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ABSTRACT

In machine learning, when the labels within a training dataset are incorrect, the
performance of the trained model gets severely affected. To address this issue,
various methods have been researched in the field of Learning with Noisy Labels.
These methods aim to identify the accurate samples and focus on them, while
minimizing the impact of incorrect labels. Recent studies have demonstrated good
performance on various tasks using large pre-trained models that extract good
features regardless of the given labels. However, to address the noisy label problem,
leveraging these pre-trained models have still remained unexplored due to the
computational cost of fine-tuning. In this study, we propose an algorithm named
EPL that utilizes pre-trained models to effectively cleanse the noisy labels and
strengthen the robust training. The algorithm follows two main principles: (1)
increasing computational efficiency by adjusting the linear classifier alone, and
(2) cleaning only the well-clustered classes to avoid creating extra incorrect labels
in poorly-clustered classes. We tested and verified that the proposed algorithm
shows significant improvement on various benchmarks in comparison to previous
methods.

1 INTRODUCTION

Deep neural networks (DNNs) have demonstrated impressive performance on various tasks such as
classification He et al. (2016), generation Goodfellow et al. (2020), and object detection He et al.
(2017). However, performance of DNNs drops significantly when corrupted annotations are provided.
In addition, manually correcting noisy labels or newly obtaining clean labels is difficult due to the
large dataset size. To address this problem, researchers have developed various approaches within the
field of Learning with Noisy Labels (LNL), such as robust training loss Zhang & Sabuncu (2018);
Wang et al. (2019), regularizer Cao et al. (2020); Cheng et al. (2023), sample selection Han et al.
(2018); Yu et al. (2019), and semi-supervised learning method Li et al. (2020); Liu et al. (2020);
Karim et al. (2022). However, recent studies have shown limited performance improvement with
increasing algorithm complexity. Thus, a new direction is required to effectively improve LNL
performance.

Utilizing pre-trained models (PTMs) can be a promising new direction to address this problem. In
recent years, an increasing number of studies have focused on developing large PTMs with high
adaptability to various tasks such as natural language processing (NLP) Devlin et al. (2019); Brown
et al. (2020) and computer vision (CV) Dosovitskiy et al. (2021); Liu et al. (2022b). These PTMs are
easier to access Wolf et al. (2020) and have shown remarkable performance in diversified applications
owing to their powerful feature extractors, which can be attributed to their enormous trainable
parameters and well-curated large training datasets such as ImageNet-21K; 14 million images across
21, 841 classes.

With their remarkable performance, PTMs potentially can reduce human effort in purifying the noisy
labels in the given training datasets Zhu et al. (2022). However, only a few studies have leveraged
PTMs for noisy label datasets because of two main reasons: (1) fine-tuning entire PTMs to adapt to

∗Two authors contribute equally

1



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

new datasets is computationally expensive because of large number of parameters, (2) using PTMs
by only adjusting a part of the parameters (e.g., linear probing) often results in poor performance on
classes that are dissimilar to the training dataset (e.g., ImageNet-21K) Zhuang et al. (2020); Guo et al.
(2019); Lee et al. (2022).

Therefore, our goal is to design an algorithm that follows two philosophies: (1) efficiently utilizing
PTMs by only updating a fraction of their parameters (i.e., linear probing), (2) preventing the
additional noisy labels by restricting PTMs to purify only for familiar classes.

Contribution. In this study, we propose a simple yet effective method that utilizes PTMs for
purifying noisy-labeled datasets. Our main observations and contributions are summarized as follows:

• We provide theoretical evidence that creation of additional noisy labels can be prevented using a
model that can make good clusters. In addition, we empirically demonstrated two types of classes
that can or cannot be effectively handled by PTMs. We observed that the cleansing performance
was lower for classes where PTMs performed limited clustering. (Appendix A, B)

• Based on our findings, we designed a method called Efficient utilization of Pre-trained model
for Learning with Noisy Labels (EPL), which corrects the given corrupted dataset by efficiently
leveraging PTMs for the classes which are regarded as confident on their own. This method avoids
generating additional label noise. (Section 2)

• We show that our method effectively works in conjunction with existing LNL methods in a variety
of datasets, including synthetically noisy-labeled datasets (e.g., CIFAR-10/100, EuroSAT, DTD,
and Oxford-IIIT Pet) and real-world datasets (e.g., WebVision, Clothing1M). (Section 3)

2 EPL: EFFICIENT UTILIZATION OF PRE-TRAINED MODEL FOR LEARNING
WITH NOISY LABELS

The core philosophy of EPL is to "fully exploit the helpful information of PTM in well-clustered
classes without introducing additional label corruption in poorly-clustered classes." In this section,
we describe the design of our proposed method, EPL which consists of (1) linear probing with
preventing memorization (2) classwise consistency check, and (3) label correction and running one
of the robust training methods. We demonstrate the overall algorithm of EPL in Algorithm 1.

2.1 LINEAR PROBING WITH PREVENTING MEMORIZATION

The results presented in Appendix A.2 demonstrate that utilizing linear probing in the presence of
noisy labels can improve cleansing performance by simply preventing memorization with noise-robust
loss functions. Building on this finding, for linear probing, we employ the ELR loss function Liu
et al. (2020) which is defined as follows:

LELR(f(x), ỹ) = LCE(f(x), ỹ) + λ log(1− 〈p, t〉), (1)

where 〈p, t〉 is the inner product of the softmax output of the model, p := Softmax(f(x)), and
the moving average (MA) value of the model output t ← βt + (1 − β)p with MA parameter β,
respectively. Note that λ is the weight for the regularization term of the ELR loss function.

2.2 CLASSWISE CONSISTENCY CHECK (C3)

We propose a method called classwise consistency check (C3) to effectively use PTM for noisy
label detection without performance degradation by using its results only for well-clustered classes.
C3 includes two elements: instance-centric consistency to assess the consistency of predictions for
augmented images and model-centric consistency using an ensemble of linear classifiers to prevent
incorrect separation owing to memorization of noisy labeled data.

Instance-centric consistency. To determine whether the class is well-clustered with a particular
PTM, we evaluate the ability of the PTM to accurately predict augmented versions by extracting the
information related to the class. As the decision boundary of a linear classifier is primarily influenced
by feature vectors with clean labels, using clean instances for consistency checks is likely to produce
more reliable results than using noisy instances. Hence, we divide the training datasets into instances
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algo2e 1 Pseudo code of EPL
Input: Dataset D = {(xi, ỹi)}Ni=1, Linear classifiers f1, . . . , fM , Frozen feature extractor g, Thresh-

old γ
Output: Cleansed dataset D̄
Initialize: D̄ = ∅,W = ∅
/* Linear probing */
Train f1, . . . , fM using g and LELR defined at Eq. (1)
/* Select well-clustered classes */
for c ∈ {1, . . . , C} do

for m ∈ {1, . . . ,M} do
Select a confident samples set Dc by using GMM on outputs of fm
Compute SICC

c (fm) score by following Eq. (2)
end
if SICC

c (fm) ≥ γ ∀m ∈ {1, . . . ,M} then
W =W ∪ {c}

end
end
/* Label Correction */
for (xi, ỹi) ∈ D do

Label prediction of xi with model ensemble, ŷi = arg maxc∈{1,...,C}
∑M
m=1 fm ◦ g(xi)

D̄ =

{
D̄ ∪ {(xi, ŷi)} if ŷi ∈ W
D̄ ∪ {(xi, ỹi)} otherwise.

end

with clean labels and with noisy labels using a Gaussian mixture model (GMM), a method commonly
employed in previous research Li et al. (2020); Kim et al. (2021) to differentiate between clean and
noisy instances based on their own objectives.

