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Abstract

Recent advances in Automatic Speech Recog-001
nition (ASR) have been largely fueled by mas-002
sive speech corpora. However, extending cover-003
age to diverse languages with limited resources004
remains a formidable challenge. This paper005
introduces Speech Back-Translation, a scal-006
able pipeline that improves multilingual ASR007
models by converting large-scale text corpora008
into synthetic speech via off-the-shelf text-to-009
speech (TTS) models. We demonstrate that010
just tens of hours of real transcribed speech011
can effectively train TTS models to generate012
synthetic speech at hundreds of times the orig-013
inal volume while maintaining high quality.014
To evaluate synthetic speech quality, we de-015
velop an intelligibility-based assessment frame-016
work and establish clear thresholds for when017
synthetic data benefits ASR training. Using018
Speech Back-Translation, we generate more019
than 500,000 hours of synthetic speech in ten020
languages and continue pre-training Whisper-021
large-v3, achieving average transcription error022
reductions of over 30%. These results high-023
light the scalability and effectiveness of Speech024
Back-Translation for enhancing multilingual025
ASR systems.1026

1 Introduction027

Automatic Speech Recognition (ASR) technology028

has become increasingly important in making digi-029

tal services accessible across languages and modal-030

ities (Baevski et al., 2020; Zhang et al., 2021; Rad-031

ford et al., 2022). While recent transformer-based032

architectures have achieved impressive results for033

high-resource languages, e.g., English and Chinese,034

many of the world’s languages still lack sufficient035

transcribed speech for training robust ASR mod-036

els (Pratap et al., 2020a; Babu et al., 2021; Chen037

et al., 2024). This data scarcity creates a significant038

barrier to developing effective multilingual speech039

technologies, particularly affecting communities040

1Our code and data will be released at anonymousurl.

where manual data collection is resource-intensive 041

or logistically challenging (Costa-jussà et al., 2022; 042

Communication et al., 2023; Pratap et al., 2023). 043

A natural way to mitigate the data scarcity issue 044

is to leverage high-quality generative models. Re- 045

cent work has demonstrated successful applications 046

of these models for data augmentation in computer 047

vision (Fan et al., 2023; Azizi et al., 2023), natu- 048

ral language processing (Gunasekar et al., 2023; 049

Li et al., 2024), and speech recognition (Yang 050

et al., 2024). Despite their demonstrated potential, 051

the role of generative models in overcoming data 052

scarcity presents a paradox. These models them- 053

selves typically demand vast amounts of labeled 054

data to attain their remarkable capabilities. For in- 055

stance, Stable Diffusion (Rombach et al., 2022), a 056

leading text-to-image model frequently used for 057

data augmentation (Tian et al., 2023; Trabucco 058

et al., 2023), was trained on millions of labeled 059

images. This reliance prompts a fundamental ques- 060

tion: do synthetic data truly alleviate data scarcity 061

in downstream tasks, or do they simply shift the 062

burden of data collection to the pre-training stage 063

of generative models? 064

Our work investigates whether an off-the-shelf 065

text-to-speech (TTS) model can be trained with 066

limited real transcribed speech data—just tens of 067

hours—to generate synthetic data that enhances 068

multilingual ASR models. To address this chal- 069

lenge, we propose Speech Back-Translation 070

(see Figure 1), a scalable method that build large- 071

scale synthetic transcribed speech from text cor- 072

pora with TTS models. Our results demonstrate 073

that synthetic data, generated by TTS models 074

trained on just tens of hours of labeled audio, can 075

effectively expand small human-labeled datasets 076

to tens of thousands of hours. To assess the 077

quality of this back-translated synthetic dataset, 078

we propose a novel intelligibility-based metric 079

and use it to establish thresholds indicating when 080

synthetic speech reliably enhances ASR perfor- 081
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Figure 1: Pipeline of Speech Back-Translation. The main objective is to augment limited training data (≤100
hours) for low-resource languages by synthesizing extensive amounts of speech (>10,000 hours). Starting from a
multilingual TTS model pre-trained with high-resource languages, we fine-tune it on a small set of seed data, then
generate synthetic speech by conditioning the fine-tuned model on a large textual corpus and diverse audio prompts.

