as a representative case, since it directly reflects model generalization and serves as a key benchmark in prior influence analyses.

4.3 IMPLEMENTATION OF TIM

TIM efficiently computes data influence $Q_{-j}^{[t_1, t_2]}(q)$ by running a single backward sweep over the targeted window and using Hessian–vector products (HVPs) only. Table 1 compares TIM with baselines across computational complexity and robustness metrics. TIM achieves superior efficiency while maintaining robustness to non-convex, non-converged training dynamics, making it practical for large-scale applications. Detailed algorithms and implementations are provided in Appendix D.

Table 1: Comprehensive comparison of different data influence analysis methods

Aspect	LOO	IF	TracIn	LAVA	DVEmb	TIM
Computation Cost	$O(NC_{\text{train}})$	$O(p^3)$	$O(KNp)$	$O(NMd)$	$O(S_t Tp^2)$	$O(w S_t p)$
Storage Cost	$O(p)$	$O(p^2)$	$O(KNp)$	$O(NM)$	$O(S_t T\tilde{p})$	$O(w(S_t + p))$
Robustness to Non-convergence	Yes	No	Yes	Yes	Yes	Yes
Robustness to Non-convexity	Yes	No	Yes	Yes	Yes	Yes
Approximation LOO	Yes	Yes	No	No	Yes	Yes

T = total steps, p = param dimension, \tilde{p} = projection dim., d = projection dim., $|S_t|$ = batch size, K = # checkpoints, w = window size.

270 5 EXPERIMENTS
271272 We evaluate TIM by first evaluating its accuracy (Sections 5.1 and 5.2), analyzing its ability to capture
273 evolving data influence (Section 5.3, secpattern and Appendix F.4), and demonstrating the significant
274 benefits of TIM’s unique time-varying perspective in downstream applications (Section 5.5). Full
275 specifications and baseline method descriptions are provided in Appendix F.1.
276277 5.1 ACCURACY OF INFLUENCE MEASUREMENT
278279 We evaluate TIM’s accuracy by comparing its influence estimates against the LOO gold standard
280 across two scenarios: 1) **global analysis** over the entire training trajectory $[0, T]$, and 2) **local**
281 **analysis** over temporal windows $[t_1, t_2]$. We compare TIM against Influence Functions (IF) Koh &
282 Liang (2017), LAVA Just et al. (2023), and DVEmb Wang et al. (2025b) using four complementary
283 metrics: Pearson and Spearman correlations (linear and monotonic consistency), Kendall’s τ (ordinal
284 ranking), and Jaccard similarity on the top 30% most influential points.
285286 **Comparison of Global Analysis.** We first examine each method’s ability to approximate LOO loss
287 changes over the whole training trajectory $[0, T]$ for MNIST-DNN across 20 epochs. TIM consistently
288 achieves near-perfect agreement with LOO retraining (correlations > 0.9), significantly higher than
289 other baselines. In contrast, IF and DVEmb achieve only moderate agreement, while LAVA fails
290 with near-zero correlation due to its custom scoring rather than retraining-based influence estimates.
291 These results validate TIM’s recursive estimation approach and demonstrate that TIM can accurately
292 estimate global influence.
293294 Table 2: Correlation with LOO for **global influence analysis**.
295

Method	Pearson	Spearman	Kendall’s Tau	Jaccard (Top 30%)
IF Koh & Liang (2017)	0.75 ± 0.14	0.70 ± 0.17	0.52 ± 0.14	0.52 ± 0.19
DVEmb Wang et al. (2025b)	0.58 ± 0.12	0.49 ± 0.29	0.35 ± 0.21	0.34 ± 0.20
LAVA Just et al. (2023)	-0.07 ± 0.10	0.03 ± 0.10	0.02 ± 0.07	0.22 ± 0.06
TIM	0.96 ± 0.03	0.94 ± 0.06	0.83 ± 0.08	0.78 ± 0.15

300 **Comparison of Local Window Analysis.** We next examine how well methods capture time-varying
301 influence within local windows. Since IF, LAVA, and DVEmb only produce global influence, we
302 construct their local estimates by differencing the loss between $[0, t_2]$ and $[0, t_1]$. While this is not
303 their original design, it provides the fairest possible adaptation for local settings; otherwise, these
304 methods cannot be applied. In contrast, TIM directly estimates influence within a window $[t_1, t_2]$.
305 We evaluate on 21 consecutive windows $[e, e+1]$ ($e = 0, \dots, 20$) and report the average correlation
306 with LOO. TIM again shows superior performance with both high accuracy, whereas IF and DVEmb
307 remain moderate, and LAVA remains ineffective. This confirms that TIM achieves accurate influence
308 estimates within local windows.
309310 Table 3: Correlation with LOO for **local analysis** (averaged over 21 per-epoch windows $[e, e+1]$).
311

Method	Pearson	Spearman	Kendall’s Tau	Jaccard (Top 30%)
IF Koh & Liang (2017)	0.70 ± 0.02	0.65 ± 0.02	0.48 ± 0.01	0.50 ± 0.03
DVEmb Wang et al. (2025b)	0.56 ± 0.02	0.48 ± 0.05	0.35 ± 0.03	0.35 ± 0.04
LAVA Just et al. (2023)	-0.06 ± 0.01	0.05 ± 0.01	0.04 ± 0.02	0.21 ± 0.01
TIM	0.95 ± 0.01	0.93 ± 0.01	0.81 ± 0.02	0.77 ± 0.02

312 5.2 SCALABILITY TO LARGE-SCALE MODELS
313314 **Corrupted data detection.** To evaluate TIM on large-scale models, we conduct experiments on
315 BERT-IMDB sentiment classification with 50% randomly flipped labels. We measure the precision
316 of identifying corrupted data among the worst X% ranked points ($X = 20, 30, 40, 50$) across training
317 epochs (Figure 2).
318

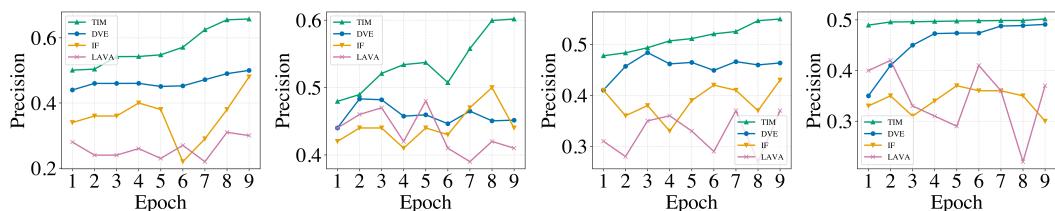


Figure 2: Precision of corrupted data detection on BERT-IMDB (left to right: 20%, 30%, 40%, 50% selection thresholds).

Across all thresholds, TIM consistently achieves the highest precision and shows steady improvements over training. The advantage is most evident under strict settings ($X = 20$), where detection is most difficult, but TIM also maintains strong performance as the threshold expands to 50%. DVEmb and IF deliver moderate performance, while LAVA remains consistently lowest, which is consistent with the findings in the benchmark study OpenDataVal Jiang et al. (2023) on noisy-label detection. These results confirm TIM’s robustness and scalability, demonstrating that it remains effective under extreme noise and is well-suited for large-scale, non-convex models such as BERT.

Convergence Acceleration through Data Pruning. Beyond corrupted data detection, we evaluate its effectiveness in accelerating model convergence through data pruning. Using the same BERT-IMDB setup with 50% corrupted labels, we identify the 10% worst-performing data points using different methods and remove them from training. We then measure training loss convergence when training on the pruned datasets (Figure 3).

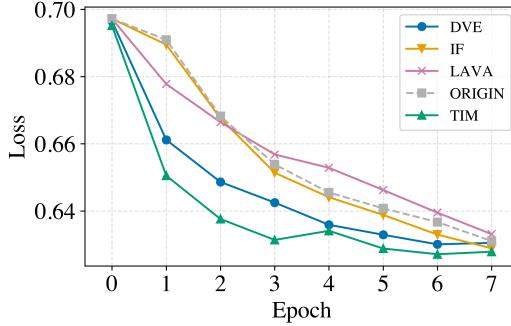


Figure 3: Convergence comparison after pruning corrupted data identified by different methods.

TIM achieves the most significant acceleration in convergence, consistently reaching lower training loss than both the original corrupted dataset and all baseline methods. DVEmb and IF provide moderate improvements, while LAVA yields negligible gains and occasionally slows convergence due to unstable pruning. These results highlight TIM’s practical value in identifying truly harmful training data, enabling more efficient optimization in noisy, large-scale training settings.

5.3 PATTERNS OF DATA INFLUENCE DYNAMICS

While existing methods provide static data influence analysis, our study reveals that training data have different time-varying influence patterns during training. To uncover this, we compute data influence on test loss at each epoch throughout training. This results in a time series of influence values for each data point, capturing its evolving influence on test loss. Full implementation details are provided in Appendix F.2.

As model training progresses, test loss naturally decreases. This causes raw influence values to shrink over time for all training data, masking how relative influence evolves during training. To address this, we standardize the computed influence values at each epoch, preserving relative importance while

removing the global declining scale effect. We then fit linear trends to each standardized time series to analyze the long-term trend. By analyzing trend direction, statistical significance, and temporal variability, we identify four distinct influence patterns (Early Influencers, Late Bloomers, Stable Influencers, and Highly Fluctuating) as shown in Figure 4.

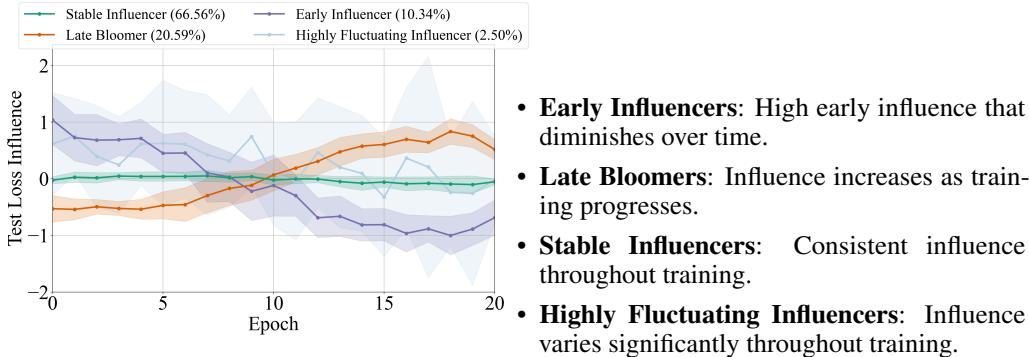


Figure 4: Time-varying influence patterns on MNIST training using DNNs

We further analyzed the pattern distribution across datasets and models, as shown in Table 4. These results show several key insights. 1) Time-varying influence patterns exist across all dataset-model combinations. This nature underscores the limitations of static influence analysis. 2) The presence of Early Influencers and Late Bloomers reveals that models selectively emphasize different training data at different stages. 3) Pattern distributions vary significantly across model architectures and data modalities, emphasizing the necessity of dynamic influence analysis approaches.

Table 4: Distribution of influence dynamic patterns across datasets and models (percentage)

Model	Dataset	Stable Influencer	Early Influencers	Late Bloomers	Highly Fluctuating
LR	Adult	64.75 \pm 7.20	11.67 \pm 3.27	20.15 \pm 5.87	3.42 \pm 1.82
	20News	85.94 \pm 5.38	1.17 \pm 1.28	5.57 \pm 1.26	7.32 \pm 4.24
	MNIST	80.16 \pm 12.10	0.79 \pm 0.96	10.78 \pm 9.35	8.27 \pm 3.36
	EMNIST	75.49 \pm 8.40	0.70 \pm 0.53	13.77 \pm 6.77	10.04 \pm 2.75
DNN	Adult	97.91 \pm 2.66	0.313 \pm 1.12	1.00 \pm 1.55	0.78 \pm 0.89
	20News	79.03 \pm 7.78	8.44 \pm 4.11	11.41 \pm 3.90	1.13 \pm 0.83
	MNIST	66.56 \pm 13.26	10.34 \pm 4.65	20.59 \pm 9.44	2.50 \pm 0.93
	EMNIST	78.16 \pm 14.48	7.09 \pm 7.678	7.47 \pm 9.87	7.28 \pm 3.55
CNN	MNIST	83.76 \pm 19.91	0.34 \pm 0.42	11.74 \pm 16.60	4.15 \pm 3.94
	EMNIST	86.50 \pm 7.50	1.87 \pm 5.15	1.59 \pm 3.91	10.03 \pm 2.48

5.4 PATTERN-SPECIFIC ACCURACY

We conducted a pattern-specific performance analysis comparing TIM with LOO as ground truth using the MNIST with DNNs. We divided training data into Stable, Early, Late, and Highly Fluctuating according to Section 5.3, and report correlations between TIM and LOO within each pattern cluster. Table 5 presents the comparative results across multiple evaluation metrics.

Table 5: Pattern-specific accuracy of TIM approximating LOO.

Data Pattern	Pearson	Spearman	Kendall's Tau	Jaccard (Top 30%)
Stable Influencers	0.95 \pm 0.03	0.96 \pm 0.03	0.87 \pm 0.05	0.82 \pm 0.12
Early Influencers	0.94 \pm 0.04	0.98 \pm 0.01	0.92 \pm 0.03	0.89 \pm 0.07
Late Bloomers	0.98 \pm 0.02	0.98 \pm 0.02	0.90 \pm 0.05	0.85 \pm 0.10
Highly Fluctuating	0.76 \pm 0.18	0.72 \pm 0.18	0.63 \pm 0.21	0.52 \pm 0.34

The pattern-specific analysis reveals three key findings. First, TIM achieves excellent approximation accuracy for LOO across patterns. All correlations for Stable, Early, and Late patterns exceed 0.94, with Late Bloomers showing the highest correlation (0.98). Second, TIM remains positively correlated with LOO even for Highly Fluctuating patterns. Third, Stable/Early/Late patterns exhibit low variance, while Highly Fluctuating patterns show high variance, suggesting sensitivity to seeds and requiring smoothing or multi-seed aggregation. Influence dynamics across training stages are detailed in Appendix F.4.