By utilizing K random augmentation operations Ak : Rd → Rd with k ∈ {1, . . . ,K} , we are
able to generate K variants, randomly augmented datasets from a single original dataset, denoted
as A1(x), . . . ,AK(x). On the set of instances with label c that are potentially clean, obtained by
using GMM, denoted as Dc = {x|(x, ỹ) ∈ D, ỹ = c}, we define SICC

c (f) as the instance-centric
consistency (ICC) score for class c, calculated as SICC

c (f) = 1
K|Dc| ·

∑
x∈Dc C(f,x) where

C(f,x) =

K∑
k=1

1{f(Ak(x))=c}, (2)

where f denotes the linear classifier which is trained on D. If SICC
c (f) ≥ γ, we consider class c as

a well-clustered class where γ ∈ [0, 1] is the threshold hyperparameter for separating well/poorly-
clustered classes.

Model-centric consistency. If the representation power of the PTM is limited to depict a particular
class, specifically when the size of the PTM and its pre-training dataset is small, the model memorizes
the noisy labels rather than training the clean instances. In this situation, the results of class separation
based on the ICC score are different according to the initialization of the linear classifier, which
can result in wrong separation of well-clustered classes and performance degradation of the target
model. To mitigate the risk of inaccurate separation caused by a limited feature extractor and a single
linear classifier, we use a model-centric consistency check that employs an ensemble of multiple
linear classifiers with varying initializations. Through its implementation, a class is considered
well-clustered only if all classifiers in the ensemble are in agreement regarding its clusterability.

2.3 LABEL CORRECTION AND RUNNING ROBUST METHODS

On separation of well- and poorly-clustered classes using the C3 module, we can reliably obtain the
corrected labels by utilizing the PTM in well-clustered classes. Therefore, we re-label the samples
whose predicted labels are in the well-clustered classes as the predicted labels. As the samples in
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Table 1: Comparison with state-of-the-art LNL algorithms in test accuracy (%) on CIFAR-10 and
CIFAR-100 datasets with symmetric, asymmetric, and instance noise. +EPL denotes the performance
when the noisy labeled dataset is cleansed based on the proposed method with the corresponding
PTM. † indicates reported results from the original work. The best results sharing the noisy fraction
(the noisy fraction and method) are highlighted in bold (underline). We report both the best/last
performance for each experiment.

Method CIFAR-10 CIFAR-100
Symm. 0.6 Symm. 0.9 Asym. 0.4 Inst. 0.4 Symm. 0.6 Symm. 0.9 Asym. 0.4 Inst. 0.4

CE 77.8 / 40.9 43.7 / 16.0 85.5 / 74.5 74.7 / 53.7 45.0 / 23.2 11.4 / 3.6 46.3 / 39.6 43.3 / 35.4
GCE 83.6 / 75.4 46.4 / 21.4 81.3 / 71.4 10.0 / 10.0 57.0 / 49.5 14.4 / 11.0 51.3 / 45.6 1.0 / 1.0
ELR+ 93.5 / 93.1 78.7 / 76.0 91.3 / 85.7 65.3 / 64.3 69.6 / 69.0 33.4 / 32.4 73.9 / 73.6 57.4 / 56.1

+ EPL (ConvNeXt-XL) 95.3 / 95.3 95.3 / 95.2 93.4 / 93.3 94.6 / 94.5 75.9 / 75.9 67.2 / 66.8 76.4 / 76.4 68.4 / 68.1
+ EPL (ViT-L/14-CLIP) 95.4 / 95.3 95.4 / 95.1 92.8 / 92.6 93.1 / 92.7 73.7 / 73.3 41.8 / 41.6 75.9 / 75.8 61.4 / 60.7
+ EPL (ViT-B/16) 95.0 / 94.8 94.9 / 94.7 92.6 / 91.2 92.7 / 92.2 75.1 / 75.0 61.7 / 61.5 75.2 / 75.0 61.9 / 61.8
+ EPL (ViT-L/16) 95.5 / 95.4 95.5 / 95.3 93.9 / 93.9 95.4 / 95.3 75.4 / 75.2 71.7 / 71.7 77.1 / 76.7 69.5 / 69.4

DivideMix 94.8 / 94.6 76.0† / 75.4† 93.4† / 92.1† 92.2 / 90.5 71.8 / 71.2 31.5† / 31.0† 60.8 / 54.6 63.8 / 63.4
+ EPL (ConvNeXt-XL) 95.1 / 94.9 95.0 / 94.8 94.4 / 93.9 95.2 / 94.9 74.5 / 74.0 68.4 / 67.6 74.4 / 74.3 72.9 / 72.9
+ EPL (ViT-L/14-CLIP) 95.0 / 94.7 94.8 / 94.5 94.3 / 93.9 94.9 / 93.9 74.2 / 73.7 54.0 / 53.1 71.8 / 71.3 67.5 / 66.8
+ EPL (ViT-B/16) 95.4 / 94.9 95.0 / 94.7 94.2 / 93.7 95.2 / 95.1 73.9 / 72.1 66.9 / 66.6 73.7 / 73.2 68.4 / 68.0
+ EPL (ViT-L/16) 95.4 / 95.2 95.3 / 94.9 94.7 / 94.4 95.5 / 95.3 74.2 / 73.6 71.3 / 70.5 74.7 / 74.2 72.5 / 72.1

UNICON 95.0 / 94.3 89.8 / 89.0 94.1 / 93.7 94.6 / 94.4 74.5 / 73.5 43.8 / 42.6 73.1 / 71.4 73.8 / 71.4
+ EPL (ViT-L/16) 96.1 / 96.0 96.0 / 95.8 96.0 / 95.8 95.9 / 95.8 76.2 / 74.7 72.3 / 70.5 76.5 / 74.7 77.8 / 76.3

the poorly-clustered classes are not handled by PTM, they must be purified. Hence, we run the LNL
algorithms, such as ELR+ Liu et al. (2020), DivideMix Li et al. (2020), and UNICON Karim et al.
(2022), to mitigate the degradation from the noisy labels in the poorly-clustered classes.

3 EXPERIMENTS

In this section, we present empirical evaluation, which demonstrates the superior performance and
computational efficiency of our proposed algorithm for robust training under the presence of noisy
labels. We first described the LNL benchmarks and implementations in detail (Section 3.1). Then,
we described the experimental results on a substantial synthetic (CIFAR-10/100, EuroSAT, DTD,
Oxford-IIIT-Pet) and real-world (Clothing1M, WebVision) noisy labeled datasets in Section 3.2.
Moreover, we conduct additional experiments to obtain a better understanding of EPL, and this
analysis is provided in Section 3.3.

3.1 EXPERIMENTAL SETUP

Datasets. We first evaluate EPL on the most commonly used noisy labeled image classification tasks:
CIFAR-10/-100, Clothing1M Xiao et al. (2015), and WebVision Li et al. (2017). For CIFAR datasets,
we injected uniform randomness into a fraction of labels for symmetric noise and flipped labels to
specific classes for asymmetric noise by following Liu et al. (2020). To set up instance-dependent
noise, we followed the noise generation of Cheng et al. (2021).

In addition to commonly used benchmarks, we also performed experiments on other synthetic, noisy
labeled datasets which were created by introducing artificial noise to EuroSAT Helber et al. (2019),
DTD Cimpoi et al. (2014), and Oxford-IIIT Pet Parkhi et al. (2012). In these additional datasets, the
noise generation is the same as in CIFAR datasets. A detailed explanation of datasets is described in
Appendix C.1.