mance. Finally, we scale Speech Back-Translation082

to 500K hours across ten languages and continue083

pre-training Whisper-large-v32, one of the state-084

of-the-art multilingual ASR models. As a result,085

we observe consistent improvements across all lan-086

guages, achieving an average reduction of over087

30% in transcription error rates. To summarize,088

our main contributions are listed as follows:089

1. We demonstrate that just tens of hours of real090

transcribed speech can effectively train TTS091

models to generate tens of thousands of high-092

quality synthetic speech, achieving a scaling093

factor of several hundred.094

2. We introduce an intelligibility-based evalua-095

tion framework for synthetic speech and estab-096

lish thresholds to determine when synthetic097

data reliably benefits ASR performance.098

3. We build the largest synthetic speech dataset099

to date—500K hours spanning ten lan-100

guages—and use it to further pre-train101

Whisper-large-v3. This yields an average 30%102

reduction on transcription error rates, high-103

lighting the scalability of our approach.104

2 Background105

2.1 Back-Translation106

Back-translation is a data augmentation technique107

originally used in machine translation to expand108

training data (Sennrich et al., 2016a; Edunov et al.,109

2018). In a typical setup, a model trained to trans-110

late from the target language back into the source111

language (i.e., a “reverse” model) is used to gen-112

erate synthetic source sentences from real target-113

language data. These newly created source-target114

pairs can then be used to train a forward trans-115

lation model, effectively increasing its exposure116

2https://hf.co/openai/whisper-large-v3

to a broader range of textual content. For speech 117

recognition, back-translation offers a mechanism 118

to supplement scarce or imbalanced datasets by 119

leveraging an abundance of target-side text. Here, 120

the “reverse” model is typically a text-to-speech 121

model that generates synthetic speech from textual 122

corpora. Integrating this synthetic speech with ex- 123

isting training data allows the model to handle a 124

wider range of speech variability, enhancing recog- 125

nition performance despite resource constraints. 126

2.2 Zero-shot Text-to-Speech Model 127

Zero-shot Text-to-Speech (TTS) models (Wang 128

et al., 2023; Casanova et al., 2024) represent a mile- 129

stone in speech synthesis, enabling the generation 130

of high-quality speech for previously unseen speak- 131

ers without additional fine-tuning. These models 132

typically contain the following components: 133

• Audio Tokenizer: Encodes raw acoustic inputs 134

(e.g., mel-spectrograms) into discrete audio to- 135

kens, forming the basis for synthesis. 136

• Speaker Embeddings: Contain speaker-specific 137

acoustic features, which are normally extracted 138

from audio clips, enabling zero-shot adaptation 139

to new voices. 140

• Decoder-only Transformer: Processes speaker 141

embeddings alongside textual tokens to generate 142

sequences of audio tokens. The Transformer 143

model is trained in an auto-regressive manner. 144

• Vocoder: Converts the generated audio tokens 145

into waveform audio, producing the final synthe- 146

sized output. 147

The synergy of these components allows zero-shot 148

TTS models to generalize effectively to speakers 149

not encountered during training, maintaining high 150

voice similarity and naturalness. 151
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3 Approach: Speech Back-Translation152