5.5 DIFFERENT WINDOW SELECTION

To investigate how different windows affect data influence measurement, we evaluated TIM’s ability to identify corrupted data on MNIST binary classification task (digits ‘1’ and ‘7’). We randomly selected and flipped labels for 5%, 10%, 15%, and 20% of training data (corresponding to 12, 25, 38, and 51 data points). For each corruption level, we trained models over 20 epochs and computed influence using different temporal windows: **full**-training TIM, and **epoch**-window TIM (first, middle, and last epochs). We compare against LOO retraining as the gold standard. Table 6 shows each method’s precision, defined as correctly identified flipped labels among the top- k most negatively influential data points, where k is the actual number of corrupted samples.

Table 6: Identification of corrupted data

Flipped	Model	LOO	Full-training TIM	First-epoch TIM	Mid-epoch TIM	Last-epoch TIM
12	LR	10.94 ± 0.90	10.94 ± 0.90	10.56 ± 1.22	10.88 ± 0.78	10.88 ± 0.78
	DNN	8.81 ± 1.98	9.06 ± 1.85	8.25 ± 2.33	8.88 ± 2.09	9.38 ± 1.98
	CNN	10.44 ± 1.32	10.50 ± 1.32	8.75 ± 2.11	10.69 ± 1.16	11.06 ± 1.32
25	LR	23.50 ± 1.00	23.50 ± 1.00	22.56 ± 1.54	23.50 ± 1.06	23.38 ± 1.00
	DNN	19.94 ± 3.77	20.75 ± 3.01	20.31 ± 2.78	20.50 ± 3.22	21.31 ± 3.77
	CNN	21.75 ± 3.11	21.81 ± 3.11	18.44 ± 4.37	22.19 ± 2.81	23.56 ± 3.11
38	LR	36.06 ± 1.14	36.06 ± 1.14	35.38 ± 1.62	35.69 ± 1.69	35.13 ± 1.14
	DNN	32.50 ± 3.72	32.81 ± 3.47	32.19 ± 3.40	32.56 ± 3.61	33.31 ± 3.72
	CNN	34.19 ± 4.17	34.19 ± 4.17	29.75 ± 5.93	34.56 ± 3.98	36.31 ± 4.17
51	LR	48.69 ± 1.16	48.69 ± 1.16	47.94 ± 1.52	46.56 ± 3.12	42.94 ± 1.16
	DNN	43.94 ± 5.20	45.31 ± 3.29	44.13 ± 3.64	45.19 ± 3.30	45.56 ± 5.20
	CNN	46.25 ± 4.35	46.19 ± 4.33	41.50 ± 7.66	47.13 ± 3.35	48.69 ± 4.35

First, TIM closely matches the LOO gold standard across all corruption levels, providing reliable detection without retraining. Second, for convex models (LR), gradient dynamics remain stable, making full-training TIM only marginally better. Third, for non-convex models (CNN, DNN), last-epoch TIM achieves the best or near-best detection while reducing computation by 95% compared to full-training TIM, since its window length is one epoch versus the entire training of 20 epochs. This demonstrates that smaller temporal windows (Last-epoch TIM) can be more efficient and sometimes more effective than analyzing the entire training trajectory (Full-training TIM), challenging the assumption that longer analysis windows necessarily yield better influence estimates.

6 CONCLUSION

We presented TIM, a framework for measuring how training data influence evolves over time. Unlike static methods, TIM approximates LOO within arbitrary training windows and projects parameter deviations onto functional responses via query vectors. Our analysis establishes error bounds that hold under non-convex and non-converged conditions, ensuring theoretical robustness. Experiments show that TIM matches LOO accuracy, reveals distinct temporal patterns, and enables practical gains such as corrupted data detection and accelerated convergence, while reducing computation by 95%.

486
487
ETHICS STATEMENT488
489
490
491
This work complies with the ICLR Code of Ethics. All datasets are publicly available and widely
used benchmarks. No human subjects, private data, or sensitive attributes are involved. We anticipate
no direct ethical risks beyond those generally associated with machine learning research.492
493
REPRODUCIBILITY STATEMENT494
495
496
497
498
Our implementation and scripts are available at <https://anonymous.4open.science/r/TIM-DE8E/>. Section 5 and Appendix F.1 describe datasets, model architectures, and hyperparameters. Proofs of theoretical results appear in Appendix B, and metric definitions are detailed in Appendix F.1. Together, these ensure full reproducibility.499
500
REFERENCES501
502
503
504
Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and Roger B Grosse. If influence functions
are the answer, then what is the question? *Advances in Neural Information Processing Systems*,
35:17953–17967, 2022.505
506
S Basu, P Pope, and S Feizi. Influence functions in deep learning are fragile. In *International
Conference on Learning Representations (ICLR)*, 2021.507
508
509
510
Sang Keun Choe, Hwijeon Ahn, Juhan Bae, Kewen Zhao, Minsoo Kang, Youngseog Chung, Adithya
Pratapa, Willie Neiswanger, Emma Strubell, Teruko Mitamura, et al. What is your data worth to
GPT? LLM-scale data valuation with influence functions. *arXiv preprint arXiv:2405.13954*, 2024.511
512
513
Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. EMNIST: Extending MNIST
to handwritten letters. *Proceedings of the International Joint Conference on Neural Networks*,
2017.514
515
516
517
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.519
520
Dheeru Dua and Casey Graff. UCI machine learning repository, 2019. URL <http://archive.ics.uci.edu/ml>.521
522
523
Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. Mitigating sybils in federated learning
poisoning. *arXiv preprint arXiv:1808.04866*, 2018.524
525
Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning.
In *International Conference on Machine Learning*, pp. 2242–2251. PMLR, 2019.526
527
528
529
Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit
Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large language model generalization
with influence functions. *arXiv preprint arXiv:2308.03296*, 2023.530
531
532
Han Guo, Nazneen Rajani, Peter Hase, Mohit Bansal, and Caiming Xiong. FastIF: Scalable influence
functions for efficient model interpretation and debugging. In *Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing*, pp. 10333–10350, 2021.533
534
535
Frank R Hampel. The influence curve and its role in robust estimation. *Journal of the american
statistical association*, 69(346):383–393, 1974.536
537
Satoshi Hara, Atsushi Nitanda, and Takanori Maehara. Data cleansing for models trained with SGD.
Advances in Neural Information Processing Systems, 32, 2019.538
539
Yang He, Lingao Xiao, and Joey Tianyi Zhou. You only condense once: Two rules for pruning
condensed datasets. *Advances in Neural Information Processing Systems*, 36:39382–39394, 2023.

540 Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry. Data-
 541 models: Predicting predictions from training data. In *Proceedings of the 39th International*
 542 *Conference on Machine Learning*, 2022.

543

544 Paul Jaccard. The distribution of the flora in the alpine zone. 1. *New phytologist*, 11(2):37–50, 1912.

545

546 Ruoxi Jia, Fan Wu, Xuehui Sun, Jiacen Xu, David Dao, Bhavya Kailkhura, Ce Zhang, Bo Li, and
 547 Dawn Song. Scalability vs. utility: Do we have to sacrifice one for the other in data importance
 548 quantification? In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 549 *Recognition*, pp. 8239–8247, 2021.

550

551 Kevin Jiang, Weixin Liang, James Y Zou, and Yongchan Kwon. Opendataval: a unified benchmark
 552 for data valuation. *Advances in Neural Information Processing Systems*, 36:28624–28647, 2023.

553

554 Hoang Anh Just, Feiyang Kang, Tianhao Wang, Yi Zeng, Myeongseob Ko, Ming Jin, and Ruoxi Jia.
 555 Lava: Data valuation without pre-specified learning algorithms. In *The Eleventh International*
 556 *Conference on Learning Representations*, 2023.

557

558 Maurice G Kendall. A new measure of rank correlation. *Biometrika*, 30(1-2):81–93, 1938.

559

560 Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
 561 *International Conference on Machine Learning*, pp. 1885–1894. PMLR, 2017.

562

563 Yongchan Kwon and James Zou. Data-oob: Out-of-bag estimate as a simple and efficient data value.
 564 In *International conference on machine learning*, pp. 18135–18152. PMLR, 2023.

565

566 Ken Lang. Newsweeder: Learning to filter netnews. *International Conference on Machine Learning*,
 567 pp. 331–339, 1995.

568

569 Yann LeCun, Corinna Cortes, Chris Burges, et al. MNIST handwritten digit database. <http://yann.lecun.com/exdb/mnist>, 2010.

570

571 Weida Li and Yaoliang Yu. Robust data valuation with weighted banzhaf values. *Advances in Neural*
 572 *Information Processing Systems*, 36:60349–60383, 2023.

573

574 Weida Li and Yaoliang Yu. One sample fits all: Approximating all probabilistic values simultaneously
 575 and efficiently. *Advances in Neural Information Processing Systems*, 37:58309–58340, 2024.

576

577 Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
 578 Learning word vectors for sentiment analysis. In *Proceedings of the 49th annual meeting of the*
 579 *association for computational linguistics: Human language technologies*, pp. 142–150, 2011.

580

581 Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. Trak:
 582 Attributing model behavior at scale. In *International Conference on Machine Learning*, pp.
 583 27074–27113. PMLR, 2023.

584

585 Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding
 586 important examples early in training. *Advances in Neural Information Processing Systems*, 34:
 587 20596–20607, 2021.

588

589 Barak A Pearlmutter. Fast exact multiplication by the hessian. *Neural computation*, 6(1):147–160,
 590 1994.

591

592 Karl Pearson. Note on regression and inheritance in the case of two parents. *Proceedings of the*
 593 *Royal Society of London*, 58(347-352):240–242, 1895.

594

595 Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
 596 influence by tracing gradient descent. *Advances in Neural Information Processing Systems*, 33:
 597 19920–19930, 2020.

598

599 Andrea Schioppa, Polina Zablotskaia, David Vilar, and Artem Sokolov. Scaling up influence functions.
 600 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pp. 8179–8186, 2022.

594 Andrea Schioppa, Katja Filippova, Ivan Titov, and Polina Zablotskaia. Theoretical and practical
 595 perspectives on what influence functions do. *Advances in Neural Information Processing Systems*,
 596 36:27560–27581, 2023.

597

598 Stephanie Schoch, Haifeng Xu, and Yangfeng Ji. Cs-shapley: class-wise shapley values for data
 599 valuation in classification. *Advances in Neural Information Processing Systems*, 35:34574–34585,
 600 2022.

601 Charles Spearman. The proof and measurement of association between two things. *The American
 602 Journal of Psychology*, 100(3/4):441–471, 1987.

603

604 Qiheng Sun, Xiang Li, Jiayao Zhang, Li Xiong, Weiran Liu, Jinfei Liu, Zhan Qin, and Kui Ren.
 605 Shapleyfl: Robust federated learning based on shapley value. In *Proceedings of the 29th ACM
 606 SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 2096–2108, 2023.

607

608 Haoru Tan, Sitong Wu, Fei Du, Yukang Chen, Zhibin Wang, Fan Wang, and Xiaojuan Qi. Data
 609 pruning via moving-one-sample-out. *Advances in Neural Information Processing Systems*, 36,
 610 2024.

611

612 Jiachen T Wang and Ruoxi Jia. Data banzhaf: A robust data valuation framework for machine
 613 learning. In *International Conference on Artificial Intelligence and Statistics*, pp. 6388–6421.
 614 PMLR, 2023.

615

616 Jiachen T Wang, Prateek Mittal, and Ruoxi Jia. Efficient data shapley for weighted nearest neighbor
 617 algorithms. In *International Conference on Artificial Intelligence and Statistics*, pp. 2557–2565.
 618 PMLR, 2024.

619

620 Jiachen T Wang, Prateek Mittal, Dawn Song, and Ruoxi Jia. Data shapley in one training run. In *The
 621 Thirteenth International Conference on Learning Representations*, 2025a.

622

623 Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less:
 624 selecting influential data for targeted instruction tuning. In *Proceedings of the 41st International
 625 Conference on Machine Learning*, pp. 54104–54132, 2024.

626

627 Xinyi Xu, Lingjuan Lyu, Xingjun Ma, Chenglin Miao, Chuan Sheng Foo, and Bryan Kian Hsiang
 628 Low. Gradient driven rewards to guarantee fairness in collaborative machine learning. *Advances in
 629 Neural Information Processing Systems*, 34:16104–16117, 2021.