Implementations. We integrate EPL with ELR+ Liu et al. (2020), DivideMix Li et al. (2020), and
UNICON Karim et al. (2022). To verify our proposed method effectiveness, we compared the test
performance of the same approaches with and without applying EPL. For hyperparameter, we trained
five linear classifiers for a total of 15 training epochs across all datasets and PTMs. Furthermore, we
applied the C3 module with γ = 0.8 at the end of the first epoch to differentiate between well/poorly-
clustered classes. We applied various types of PTMs for each dataset: ConvNeXt Liu et al. (2022b),
ViT-CLIP Radford et al. (2021), ViT Dosovitskiy et al. (2021). ViT-CLIP refers to the ViT architecture
that has been pre-trained using the CLIP method. Other PTMs are pre-trained with ImageNet-1K or
ImageNet-21K datasets. All pre-trained weights of PTMs are from HuggingFace Wolf et al. (2020).
We describe the detailed implementation in Appendix C.3.
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Table 2: Comparison with state-of-the-art LNL algorithms in test accuracy (%) on EuroSAT, DTD,
and Oxford-IIIT Pet datasets with symmetric, asymmetric, and instance noise. +EPL denotes the
performance when the noisy labeled dataset is cleansed based on the proposed method with the
corresponding PTM. The best results sharing the noisy fraction (the noisy fraction and method) are
highlighted in bold (underline). We report both the best/last performance for each experiment.

Method EuroSAT DTD Oxford-IIIT Pet
Symm. 0.6 Asym. 0.4 Inst. 0.4 Symm. 0.6 Asym. 0.4 Inst. 0.4 Symm. 0.6 Asym. 0.4 Inst. 0.4

CE 70.8 / 70.0 75.9 / 71.4 77.2 / 75.4 67.7 / 66.2 66.4 / 66.2 69.8 / 67.7 52.3 / 47.1 59.5 / 58.5 65.5 / 65.1
ELR+ 73.4 / 72.7 77.3 / 76.6 79.6 / 79.6 74.1 / 72.1 73.7 / 73.2 71.8 / 70.2 73.0 / 72.6 72.1 / 71.5 78.5 / 78.5

+ EPL (ConvNeXt-XL) 86.0 / 86.0 81.3 / 79.3 87.6 / 87.6 78.9 / 78.1 76.9 / 75.8 76.6 / 76.4 78.0 / 77.9 76.4 / 76.3 82.2 / 82.1
+ EPL (ViT-L/16) 75.6 / 75.2 78.6 / 78.4 84.6 / 84.0 76.6 / 75.9 75.1 / 74.3 72.4 / 72.3 78.3 / 78.3 76.5 / 76.5 82.3 / 82.3

DivideMix 82.1 / 81.9 86.5 / 85.4 83.5 / 82.6 77.4 / 77.1 76.8 / 76.1 73.5 / 73.1 73.9 / 67.1 64.9 / 59.5 71.2 / 70.1
+ EPL (ConvNeXt-XL) 93.6 / 92.0 92.0 / 91.4 93.3 / 92.7 82.6 / 82.2 83.1 / 82.7 80.8 / 80.4 77.7 / 76.0 73.0 / 70.5 81.1 / 80.3
+ EPL (ViT-L/16) 88.6 / 85.7 87.2 / 86.9 92.9 / 92.8 79.8 / 79.5 80.6 / 80.1 75.9 / 75.2 77.9 / 76.1 73.2 / 71.6 79.2 / 77.8

UNICON 81.3 / 80.4 85.6 / 84.0 84.0 / 82.9 80.9 / 80.9 77.3 / 77.2 75.0 / 74.8 79.6 / 79.6 75.2 / 74.4 80.5 / 80.1
+ EPL (ConvNeXt-XL) 90.3 / 90.2 89.6 / 89.3 87.0 / 86.4 82.5 / 82.3 83.6 / 82.5 81.4 / 80.9 81.2 / 81.2 80.1 / 79.5 84.3 / 84.0
+ EPL (ViT-L/16) 89.5 / 89.3 86.1 / 85.7 87.1 / 87.0 81.7 / 81.5 79.9 / 79.7 76.1 / 75.5 82.0 / 81.7 80.7 / 80.4 85.3 / 85.3

Table 3: Comparison with LNL algorithms in test accuracy (%) on Clothing1M and WebVision.
+EPL denotes the performance with our proposed method through the corresponding PTM. † indicates
reported results from the original work. The best results sharing the dataset (the dataset and method)
are highlighted in bold (underline). For WebVision and ILSVRC12, we report both top-1/top-5
accuracies.

Clothing1M WebVision (WebVision) WebVision (ILSVRC12)
DivideMix ELR+ UNICON DivideMix ELR+ UNICON DivideMix ELR+ UNICON

Baseline 74.76† 74.81† 74.98† 77.32† / 91.64† 77.78† / 91.68† 77.60† / 93.44† 75.20† / 90.84† 70.29† / 89.76† 75.29† / 93.72†
+ EPL (ViT-L/14-CLIP) 75.12 75.21 75.18 77.53 / 92.89 77.94 / 92.62 77.75 / 93.74 75.47 / 91.74 73.11 / 90.21 75.93 / 93.79
+ EPL (ConvNext-XL) 75.04 75.13 75.14 78.77 / 93.31 78.43 / 93.41 78.23 / 93.70 76.51 / 92.54 74.28 / 90.70 76.32 / 93.81
+ EPL (ViT-L/16) 75.02 75.16 75.07 78.26 / 92.71 78.35 / 92.76 78.04 / 93.65 76.36 / 92.76 73.57 / 90.51 76.08 / 93.86

3.2 EXPERIMENTAL RESULTS

In this section, we report the performance of the method compared to the benchmark-simulated (CI-
FAR, EuroSAT, DTD, Oxford-IIIT-Pet) and real-world (Clothing1M, WebVision) datasets.

CIFAR datasets. For CIFAR datasets, we combine our proposed method with various algorithms:
ELR+, DivideMix, and UNICON. In Table 1, EPL with all types of PTMs consistently improves the
performance regardless of the LNL method, noise rates, and noise distributions without applying
complicated methodological modification. ConvNeXt-XL and ViT-L/16 are most effective because
of their well-constructed feature extractor with a large number of parameters and pre-training dataset
size.

Additional synthetic datasets. To verify the effectiveness of EPL, we conducted experiments
on additional synthetic datasets: EuroSAT, DTD, and Oxford-IIIT-Pet. Table 2 summarizes the
performance of existing methods and the performance gain when integrated with EPL. The datasets
are fine-grained or out-of-domain, which the PTMs have not encountered during the pre-training
phase. Nevertheless, the C3 module in EPL effectively separates the well/poorly-clustered classes,
enabling the model to maintain or even improve its performance without any decrease.

Real-world datasets. To evaluate EPL performance on real-world datasets where noisy labels can
occur easily, we conduct experiments on Clothing1M Xiao et al. (2015) and WebVision Li et al.
(2017). Table 3 summarizes the performance of various LNL methods and the gain in performance
when integrated with EPL. ViT-L/14-CLIP showed the largest performance gain for Clothing1M,
while ConvNeXt-XL and ViT-L/16 showed larger increments in WebVision. These results indicate
the importance of the similarity in the noisy target dataset and pre-training dataset for training the
PTM.

3.3 ANALYSIS

We designed our analyses to answer the following questions. (1) Does EPL perform better than other
noisy label detection methods? (2) How much additional computation does EPL require? (3) Which
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part of EPL is important for improved performance? (4) Does EPL divide well/poorly-clustered
classes better? These analyses provide additional explanations to understand EPL.

Detection performance. To verify the impact of EPL, we examined the detection performance
on CIFAR-10 with various noise rates of symmetric noise. We compared six detection methods,
including CE sieve, confident learning (CL; Northcutt et al. 2021), TracIn Pruthi et al. (2020), Deep
KNN Bahri et al. (2020), and SimiFeat-V/R Zhu et al. (2022). As shown in Figure 1, except for
ViT-B/32-CLIP on instance-dependent noise with 0.4 noise rates, our proposed method outperformed
the other noisy label detection methods. While we achieved the highest performance with the larger
model ViT-L/14-CLIP, the EPL with ViT-L/14-CLIP required a smaller cost than the previous SoTA
method SimiFeat with ViT-B/32-CLIP, as shown in Figure 2.