In this section, we introduce the proposed Speech153

Back-Translation (see Figure 1). we first detail how154

we extend existing TTS models to support new low-155

resource languages with fine-tuning (Section 3.1).156

We then describe how we generate large-scale syn-157

thetic speech dataset (Section 3.2).158

3.1 Fine-tuning with Low-resource Languages159

Obtaining high-quality transcribed speech for low-160

resource languages poses a significant challenge for161

multilingual ASR training. To address this, we ex-162

tend existing multilingual TTS models—originally163

trained on high-resource languages—to new, low-164

resource languages via targeted fine-tuning with165

limited data.166

Vocabulary Expansion Before fine-tuning, we167

expand the vocabulary of pre-trained TTS models168

to accommodate words not encountered during the169

initial training phase. We employ the Byte-Pair170

Encoding algorithm (Sennrich et al., 2016b) on171

textual data from the target language, appending172

the newly derived subwords to the model’s original173

vocabulary. This approach preserves the integrity174

of the existing vocabulary while enabling effective175

representation of new linguistic units.176

Limited Data Fine-tuning Given the scarcity of177

transcribed speech data, we adopt a conservative178

fine-tuning strategy: we freeze modules responsi-179

ble for low-level acoustic representations, such as180

the audio tokenizer and vocoder, while selectively181

fine-tuning only the transformer part of the TTS182

model. This ensures stability in fundamental acous-183

tic modeling while effectively adapting linguistic184

and prosodic mappings to the target language. Dur-185

ing fine-tuning, each pair of audio and transcript186

data is processed by first extracting a speaker em-187

bedding e from the audio clip. Then, we tokenize188

both the transcript and audio clip, concatenating189

the S text tokens x = [x1, . . . , xS ] and T audio190

tokens y = [y1, . . . , yT ] into z = [z1, . . . , zS+T ].191

The training objective minimizes the negative log-192

likelihood of sequence z conditioned on the speaker193

embedding e:194

L = −
S+T∑
t=1

log p
(
zt | z1, . . . , zt−1, e

)
, (1)195

Quality Estimation Evaluating the performance196

of fine-tuned models is essential before deploy-197

ing them for large-scale synthetic data generation. 198

Intelligibility—commonly measured as the Word 199

Error Rate (WER) using a robust ASR system—has 200

emerged as the standard metric for assessing syn- 201

thetic speech quality (Wang et al., 2023; Casanova 202

et al., 2024). Yet this conventional method has 203

two drawbacks: (1) the judge ASR introduces its 204

own errors, particularly in low-resource languages; 205

and (2) absolute WER values are not comparable 206

across languages. To alleviate these issues, we 207

propose a novel metric called Normalized Intel- 208

ligibility, leveraging ASR performance on natu- 209

ral speech as a reference baseline. We use the 210

Fleurs dataset (Conneau et al., 2022), which pro- 211

vides high-quality audio-transcript pairs across 102 212

languages, and Whisper-large-v3 as our judge ASR 213

system. By synthesizing speech using transcripts 214

from Fleurs, we measure two WER scores for each 215

language: WER on synthetic speech (WERs) and 216

WER on real speech (WERr). Normalized Intelli- 217

gibility (Norm_I) is defined as: 218

Norm_I = exp

(
WERr −WERs

WERr

)
(2) 219

This formulation offers several advantages: (1) it 220

normalizes ASR performance across languages us- 221

ing real speech as a baseline, (2) it enables mean- 222

ingful cross-language comparisons, and (3) it pro- 223

duces intuitive scores bounded between 0 and e, 224

where higher values reflect better synthetic speech 225

quality relative to natural speech. 226

3.2 Generating Large-scale Synthetic Speech 227

Zero-shot TTS converts text into audio by condi- 228

tioning on two indispensable inputs: (i) an audio 229

prompt that specifies the target voice style and (ii) a 230

text sentence that supplies the textual content. Both 231

inputs must therefore be covered at scale and with 232

maximal diversity. 233

• Audio Prompts: We curate around 1 million 234

short audio clips spanning diverse speakers and 235

recording conditions. After strict de-duplication 236

to remove near-identical voices, every retained 237

clip can serve as a style prompt that the TTS 238

model imitates. Details of data sources and filter- 239

ing are provided in Appendix C. 240

• Text Corpus: To maximize linguistic variety, 241

we sample sentences across various domains, 242

following the data-mixing practices of recent 243

open-source LLMs (Touvron et al., 2023a; Wei 244

et al., 2023). Construction and statistics of the 245

corpus appear in Appendix D. 246
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Figure 2: XTTS inference speed measured on a single
NVIDIA V100-32GB GPU. “DS” refers to DeepSpeed-
Inference while “Batch” refers to batch inference. For
batch inference, we set batch size to be 16.