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A DERIVATION OF THE PARAMETER INFLUENCE ESTIMATOR
649650 A.1 DERIVATION OF THE ONE-STEP RECURRENCE RELATION (EQ. 9)
651652 We start from Eq. (6), which establishes the relationship:
653

654
$$\theta_{-j}^{[t+1]} - \theta^{[t+1]} = (\theta_{-j}^{[t]} - \theta^{[t]}) - \frac{\eta_t}{|S_t|} \left(\sum_{i \in S_t \setminus \{j\}} g(z_i; \theta_{-j}^{[t]}) - \sum_{i \in S_t} g(z_i; \theta^{[t]}) \right) \quad (13)$$

655

656
$$= (\theta_{-j}^{[t]} - \theta^{[t]}) - \frac{\eta_t}{|S_t|} \left(\sum_{i \in S_t \setminus \{j\}} g(z_i; \theta_{-j}^{[t]}) - \sum_{i \in S_t \setminus \{j\}} g(z_i; \theta^{[t]}) - \mathbf{1}_{j \in S_t} g(z_j; \theta^{[t]}) \right) \quad (14)$$

657

658
$$= (\theta_{-j}^{[t]} - \theta^{[t]}) - \frac{\eta_t}{|S_t|} \left(\sum_{i \in S_t \setminus \{j\}} g(z_i; \theta_{-j}^{[t]}) - \sum_{i \in S_t \setminus \{j\}} g(z_i; \theta^{[t]}) \right) + \frac{\eta_t}{|S_t|} \mathbf{1}_{j \in S_t} g(z_j; \theta^{[t]}) \quad (15)$$

659

660
$$= (\theta_{-j}^{[t]} - \theta^{[t]}) - \frac{\eta_t}{|S_t|} \left(\sum_{i \in S_t \setminus \{j\}} (g(z_i; \theta_{-j}^{[t]}) - g(z_i; \theta^{[t]})) \right) + \frac{\eta_t}{|S_t|} \mathbf{1}_{j \in S_t} g(z_j; \theta^{[t]}), \quad (16)$$

661

662 where $\mathbf{1}_{j \in S_t}$ is an indicator function that equals 1 if $j \in S_t$, otherwise 0.
663664 Using Eq. (7), we have:
665

666
$$\sum_{i \in S_t \setminus \{j\}} (g(z_i; \theta_{-j}^{[t]}) - g(z_i; \theta^{[t]})) \approx \sum_{i \in S_t \setminus \{j\}} H_i^{[t]} (\theta_{-j}^{[t]} - \theta^{[t]}), \quad (17)$$

667

668 Using Eq. (8) and Assumption (A4) detailed in Appendix B, we have:
669

670
$$\sum_{i \in S_t \setminus \{j\}} H_i^{[t]} (\theta_{-j}^{[t]} - \theta^{[t]}) \approx |S_t| H_{-j}^{[t]} (\theta_{-j}^{[t]} - \theta^{[t]}) \approx |S_t| H^{[t]} (\theta_{-j}^{[t]} - \theta^{[t]}). \quad (18)$$

671

672 Combining Eq. (17) and Eq. (18), we have:
673

674
$$\sum_{i \in S_t \setminus \{j\}} (g(z_i; \theta_{-j}^{[t]}) - g(z_i; \theta^{[t]})) \approx |S_t| H^{[t]} (\theta_{-j}^{[t]} - \theta^{[t]}). \quad (19)$$

675

676 Applying Eq. (19) to Eq. (16), we have the final result:
677

678
$$\theta_{-j}^{[t+1]} - \theta^{[t+1]} = (\theta_{-j}^{[t]} - \theta^{[t]}) - \frac{\eta_t}{|S_t|} \sum_{i \in S_t \setminus \{j\}} (g(z_i; \theta_{-j}^{[t]}) - g(z_i; \theta^{[t]})) + \frac{\eta_t}{|S_t|} \mathbf{1}_{j \in S_t} g(z_j; \theta^{[t]}) \quad (20)$$

679

680
$$\approx (\theta_{-j}^{[t]} - \theta^{[t]}) - \frac{\eta_t}{|S_t|} (|S_t| H^{[t]} (\theta_{-j}^{[t]} - \theta^{[t]})) + \frac{\eta_t}{|S_t|} \mathbf{1}_{j \in S_t} g(z_j; \theta^{[t]}) \quad (21)$$

681

682
$$= (\theta_{-j}^{[t]} - \theta^{[t]}) - \eta_t H^{[t]} (\theta_{-j}^{[t]} - \theta^{[t]}) + \frac{\eta_t}{|S_t|} \mathbf{1}_{j \in S_t} g(z_j; \theta^{[t]}) \quad (22)$$

683

684
$$= (I - \eta_t H^{[t]}) (\theta_{-j}^{[t]} - \theta^{[t]}) + \frac{\eta_t}{|S_t|} \mathbf{1}_{j \in S_t} g(z_j; \theta^{[t]}). \quad (23)$$

685

686 This derivation confirms the correctness of Eq. (9), including the last term.
687688 A.2 FROM THE RECURRENCE RELATION TO THE FINAL INFLUENCE ESTIMATOR (EQ. 28)
689690 We start from
691

692
$$\theta_{-j}^{[t+1]} - \theta^{[t+1]} \approx (I - \eta_t H^{[t]}) (\theta_{-j}^{[t]} - \theta^{[t]}) + \mathbf{1}_{j \in S_t} \frac{\eta_t}{|S_t|} g(z_j; \theta^{[t]}), \quad (24)$$

693

694 where $\mathbf{1}_{j \in S_t}$ is an indicator function that equals 1 if $j \in S_t$, otherwise 0. Recursively applying Eq.
695 (9) over the training window $[t_1, t_2]$:
696

697
$$\theta_{-j}^{[t_2]} - \theta^{[t_2]} \approx P_{t_2-1} P_{t_2-2} \dots P_{t_1} (\theta_{-j}^{[t_1]} - \theta^{[t_1]}) + \sum_{t=t_1}^{t_2-1} P_{t_2-1} P_{t_2-2} \dots P_{t+1} \mathbf{1}_j^{[t]}, \quad (25)$$

698

702 where $\tilde{\mathbf{1}}_j^{[t]} = \mathbf{1}_{j \in S_t} \frac{\eta_t}{|S_t|} g(z_j; \theta^{[t]})$. Combining Eq. (3) and Eq. (25), we can get:
 703

$$704 \Delta\theta_{-j}^{[t_1, t_2]} \approx \left(\prod_{k=t_1}^{t_2-1} P_k - I \right) (\theta_{-j}^{[t_1]} - \theta^{[t_1]}) + \sum_{t=t_1}^{t_2-1} \left(\prod_{k=t+1}^{t_2-1} P_k \right) \tilde{\mathbf{1}}_j^{[t]}. \quad (26)$$

708 We use Eq. (26) for the interval $[0, t_1]$ with $\theta_{-j}^{[0]} = \theta^{[0]}$ to get:
 709

$$710 \theta_{-j}^{[t_1]} - \theta^{[t_1]} \approx \sum_{t=0}^{t_1-1} \left(\prod_{k=t+1}^{t_1-1} P_k \right) \tilde{\mathbf{1}}_j^{[t]}. \quad (27)$$

713 Substituting Eq. (27) into Eq. (26), we obtain our final approximation:
 714

$$715 \Delta\theta_{-j}^{[t_1, t_2]} \approx \left(\prod_{k=t_1}^{t_2-1} P_k - I \right) \left(\sum_{t=0}^{t_1-1} \left(\prod_{k=t+1}^{t_1-1} P_k \right) \tilde{\mathbf{1}}_j^{[t]} \right) + \sum_{t=t_1}^{t_2-1} \left(\prod_{k=t+1}^{t_2-1} P_k \right) \tilde{\mathbf{1}}_j^{[t]}, \quad (28)$$

718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

756 B ESTIMATION ERROR ANALYSIS WITHOUT CONVEXITY ASSUMPTIONS
757

758 **Theorem B.1** (Error Bound for TIM Parameter Change). *Let $\Delta\theta_{-j}^{[t_1, t_2]}$ be the true influence of
759 excluding data z_j on the model parameters over the interval $[t_1, t_2]$ during SGD training. Let
760 $\widehat{\Delta\theta}_{-j}^{[t_1, t_2]}$ be its approximation using TIM. Under the following assumptions:*

761 (A1) *Lipschitz Continuity of Gradient: The gradient $\nabla\ell(z_i; \theta)$ is Lipschitz continuous with
762 constant L_g : $\|\nabla\ell(z_i; \theta_1) - \nabla\ell(z_i; \theta_2)\| \leq L_g\|\theta_1 - \theta_2\|, \forall \theta_1, \theta_2 \in \Theta, \forall i$.*

763 (A2) *Lipschitz Continuity of Hessian: The Hessian $\nabla^2\ell(z_i; \theta)$ is Lipschitz continuous with
764 constant L_H : $\|\nabla^2\ell(z_i; \theta_1) - \nabla^2\ell(z_i; \theta_2)\| \leq L_H\|\theta_1 - \theta_2\|, \forall \theta_1, \theta_2 \in \Theta, \forall i$.*

765 (A3) *Learning Rate Bound: The learning rate satisfies $\eta_t \leq \frac{1}{L_H}$ for all t .*

766 (A4) *Hessian Approximation Error: The Hessian approximation error is bounded: $\|H^{[t]} -$
767 $H_{-j}^{[t]}\| \leq \epsilon_H$, $\forall t$, where $H_{-j}^{[t]} = \frac{1}{|S_t \setminus \{j\}|} \sum_{i \in S_t \setminus \{j\}} \nabla^2\ell(z_i; \theta^{[t]})$ is the empirical Hessian
768 over the mini-batch.*

769 (A5) *Gradient Norm Bound: For all $\theta \in \Theta$ and all z_i : $\|\nabla\ell(z_i; \theta)\| \leq G$.*

770 (A6) *Parameter Difference Bound: There exists a constant $M > 0$ such that: $\|\theta_{-j}^{[t]} - \theta^{[t]}\| \leq M$,
771 $\forall t \in [t_1, t_2]$.*

772 (A7) *Bounded Hessian Norm: For all $\theta \in \Theta$ and all z_i : $\|\nabla^2\ell(z_i; \theta)\| \leq M_H$.*

773 Then, the expected estimation error is bounded as follows:

$$774 \mathbb{E} \left[\left\| \Delta\theta_{-j}^{[t_1, t_2]} - \widehat{\Delta\theta}_{-j}^{[t_1, t_2]} \right\| \right] \leq \frac{\tilde{B}}{M_H} \left(e^{M_H \eta_{\max}(t_2+1)} + e^{M_H \eta_{\max}(t_1+1)} - 2 \right) \quad (29)$$

775 where: $\eta_{\max} = \max_{t \in [t_1, t_2]} \eta_t$, $\tilde{B} = \frac{L_H M^2}{2} + \epsilon_H M$, n is the total number of data in the dataset.

776 **Proof. Step 1: Derivation of the Error Update Equation**

777 Define the error at iteration t :

$$778 e^{[t]} = (\theta_{-j}^{[t]} - \theta^{[t]}) - \widehat{\Delta\theta}_{-j}^{[0, t]} \quad (30)$$

779 where $\widehat{\Delta\theta}_{-j}^{[0, t]}$ is the approximation of the true parameter change $\Delta\theta_{-j}^{[0, t]}$ using the TIM method.

780 We aim to derive a recursive relation for $e^{[t]}$ and then bound its expected norm.

781 Consider the updates for $\theta^{[t]}$, $\theta_{-j}^{[t]}$, and $\widehat{\theta}_{-j}^{[t]}$:

782 Original SGD Update:

$$783 \theta^{[t+1]} = \theta^{[t]} - \eta_t \tilde{g}^{[t]}, \quad \tilde{g}^{[t]} = \frac{1}{|S_t|} \sum_{i \in S_t} \nabla\ell(z_i; \theta^{[t]}). \quad (31)$$

784 Leave-One-Out SGD Update:

$$785 \theta_{-j}^{[t+1]} = \theta_{-j}^{[t]} - \eta_t \tilde{g}_{-j}^{[t]}, \quad \tilde{g}_{-j}^{[t]} = \frac{1}{|S_t|} \sum_{i \in S_t \setminus \{j\}} \nabla\ell(z_i; \theta_{-j}^{[t]}). \quad (32)$$

786 Approximate Leave-One-Out Update (TIM Method):

$$787 \widehat{\theta}_{-j}^{[t+1]} = \widehat{\theta}_{-j}^{[t]} - \eta_t \left(\tilde{g}^{[t]} + H^{[t]}(\widehat{\theta}_{-j}^{[t]} - \theta^{[t]}) - \mathbf{1}_{\{j \in S_t\}} \frac{1}{|S_t|} \nabla\ell(z_j; \theta^{[t]}) \right). \quad (33)$$

788 We derive the error update equation as follows:

$$789 e^{[t]} - e^{[t-1]} = \eta_{t-1} \delta^{[t-1]}, \quad (34)$$

810 where:

811

$$812 \quad \delta^{[t-1]} = \left(\tilde{g}_{-j}^{[t-1]} - \tilde{g}^{[t-1]} \right) - H^{[t-1]} \widehat{\Delta\theta}_{-j}^{[t-1]} + \mathbf{1}_{\{j \in S_{t-1}\}} \frac{1}{|S_{t-1}|} \nabla \ell(z_j; \theta^{[t-1]}). \quad (35)$$

813

814 or equivalently:

815

$$816 \quad \delta^{[t]} = \left(\tilde{g}_{-j}^{[t]} - \tilde{g}^{[t]} \right) - H^{[t]} \widehat{\Delta\theta}_{-j}^{[0,t]} + \mathbf{1}_{\{j \in S_t\}} \frac{1}{|S_t|} \nabla \ell(z_j; \theta^{[t]}). \quad (36)$$

817

818 **Step 2: Bounding $\|\delta^{[t]}\|$**

819 We decompose $\delta^{[t]}$ and bound each term:

820 **1. Difference in Stochastic Gradients:**

821

$$822 \quad \tilde{g}_{-j}^{[t]} - \tilde{g}^{[t]} = \frac{1}{|S_t|} \left(\sum_{i \in S_t \setminus \{j\}} \left(\nabla \ell(z_i; \theta_{-j}^{[t]}) - \nabla \ell(z_i; \theta^{[t]}) \right) - \mathbf{1}_{\{j \in S_t\}} \nabla \ell(z_j; \theta^{[t]}) \right). \quad (37)$$

823

824 Applying a first-order Taylor expansion to $\nabla \ell(z_i; \theta_{-j}^{[t]})$ for $i \neq j$:

825

$$826 \quad \nabla \ell(z_i; \theta_{-j}^{[t]}) - \nabla \ell(z_i; \theta^{[t]}) = \nabla^2 \ell(z_i; \theta^{[t]}) (\theta_{-j}^{[t]} - \theta^{[t]}) + r_{i,j}^{[t]}, \quad (38)$$

827

828 where, by Assumption (A2):

829

$$830 \quad \|r_{i,j}^{[t]}\| \leq \frac{L_H}{2} \|\theta_{-j}^{[t]} - \theta^{[t]}\|^2 \quad (39)$$

831

832 Thus, we have:

833

$$834 \quad \tilde{g}_{-j}^{[t]} - \tilde{g}^{[t]} = \frac{1}{|S_t|} \sum_{i \in S_t \setminus \{j\}} \nabla^2 \ell(z_i; \theta^{[t]}) (\theta_{-j}^{[t]} - \theta^{[t]}) + r_{i,j}^{[t]} - \mathbf{1}_{\{j \in S_t\}} \nabla \ell(z_j; \theta^{[t]})$$

835

$$836 \quad = \frac{1}{|S_t|} \left(\sum_{i \in S_t \setminus \{j\}} r_{i,j}^{[t]} - \mathbf{1}_{\{j \in S_t\}} \nabla \ell(z_j; \theta^{[t]}) \right) + H_{-j}^{[t]} (\theta_{-j}^{[t]} - \theta^{[t]}) \quad (40)$$

837

838 **2. Hessian Approximation Error:**

839

$$840 \quad \|(H_{-j}^{[t]} - H^{[t]}) (\theta_{-j}^{[t]} - \theta^{[t]})\| \leq \epsilon_H \|\theta_{-j}^{[t]} - \theta^{[t]}\| \quad (41)$$

841

842 according to Assumption (A4).