Computational efficiency. We verified the computational efficiency of the proposed algorithm.
All experiments were conducted on CIFAR-10/100 with symmetric label noise under noise rate 0.4
according to Liu et al. (2020). As shown in Figure 2, while the baselines required several hours for
training, our proposed approach only required relatively 5%-15% additional computational costs.
From the results, our proposed method was computationally efficient due to the simplicity of linear
probing.

Component analysis. Using the CIFAR-10 dataset with 0.5 noisy ratio and the ViT-B/32-CLIP
model, we ran experiments to evaluate the performance of each component. We compared four
cases: (1) PTM is trained on CE and uses the predictions of all samples as the cleansed labels; (2)
PTM is trained on ELR and uses the predictions of all samples as the cleansed labels; (3) PTM is
trained on CE and uses predictions filtered by the C3 module as the cleansed labels; and (4) PTM
is trained on ELR and uses predictions filtered by the C3 module as the cleansed labels. Here, the
fourth case can be considered as complete EPL setting. The results, as shown in Figure 3, indicate
that using PTM labels learned by CE and ELR without the C3 module leads to increased noisy ratio,
negatively impacting ELR+ training performance. However, using the C3 module improved the ELR+
performance, and the best performance was observed when both ELR loss and C3 modules were
used. Our proposed algorithm, EPL, was able to empower the LNL algorithm.

Parameter sensitivity. For evaluating the sensitivity of hyperparameters, we determined the number
of classes that were discarded/accepted by our C3 module among six poorly-clustered and four
well-clustered classes in Figure 6. As described in Figure 4, our C3 module discards poorly-clustered
classes as γ increases. However, when γ increases, the number of accepted classes among four
classes is reduced. However, almost all well-clustered classes are accepted by the C3 module except
for the case of noise rate of 0.9. Through the results, we verified that EPL was robust to the selection
of γ except in the extreme noise case.

4 CONCLUSION

This study proposes an algorithm, referred to as EPL, which addresses the problem of noisy labels
through large PTMs without updating the feature extractor. Our findings indicate that linear probing
of PTMs can effectively detect noisy labels for well-clustered classes; however, it may inadvertently
introduce additional label corruption for poorly-clustered classes. To address this problem, a com-
bination of data-centric and model-centric consistency modules was used to separate the training
dataset into well/poorly-clustered classes and PTMs were applied only to noisy label identification
and correction for well-clustered classes. This proposed approach improves performance on synthetic
and real-world benchmarks and effectively distinguishes well/poorly-clustered classes with very few
computational costs.
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- Supplementary -
Efficient Utilization of Pre-trained Model for Learning with

Noisy Labels

Due to the page limitation of the main manuscript, we provide detailed information in this supple-
mentary document as follows. (1) In Appendix A, we provide our brief motivation for utilizing PTMs
under the presence of label noise. (2) In Appendix B, we describe our theoretical backups, which are
briefly described in Appendix A. (3) In Appendix C, we summarize the experimental setup, including
datasets and preprocessing, and explain the PTMs used in our experiments.

A PRE-TRAINED MODELS UNDER LABEL NOISE

Our fundamental concept is to construct a robust training framework to label noise through the
extremely efficient utilization of large PTMs. Other possible design choices for using large PTMs exist
but with huge computational costs. For instance, by following the philosophy of C2D Zheltonozhskii
et al. (2022), PTMs can be used as a good initial point, i.e., fine-tuning the large PTMs such as ViT-
L/16 Dosovitskiy et al. (2021), for applying DivideMix Li et al. (2020). However, such approaches are
computationally expensive because of the large size of the PTMs. Hence, we focus on (1) efficiently
applying large PTMs for cleansing the given noisy labeled dataset and (2) applying the cleansed
dataset to the previous works Li et al. (2020); Liu et al. (2020); Karim et al. (2022).

To achieve this aim, we first study the characteristics of the PTMs under the label-corrupted dataset.
We present two pieces of theoretical evidence. First, when a noisy labeled dataset is cleaned, the
probability of creating additional label corruption is limited by the smallest error in estimating either
the corrupted or the true conditional distribution of the target dataset. Second, when PTMs make
class-wise clusters, the error of estimating the true conditional distribution established in the first
evidence is significantly reduced. Subsequently, we illustrate two empirical observations: (1) the
power of PTMs for cleansing noisy labels and (2) the limitation of efficient linear probings when
PTMs cannot extract proper features for some poorly-clustered classes.

A.1 THEORETICAL MOTIVATIONS

Before introducing our theoretical motivations, we formally describe the notations and problem
formulations that are focused on. Subsequently, theoretical motivations are derived based on our
formulations.

Notation. We focus on binary classification. Assuming the data points and labels lie in X × Y ,
where the feature space X ⊂ Rd and label space Y = {0, 1}. A single data point x and its label y
follow the joint probability distribution (x, y) ∼ D that can be factored asD(x, y) = Pr(y|x) Pr(x).
Here, we define the true conditional probability η(x) = Pr(y = 1|x).

Noisy label problem. In practice, noisy label ỹ instead of true label y can be possibly obtained.
Here, assuming noisy label ỹ is generated based on the true label y and a transition probability
τij = Pr(ỹ = j|y = i) that τij < 0.5 when i 6= j for feasibility. We aim to find a predictor
Bayes classifier h∗ = arg minh:X→Y Pr(x,y)∼D [h(x) 6= y] using the corrupted training dataset
D = {(xi, ỹi)}Ni=1. By the definition, the Bayes optimal classifier can be calculated with η(x) as
follows: h∗(x) = 1{η(x)>1/2}. Based on our assumption, the conditional probability of noisy label
η̃(x) = Pr(ỹ = 1|x) can be defined as follows:

η̃(x) = (1− τ10) η(x) + τ01 [1− η(x)]

Hereinafter, we state the assumption and present our theorem. The first theorem establishes a
connection between a classifier f : X → Y with the probability of a noisy label ỹ being correct.
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Assumption 1 (Tsybakov 2004). There exist constants W,α > 0, and t ∈ (0, 1
2 ], such that for all

t ≤ t0,

Pr

[∣∣∣∣η(x)− 1

2

∣∣∣∣ ≤ t] ≤Wtα

Tsybakov condition, which is also referred to as the margin assumption, indicates that the region
surrounding the decision boundary, represented by {x ∈ X |η(x) = 1/2}, has a bounded volume.
This assumption is widely used in prior research Belkin et al. (2018); Qiao et al. (2019), and has been
substantiated through empirical evidence in the study by Zheng et al. (2020).

Assumption 2 (Correct Label). Given x, its correct label is the Bayes optimal classifier prediction
h∗(x).

Our goal is to recover the correct label, h∗(x), for each data point x, rather than y. It is important to
note that h∗(x) is determined solely by the true label distribution η(x), whereas y is just a sample
from this distribution. For the trained model f , we define the estimation errors for the corrupted and
true conditional probability as ζN := ‖f − η̃‖∞ and ζT := ‖f − η‖∞.

Theorem 1. Suppose that Asssumption 1 and 2 are satisfied with constant C,α > 0, and t0 ∈ (0, 1
2 ].

Assume ζN ≤ t0(1− τ) or ζT ≤ t0. For ∆ = 1−|τ10−τ01|
2 , we have:

Pr(x,y)∼D [ỹ = h∗(x), fỹ(x) < ∆] ≤W
[
min

(
ζN

1−τ , ζT

)]α
,

where τ = τ01 + τ10 and fỹ(x) is the predicted probability of the label being ỹ by classifier f .

Theorem 1 implies that if the classifier f is sufficiently close to either true (η) or corrupted conditional
distribution (η̃), then the probability that a given label ỹ is correct is bounded if the classifier has
lower confidence in it. It implies that when we re-label the given training dataset by utilizing f , the
probability of generating additional noisy labels is upper-bounded by the RHS of the theorem. Note
that while the theorem stated in Zheng et al. (2020) only focused on ζN , we extend the theorem for
the utilization of ζT . Through our extension, Theorem 1 can achieve the tighter upper bound by
reducing one of the values of ζT and ζN .