Inference Speed-up A key challenge in employ-247

ing TTS models for large-scale dataset creation is248

their inference speed. We address this bottleneck249

using two complementary optimization techniques:250

• DeepSpeed-Inference (Aminabadi et al., 2022):251

Involving fused CUDA kernels integration and252

optimized kernel scheduling, significantly en-253

hancing inference throughput.254

• Batch Inference: We group multiple sentences255

with similar lengths using a single audio prompt,256

then apply tailored attention masks to enable257

simultaneous generation of multiple utterances258

in one forward pass.259

We evaluate the effectiveness of these techniques260

using XTTS (Casanova et al., 2024) on a single261

NVIDIA V100 GPU. As demonstrated in Figure 2,262

we observe that these optimizations yield a more263

than 30× speed-up, making large-scale speech syn-264

thesis feasible for our experiments. More details265

can be found in Appendix A.266

4 Experimental Setup267

4.1 ASR Backbone Models268

Our experiments leverage Whisper models (Rad-269

ford et al., 2022), a family of multilingual ASR270

models pre-trained on 680,000 hours of labeled271

speech data, as the backbone. The models are avail-272

able in five sizes: Tiny (39M), Base (74M), Small273

(244M), Medium (769M), and Large (1.5B). Fur-274

ther training details are provided in Appendix E.275

4.2 Zero-shot TTS Models276

We employ two state-of-the-art zero-shot TTS mod-277

els in our experiments: XTTS (Casanova et al.,278

2024) and ChatTTS (2noise, 2024). XTTS sup-279

ports 16 languages, covering a range of language280

families and resource levels, while ChatTTS only281

supports Chinese and English. More details about282

these two models can be found in Appendix B.283

Model
WER↓

vi cs hu

Whisper-medium 25.4 22.5 27.8
+ Real-only 22.8 15.6 16.9
+ Speech BT 19.0 10.3 13.2

Whisper-large 24.5 19.9 23.8
+ Real-only 19.9 12.5 13.9
+ Speech BT 16.0 9.1 11.1

Table 1: WER results for low-resource languages on
Common Voice. The “Real-only” rows indicate models
trained only on tens of hours of real audio, while the
“Speech BT” rows present performance achieved when
expanding training data to 10K hours using our method.

4.3 Languages 284

Our experiments span ten languages across diverse 285

language families and resource levels. Following 286

Whisper’s training data distribution, we categorize 287

them based on the relative resource availability: 288

• High (≥10K hours): English (en), Chinese (zh), 289

French (fr), German (de), Spanish (es) 290

• Mid (1K∼10K hours): Dutch (nl), Italian (it) 291

• Low (≤1K hours): Vietnamese (vi), Czech 292

(cs), Hungarian (hu) 293

Of these languages, XTTS supports all except Viet- 294

namese. To enable Vietnamese support, we fine- 295

tune XTTS with 100 hours of transcribed speech 296

sampled from viVoice3, a high-quality dataset de- 297

rived from YouTube. 298

4.4 Datasets 299

Most of our experiments use Common Voice 300

data (Ardila et al., 2019), chosen for its high qual- 301

ity and broad language coverage, and it also serves 302

as the primary training corpus for XTTS. To as- 303

sess generalization, we additionally evaluate our 304

ASR models on Voxpopuli (Wang et al., 2021) and 305

Multilingual LibriSpeech (Pratap et al., 2020b). 306

5 Results 307

We begin by demonstrating the effectiveness of our 308

approach in scaling limited real training data to 309

tens of thousands of hours using synthetic speech 310

(Section 5.1). We then evaluate the models’ mul- 311

tilingual performance and examine their general- 312

ization to out-of-domain data (Section 5.2). Next, 313

3https://hf.co/datasets/capleaf/viVoice
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Model Common Voice (In-Domain) Voxpopuli (Out-of-Domain)

High Mid Low Avg. ∆ High Mid Low Avg. ∆

Whisper-medium 11.5 10.6 25.2 - 11.3 21.8 23.4 -
+ Real-only 9.0 8.0 17.6 -4.0 11.0 20.9 19.9 -1.4
+ Speech BT 8.5 6.1 11.1 -6.6 10.0 19.4 13.3 -4.1

Whisper-large 10.5 9.1 21.9 - 11.4 20.3 18.1 -
+ Real-only 8.7 7.2 15.4 -5.0 10.7 19.3 16.2 -1.2
+ Speech BT 6.6 5.2 10.7 -6.3 9.5 17.7 12.5 -3.3

Table 2: Comparison of Whisper models’ WER across in-domain and out-of-domain data. Adding 3,800
hours of Common Voice data (Real-only) provides strong in-domain gains but limited out-of-domain improvements,
whereas scaling synthetic Speech BT data to 160,000 hours achieves robust gains across both domains.
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Figure 3: Comparison of dataset sizes across seven
languages (log-scale y-axis). Languages are catego-
rized by resource availability in the Whisper dataset: (a)
high-resource, (b) mid and low-resource groups.