843 **3. Combining Terms:** Substitute the approximations back into $\delta^{[t]}$:

844

$$845 \quad \delta^{[t]} = \left(\tilde{g}_{-j}^{[t]} - \tilde{g}^{[t]} \right) - H^{[t]} \widehat{\Delta\theta}_{-j}^{[0,t]} + \mathbf{1}_{\{j \in S_t\}} \frac{1}{|S_t|} \nabla \ell(z_j; \theta^{[t]})$$

846

$$847 \quad = \left(\tilde{g}_{-j}^{[t]} - \tilde{g}^{[t]} \right) - H_{-j}^{[t]} (\theta_{-j}^{[t]} - \theta^{[t]}) + \left(H_{-j}^{[t]} - H^{[t]} \right) (\theta_{-j}^{[t]} - \theta^{[t]}) + \mathbf{1}_{\{j \in S_t\}} \frac{1}{|S_t|} \nabla \ell(z_j; \theta^{[t]})$$

848

$$849 \quad = \frac{1}{|S_t|} \sum_{i \in S_t \setminus \{j\}} r_{i,j}^{[t]} + (H_{-j}^{[t]} - H^{[t]}) (\theta_{-j}^{[t]} - \theta^{[t]}) + H^{[t]} ((\theta_{-j}^{[t]} - \theta^{[t]}) - \widehat{\Delta\theta}_{-j}^{[t]})$$

850

$$851 \quad = \frac{1}{|S_t|} \sum_{i \in S_t \setminus \{j\}} r_{i,j}^{[t]} + (H_{-j}^{[t]} - H^{[t]}) (\theta_{-j}^{[t]} - \theta^{[t]}) + H^{[t]} e^{[t]}. \quad (42)$$

852

853 **4. Bounding $\|\delta^{[t]}\|$:**

854

- 855 **• First Term:**

856

$$857 \quad \left\| \frac{1}{|S_t|} \sum_{i \in S_t \setminus \{j\}} r_{i,j}^{[t]} \right\| < \frac{L_H M^2}{2}. \quad (43)$$

858

864 • **Second Term:**

865
$$\left\| (H_{-j}^{[t]} - H^{[t]}) (\theta_{-j}^{[t]} - \theta^{[t]}) \right\| \leq \epsilon_H M. \quad (44)$$
 866

867 • **Third Term:**

868
$$\left\| H^{[t]} e^{[t]} \right\| \leq M_H \|e^{[t]}\|. \quad (45)$$
 869

870 Combining bounds, we can have:

872
$$\|\delta^{[t]}\| < \frac{L_H M^2}{2} + \epsilon_H M + M_H \|e^{[t]}\|. \quad (46)$$
 873

874 **Step 3: Error Update Equation**

875 Using the error update:

877
$$e^{[t]} = e^{[t-1]} - \eta_t \delta^{[t-1]}, \quad (47)$$
 878

879 we have:

880
$$\|e^{[t]}\| \leq \|e^{[t-1]}\| + \eta_t \|\delta^{[t-1]}\| < \|e^{[t-1]}\| + \eta_t \left(\frac{L_H M^2}{2} + \epsilon_H M + M_H \|e^{[t-1]}\| \right). \quad (48)$$
 881

882 Define:

883
$$a_t = 1 + \eta_t M_H, \quad b_t = \eta_t \left(\frac{L_H M^2}{2} + \epsilon_H M \right). \quad (49)$$
 884

885 Then:

886
$$\|e^{[t]}\| < a_t \|e^{[t-1]}\| + b_t. \quad (50)$$
 887

888 **Step 4: Taking Expectations**

889 Taking expectations over the mini-batch sampling:

890
$$\mathbb{E} [\|e^{[t]}\|] < a_t \mathbb{E} [\|e^{[t-1]}\|] + b_t. \quad (51)$$
 891

892 Define:

893
$$\tilde{B} = \frac{L_H M^2}{2} + \epsilon_H M. \quad (52)$$
 894

895 Then:

896
$$\mathbb{E} [\|e^{[t]}\|] < a_t \mathbb{E} [\|e^{[t-1]}\|] + \eta_t \tilde{B}. \quad (53)$$
 897

898 **Step 5: Solving the Recurrence Relation**

899 Unfolding the recurrence:

900
$$\mathbb{E} [\|e^{[t]}\|] \leq \prod_{k=0}^t a_k \cdot \mathbb{E} [\|e^{[0]}\|] + \sum_{s=0}^t \left(\prod_{k=s+1}^t a_k \right) b_s. \quad (54)$$
 901

902 Since $e^{[0]} = 0$, we have:

903
$$\mathbb{E} [\|e^{[t]}\|] \leq \sum_{s=0}^t \left(\prod_{k=s+1}^t a_k \right) b_s. \quad (55)$$
 904

905 Assuming $a_k \leq e^{M_H \eta_{\max}}$, we get:

906
$$\prod_{k=s+1}^t a_k \leq e^{M_H \eta_{\max} (t-s)}. \quad (56)$$
 907

908 Therefore:

909
$$\mathbb{E} [\|e^{[t]}\|] \leq \tilde{B} \eta_{\max} \sum_{s=0}^t e^{M_H \eta_{\max} (t-s)}. \quad (57)$$
 910

918 Approximating the sum:
 919

$$\mathbb{E} \left[\|e^{[t]}\| \right] \leq \tilde{B} \eta_{\max} \cdot \frac{e^{M_H \eta_{\max} (t+1)} - 1}{e^{M_H \eta_{\max}} - 1}. \quad (58)$$

920 For small $M_H \eta_{\max}$, $e^{M_H \eta_{\max}} - 1 \approx M_H \eta_{\max}$, yielding:
 921

$$\mathbb{E} \left[\|e^{[t]}\| \right] \leq \frac{\tilde{B}}{M_H} \left(e^{M_H \eta_{\max} (t+1)} - 1 \right). \quad (59)$$

922 Substitute t with t_1 and t_2 respectively:
 923

$$\mathbb{E} \left[\|e^{[t_2]}\| \right] \leq \frac{\tilde{B}}{M_H} \left(e^{M_H \eta_{\max} (t_2+1)} - 1 \right), \quad (60)$$

$$\mathbb{E} \left[\|e^{[t_1]}\| \right] \leq \frac{\tilde{B}}{M_H} \left(e^{M_H \eta_{\max} (t_1+1)} - 1 \right). \quad (61)$$

934 Step 6: Final Bound

935 The estimation error is:
 936

$$\begin{aligned} \mathbb{E} \left[\left\| \Delta \theta_{-j}^{[t_1, t_2]} - \widehat{\Delta \theta}_{-j}^{[t_1, t_2]} \right\| \right] &\leq \mathbb{E} \left[\|e^{[t_2]}\| \right] + \mathbb{E} \left[\|e^{[t_1]}\| \right] \\ &\leq \frac{\tilde{B}}{M_H} \left(e^{M_H \eta_{\max} (t_2+1)} + e^{M_H \eta_{\max} (t_1+1)} - 2 \right) \end{aligned} \quad (62)$$

937 This completes the proof. □
 938

939 *Remark B.2.* Note that TIM applies to non-converged and non-convex models. The exponential form
 940 arises from the recursive nature of error propagation, where each SGD step compounds previous errors
 941 multiplicatively. Our analysis is the first to guarantee error bounds for non-converged, non-convex
 942 models during any time windows. The bounds are mathematical guarantees for the worst case, and
 943 experimental results show that TIM can achieve near-zero errors empirically.

944 *Remark B.3.* The error bound provides several key insights:
 945

- 946 • The error grows at most exponentially with both t_1 and t_2 , highlighting the challenge
 947 of long-range influence estimation. The impact of t_2 is generally more significant as it
 948 represents the end of the time window.
- 949 • The Hessian approximation error ϵ_H directly impacts the overall error, emphasizing the
 950 importance of accurate Hessian estimation.
- 951 • The maximum learning rate η_{\max} affects the error bound exponentially, suggesting that
 952 smaller learning rates might help control the estimation error.
- 953 • The bound depends on the Lipschitz constants of the gradient and Hessian (L_g and L_H),
 954 indicating that smoother loss landscapes lead to more reliable influence estimates.

955 This theorem provides a theoretical foundation for understanding the limitations of influence estimation
 956 without assuming convexity and guides practical considerations in its application to large-scale
 957 machine learning problems.

958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

972 **C TIM TOOLKIT**
 973

974 This appendix provides a practical analysis and implementation guide for common query vectors
 975 used in TIM. These include gradient-based, prediction-based, and parameter-specific directions that
 976 enable targeted investigation into model functional responses.
 977

978 **C.1 TIM FOR LOSS VALUE**
 979

980 **Theorem C.1** (TIM for Loss Value). *Given a loss function $\ell(z; \theta)$, a time window $[t_1, t_2]$, a training
 981 data z_j , and a test data z_{test} , the TIM with query function $q(t) = (\nabla_{\theta} \ell(z_{\text{test}}; \theta^{[t]})$ can be approximated
 982 as:*

$$983 Q_{-j}^{[t_1, t_2]}(q) \approx [\ell(z_{\text{test}}; \theta_{-j}^{[t_2]}) - \ell(z_{\text{test}}; \theta_{-j}^{[t_1]})] - [\ell(z_{\text{test}}; \theta^{[t_2]}) - \ell(z_{\text{test}}; \theta^{[t_1]})], \quad (63)$$

984 where $\theta_{-j}^{[t]}$ denotes the model parameters at time t when trained without data z_j , and $\theta^{[t]}$ denotes the
 985 parameters when trained with all data.
 986

987 *Proof.* We begin with the definition of the query-based TIM:

$$988 989 Q_{-j}^{[t_1, t_2]}(q) = \langle q(t_2), \Delta\theta_{-j}^{[t_2]} \rangle - \langle q(t_1), \Delta\theta_{-j}^{[t_1]} \rangle \quad (64)$$

990 where $\Delta\theta_{-j}^{[t]} = \theta_{-j}^{[t]} - \theta^{[t]}$.
 991

992 Substituting $q(t) = \nabla_{\theta} \ell(z_{\text{test}}; \theta^{[t]})$ into Eq. (64):

$$993 994 Q_{-j}^{[t_1, t_2]}(q) = \langle \nabla_{\theta} \ell(z_{\text{test}}; \theta^{[t_2]}), \theta_{-j}^{[t_2]} - \theta^{[t_2]} \rangle - \langle \nabla_{\theta} \ell(z_{\text{test}}; \theta^{[t_1]}), \theta_{-j}^{[t_1]} - \theta^{[t_1]} \rangle. \quad (65)$$

995 Apply the first-order Taylor expansion of $\ell(z_{\text{test}}; \theta)$ around $\theta^{[t_2]}$ and $\theta^{[t_1]}$:

$$996 997 \ell(z_{\text{test}}; \theta_{-j}^{[t_2]}) \approx \ell(z_{\text{test}}; \theta^{[t_2]}) + \langle \nabla_{\theta} \ell(z_{\text{test}}; \theta^{[t_2]}), \theta_{-j}^{[t_2]} - \theta^{[t_2]} \rangle \quad (66)$$

$$998 999 \ell(z_{\text{test}}; \theta_{-j}^{[t_1]}) \approx \ell(z_{\text{test}}; \theta^{[t_1]}) + \langle \nabla_{\theta} \ell(z_{\text{test}}; \theta^{[t_1]}), \theta_{-j}^{[t_1]} - \theta^{[t_1]} \rangle \quad (67)$$

1000 Rearranging Eq. (66) and Eq. (67):

$$1001 1002 \langle \nabla_{\theta} \ell(z_{\text{test}}; \theta^{[t_2]}), \theta_{-j}^{[t_2]} - \theta^{[t_2]} \rangle \approx \ell(z_{\text{test}}; \theta_{-j}^{[t_2]}) - \ell(z_{\text{test}}; \theta^{[t_2]}) \quad (68)$$

$$1003 1004 \langle \nabla_{\theta} \ell(z_{\text{test}}; \theta^{[t_1]}), \theta_{-j}^{[t_1]} - \theta^{[t_1]} \rangle \approx \ell(z_{\text{test}}; \theta_{-j}^{[t_1]}) - \ell(z_{\text{test}}; \theta^{[t_1]}) \quad (69)$$

1005 Substituting these approximations back into Eq. (65):

$$1006 1007 Q_{-j}^{[t_1, t_2]}(q) \approx [\ell(z_{\text{test}}; \theta_{-j}^{[t_2]}) - \ell(z_{\text{test}}; \theta^{[t_2]})] - [\ell(z_{\text{test}}; \theta_{-j}^{[t_1]}) - \ell(z_{\text{test}}; \theta^{[t_1]})] \quad (70)$$

$$1008 1009 = [\ell(z_{\text{test}}; \theta_{-j}^{[t_2]}) - \ell(z_{\text{test}}; \theta_{-j}^{[t_1]})] - [\ell(z_{\text{test}}; \theta^{[t_2]}) - \ell(z_{\text{test}}; \theta^{[t_1]})] \quad (71)$$

1010 This completes the proof of Theorem C.1. \square

1011 This theorem provides a foundation for understanding how individual training data affects the model's
 1012 loss on specific test points over time. The right-hand side of Eq. (63) represents the difference
 1013 between the loss changes with and without data z_j , offering a direct measure of the data's influence
 1014 on model performance.