Reducing ζT . As stated in Theorem 1, a solution to reduce the upper bound is to make the classifier
approximate the true conditional distribution. We suggest additional theoretical results that can
achieve lower ζT with well-defined features through application of PTMs. Here, we first apply linear
discriminant analysis (LDA) assumption which is widely referred in previous works Lee et al. (2019);
Kim et al. (2021).

Theorem 2 (Informal). Suppose that f is a linear classifier and the LDA assumption for x ∈ X
holds. For the decision boundary b = 1

2

(∑N
i=1 1{ỹi=0}f(xi)∑N

i=1 1{ỹi=0}
+
∑N
i=1 1{ỹi=1}f(xi)∑N

i=1 1{ỹi=1}

)
, the lower bounds

for the precision and recall for true conditional distribution can be derived as follows:

PRECISION ≥
(

1 +
Φ(O(−∆/σ))

Φ(O(∆/σ))

)−1

RECALL ≥ Φ (O(∆/σ)) ,

where Φ is the cumulative distribution function of N (0, 1), ∆ is function mean difference between
two classes, and σ is classwise standard deviation of function values.

The formal statement and proof are in Appendix B.2. Theorem 2 demonstrates that well-clustered
features have a larger difference in mean of distribution (∆) and the smaller the variance of the
cluster (σ), the larger the lower bound of recall and precision. As we have large lower bounds
for precision and recall for true conditional distribution, we can approximate the true conditional
distribution (η) with small estimation errors (ζT ) by predicting most of the instances to its true labels.
Because the PTMs can extract class-relevant features Radford et al. (2021), and using them improves
efficiency and accuracy by leveraging well-defined feature extractors to construct a classifier that
closely approximates the true conditional distribution with linear probing. This effectively corrects
noisy labels.
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Fig. 5: CIFAR-10 analysis: (a) t-SNE Van der
Maaten & Hinton (2008) plot and (b) noisy la-
bel cleansing performance through linear probing.
It shows well-clustering and sufficient cleansing
performance for all classes.
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Fig. 6: CIFAR-100 analysis: (a) t-SNE Van der
Maaten & Hinton (2008) plot and (b) noisy label
cleansing performance through linear probing. It
shows there exists some classes are difficult to be
well-clustered and cleansed.

A.2 EMPIRICAL OBSERVATIONS

In this section, we provide empirical observations about the theoretical evidence in Section A.1 that
PTMs can help purify the given noisy labeled datasets only for the well-clustered classes.

Effectiveness of PTMs on well-clustered classes. We conduct exploratory experiments on noisy
label cleansing performance using CIFAR-10 datasets with varying rates of symmetric noise for
examining the results when PTMs meet label noise. To achieve this aim, we utilized ViT-B/32-CLIP
model Radford et al. (2021) for PTM and trained the linear classifier on CIFAR-10 dataset similar to
that of Zhu et al. (2022). As described in Figure 5, the PTM has sufficient power for clustering each
class on CIFAR-10 and cleansing noisy labels. Based on this, we can also verify the philosophy of
our theoretical evidence as "PTMs with linear probing can empower the cleansing performance."

When PTMs meet poorly-clustered classes. However, PTM has difficulty in learning when the
data used for pre-training and linear probing are dissimilar Zhuang et al. (2020); Yosinski et al.
(2014); Lee et al. (2022). To confirm this phenomenon, we experimented on the CIFAR-100 dataset
with a similar setting to CIFAR-10. The only difference was that we plotted 10 randomly selected
classes. As shown in Figure 6, some classes (54, 82, 83, 92; called well-clustered classes) in the
CIFAR-100 dataset can create their own clusters, while others (3, 4, 27, 42, 44, 63) tend to mix
without creating their own group (called poorly-clustered classes). This implies that the advantages of
PTMs mentioned in Section A.1 cannot be leveraged for specific classes. This empirical observation
implies that the Tsybakov assumption is difficult to be satisfied, and the lower bounds of precision
and recall (Theorem 2) are difficult to be enlarged by small ∆ and large σ values.

A.3 DISTINGUISHING WELL/POORLY-CLUSTERED CLASSES

In the previous subsection, we observed a significant difference in correction performance between
well-clustered and poorly-clustered classes, due to the difficulty in clusterability. Therefore, the
key factor in using PTMs for cleaning noisy labels is to find a method that maximizes the positive
impact from the well-clustered classes and minimizes the negative effects from the poorly-clustered
classes. Therefore, to fully leverage the potential of PTMs for cleansing noisy labels in target
datasets, differentiating between "well-clustered classes" and "poorly-clustered classes" is necessary.
In Proposition 1, we present our basic concept for distinguishing these two categories.

Proposition 1. For the similar data points in the same class x1, x2 that satisfy η∗(x1) = η∗(x2)
for arbitrary conditional distribution η∗, if ‖f(x1)− f(x2)‖ > 2ζN , we can say that such classes
are poorly-clustered that Theorem 1 would not hold.

The proof can be found in Appendix B.1.2. As stated in Proposition 1, when the outputs of similar
inputs in certain classes are dissimilar, linear probing of PTM is ineffective for cleansing noisy labels
in those classes. Considering the aforementioned limitation of PTM in cleansing noisy labels in
certain classes, we designed our algorithm to achieve both computational efficiency and a reliable
performance enhancement while utilizing PTMs in the presence of label noise.
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B THEORETICAL JUSTIFICATION

B.1 THEORETICAL GUARANTEES FOR MOTIVATIONS

Lemma 1 (Zheng et al. 2020). If a classifier g depends linearly on η, i.e, g(x) = aη+b with a, b > 0.
Set ∆ = min(a2 + b, 1− b− a

2 ). We have

Pr
(x,y)∼D

[ỹ = h∗(x), gỹ(x) < ∆] = 0 (3)

Proof. To calculate Pr(x,y)∼D [ỹ = h∗(x), gỹ(x) < ∆], we enumerate two cases:

Case 1: ỹ = 1. Observe h∗(x) = 1 iff η(x) > 1/2; gỹ(x) = g(x) = aη(x) + b < ∆ iff
η(x) < ∆−b

a . We have:

Pr
(x,y)∼D

[ỹ = h∗(x), gỹ(x) < ∆] = Pr[
1

2
< η(x) <

∆− b
a

].

We next show that this probability if 0 for the chosen ∆ = min(a2 + b, 1 − b− a
2 ). If ∆ = a

2 + b,
the probability is zero as ∆−b

a = 1
2 . Otherwise, ∆ = 1− b− a

2 . We know that 1− b− a
2 <

a
2 + b.

Therefore, 1− 2b < a. In this case,

∆− b
a

=
1− 2b

a
− 1

2
< 1− 1

2
=

1

2
.

Thus, we have Pr
[

1
2 < η(x) < ∆−b

a

]
= 0.

Case 2: ỹ = 0. Observe that h∗(x) = 0 iff η(x) ≤ 1/2; gỹ(x) = 1− g(x) = 1− [aη(x) + b] < ∆

iff η(x) > L := 1−b−∆
a , we have:

Pr
(x,y)∼D

[ỹ = h∗(x), gỹ(x) < ∆] = Pr[
1

2
< η(x) <

∆− b
a

].

Similar to Case 1, by checking when ∆ = a
2 + b and when ∆ = 1 − b − a

2 , we can verify that
Pr
[

1−b−∆
a < η(x) < 1

2

]
= 0.

This proves Equation 1 and completes the proof.