we analyze the relationship between TTS quality314

and ASR performance using our fine-tuned TTS315

model (Section 5.3), and explore strategies for opti-316

mally leveraging limited in-domain real data (Sec-317

tion 5.4). Finally, we scale the synthetic corpus318

to 500K hours and compare our results with prior319

work (Section 5.5).320

5.1 From Tens of Hours to Tens of Thousands321

We first assess the effectiveness of our approach322

by expanding the amount of training data for three323

low-resource languages—Vietnamese (vi), Czech324

(cs), and Hungarian (hu)—from mere tens of hours325

to ten thousand hours. As a baseline, we sample326

real audio in amounts matching the data originally327

used for TTS training (100 hours for vi, 50 hours328

for cs, and 60 hours for hu)4. Table 1 compares 329

these “Real-only” models against models enhanced 330

with our “Speech BT” method for both Whisper- 331

medium and Whisper-large. Consistently across all 332

three languages, Speech BT provides substantial 333

gains in WER, underscoring the effectiveness of 334

augmenting limited real speech with large-scale 335

synthetic data. 336

5.2 Multilingual Performance and 337

Out-of-Domain Generalization 338

To evaluate the effectiveness and scalability of our 339

approach in a multilingual setting, we generated 340

160,000 hours of synthetic speech spanning seven 341

languages at varying resource levels: French, Ger- 342

man, and Spanish (high-resource); Dutch and Ital- 343

ian (mid-resource); Czech and Hungarian (low- 344

resource). As a baseline, we also collected 3,800 345

hours of transcribed speech from Common Voice 346

as the training data. Figure 3 compares our syn- 347

thetic dataset with the original Whisper Dataset 348

and Common Voice. Our synthetic dataset pro- 349

vides substantially more training hours than the 350

original Whisper dataset for each language: a 3- 351

fold increase for high-resource languages, a 10-fold 352

increase for mid-resource languages, and a 40-fold 353

increase for low-resource languages. While both 354

Whisper training data and Common Voice exhibit 355

substantial resource imbalance across languages 356

(with high-resource languages having significantly 357

more data than mid and low-resource ones), our 358

Speech BT dataset maintains a more uniform dis- 359

tribution. This balanced allocation across language 360

resources enables more equitable training, address- 361

ing a key limitation of naturally collected datasets. 362

4Training data for vi comes from viVoice, whereas data
for cs and hu are sampled from Common Voice.
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Figure 4: Whisper’s performance improves consis-
tently with larger models and more training data. We
train five sizes of Whisper models with up to 160,000
hours of data and conduct evaluation on Common Voice
16. We report averaged WER across seven languages.

Out-of-Domain Generalization Table 2 shows a363

detailed comparison of model performance in both364

in-domain (Common Voice) and out-of-domain365

(Voxpopuli) scenarios. Training with only real366

transcribed speech from Common Voice (Real-367

only) yields clear in-domain improvements for368

both Whisper-medium and Whisper-large (4.0%369

and 5.0% average WER reduction, respectively),370

but the generalization to out-of-domain data is lim-371

ited (just 1.4% and 1.2% average reduction). In372

contrast, supplementing real data with Speech BT373

significantly enhances both in-domain (6.6% for374

Whisper-medium, 6.3% for Whisper-large) and out-375

of-domain performance (4.1% and 3.3%, respec-376

tively). This clearly demonstrates that our synthetic377

data not only improves model robustness within-378

domain but also enhances generalization capabili-379

ties across diverse domains.380

Scalability with Model and Data Size To fur-381

ther assess scalability, we train five Whisper382

model variants—tiny, base, small, medium, and383

large—using the same data mentioned above. Fig-384

ure 4 presents the averaged WER across all seven385

languages for each model size at increasing scales386

of training data up to 160,000 hours. The results387

show two clear trends. First, adding more train-388

ing data consistently lowers WER across all model389

sizes. Second, larger models achieve substantially390

lower WER at each data scale. These scaling trends391

suggest that our Speech BT approach effectively392

improves multilingual ASR performance across393

different model and data scales.394
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Figure 5: Impact of training data quantity and
epochs on Vietnamese TTS quality. The purple dashed
line shows the WER of natural speech from Fleurs.