1015 **Extension to Test Sets:** We can extend this concept to consider an entire test set $D_{\text{test}} =$
 1016 $\{z_1, \dots, z_M\}$. Define the query function as:

$$1017 1018 q(t) = \frac{1}{M} \sum_{i=1}^M \nabla_{\theta} \ell(z_i; \theta^{[t]}), \quad z_i \in D_{\text{test}}. \quad (72)$$

1019 With this choice, the TIM approximates the change in average test loss:

$$1020 1021 Q_{-j}^{[t_1, t_2]}(q) \approx \frac{1}{M} \sum_{i=1}^M \left[\ell(z_i; \theta_{-j}^{[t_2]}) - \ell(z_i; \theta_{-j}^{[t_1]}) \right] - \frac{1}{M} \sum_{i=1}^M \left[\ell(z_i; \theta^{[t_2]}) - \ell(z_i; \theta^{[t_1]}) \right] \quad (73)$$

$$1022 1023 = \left[\mathcal{L}_{\text{test}}(\theta_{-j}^{[t_2]}) - \mathcal{L}_{\text{test}}(\theta_{-j}^{[t_1]}) \right] - \left[\mathcal{L}_{\text{test}}(\theta^{[t_2]}) - \mathcal{L}_{\text{test}}(\theta^{[t_1]}) \right],$$

1024 1025 where $\mathcal{L}_{\text{test}}(\theta^{[t]}) = \frac{1}{M} \sum_{i=1}^M \ell(z_i; \theta^{[t]})$ is the average test loss.

1026 C.2 TIM FOR PREDICTION CHANGES
1027

1028 **Theorem C.2** (TIM for Prediction Changes). *Given a model function $f(x; \theta)$, a time window $[t_1, t_2]$,
1029 a training data z_j , and a test input x_{test} , the TIM with query function $q(t) = \nabla_{\theta} f(x_{\text{test}}; \theta^{[t]})$ can be
1030 approximated as:*

$$1031 \quad 1032 \quad Q_{-j}^{[t_1, t_2]}(q) \approx \left[f(x_{\text{test}}; \theta_{-j}^{[t_2]}) - f(x_{\text{test}}; \theta_{-j}^{[t_1]}) \right] - \left[f(x_{\text{test}}; \theta^{[t_2]}) - f(x_{\text{test}}; \theta^{[t_1]}) \right], \quad (74)$$

1033 where $\theta_{-j}^{[t]}$ denotes the model parameters at time t when trained without data z_j , and $\theta^{[t]}$ denotes the
1034 parameters when trained with all data.

1035 *Proof.* We begin with the definition of the query-based TIM:

$$1036 \quad 1037 \quad Q_{-j}^{[t_1, t_2]}(q) = \left\langle q(t_2), \Delta\theta_{-j}^{[t_2]} \right\rangle - \left\langle q(t_1), \Delta\theta_{-j}^{[t_1]} \right\rangle \quad (75)$$

1038 where $\Delta\theta_{-j}^{[t]} = \theta_{-j}^{[t]} - \theta^{[t]}$.

1039 Substituting $q(t) = \nabla_{\theta} f(z_{\text{test}}; \theta^{[t]})$ into Eq. (75):

$$1040 \quad 1041 \quad Q_{-j}^{[t_1, t_2]}(q) = \left\langle \nabla_{\theta} f(z_{\text{test}}; \theta^{[t_2]}), \theta_{-j}^{[t_2]} - \theta^{[t_2]} \right\rangle - \left\langle \nabla_{\theta} f(z_{\text{test}}; \theta^{[t_1]}), \theta_{-j}^{[t_1]} - \theta^{[t_1]} \right\rangle. \quad (76)$$

1042 We apply the first-order Taylor approximation of the model function around $\theta^{[t_2]}$ and $\theta^{[t_1]}$:

$$1043 \quad f(x_{\text{test}}; \theta_{-j}^{[t_2]}) \approx f(x_{\text{test}}; \theta^{[t_2]}) + \langle \nabla_{\theta} f(x_{\text{test}}; \theta^{[t_2]}), \theta_{-j}^{[t_2]} - \theta^{[t_2]} \rangle \quad (77)$$

$$1044 \quad f(x_{\text{test}}; \theta_{-j}^{[t_1]}) \approx f(x_{\text{test}}; \theta^{[t_1]}) + \langle \nabla_{\theta} f(x_{\text{test}}; \theta^{[t_1]}), \theta_{-j}^{[t_1]} - \theta^{[t_1]} \rangle \quad (78)$$

1045 Rearranging these equations:

$$1046 \quad \langle \nabla_{\theta} f(x_{\text{test}}; \theta^{[t_2]}), \theta_{-j}^{[t_2]} - \theta^{[t_2]} \rangle \approx f(x_{\text{test}}; \theta_{-j}^{[t_2]}) - f(x_{\text{test}}; \theta^{[t_2]}) \quad (79)$$

$$1047 \quad \langle \nabla_{\theta} f(x_{\text{test}}; \theta^{[t_1]}), \theta_{-j}^{[t_1]} - \theta^{[t_1]} \rangle \approx f(x_{\text{test}}; \theta_{-j}^{[t_1]}) - f(x_{\text{test}}; \theta^{[t_1]}) \quad (80)$$

1048 Substituting these approximations back into Eq. (76):

$$1049 \quad 1050 \quad Q_{-j}^{[t_1, t_2]}(q) \approx [f(x_{\text{test}}; \theta_{-j}^{[t_2]}) - f(x_{\text{test}}; \theta^{[t_2]})] - [f(x_{\text{test}}; \theta_{-j}^{[t_1]}) - f(x_{\text{test}}; \theta^{[t_1]})] \quad (81)$$

$$1051 \quad 1052 \quad = [f(x_{\text{test}}; \theta_{-j}^{[t_2]}) - f(x_{\text{test}}; \theta_{-j}^{[t_1]})] - [f(x_{\text{test}}; \theta^{[t_2]}) - f(x_{\text{test}}; \theta^{[t_1]})] \quad (82)$$

1053 This completes the proof of Theorem C.2. \square

1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
This theorem provides a formal justification for using TIM to analyze how excluding data z_j influences
the model's predictions on a test input x_{test} over the interval $[t_1, t_2]$. Compared to Theorem C.1, which
focuses on the loss value, Theorem C.2 focuses on specific model outputs. It enables the identification
of influential training data for specific predictions, aids in understanding model functional response
on particular inputs, and can help detect potential outliers or mislabeled data.

C.3 TIM FOR FEATURE IMPORTANCE

1073 **Theorem C.3** (TIM for Feature Importance). *Given a loss function $\ell(z; \theta)$, a training data $z =$
1074 (x, y) , and a test data $z_{\text{test}} = (x_{\text{test}}, y_{\text{test}})$, the TIM for feature importance with query function
1075 $q(t) = \nabla_x \nabla_{\theta} \ell(z_{\text{test}}; \theta^{[t]})$ can be approximated as:*

$$1076 \quad 1077 \quad Q_{-j}^{[t_1, t_2]}(q) \approx [\nabla_x \ell(z_{\text{test}}; \theta_{-j}^{[t_2]}) - \nabla_x \ell(z_{\text{test}}; \theta_{-j}^{[t_1]})] - [\nabla_x \ell(z_{\text{test}}; \theta^{[t_2]}) - \nabla_x \ell(z_{\text{test}}; \theta^{[t_1]})], \quad (83)$$

1078 where $\theta_{-j}^{[t]}$ denotes the model parameters at time t when trained without data z_j , and $\theta^{[t]}$ denotes the
1079 parameters when trained with all data.

1080 *Proof.* We start with the definition of the query-based TIM:
 1081

$$1082 Q_{-j}^{[t_1, t_2]}(q) = \langle q(t_2), \Delta\theta_{-j}^{[t_2]} \rangle - \langle q(t_1), \Delta\theta_{-j}^{[t_1]} \rangle, \quad (84)$$

1083 where $\Delta\theta_{-j}^{[t]} = \theta_{-j}^{[t]} - \theta^{[t]}$.
 1084

1085 Substituting $q(t) = \nabla_x \nabla_\theta \ell(z_{\text{test}}; \theta^{[t]})$:
 1086

$$1087 Q_{-j}^{[t_1, t_2]}(q) = \langle \nabla_\theta \nabla_x \ell(z_{\text{test}}; \theta^{[t_2]}), \theta_{-j}^{[t_2]} - \theta^{[t_2]} \rangle - \langle \nabla_\theta \nabla_x \ell(z_{\text{test}}; \theta^{[t_1]}), \theta_{-j}^{[t_1]} - \theta^{[t_1]} \rangle. \quad (85)$$

1089 We apply the first-order Taylor approximation of $\nabla_x \ell(z_{\text{test}}; \theta)$ around $\theta^{[t_2]}$ and $\theta^{[t_1]}$:
 1090

$$1091 \nabla_x \ell(z_{\text{test}}; \theta_{-j}^{[t_2]}) \approx \nabla_x \ell(z_{\text{test}}; \theta^{[t_2]}) + \nabla_\theta \nabla_x \ell(z_{\text{test}}; \theta^{[t_2]}) (\theta_{-j}^{[t_2]} - \theta^{[t_2]}), \quad (86)$$

$$1093 \nabla_x \ell(z_{\text{test}}; \theta_{-j}^{[t_1]}) \approx \nabla_x \ell(z_{\text{test}}; \theta^{[t_1]}) + \nabla_\theta \nabla_x \ell(z_{\text{test}}; \theta^{[t_1]}) (\theta_{-j}^{[t_1]} - \theta^{[t_1]}). \quad (87)$$

1094 Rearranging these equations:
 1095

$$1096 \langle \nabla_\theta \nabla_x \ell(z_{\text{test}}; \theta^{[t_2]}), \theta_{-j}^{[t_2]} - \theta^{[t_2]} \rangle \approx \nabla_x \ell(z_{\text{test}}; \theta_{-j}^{[t_2]}) - \nabla_x \ell(z_{\text{test}}; \theta^{[t_2]}), \quad (88)$$

$$1098 \langle \nabla_\theta \nabla_x \ell(z_{\text{test}}; \theta^{[t_1]}), \theta_{-j}^{[t_1]} - \theta^{[t_1]} \rangle \approx \nabla_x \ell(z_{\text{test}}; \theta_{-j}^{[t_1]}) - \nabla_x \ell(z_{\text{test}}; \theta^{[t_1]}). \quad (89)$$

1100 Substituting these approximations back into Eq. (85):
 1101

$$1101 Q_{-j}^{[t_1, t_2]}(q) \approx \left[\nabla_x \ell(z_{\text{test}}; \theta_{-j}^{[t_2]}) - \nabla_x \ell(z_{\text{test}}; \theta^{[t_2]}) \right] - \left[\nabla_x \ell(z_{\text{test}}; \theta_{-j}^{[t_1]}) - \nabla_x \ell(z_{\text{test}}; \theta^{[t_1]}) \right] \\ 1103 = \left[\nabla_x \ell(z_{\text{test}}; \theta_{-j}^{[t_2]}) - \nabla_x \ell(z_{\text{test}}; \theta_{-j}^{[t_1]}) \right] - \left[\nabla_x \ell(z_{\text{test}}; \theta^{[t_2]}) - \nabla_x \ell(z_{\text{test}}; \theta^{[t_1]}) \right]. \quad (90)$$

1104 This completes the proof. \square
 1105

1107 This theorem shows how TIM measures the impact of excluding a training data z_j on the gradient of
 1108 the loss with respect to the input features at the test point z_{test} over the interval $[t_1, t_2]$. This provides
 1109 insights into how the importance of different input features evolves during training and how individual
 1110 training data influences this feature importance.
 1111

1112 C.4 TIM FOR PARAMETER IMPORTANCE

1113 **Theorem C.4** (TIM for Parameter Importance). *Given a model with parameters $\theta \in \mathbb{R}^p$, a time
 1114 window $[t_1, t_2]$, a training data z_j , and the i -th standard basis vector $e_i \in \mathbb{R}^p$, the TIM with query
 1115 function $q(t) = e_i$ is exactly:*
 1116

$$1117 Q_{-j}^{[t_1, t_2]}(q) = \left(\theta_{-j, i}^{[t_2]} - \theta_{-j, i}^{[t_1]} \right) - \left(\theta_i^{[t_2]} - \theta_i^{[t_1]} \right), \quad (91)$$

1119 where $\theta_{-j, i}^{[t]}$ denotes the i -th component of the model parameters at time t when trained without data
 1120 z_j , and $\theta_i^{[t]}$ denotes the i -th component of the parameters when trained with all data.
 1121

1122 *Proof.* We start with the definition of the query-based TIM:
 1123

$$1124 Q_{-j}^{[t_1, t_2]}(q) = \langle q(t_2), \Delta\theta_{-j}^{[t_2]} \rangle - \langle q(t_1), \Delta\theta_{-j}^{[t_1]} \rangle, \quad (92)$$

1125 where $\Delta\theta_{-j}^{[t]} = \theta_{-j}^{[t]} - \theta^{[t]}$.
 1126

1127 Substituting $q(t) = e_i$, which is constant over time:
 1128

$$1129 Q_{-j}^{[t_1, t_2]}(q) = \langle e_i, \theta_{-j}^{[t_2]} - \theta^{[t_2]} \rangle - \langle e_i, \theta_{-j}^{[t_1]} - \theta^{[t_1]} \rangle. \quad (93)$$

1130 Since e_i is the i -th standard basis vector, the inner product selects the i -th component:
 1131

$$1132 Q_{-j}^{[t_1, t_2]}(q) = \left(\theta_{-j, i}^{[t_2]} - \theta_i^{[t_2]} \right) - \left(\theta_{-j, i}^{[t_1]} - \theta_i^{[t_1]} \right) = \left(\theta_{-j, i}^{[t_2]} - \theta_{-j, i}^{[t_1]} \right) - \left(\theta_i^{[t_2]} - \theta_i^{[t_1]} \right). \quad (94)$$

1133 This matches the expression in Eq. (91), completing our proof. \square
 1134

1134 This theorem allows us to isolate the influence of a training data z_j on specific model parameters
1135 over the interval $[t_1, t_2]$. A large absolute value of $Q_{-j}^{[t_1, t_2]}(q)$ indicates that data z_j has a significant
1136 influence on the i -th parameter during the specified time window. This is particularly useful for
1137 identifying which parameters are most affected by specific training data and understanding the
1138 localized effects of training data on the model.