Lemma 2 (Zheng et al. 2020). Let ∆ = 1−τ10−τ01
2 . Let η̃ = η̃ and η̃0 = 1− η̃. Then, We have

Pr
(x,y)∼D

[ỹ = h∗(x), η̃(x) < ∆] = 0 (4)

Proof. Recall η(x) = (1− τ01 − τ10)η(x) + τ01, in which τ01 and τ10 are transition probabilities.
We can directly prove this lemma using Lemma 1 by setting g = η with a = 1 − τ01 − τ10 and
b = τ01.

B.1.1 PROOF OF THEOREM 1

Proof. Case 1 Zheng et al. (2020): When ỹ = 1, fỹ(x) = f(x) ≥ η̃(x)− ζN . Then, we have

Pr [ỹ = h∗(x), fỹ(x) < ∆] ≤ Pr [ỹ = h∗(x), η̃(x)− ζN < ∆]

By substituting ∆ with ∆ + ζN into Equation 1, we have :

Pr [ỹ = h∗(x) = 1, η̃(x)− ζN < ∆] = Pr [ỹ = h∗(x) = 1, η(x) < ∆ + ζN ]

= Pr

[
1

2
< η(x) <

∆ + ζN − τ01

1− τ

]
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Similar to Lemma 1, by discussing the cases when ∆ = 1+τ10−τ01
2 and when ∆ = 1+τ01−τ10

2 , we
can show that ∆−τ01

1−τ < 1
2 . Based on the Tsybakov condition, we have

Pr

[
1

2
< η(x) <

∆− τ01

1− τ
+

ζN
1− τ

]
≤ Pr

[
1

2
< η(x) <

1

2
+

ζN
1− τ

]
≤ C(

ζN
1− τ

)λ

This implies that:

Pr [ỹ = h∗(x) = 1, fỹ(x) < ∆] ≤ C(
ζN

1− τ
)λ

Similar to case 1 of Lemma 1, by using Equation 4 for the case when ỹ = 0, we can prove that

Pr [ỹ = h∗(x) = 0, fỹ(x) < ∆] ≤ Pr [ỹ = h∗(x) = 0, 1− η̃(x)− ζN < ∆]

= Pr

[
1− τ01 −∆

1− τ
− ζN

1− τ
< η(x) <

1

2

]
≤ Pr

[
1

2
− ζN

1− τ
< η(x) <

1

2

]
≤ C(

ζN
1− τ

)λ

Case 2: When ỹ = 1, fỹ(x) = f(x) ≥ η(x)− ζC . Then, we have

Pr [ỹ = h∗(x), fỹ(x) < ∆] ≤ Pr [ỹ = h∗(x), η(x)− ζC < ∆] = Pr

[
1

2
< η(x) < ∆ + ζC

]
Since ∆ = 1−|τ10−τ01|

2 < 1
2 , we have

Pr

[
1

2
< η(x) < ∆ + ζC

]
= Pr

[
1

2
< η(x) <

1

2
+ ζC

]
≤ C(ζC)λ

For the case when ỹ = 0, we have

Pr [ỹ = h∗(x) = 0, fỹ(x) < ∆] ≤ Pr [ỹ = h∗(x) = 0, 1− η(x)− ζC < ∆]

= Pr

[
1

2
− ζC < η(x) <

1

2

]
≤ C(ζC)λ

Since both case 1 and case 2 holds, we have

Pr
(x,y)∼D

[ỹ = h∗(x), fỹ(x) < ∆] ≤ C
[
min(

ζN
1− τ

, ζC)

]λ

B.1.2 PROOF OF PROPOSITION 1

Proof. When assumption for Theorem 1 holds, i.e., η(x) satisfies the Tsybakov condition with
constants C, λ > 0, t0 ∈ (0, 1

2 ] and ζN ≤ t0(1− τ10 − τ01) and ζC ≤ t0. Then, we have:

‖f(x1)− f(x2)‖ = ‖(f(x1)− η̃(x1))− (f(x2)− η̃(x2)) + (η̃(x1)− η̃(x2))‖
≤ ‖(f(x1)− η̃(x1))‖+ ‖(f(x2)− η̃(x2))‖+ ‖η̃(x1)− η̃(x2)‖
≤ ζN + ζN + ‖η̃(x1)− η̃(x2)‖

With ‖η̃(x1)− η̃(x2)‖ = 0 by the definition of similar data points, we have ‖f(x1)− f(x2)‖ ≤
2ζN . Hence, with proof by contrapositive, when ‖f(x1)− f(x2)‖ > 2ζN , the assumption for
Theorem 1 does not hold. This implies that Theorem 1 does not valid if such classes do not pass the
C3 module.
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B.2 PROOF OF THEOREM 2

Since the feature distribution comprises two Gaussian distributions, the projected distribution is also
a mixture of two Gaussian distributions. By LDA assumption, its decision boundary with probability
0.5 is the same as the average of the means of two clusters. Here, we introduce our additional
theoretical motivation that corrects noisy labels by simple linear probing. Here, we introduce the
formal statement and proof for Theorem 2.

Theorem 3 (Formal version of Theorem 2). Suppose that f is a linear classifier and Pr(y = 0) =
Pr(y = 1). Furthermore, we assume that the output distribution is comprised of two Gaussian distri-
butions with mean µ0 and µ1 for class y = 0 and y = 1, respectively, common standard deviation

σ by LDA assumption. For the decision boundary b = 1
2

(∑N
i=1 1{ỹi=0}f(xi)∑N

i=1 1{ỹi=0}
+
∑N
i=1 1{ỹi=1}f(xi)∑N

i=1 1{ỹi=1}

)
,

with the probability of 1 − δ, the lower bounds for the precision and recall for true conditional
distribution can be derived as follows:

RECALL ≥ Φ

∆− 2C
√(

1
N0

+ 1
N1

)
log
(

2
δ

)
2σ



PRECISION ≥

1 + Φ

−∆− 2C
√(

1
N0

+ 1
N1

)
log(2/δ)

2σ


/

Φ

∆− 2C
√(

1
N0

+ 1
N1

)
log(2/δ)

2σ



−1

Proof. Here, we define N0 =
∑N
i=1 1{ỹi=0} and N1 =

∑N
i=1 1{ỹi=1}. We also define the mean

of f(x) for y = 0 and y = 1 as µ0 and µ1, mean of corrupted conditional distribution for ỹ = 0

and ỹ = 1 as µ̃0 and µ̃1. By the central limit theorem (CLT), we have
∑N
i=1 1{ỹi=0}f(xi)

N0
∼

N
(
µ̃0,

σ̃2
0

N0

)
and

∑N
i=1 1{ỹi=1}f(xi)

N1
∼ N

(
µ̃1,

σ̃2
1

N1

)
where σ̃2

0 and σ̃2
1 are standard deviation for the

corrupted distribution of given label 0 and 1. Thus, we have
∑N
i=1 1{ỹi=0}f(xi)

N0
+
∑N
i=1 1{ỹi=1}f(xi)

N1
∼

N
(
µ̃0 + µ̃1,

σ̃2
0

N0
+

σ̃2
1

N1

)
. Moreover, by the definition of transition probability τij = Pr(ỹ = j|y =

i), we have µ̃0 = τ00µ0 + τ10µ1 and µ̃1 = τ01µ0 + τ11µ1. Thus, we have

µ̃0 + µ̃1 = (τ00µ0 + τ10µ1) + (τ01µ0 + τ11µ1) = (τ00 + τ01)µ0 + (τ10 + τ11)µ1 = µ0 + µ1

By the concentration inequality on standard Gaussian distribution, we have

Pr

(∣∣∣∣∣
∑N
i=1 1{ỹi=0}f(xi)

N0
+

∑N
i=1 1{ỹi=1}f(xi)

N1
− (µ0 + µ1)

∣∣∣∣∣ > ψ

)
< 2 exp

(
−ψ

2

2
· 1

σ̃2
0/N0 + σ̃2

1/N1

)
(5)