5.3 TTS Quality vs ASR Performance 395

396

We now investigate extending TTS support to a 397

new language, Vietnamese, using limited amounts 398

of transcribed speech data. To explore how the 399

quantity of training data impacts TTS model per- 400

formance, we sampled datasets at increments of 401

{20,40,60,80,100} hours and trained each for up to 402

10 epochs. The results, shown in Figure 5, clearly 403

indicate that performance consistently improves 404

as the amount of training data and the number of 405

epochs increase. Specifically, the model trained on 406

the 100-hour dataset reaching a WER of 10% in the 407

end, which closely approaches the baseline WER 408

for natural speech. 409

Next, we analyze the relationship between TTS 410

model quality and downstream ASR performance. 411

We selected several checkpoints from the fine- 412

tuned TTS models, varying by the amount of train- 413

ing data and the number of epochs. For each check- 414

point, we generated 100 hours of synthetic speech 415

and subsequently used it to train Whisper-medium. 416

We then measured the resulting changes in WER 417

(denoted as ∆WER, where negative values indi- 418

cate improvement) on the Common Voice dataset. 419

The correlation between each checkpoint’s normal- 420

ized intelligibility score (see Equation 2) and ASR 421

performance is illustrated in Figure 6. Our anal- 422

ysis reveals a strong correlation between TTS in- 423

telligibility scores and ASR performance improve- 424

ments. Notably, we identified a critical intelligibil- 425

ity threshold around 0.01, serving as a clear inflec- 426

tion point. Below this threshold, TTS-generated 427

speech leads to increased WER, degrading ASR 428

performance by up to 2 points. Conversely, once 429

6
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Figure 6: Relationship between TTS quality and ASR
performance. Higher TTS intelligibility correlates with
greater ASR improvement.

the threshold is surpassed, synthetic speech consis-430

tently enhances ASR accuracy, with greater intelli-431

gibility corresponding to more pronounced reduc-432

tions in WER. This underscores the importance of433

achieving a minimum TTS quality level for effec-434

tive ASR data augmentation. Additionally, the vol-435

ume of TTS training data significantly influences436

the ability to surpass this intelligibility threshold.437

Models trained on larger datasets generally achieve438

higher intelligibility scores and yield greater ASR439

performance gains. However, we observe diminish-440

ing returns as normalized intelligibility approaches441

1.0, where WER reductions stabilize around 3 per-442

centage points. This finding suggests that while443

adequate training data is essential to cross the qual-444

ity threshold, further improvements in ASR perfor-445

mance may plateau beyond a certain point.446

5.4 Effective Utilization of Limited447

In-Domain Transcribed Audio448

449

The experiments in Section 5.3 are essentially con-450

ducted under out-of-domain conditions, as the TTS451

models are trained on the viVoice dataset but the452

final ASR performance are evaluated with the Com-453

mon Voice dataset. Notably, we identified only454

about three hours of transcribed audio in Com-455

mon Voice Vietnamese available for training. This456

prompts an important research question: how can457

we effectively leverage such a small but valuable458

amount of in-domain data? We propose three meth-459

ods for effectively utilizing the in-domain data to460

enhance model performance:461

• Approach 1: Pre-train Whisper on large-scale462

synthetic data followed by supervised fine-463

tuning using the limited in-domain data.464

Models WER↓

Whisper-medium 25.4
+ in-domain fine-tune 21.6

Approach 1
+ Synthetic data pre-train 21.2

+ in-domain fine-tune 20.4

Approach 2
+ Synthetic data pre-train 20.1

Approach 3
+ Synthetic data pre-train 18.6

Table 3: Vietnamese WER performance on Common
Voice using different approaches for leveraging limited
in-domain data.