1139

1140 By analyzing how $Q_{-j}^{[t_1, t_2]}(q)$ changes over different time windows, we can understand how the
1141 influence of training data on specific parameters evolves throughout the training process.

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188 D IMPLEMENTATION OF TIM
11891190 D.1 STANDARD IMPLEMENTATION OF TIM
1191

1192 Computing $Q_{-j}^{[t_1, t_2]}(q)$ for any query vector and training window without retraining is computationally
1193 attractive, but naive implementation faces significant challenges: 1) prohibitive storage overhead
1194 for tracking parameters and gradients across all training steps, 2) computational cost of Hessian
1195 matrix operations, and 3) complex influence propagation requiring intensive matrix calculations
1196 across multiple time steps.

1197 We address these challenges with three technical innovations. For the storage challenge, we implement
1198 a selective window storage strategy that stores information only within user-specified windows W
1199 during SGD training. To avoid costly Hessian computations, we employ Hessian-vector product Pearl-
1200 mutter (1994) that eliminates the need for explicit Hessian matrices. For the third challenge, we
1201 develop a reverse-mode recursive propagation algorithm using auxiliary variables to track influence
1202 propagation without explicitly computing $\Delta\theta_{-j}^{[t_1, t_2]}$.
1203

1204 The implementation of TIM consists of two main algorithms: the data collection process during
1205 training (Algorithm 1) and the efficient influence computation (Algorithm 2).
1206

1207 **Model Training** During standard SGD training, we strategically collect and store essential information
1208 $\{S_t, \eta_t, \theta^{[t+1]}\}$ required for subsequent influence analysis. As shown in Algorithm 1, this process
1209 is integrated seamlessly with standard training procedures while minimizing storage overhead.

1210 The key feature is its selective storage strategy controlled by window W , which balances the period
1211 available for influence measurement and storage cost. The optimal W depends on the task. Full-
1212 training storage is essential for optimizing curriculum learning schedules, while targeted windows
1213 covering convergence periods are sufficient for identifying corrupted data (see Table 6).

1214 For scenarios with strict storage constraints, we design a checkpoint-based implementation (Appendix
1215 D.2) that greatly reduces storage to $O(Ep)$ while maintaining accuracy, E is the steps per epoch, and
1216 p is the parameter dimension.
1217

1218
1219 **Algorithm 1** Standard Model Training

1220 **Require:** Training dataset $D = \{z_n\}_{n=1}^N$,
1221 learning rate η_t , batch size $|S_t|$, training
1222 steps T , selectable storage window W
1223
Ensure: Stored information A

- 1: Initialize model parameters $\theta^{[0]}$
- 2: Initialize an empty sequence A
- 3: **for** $t = 0$ to $T - 1$ **do**
- 4: $S_t = \text{DataBatch}(D, |S_t|)$
- 5: $\theta^{[t+1]} = \theta^{[t]} - \frac{\eta_t}{|S_t|} \sum_{i \in S_t} g(z_i; \theta^{[t]})$
- 6: **if** $t \in W$ **then**
- 7: $A[t] = \{S_t, \eta_t, \theta^{[t+1]}\}$
- 8: **end if**
- 9: **end for**
- 10: **return** A

1230 **Algorithm 2** TIM Data Influence Computation

1231 **Require:** Stored training information A , query
1232 function q , time window $[t_1, t_2]$, specified data
1233 z_j
Ensure: The influence Q of data z_j

- 1: Initialize $Q \leftarrow 0$, $u_1^{[t_2-1]} \leftarrow 0$
- 2: Initialize $u_2^{[t_2-1]} \leftarrow q(t_2)$
- 3: **for** $t = t_2 - 1$ **downto** 0 **do**
- 4: **if** $j \in S_t$ **then**
- 5: $Q \leftarrow Q + \left\langle (u_2^{[t]} - u_1^{[t]}), \frac{\eta_t}{|S_t|} g(z_j; \theta^{[t]}) \right\rangle$
- 6: **end if**
- 7: $u_1^{[t-1]} \leftarrow u_1^{[t]} - \eta_t H^{[t]} u_1^{[t]}$
- 8: $u_2^{[t-1]} \leftarrow u_2^{[t]} - \eta_t H^{[t]} u_2^{[t]}$
- 9: **if** $t = t_1$ **then**
- 10: $u_1^{[t-1]} \leftarrow q(t_1)$
- 11: **end if**
- 12: **end for**
- 13: **return** Q

1234
1235
1236
1237
1238
1239
1240
1241 **Influence Computation** Algorithm 2 implements the computation of query-based influence
1242 $Q_{-j}^{[t_1, t_2]}(q)$ in Eq. (11) using the stored training information. The algorithm employs a reverse-time

1242 recursive propagation approach that avoids explicitly computing the parameter influence $\Delta\theta_{-j}^{[t_1, t_2]}$,
 1243 which would be prohibitively expensive for large models.
 1244

1245 The algorithm uses $u_1^{[t]}$ and $u_2^{[t]}$, which represent how earlier parameter changes propagate to the query
 1246 directions $q(t_1)$ and $q(t_2)$, respectively. They are recursively updated in reverse time by multiplying
 1247 with P_t , which models how parameter changes propagate through the optimization trajectory. When
 1248 z_j appears in mini-batch S_t , its gradient is projected onto $u_2^{[t]} - u_1^{[t]}$, capturing its relative influence
 1249 at that step. Appendix E provide a formal proof that Algorithm 2 correctly computes $Q_{-j}^{[t_1, t_2]}(q)$ as
 1250 defined in Eq. (11).

1251 TIM avoids computing Hessian matrices directly, which would require $O(Tp^2)$ operations. p is the
 1252 parameter dimension, and T is the number of training steps. Instead, it uses efficient Hessian-vector
 1253 products $H^{[t]}u = \nabla_\theta \langle u, g(z; \theta^{[t]}) \rangle$ Pearlmutter (1994), reducing cost to $O(|S_t|p)$ per step.
 1254

1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

1296
1297

D.2 CHECKPOINT-BASED IMPLEMENTATION OF TIM

1298
1299
1300

To balance storage overhead and computational efficiency, we propose a checkpoint-based implementation of TIM. This implementation significantly reduces storage requirements while maintaining the ability to compute accurate influence values for any time window.

1301
1302
1303
1304
1305
1306
1307
1308

Instead of storing parameters at every training step, we store checkpoints at regular intervals (e.g., epoch boundaries) along with essential training metadata (batch indices and learning rates). When computing influence for a time window $[t_1, t_2]$, we efficiently recover necessary parameters by loading the nearest checkpoint before t_1 , reconstructing the parameter trajectory up to t_2 , and storing intermediate parameters required for influence computation. The checkpoint interval provides a configurable trade-off between storage overhead and computational cost. More frequent checkpoints reduce recomputation but increase storage, while fewer checkpoints save storage at the cost of more recomputation.

1309
1310**Algorithm 3** Training with Checkpoints1311
1312
1313
1314

Require: Training dataset $D = \{z_n\}_{n=1}^N$, learning rate η_t , batch size $|S_t|$, training steps T , checkpoint interval C
Ensure: Stored checkpoints and metadata M

- 1: Initialize model parameters $\theta^{[0]}$
- 2: Initialize metadata storage $M \leftarrow \{\}$ {Store checkpoints, batch indices, learning rates}
- 3: **for** $t = 0$ **to** $T - 1$ **do**
- 4: $S_t \leftarrow \text{DataBatch}(D, |S_t|)$
- 5: $\theta^{[t+1]} \leftarrow \theta^{[t]} - \frac{\eta_t}{|S_t|} \sum_{i \in S_t} g(z_i; \theta^{[t]})$
- 6: $M.\text{indices}[t] \leftarrow S_t$ {Store batch indices}
- 7: $M.\text{lr}[t] \leftarrow \eta_t$ {Store learning rate}
- 8: **if** $t \bmod C = 0$ **or** $t = T - 1$ **then**
- 9: $M.\text{checkpoints}[t] \leftarrow \theta^{[t+1]}$ {Store checkpoint}
- 10: **end if**
- 11: **end for**
- 12: **return** M

1330
13311332
13331334
1335
13361337
1338
13391340
1341
13421343
1344
13451346
1347

1348

1349

Algorithm 4 TIM Data Influence with Checkpoints

Require: Metadata M , query function q , time window $[t_1, t_2]$, data z_j

Ensure: Estimated influence Q

- 1: $Q \leftarrow 0, u_1^{[t_2-1]} \leftarrow 0, u_2^{[t_2-1]} \leftarrow q(t_2)$
- 2: $c_1 \leftarrow \max\{t : t \leq t_1 \text{ and } t \in M.\text{checkpoints}\}$ {Find nearest checkpoint before t_1 }
- 3: $\theta^{[c_1]} \leftarrow M.\text{checkpoints}[c_1]$
- 4: {Compute and store all necessary parameters from checkpoint to t_2 }
- 5: Initialize parameter storage $P \leftarrow \{\}$
- 6: **for** $t = c_1$ **to** $t_2 - 1$ **do**
- 7: $S_t \leftarrow M.\text{indices}[t]$
- 8: $\eta_t \leftarrow M.\text{lr}[t]$
- 9: **if** $t \in M.\text{checkpoints}$ **then**
- 10: $\theta^{[t]} \leftarrow M.\text{checkpoints}[t]$
- 11: **end if**
- 12: $\theta^{[t+1]} \leftarrow \theta^{[t]} - \frac{\eta_t}{|S_t|} \sum_{i \in S_t} g(z_i; \theta^{[t]})$
- 13: $P[t] \leftarrow \theta^{[t]}$ {Store parameter for influence computation}
- 14: **end for**
- 15: **for** $t = t_2 - 1$ **downto** t_1 **do**
- 16: **if** $j \in M.\text{indices}[t]$ **then**
- 17: $Q \leftarrow Q + \left\langle (u_2^{[t]} - u_1^{[t]}), \frac{M.\text{lr}[t]}{|M.\text{indices}[t]|} g(z_j; P[t]) \right\rangle$
- 18: **end if**
- 19: $H^{[t]} \leftarrow \frac{1}{|M.\text{indices}[t]|} \sum_{i \in M.\text{indices}[t]} \nabla_{\theta} g(z_i; P[t])$
- 20: $u_1^{[t-1]} \leftarrow u_1^{[t]} - M.\text{lr}[t] H^{[t]} u_1^{[t]}$
- 21: $u_2^{[t-1]} \leftarrow u_2^{[t]} - M.\text{lr}[t] H^{[t]} u_2^{[t]}$
- 22: **if** $t = t_1$ **then**
- 23: $u_1^{[t-1]} \leftarrow q(t_1)$
- 24: **end if**
- 25: **end for**
- 26: **return** Q

1350 E PROOF OF ALGORITHM 2
13511352 We begin by recalling the definition:
1353

1354
$$Q_{-j}^{[t_1, t_2]}(q) = \langle q(t_2), \Delta\theta_{-j}^{[t_2]} \rangle - \langle q(t_1), \Delta\theta_{-j}^{[t_1]} \rangle \quad (95)$$

1355

1356 where $\Delta\theta_{-j}^{[0, t]} \approx \sum_{s=0}^{t-1} \left(\prod_{k=s+1}^{t-1} P_k \right) \tilde{\mathbf{1}}_j^{[s]}$, and $P_t = I - \eta_t H^{[t]}$, $\tilde{\mathbf{1}}_j^{[t]} = \mathbf{1}_{j \in S_t} \frac{\eta_t}{|S_t|} g(z_j; \theta^{[t]})$.
13571358 Note that P_t is self-adjoint matrix, adhering to $\langle x, P_t y \rangle = \langle P_t x, y \rangle$ for all vectors x, y .
13591360 According to the update rules for u_1 and u_2 in the algorithm:
1361

1361
$$u_i^{[t-1]} = u_i^{[t]} - \eta_t H^{[t]} u_i^{[t]} = (I - \eta_t H^{[t]}) u_i^{[t]} = P_t u_i^{[t]}, \quad i \in \{1, 2\} \quad (96)$$

1362

1363 By recursive application of this update rule, we obtain for $s < t$:
1364

1364
$$u_i^{[s]} = \left(\prod_{k=s+1}^{t-1} P_k \right) u_i^{[t]}, \quad i \in \{1, 2\} \quad (97)$$

1365

1366 According to the accumulation of Q in the algorithm, at each time step t , if $j \in S_t$, we have:
1367

1367
$$\Delta Q_t = \left\langle (u_2^{[t]} - u_1^{[t]}), \frac{\eta_t}{|S_t|} g(z_j; \theta^{[t]}) \right\rangle \quad (98)$$