Therefore, with probability 1− δ

µ0 + µ1

2
− C

√(
1

N0
+

1

N1

)
log

(
2

δ

)
≤ b ≤ µ0 + µ1

2
+ C

√(
1

N0
+

1

N1

)
log

(
2

δ

)
, (6)
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where C > 0 is a constant. Then, by using the Equation 6, we can derive the lower bound for the
recall as follows:

RECALL = Pr(f(x) > b|y = 1) ≥ Pr

(
f(x) >

µ0 + µ1

2
+ C

√(
1

N0
+

1

N1

)
log

(
2

δ

)∣∣∣∣∣y = 1

)

= Pr

f(x)− µ1

σ
>

−∆ + 2C
√(

1
N0

+ 1
N1

)
log
(

2
δ

)
2σ



= Pr

N (0, 1) >

−∆ + 2C
√(

1
N0

+ 1
N1

)
log
(

2
δ

)
2σ



= Φ

∆− 2C
√(

1
N0

+ 1
N1

)
log
(

2
δ

)
2σ


For precision, with the assumption of the balanced dataset (i.e., Pr(y = 0) = Pr(y = 1)), we have a
lower bound for precision as follows:

PRECISION = Pr(y = 1|f(x) > b)

=
Pr(f(x) > b|y = 1)P (y = 1)∑

i∈{0,1} P(f(x) > b|y = i)P (y = i)

≥
Pr

(
f(x) > µ1+µ0

2 + C
√(

1
N0

+ 1
N1

)
log
(

2
δ

)∣∣∣∣y = 1

)
Pr(y = 1)

∑
i∈{0,1} Pr

(
f(x) > µ0+µ1

2 − C
√(

1
N0

+ 1
N1

)
log
(

2
δ

)∣∣∣∣y = i

)
Pr(y = i)

=

Pr

(
f(x) > µ0+µ1

2 + C
√(

1
N0

+ 1
N1

)
log
(

2
δ

)∣∣∣∣y = 1

)
Pr(y = 1)

∑
i∈{0,1} Pr

(
f(x) > µ0+µ1

2 − C
√(

1
N0

+ 1
N1

)
log
(

2
δ

)∣∣∣∣y = i

)
Pr(y = i)

≥ 1

1 +
Pr

(
f(x)>

µ0+µ1
2 +C

√(
1
N0

+ 1
N1

)
log(2/δ)

∣∣∣∣y=0

)
Pr(y=0)

Pr

(
f(x)>

µ0+µ1
2 −C

√(
1
N0

+ 1
N1

)
log(2/δ)

∣∣∣∣y=1

)
Pr(y=1)

=
1

1 + Φ

−∆−2C
√(

1
N0

+ 1
N1

)
log(2/δ)

2σ

/Φ

∆−2C
√(

1
N0

+ 1
N1

)
log(2/δ)

2σ



The use of well-constructed feature clusters, characterized by large mean differences and small
standard deviations, can significantly improve the cleansing performance of noisy labels. This
theorem is further validated by the successful application of PTMs to obtaining such clusters.

C IMPLEMENTATION DETAILS

In this section, we describe the datasets and statistics that we used. We evaluate a total of six datasets
(CIFAR-10/100, EuroSAT, DTD, Oxford-IIIT PET, Clothing 1M, and Webvision) with various noisy
label configurations.
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(a) ImageNet (b) CIFAR (c) EuroSAT (d) DTD

(e) Oxford-IIIT Pet (f) Clothing1M (g) WebVision

Fig. 7: Example Images for each dataset.

C.1 DATASET DESCRIPTION

CIFAR-10/100 Krizhevsky et al. (2009). The CIFAR-10 dataset contains 60000 32x32 color
images divided into 10 classes, with 50000 for training and 10000 for testing. The CIFAR-100 dataset
is similar but has 100 classes and is grouped into 20 superclasses, with 500 images for training and
100 for testing per class. Each image in the CIFAR-100 dataset has both a "fine" label and a "coarse"
label. Examples are depicted in Figure 7b.

EuroSAT Helber et al. (2019). The EuroSAT dataset is based on Sentinel-2 satellite images, and
it includes 27, 000 covering 13 spectral bands. It has 10 classes with 27, 000 images. We randomly
divided the 27, 000 in samples into two groups, i.e., train:valid = 0.9:0.1. Examples are
depicted in Figure 7c.

DTD Cimpoi et al. (2014). The Describable Texture Dataset (DTD) is a collection of textural
images in the wild. It contains 5, 640 images in 47 categories. Each class has 120 images. As
frequently set, we divide the per-class 120 images into train/valid/test equally, i.e., 40 for each split.
Examples are depicted in Figure 7d.

Oxford-IIIT Pet Parkhi et al. (2012). The Oxford-IIIT pet dataset is a 37 of classes pet image
dataset with roughly 200 images for each class. The images have large variations in scale, pose, and
lighting. Every image has a breed-specific ground truth annotation. We train with 3, 680 images and
test with the remaining 3, 669 images. Examples are depicted in Figure 7e.

Clothing 1M Xiao et al. (2015). Clothing 1M contains 1M clothing images in 14 classes and an
estimated noise level of 38.5% Song et al. (2022). It is a dataset with noisy labels since the data
is collected from several online shopping websites and includes many mislabeled samples. This
dataset also contains 50k, 14k, and 10k images with clean labels for training, validation, and testing,
respectively. Examples are depicted in Figure 7f.

WebVision Li et al. (2017). The WebVision dataset is designed to facilitate research on learning
visual representation from noisy web data. It is a large-scale web images dataset that contains more
than 2.4 million images crawled from the Flickr website and Google Images search. Examples are
depicted in Figure 7g.
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C.2 DATA PREPROCESSING

C.2.1 NOISY LABEL GENERATION FOR SYNTHETIC DATASETS

We synthetically generate symmetric and asymmetric noise by following the method proposed by Liu
et al. (2020). To create symmetric noise, we randomly select a fraction of labels and alter them with
uniform randomness. For asymmetric noise, we use a mapping technique on the CIFAR-10 dataset,
where we change certain classes to similar but distinct classes (i.e., TRUCK→ AUTOMOBILE,
BIRD→ AIRPLANE, DEER→ HORSE, CAT→ DOG). On the CIFAR-100 dataset, we divide
the dataset into 20 super-classes of size five and alter each class to the next class within the same
super-class. In addition, we generate instance-based noise using the method proposed by Cheng et al.
(2021) and compare its performance to that of existing label noise learning methods. The noise rate
(global flipping rate) is defined as ε and we sample flip rates from a truncated normal distribution
with a mean of ε, standard deviation as 0.1, and a range of 0 to 1. Instance-dependent label noise
parameters WI are sampled from the standard normal distribution, with the size of WI being L× C,
where L is the length of each feature and C is the number of classes.

C.2.2 DATA AUGMENTATION

All image preprocessing is done using the officially released preprocessor that comes with the
corresponding PTMs (ViT, CLIP, and ConvNeXt). In addition, we perform image augmentation to
generate similar images in order to implement instance-centric consistency. The additional image
augmentation for each dataset is as follows: Random Horizontal Flip→ Random Affine (CIFAR-
10/100) and Random Resized Crop → Random Horizontal Flip → Color Jitter (EuroSAT, DTD,
Oxford-IIIT Pet, Clothing1M, WebVision).

C.3 DETAILED IMPLEMENTATION

Here, we describe the implementation of LNL methods after purifying the noisy labels through our
proposed EPL.