• Approach 2: Prompt the fine-tuned Vietnamese 465

TTS model with in-domain audio clips for 466

speech synthesis. 467

• Approach 3: Further fine-tune the Vietnamese 468

TTS model with in-domain data before synthe- 469

sizing speech. 470

For all three approaches, we utilize fine-tuned 471

XTTS checkpoints trained on 100 hours of tran- 472

scribed speech and generate 1,000 hours of syn- 473

thetic speech for pre-training Whisper-medium. 474

Table 3 summarizes the resulting WERs. As a 475

baseline, we first fine-tune Whisper-medium on 476

three hours of in-domain data, which alone reduces 477

WER from 25.4 to 21.6 and demonstrates the ef- 478

fectiveness of even limited domain adaptation. By 479

combining synthetic speech pre-training on 1,000 480

hours and subsequent in-domain fine-tuning (Ap- 481

proach 1), we obtain further WER reduction to 20.4. 482

However, the most pronounced improvements arise 483

from leveraging in-domain data within the TTS 484

pipeline itself (Approach 2 and 3). Simply prompt- 485

ing a fine-tuned XTTS model with in-domain audio 486

achieves a WER of 20.1, already outperforming the 487

synthetic pre-training baseline. Adding a dedicated 488

fine-tuning stage for XTTS on the three hours of 489

Common Voice audio (Approach 3) yields the best 490

overall WER of 18.6—a 27.0% relative improve- 491

ment over the 25.4 baseline. This underscores the 492

value of adapting both the TTS and ASR models to 493

the target domain, especially for low-resource lan- 494

guages like Vietnamese. In summary, leveraging 495

a small in-domain dataset—through synthetic pre- 496

training, language-specific fine-tuning, and TTS- 497

based in-domain adaptation—proves highly effec- 498

tive for improving ASR performance under real- 499

world low-resource conditions. 500
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Model Size Common Voice Voxpopuli MLS

High Mid Low High Mid Low High Mid

SeamlessM4T-medium 1.2B 13.3 12.8 24.4 10.7 20.0 12.6 8.0 13.0
Whisper-large-v2 1.5B 11.4 8.1 19.9 9.8 19.5 16.3 6.3 11.5

Whisper-large-v3 1.5B 10.1 5.9 15.6 12.6 28.6 14.4 5.3 10.2
+ Real-only (15K Hrs) - 8.6 4.9 12.5 7.9 17.1 10.6 5.0 9.4
+ Speech-BT (500K Hrs) - 7.8 4.3 8.3 7.6 16.2 8.0 4.4 7.6

Table 4: Multilingual ASR performance on various benchmarks. Results are averaged for each language resource
category. Word Error Rate (WER) is reported for all languages except Chinese, which is measured with Character
Error Rate (CER). All results are normalized with Whisper Normalizer (Radford et al., 2022).