1368

1369 The algorithm initializes $u_2^{[t_2-1]} = q(t_2)$ and sets $u_1^{[t_1-1]} = q(t_1)$ at time t_1 . Importantly, u_1 is not
1370 updated beyond t_1 . Using the result from Eq. (97), we can express $u_2^{[t]}$ and $u_1^{[t]}$ as:
1371

1371
$$u_2^{[t]} = \prod_{k=t+1}^{t_2-1} P_k q(t_2), \quad \text{for } 0 \leq t < t_2 \quad (99)$$

1372

1372
$$u_1^{[t]} = \begin{cases} \prod_{k=t+1}^{t_1-1} P_k q(t_1) & \text{for } 0 \leq t < t_1 \\ 0 & \text{for } t_1 \leq t < t_2 \end{cases} \quad (100)$$

1373

1374 Note that $u_1^{[t]} = 0$ for $t_1 \leq t < t_2$ because u_1 is not updated beyond t_1 , effectively removing its
1375 contribution to ΔQ_t in this range.
13761377 Substituting these expressions into Eq. (98):
1378

1378
$$\Delta Q_t = \begin{cases} \left\langle \prod_{k=t+1}^{t_2-1} P_k q(t_2) - \left(\prod_{k=t+1}^{t_1-1} P_k q(t_1) \right), \tilde{\mathbf{1}}_j^{[t]} \right\rangle & \text{for } 0 \leq t < t_1 \\ \left\langle \prod_{k=t+1}^{t_2-1} P_k q(t_2), \tilde{\mathbf{1}}_j^{[t]} \right\rangle & \text{for } t_1 \leq t < t_2 \end{cases} \quad (101)$$

1379

1380 The total Q is the sum of all ΔQ_t : $Q = \sum_{t=0}^{t_2-1} \Delta Q_t$.
13811382 Expanding this sum and recalling that P_t is self-adjoint, we get:
1383

1383
$$Q = \left\langle q(t_2), \sum_{t=0}^{t_2-1} \left(\prod_{k=t+1}^{t_2-1} P_k \right) \tilde{\mathbf{1}}_j^{[t]} \right\rangle - \left\langle q(t_1), \sum_{t=0}^{t_1-1} \left(\prod_{k=t+1}^{t_1-1} P_k \right) \tilde{\mathbf{1}}_j^{[t]} \right\rangle \quad (102)$$

1384

1385 Note that $u_2^{[t]}$ contributes to the first term over the entire interval $[0, t_2]$, while $u_1^{[t]}$ only contributes
1386 to the second term over $[0, t_1]$. This distinction arises from the algorithm's design, where u_1 is not
1387 updated beyond t_1 .
13881389 Combined Eq. (102) are precisely the definitions of $\Delta\theta_{-j}^{[t_2]}$ and $\Delta\theta_{-j}^{[t_1]}$, we have:
1390

1390
$$Q = \langle q(t_2), \Delta\theta_{-j}^{[t_2]} \rangle - \langle q(t_1), \Delta\theta_{-j}^{[t_1]} \rangle = Q_{-j}^{[t_1, t_2]}(q) \quad (103)$$

1391

1392 Thus, we have rigorously demonstrated that the algorithm's output Q is equivalent to the defined
1393 $Q_{-j}^{[t_1, t_2]}(q)$ in Eq. (95) under the stated assumption on η_t .
1394

1404 **F EXPERIMENTAL SUPPLEMENT**
14051406 **F.1 EXPERIMENTAL SETUP**
14071408 Experiments were conducted on eight NVIDIA RTX A5000 GPUs (24GB each), dual Intel Xeon
1409 Gold 6342 CPUs (2.80 GHz, 96 cores), and 503GB RAM. Implementation uses Ubuntu 22.04.3
1410 LTS, PyTorch v2.4.1, CUDA 12.4, and Python 3.11.9. All results are reported as mean \pm standard
1411 deviation over 16 runs with different random seeds.
14121413 **Datasets** We employed four diverse datasets spanning various domains and complexities to evaluate
1414 the robustness and generalizability of TIM.
14151416

- **Adult** Dua & Graff (2019): A tabular dataset with 48,842 instances and 14 features.
- **20 Newsgroups** Lang (1995): A text classification dataset. Text data is converted to TF-IDF
1417 vectors, and stop words are removed for cleaner feature representation.
- **IMDB Movie Reviews** Maas et al. (2011): A sentiment analysis dataset containing 50,000
1418 movie reviews with binary sentiment labels (positive/negative). Reviews are tokenized using
1419 WordPiece tokenization and truncated to a maximum sequence length of 512 tokens.
- **MNIST** LeCun et al. (2010): An image dataset with 70,000 grayscale images across 10
1420 classes. We use a binary task distinguishing digits ‘1’ and ‘7’. Each image is 28×28 pixels
1421 and normalized.
- **EMNIST** Cohen et al. (2017): An image dataset containing 131,600 images across 47
1422 classes. Each image is 28×28 pixels and is normalized for consistency.
1423

14241425 **Model Architectures** We evaluated TIM using different model architectures of varying complexity.
14261427

- **BERT** Devlin et al. (2019): For sentiment analysis on IMDB, we use BERT-base-uncased
1428 as the pre-trained model with 110 million parameters. The model consists of 12 transformer
1429 layers with 768 hidden dimensions and 12 attention heads.
- **Vision Transformer (ViT)**: A compact vision transformer model with approximately 1.8
1430 million parameters. Vision transformer adopts a multi-layer transformer architecture with
1431 self-attention and MLP blocks, introducing substantial depth and non-linearity. Unlike
1432 CNNs, its global receptive field and parameter-sharing across layers make optimization
1433 highly non-convex.
- **Convolutional Neural Network (CNN)**: This architecture is used for image datasets like
1434 MNIST and EMNIST. It consists of two convolutional layers, with 32 and 64 filters,
1435 respectively, each followed by ReLU activation and max-pooling. The final output from
1436 the convolutional layers is flattened and passed through a linear layer to output a binary
1437 classification value.
- **Logistic Regression (LR)**: Implemented as a single-layer neural network without hidden
1438 layers. The input dimension is flattened to accommodate various input shapes.
- **Deep Neural Network (DNN)**: The architecture comprises two hidden layers, each with
1439 eight units followed by a ReLU activation function. The second layer outputs a single value
1440 for binary classification. The input is flattened, similar to logistic regression.
1441

14421443 For non-image data like Adult and 20 Newsgroups, the input is a vector, while image data like
1444 MNIST and EMNIST is reshaped into a single dimension for LR and DNN models. The CNN
1445 processes image data in its original 2D format. All these models output a single value and use binary
1446 cross-entropy loss with logits for classification, with input/output dimensions adapted to each dataset.
14471448 **Compared Methods** We compare TIM against the following influence measurement methods.
14491450

- **Leave-One-Out (LOO)** serves as ground truth, measuring influence by retraining without
1451 data z_j . $\Delta\ell_{LOO}(z_j) = \frac{1}{M} \sum_{i=1}^M (\ell(z_i, \theta_{-j}) - \ell(z_i, \theta))$, where $z_i \in D_{\text{test}}$, M is the size of
1452 the test set $D_{\text{test}} = \{z_i\}_{i=1}^M$.

- **Influence Functions (IF)** Koh & Liang (2017) estimates the influence of removing a training data z_j on the model’s overall loss for a test set D_{test} : $I(z_j, D_{\text{test}}) = -\frac{1}{M} \sum_{i=1}^M \nabla_{\theta} \ell(z_i, \theta)^T H^{-1} \nabla_{\theta} \ell(z_j, \theta)$, where H is the Hessian of the model’s loss at θ .
- **TracIn** Pruthi et al. (2020): $\text{TracIn}(z_j, z_i) = \sum_{k=1}^K \eta_k \nabla \ell(\theta^{[k]}, z_j) \cdot \nabla \ell(\theta^{[k]}, z_i)$, where $\theta^{[k]}$ is checkpoints of model parameters.
- **Lava** Just et al. (2023): measures influence through optimal transport cost gradients between training and validation datasets. The influence of training point (x_i, y_i) is quantified as: $\phi_{\text{LAVA}}(x_i, y_i) := h_i^* - \frac{1}{n-1} \sum_{j \in [n] \setminus \{i\}} h_j^*$, where (h_1^*, \dots, h_n^*) is part of the optimal dual solution for the optimal transport problem between training and validation distributions.
- **DVEmb** Wang et al. (2025b) Estimates influence via an inner product $\text{DVEmb}(z_j, z_i) \approx v_j^T \nabla_{\theta} \ell(z_i, \theta)$, where $v_j \in \mathbb{R}^d$ is a low-dimensional vector. The embedding v_j is updated recursively at each step of the training trajectory to capture temporal dynamics.
- **TIM** measures influence by setting $q(t) = \frac{1}{M} \sum_{i=1}^M \nabla_{\theta} \ell(z_i; \theta^{[t]})$, measuring the impact on test set D_{test} loss across time window $[t_1, t_2]$: $Q_{-j}^{[t_1, t_2]}(q) \approx \frac{1}{M} \sum_{i=1}^M [\ell(z_i; \theta_{-j}^{[t_2]}) - \ell(z_i; \theta_{-j}^{[t_1]})] - \frac{1}{M} \sum_{i=1}^M [\ell(z_i; \theta^{[t_2]}) - \ell(z_i; \theta^{[t_1]})]$.

Evaluation Metrics To comprehensively evaluate the performance of TIM, we employed a suite of statistical metrics, each capturing different aspects of the relationship between the compared methods:

- **Pearson Correlation Coefficient (r)** Pearson (1895): The Pearson correlation coefficient measures the linear relationship between two variables. For two sets of data, X and Y, it is calculated as:

$$r = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^n (X_i - \bar{X})^2 \sum_{i=1}^n (Y_i - \bar{Y})^2}}$$

where \bar{X} and \bar{Y} are the means of X and Y respectively, and n is the number of data points. This metric is valuable for identifying direct proportional or inversely proportional relationships within the data. r ranges from -1 to 1, where 1 indicates a perfect positive linear relationship, -1 indicates a perfect negative linear relationship, and 0 indicates no linear relationship.

- **Spearman’s Rank Correlation Coefficient (ρ)** Spearman (1987): Spearman’s rank correlation assesses monotonic relationships by comparing the rank orders of data points:

$$\rho = 1 - \frac{6 \sum_{i=1}^n d_i^2}{n(n^2 - 1)}$$

where d_i is the difference between the ranks of corresponding values X_i and Y_i , and n is the number of data points. ρ ranges from -1 to 1, with values close to 1 or -1 indicating strong monotonic relationships (positive or negative, respectively) and values close to 0 indicating weak monotonic relationships.

- **Kendall’s Tau (τ)** Kendall (1938): Kendall’s Tau evaluates ordinal relationships by measuring the number of concordant and discordant pairs:

$$\tau = \frac{2(n_c - n_d)}{n(n - 1)}$$

where n_c is the number of concordant pairs, n_d is the number of discordant pairs, and n is the total number of pairs. τ ranges from -1 to 1, with 1 indicating perfect agreement between two rankings, -1 indicating perfect disagreement, and 0 indicating no relationship.

- **Jaccard Similarity (J)** Jaccard (1912): The Jaccard similarity coefficient compares the overlap between the top 30% of influential points as determined by different methods:

$$J(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

where A and B are the sets of top 30% influential points identified by different methods. J ranges from 0 to 1, with 1 indicating perfect overlap between the sets and 0 indicating no overlap.

1512 By capturing linear relationships (Pearson), monotonic relationships (Spearman), ordinal relationships
 1513 (Kendall’s Tau), and set-based similarities (Jaccard), we ensure a multifaceted evaluation of influence
 1514 analysis methods.

1515 To ensure transparency and reproducibility, all code, including detailed hyperparameter settings and
 1516 training procedures, is available on our GitHub repository <https://anonymous.4open.science/r/TIM-DE8E/>. This repository contains scripts and configuration files that define the exact setup for each
 1517 model used in our experiments, encompassing learning rates, batch sizes, regularization strategies,
 1518 and any other model-specific training details.

1521 F.2 METHOD OF DATA INFLUENCE DYNAMICS

1523 To investigate how the influence of individual training data evolves, we conduct a systematic analysis
 1524 using LOO as ground truth. The method for analyzing data influence dynamics consists of the
 1525 following steps:

- 1526 1. **Influence Tracking:** We randomly select 256 training data points and track their influence.
 1527 For each selected data point z_j , we compute its LOO influence on test loss at every epoch by
 1528 comparing the standard model trained on the complete dataset and a modified model trained
 1529 with identical settings but excluding z_j . The LOO influence is quantified as the difference
 1530 in test loss between these two models. By repeating this measurement across all training
 1531 epochs, we can directly observe how each data point’s influence on model performance
 1532 evolves over time, revealing dynamic influence patterns that static methods cannot capture.
- 1533 2. **Standardization:** We standardize the influence values separately within each epoch using
 1534 scikit-learn’s StandardScaler, which transforms values to have zero mean and unit variance
 1535 using the formula $z = \frac{x - \mu}{\sigma}$, where x is the original influence value, μ is the mean influence
 1536 across all data points at that epoch, and σ is the standard deviation. This epoch-wise
 1537 standardization preserves relative influence relationships while removing the global declining
 1538 scale effect.
- 1539 3. **Time-Varying Pattern Categorization:** For each data point, a linear regression is per-
 1540 formed on its standardized influence values over time. The slope of this regression line
 1541 indicates the overall trend direction (increasing or decreasing influence). The p-value of
 1542 the regression determines whether this trend is statistically significant. Training data are
 1543 categorized based on their statistical properties, including a) Trend significance (determined
 1544 by the p-value) b) Trend direction (positive or negative slope) c) Standard deviation of
 1545 influence values (a measure of fluctuation).
- 1546 4. **Pattern Analysis:** We calculate the proportion of data in each category and compute the
 1547 centroid of each category by averaging the standardized influence values of all data within
 1548 that category. These centroids represent the typical trend of each pattern and are plotted in
 1549 Figure 4 to visually demonstrate the characteristics of each influence pattern. We also report
 1550 the distribution of patterns across datasets and model architectures in Table 4, showing that
 1551 influence dynamics vary significantly depending on both model and data modality.