CIFAR-10/100 for LNL methods For data augmentation, we follow the default settings which are
widely used in various existing works Liu et al. (2020); Li et al. (2020). For CIFAR-10/100, each
side of the image is padded with 4 pixels, and a 32× 32 crop is randomly selected from the padded
image or its horizontal flip. We finally normalize the image with the following means and standard
deviations, sequentially: CIFAR-10 {mean : (0.4913, 0.4821, 0.4465),standard deviation :
(0.2470, 0.2434, 0.2615)}
To implement DivideMix Li et al. (2020), ELR+ Liu et al. (2020), and UNICON Karim et al. (2022),
we use PreAct ResNet18 He et al. (2016). For a fair comparison, we use the same values as their
reported values for all hyper-parameter of ELR+. For DivideMix and UNICON, we use the same
values as their reported hyper-parameter values except the λu which is unsupervised loss function
weights for corresponding baseline methods. This is because the optimal values for λu are largely
varying the fraction of noisy labels and ours significantly reduce the fraction of noisy labels. Under a
small fraction of noisy labels, we have to reduce the value of λu.

Additional synthetic datasets for LNL methods. We use RandomResizeCrop under resize param-
eter 224 and cropping scale (0.08, 1.0) with BICUBIC interpolation method, random horizontal flip,
and color jitter with brightness 0.4 contrast 0.4 and saturation 0.4 parameters. We normalize each im-
age with {mean : (0.485, 0.456, 0.406),standard deviation : (0.229, 0.224, 0.225)} which
is typically used for 224 size images, comes from ImageNet training recipe.

We utilize ResNet18 He et al. (2016) for three additional synthetic datasets. More precisely, we utilize
a pre-trained model, offered by Torchvision for the DTD and Pet datasets and train from scratch
for the EuroSAT dataset. Detail hyperparameters are described in Table 4. For LNL model-specific
hyperparameters, such as β and λ for ELR+, we utilize the original hyperparameters for Clothing1M
experiments.

Clothing1M. As following the previous works Li et al. (2020); Liu et al. (2020), we prepro-
cess the raw images as following augmentation procedure: Resize with 256 → Random Crop
with parameter 224 → Random Horizontal Flip. We normalize each image with {mean :
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Table 4: Hyperparameters for EuroSAT, DTD and Oxford-IIIT Pet datasets to run ELR+, DivideMix
and UNICON.

EuroSAT DTD Pet
Model ResNet18 (Scratch) ResNet18 (ImageNet Pre-trained)

Optimizer SGD optimizer
Learning rate 0.01
Momentum 0.9

Weight Decay 1× 10−4

Scheduler 0.1 decay at 25 epoch Cosine Annealing Scheduler (single step)
Epochs 50 15

Batch size 128 64

(0.6959, 0.6537, 0.6371),standard deviation : (0.3113, 0.3192, 0.3214)}. To implement
the baselines, we apply ResNet50 He et al. (2016) as backbone networks for all baseline methods.
For a fair comparison, we use the same values as their reported values for all hyper-parameter of
each baseline method. For a fair comparison, we use the same values as their reported values for all
hyper-parameter of each baseline method.

WebVision. As following the previous works Li et al. (2020); Liu et al. (2020), we preprocess the
raw images as following augmentation procedure: Random Crop with 227→ Random Horizontal
Flip. We normalize each image with {mean : (0.485, 0.456, 0.406),standard deviation :
(0.229, 0.224, 0.225)} which is typically used for ImageNet datasets. Here, we apply InceptionRes-
NetV2 Szegedy et al. (2017) for backbone networks. For a fair comparison, we use the same values
as their reported values for all hyper-parameter of each baseline method.

C.4 IMPLEMENTATION TRICK

To reduce the computational complexity of extracting features by using PTMs, we implement small
tricks. It is based on the fact that the only part being updated at the linear probing phase is the linear
classifier. Therefore, we initially extract all features before training the linear classifier and just train
the linear classifier (which consists of one fully connected layer) at the linear probing phase. It can
dramatically reduce the EPL overhead.

C.5 PRE-TRAINED MODEL DESCRIPTION

In this section, we introduce the PTMs that we mainly use to implement our proposed method, EPL.
All pre-trained weights are officially released in HuggingFace Wolf et al. (2020) and we are easily
accessible to these models.

Vision Transformer (ViT; Dosovitskiy et al. 2021). The Vision Transformer utilizes a Transformer-
inspired architecture to classify images by dividing them into fixed-size patches, linear embedding
each patch, and incorporating position embeddings. These resulting vectors are then processed by
a standard Transformer encoder and a learnable "classification token" is added to the sequence for
classification. We mainly use ViT-L/16 which is pre-trained on ImageNet-22K, and ViT-B/16 and
ViT-B/32 which are pre-trained on ImageNet-1K. Examples of ImageNet dataset are depicted in
Figure 7a.

Contrastive Language-Image Pre-training (CLIP; Radford et al. 2021). CLIP is a highly effi-
cient method for learning image representations through natural language supervision. It employs a
simplified version of ConVIRT Zhang et al. (2020), and utilizes a joint training approach for both
an image encoder and a text encoder, with the goal of correctly predicting the pairing of a batch
of (image, text) training examples. In our experiment, we utilize ViT-CLIP which applies CLIP
pretraining method to ViT architecture.

ConvNeXt Liu et al. (2022b). ConvNeXt is a transformation of standard ResNet into the design of
a Vision Transformer through the gradual process of modernization by uncovering several crucial
components that contribute to the performance difference. This exploration resulted in a family of
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pure ConvNet models, known as ConvNeXt. These models are entirely built from standard ConvNet
modules and have been found to be competitive in terms of accuracy and scalability when compared
to Transformers. We mainly use ConvNeXt-XL which is pre-trained on ImageNet-22K. Examples of
ImageNet dataset are depicted in Figure 7a.

D RELATED WORK

Learning with Noisy Labels. After Zhang et al. (2017) showed that DNNs easily memorize
randomly labeled training data, numerous studies have addressed the memorization problem under
label noise. Existing methods mainly address this problem by (1) detecting corrupted instances and
only using label information of clean examples Han et al. (2018); Li et al. (2020); Cheng et al. (2021);
Kim et al. (2021); Xia et al. (2022) (2) designing loss functions or regularization terms with robust
behaviors and provable tolerance to label noise Zhang & Sabuncu (2018); Wang et al. (2019); Liu
et al. (2020); Zhou et al. (2021); Ko et al. (2022). Recently, majority of the research Zheltonozhskii
et al. (2022); Karim et al. (2022); Li et al. (2022) is focused on applying self-supervised approaches
to construct robust feature extractors on label noise. Zheltonozhskii et al. (2022) proposed C2D to
run semi-supervised approaches Li et al. (2020); Liu et al. (2020) with the initial parameters from the
SimCLR Chen et al. (2020) and showed significant performances. However, these approaches may
be over-complicated requiring hyperparameter tuning for different datasets, as well as significant
computation resources.

Pre-trained Models. Recently, several studies have demonstrated that PTMs, which are trained
on the large image Ridnik et al. (2021) or text corpora, can learn universal visual or language
representations that are useful for downstream computer vision or natural language processing
tasks. This has eliminated the need to train a new model from scratch. With the advancement of
computational power and development of deep models such as GPT-3 Brown et al. (2020), Vision
Transformer Dosovitskiy et al. (2021), and ConvNext Liu et al. (2022b), the capabilities of PTMs
have greatly improved. Utilizing PTMs has been considered as an effective solution for multi-modal
models such as CLIP Radford et al. (2021) and Data2Vec Baevski et al. (2022), which can effectively
represent various types of domains.

As researchers make pre-trained weights of PTMs available to the open-source community, there is
growing interest in finding ways to effectively use these pre-trained weights. For example, a lot of
recent research is being focused on utilizing large pre-trained models for prompt learning Zhang et al.
(2022) or in-context learning Liu et al. (2022a), with the goal of achieving good results in few-shot
learning scenarios. However, relatively only a few studies have explored using these PTMs in a
robust learning framework to handle label noise. Recently, Zhu et al. (2022) suggested the applying
self-supervised PTMs Chen et al. (2020) or large PTM Radford et al. (2021) for detecting corrupted
labels without training, however, these methods applied the KNN technique, which requires heavy
computational consumption Li et al. (2022).
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