1552 F.3 ADDITIONAL ANALYSIS FOR SECTION 5.1

1554 We evaluate the accuracy of TIM in measuring data influence on test loss by comparing it against
 1555 IF, using LOO as ground truth. Since IF operates only on the final model, we use TIM with a
 1556 full training window to match its global influence scope and ensure a fair comparison. We report
 1557 four agreement metrics with LOO: Pearson and Spearman correlations for linear and monotonic
 1558 relationships, respectively, Kendall’s tau for ordinal relationships, and Jaccard similarity for the
 1559 top 30% influencers. Detailed metric descriptions are in Appendix F.1. Qualitative scatterplots are
 1560 deferred to Appendix F.3.

1561 Table 7 shows several key findings. First, TIM consistently surpasses IF in accuracy across all
 1562 datasets and model architectures, achieving correlations of up to 0.99 (Pearson and Spearman) for LR
 1563 models. Second, TIM’s advantage is most significant in complex settings like non-convex DNN and
 1564 MNIST, where it maintains high correlations while IF’s performance drops significantly. Third, TIM
 1565 shows superior robustness and reliability, with lower standard deviations (typically ± 0.01) across
 1566 runs compared to IF (up to ± 0.33).

1566

1567 Table 7: Comparison of TIM and IF accuracy against LOO across models and datasets. Higher is
1568 better. Means and standard deviations are over 16 random seeds.

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

Model	Dataset	Pearson		Spearman		Kendall's Tau		Jaccard	
		TIM	IF	TIM	IF	TIM	IF	TIM	IF
LR	Adult	0.99±0.01	0.91±0.04	0.99±0.01	0.93±0.02	0.95±0.01	0.79±0.04	0.91±0.04	0.71±0.06
	20News	0.99±0.01	0.90±0.13	0.99±0.01	0.94±0.08	0.97±0.01	0.84±0.13	0.95±0.03	0.78±0.16
	MNIST	0.93±0.10	0.76±0.14	0.98±0.01	0.61±0.22	0.95±0.02	0.49±0.21	0.91±0.05	0.48±0.14
DNN	Adult	0.95±0.02	0.88±0.04	0.95±0.03	0.86±0.04	0.83±0.06	0.69±0.05	0.75±0.08	0.56±0.07
	20News	0.85±0.07	0.77±0.05	0.85±0.08	0.80±0.06	0.71±0.08	0.62±0.07	0.67±0.08	0.55±0.07
	MNIST	0.96±0.03	0.75±0.14	0.94±0.06	0.70±0.17	0.83±0.08	0.52±0.14	0.78±0.15	0.52±0.19

Furthermore, we conducted a pattern-specific accuracy analysis comparing TIM against IF. For each dataset–model pair, we compute the per-example influence on test loss using TIM (full-window) and IF, and compare it against LOO retraining as ground truth. Each point is a training example; the x -axis is the LOO loss difference, and the y -axis is the estimated loss difference from TIM (blue) or IF (red). The dashed line denotes $y = x$ (perfect agreement).

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

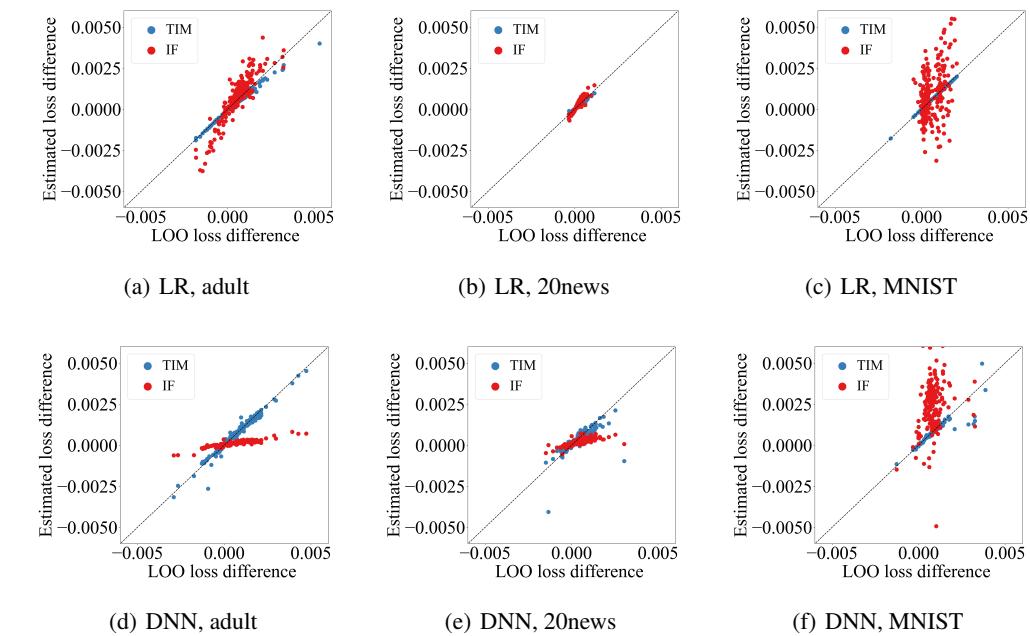
1605

1606

1607

1608

1609

1610 Figure 5: TIM and IF influence measurements compared to LOO ground truth. The x-axis shows
1611 LOO values; the y-axis shows the measured influence from TIM (blue) and IF (red). Points closer to
1612 the diagonal ($y = x$) indicate higher accuracy.

1613

1614 TIM consistently aligns more closely with the $y = x$ line than IF, indicating better alignment with
1615 the ground truth. This advantage is particularly pronounced in complex, non-convex deep learning
1616 settings.

1617

1618

1619

F.4 INFLUENCE DYNAMICS AND SIMILARITY ACROSS TRAINING STAGES

After validating TIM’s accuracy in estimating data influence, we used it to analyze the similarity of different training stages. The training process was adaptively divided into early, middle, and late stages using change points identified in the overall training loss trajectory. Specifically, we modeled the training loss using an exponential decay curve to capture the overall trend and reduce noise. This approach helps to smooth out fluctuations and emphasize underlying trends in the training

loss. Then, we compute residuals as the differences between the actual loss values and the values predicted by the exponential model. These residuals highlight where the actual training deviates from the predicted trend. Third, we identified peaks in the absolute residuals as change points. A minimum distance criterion was applied to ensure these change points were evenly distributed across the training timeline. Finally, based on the identified change points, the training process was divided into three stages: early, middle, and late. We set time windows based on stages and used TIM to compute data influence within these windows. We then used Kendall’s tau correlation to quantify the similarity of influence rankings between stages, with higher values indicating greater stability. Table 8 presents these correlations.

Table 8: Kendall’s Tau correlations across training stages across datasets and models

Model	Dataset	Early-Middle	Early-Late	Middle-Late	Early-Full	Middle-Full	Late-Full
LR	Adult	0.64 \pm 0.14	0.62 \pm 0.08	0.79 \pm 0.14	0.81 \pm 0.05	0.82 \pm 0.12	0.79 \pm 0.05
	20News	0.79 \pm 0.12	0.78 \pm 0.10	0.79 \pm 0.09	0.91 \pm 0.02	0.88 \pm 0.10	0.86 \pm 0.12
	MNIST	0.43 \pm 0.14	0.15 \pm 0.12	0.35 \pm 0.14	0.71 \pm 0.08	0.72 \pm 0.09	0.30 \pm 0.14
	EMNIST	0.73 \pm 0.04	0.40 \pm 0.16	0.51 \pm 0.18	0.83 \pm 0.03	0.89 \pm 0.02	0.49 \pm 0.17
DNN	Adult	0.61 \pm 0.11	0.41 \pm 0.15	0.70 \pm 0.06	0.7 \pm 0.09	0.87 \pm 0.04	0.69 \pm 0.08
	20news	0.66 \pm 0.06	0.57 \pm 0.07	0.76 \pm 0.05	0.81 \pm 0.03	0.82 \pm 0.04	0.76 \pm 0.04
	MNIST	0.56 \pm 0.06	0.18 \pm 0.21	0.20 \pm 0.25	0.74 \pm 0.03	0.81 \pm 0.04	0.20 \pm 0.25
	EMNIST	0.60 \pm 0.12	0.40 \pm 0.20	0.59 \pm 0.21	0.69 \pm 0.11	0.84 \pm 0.07	0.63 \pm 0.17

Table 8 shows several key insights. First, data influence evolves significantly throughout training, as evidenced by the consistently low correlations between early and late stages (Early-Late column). This challenges the static influence measurement methods and highlights the necessity for time-aware methods like TIM. Second, mid-training influence strongly correlates with full-training influence across all datasets and models. This suggests that influential data can be identified before convergence. Mid-training analysis can approximate full-training data influence, potentially reducing computational costs. These insights have significant implications for data selection and curriculum learning strategies. Third, for a given dataset, the patterns of influence ranking changes at different stages are similar across different model architectures when accounting for standard deviations. This consistency suggests that the influence of data is largely determined by the inherent dataset rather than being heavily model-dependent.

F.5 SCALABILITY TO ViT

To evaluate TIM’s scalability, we compare TIM and TracIn using a Vision Transformer (ViT). This setting significantly exceeds prior influence analysis work in model complexity. We compare TIM against TracIn Pruthi et al. (2020), a representative method for large-scale, non-convex models. Traditional approaches such as IF and LOO are excluded due to their prohibitive computational cost at this scale.

We evaluate corruption detection capability by randomly flipping 2%, 4%, 6%, and 8% of training labels (160, 320, 480, and 640 corrupted data points, respectively). For each scenario, we train the ViT model on the corrupted dataset, compute influence scores using last-epoch TIM and TracIn, and rank data points by their negative influence.

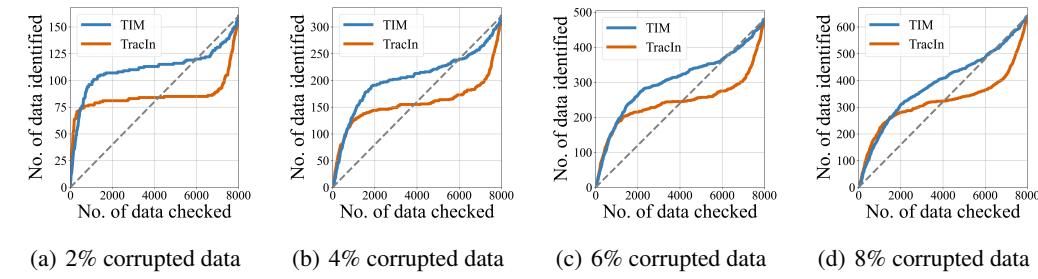
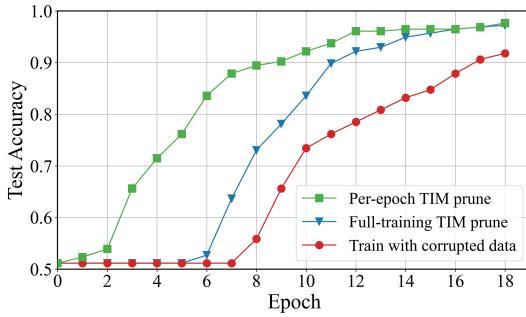


Figure 6: Comparison of TIM and TracIn for corrupted data detection on EMNIST using ViT.

1674
 1675 Figure 6 shows that TIM consistently outperforms TracIn, achieving higher detection accuracy by
 1676 identifying more corrupted data when examining the same number of training data. These results
 1677 confirm that TIM scales effectively to modern deep architectures and complex datasets, providing
 1678 reliable influence analysis beyond existing methods.
 1679

1680 F.6 ACCELERATING CONVERGENCE

1681 Data influence analysis can accelerate model convergence through strategic data pruning. We
 1682 evaluated this on an MNIST classification task (distinguishing between digits ‘1’ and ‘7’) using a
 1683 DNN with 30% flipped labels. We compared three strategies: 1) training with corrupted data; 2) full-
 1684 training TIM prune, which removes the bottom 30% influential data points based on global influence
 1685 measured over the entire training trajectory; and 3) per-epoch TIM prune, which dynamically removes
 1686 the bottom 30% influential data at each epoch.
 1687



1698 Figure 7: Comparison of model convergence rates with different pruning strategies on MNIST-DNNs.
 1699

1700 As shown in Figure 7, per-epoch TIM pruning achieves 85% accuracy within six epochs, far ahead
 1701 of other methods. This reveals key benefits of time-varying influence measurement. First, TIM
 1702 enables significantly faster convergence by pruning data at each epoch. Second, the performance
 1703 gap between per-epoch TIM and full-training TIM pruning validates our finding that data influence
 1704 patterns evolve throughout training, making window-specific analysis superior to global influence
 1705 measurement. Third, TIM can be used as an adaptive curriculum learning approach, automatically
 1706 identifying optimal training data for each epoch without requiring manual curriculum design.
 1707

1708 LLM USAGE DISCLOSURE

1709 We used Large Language Models (LLMs) in limited ways during the preparation of this work.
 1710 Specifically, LLMs were employed to polish the language for clarity and conciseness, rephrase
 1711 sections to better match the academic style expected in machine learning venues, and assist in
 1712 exploring potentially relevant related work by suggesting references and keywords for further manual
 1713 inspection. All conceptual contributions, methodological innovations, theoretical analyses, and
 1714 experimental designs were conceived and validated solely by the human authors. Similarly, all
 1715 implementations, data analyses, and reported results were conducted and verified by the authors.
 1716 Suggested related works from LLMs were cross-checked manually to ensure correctness.
 1717

1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727