5.5 Scaling to 500,000 Hours501

502

Building on insights from our previous analysis, we503

now push the limits of multilingual ASR training504

with Speech Back-Translation. Starting from the505

baseline approach in Section 5.2, we implement506

several key enhancements:507

Training Data Expansion We expand cover-508

age to ten languages by incorporating three addi-509

tional ones—English, Chinese, and Vietnamese.510

We also extend the amount of real speech: in511

addition to Common Voice (Ardila et al., 2019),512

we include real transcribed speech from Multilin-513

gual LibriSpeech (Pratap et al., 2020b), Voxpop-514

uli (Wang et al., 2021), and viVoice, bringing the515

total amount of real data to 15,000 hours. Most516

significantly, we scale our synthetic speech dataset517

to 500,000 hours—a volume more than thirty times518

larger than the real data. The statistics of training519

data is illustrated in Appendix G.520

Backbone Model and Baselines We adopt521

Whisper-large-v3, one of the state-of-the-art522

multilingual ASR models with 1.5B parame-523

ters, as our backbone model. For compari-524

son, we include two ASR models with simi-525

lar sizes—SeamlessM4T-medium (Communication526

et al., 2023) and Whisper-large-v2 (Radford et al.,527

2022)—as our baselines for their competitive per-528

formance and wide language coverage.529

Results We evaluate both our models and base-530

line models on three benchmarks, Common Voice,531

Voxpopuli, and Multilingual LibriSpeech (MLS),532

and present the results in Table 4. We report the533

averaged results for each language category. Re-534

sults demonstrate a clear performance trajectory,535

training Whisper-large-v3 with 15K hours of real536

audio consistently improves performance across all 537

benchmarks, while augmenting with 500K hours 538

of Speech-BT data yields further substantial gains, 539

achieving state-of-the-art results across all lan- 540

guage categories. On average across all bench- 541

marks, our full model achieves a 30% error rate 542

reduction over the base Whisper-large-v3. Break- 543

ing this down by language groups, high-resource 544

and mid-resource languages achieve 26% and 30% 545

improvements respectively, while low-resource lan- 546

guages achieve a remarkable 46% improvement. 547

These findings indicate that augmenting real data 548

substantially with our synthetic Speech BT data 549

contributes significantly to advancing multilingual 550

ASR systems, with particular benefits for tradition- 551

ally underserved language communities. Detailed 552

per-language results can be found in Appendix H. 553

6 Conclusion 554

This work introduced Speech Back-Translation, a 555

scalable approach to address the persistent chal- 556

lenge of data scarcity in multilingual ASR. Our 557

method demonstrates that TTS models trained on 558

merely tens of hours of transcribed speech can gen- 559

erate hundreds of times more synthetic data of suf- 560

ficient quality to significantly improve ASR perfor- 561

mance. The large-scale implementation across ten 562

languages with 500,000 hours of synthetic speech 563

yielded an average 30% reduction in Whisper-large- 564

v3’s transcription error rates, confirming the effec- 565

tiveness and scalability of our approach. Speech 566

Back-Translation challenges the need for massive 567

human-labeled datasets by effectively scaling lim- 568

ited data, making advanced speech recognition 569

more accessible across diverse languages. Future 570

work could extend to extremely low-resource lan- 571

guages, refine language-specific metrics, and com- 572

bine with other augmentation techniques. 573
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Limitations574

While our approach demonstrates significant im-575

provements in multilingual ASR performance, sev-576

eral limitations should be noted.577

First, the synthetic speech data generated578

through TTS models may not fully capture the579

acoustic complexity present in real-world environ-580

ments, particularly in scenarios with background581

noise, multiple speakers, or variable recording con-582

ditions. This limitation could impact model robust-583

ness when deployed in settings with poor signal-to-584

noise ratios or challenging acoustic environments.585

Second, although we introduce an intelligibility-586

based metric for assessing synthetic speech quality,587

this assessment framework may not comprehen-588

sively capture all relevant aspects of speech that589

could influence ASR training effectiveness. Future590

work could explore additional quality metrics that591

consider factors such as prosody and emotional592

expression.593

Third, our experimental validation is primarily594

based on two TTS models (XTTS and ChatTTS),595

which may not represent the full spectrum of TTS596

capabilities and limitations. A more comprehensive597

evaluation across a broader range of TTS systems598

could provide additional insights into the gener-599

alizability of our approach and identify potential600

TTS-specific biases or artifacts.601

Lastly, while we demonstrate the scalability of602

our method by generating 500,000 hours of syn-603

thetic speech, our language coverage remains lim-604

ited to ten languages, with nine already supported605

by existing TTS models. Further research is needed606

to validate our approach’s effectiveness in other607

low-resource languages, particularly those with dis-608

tinct phonological characteristics or limited linguis-609

tic resources.610
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A Inference Optimization Details892

We accelerate inference by integrating DeepSpeed-893

Inference (Aminabadi et al., 2022) into the TTS894

pipeline. DeepSpeed’s deep fusion merges multiple895

tiny CUDA launches into a single, highly optimized896

kernel that combines element-wise operations, ma-897

trix multiplications, transpositions, and reductions.898

Merging these operations reduce kernel-invocation899

overhead and off-chip memory traffic, translating900

into noticeably lower latency and higher through-901

put. We compound these gains with batch infer-902

ence. Input sentences are grouped by language903

and length, then paired with a single audio prompt904

that supplies the target voice. Custom attention905

masks mark prompt–text boundaries, allowing the906

TTS model to synthesize multiple utterances con-907

currently. This batching strategy reduces redundant908

computations and GPU idle time, dramatically im-909

proving overall inference efficiency.910

B XTTS vs ChatTTS911

In this section, we present a comparative analysis912

of XTTS and ChatTTS for generating synthetic913

audio in Chinese and English. Table 5 summarizes914

the architectural details of both models. As the915

XTTS’s training data mainly come from Common916

Voice, we treat Common Voice 16 as the in-domain917

dataset and Fleurs as the out-of-domain dataset for918

evaluation.919

Performance Comparison We synthesize920

speech from 100K Chinese and English sentences921

using both models and train Whisper-medium922

to assess the effectiveness of these synthetic923

datasets. As shown in Figure 7 (a) and (b), XTTS924

outperforms ChatTTS on in-domain Chinese925

data, whereas ChatTTS excels on out-of-domain926

Chinese data. For English, XTTS achieves a WER927

of 4.0%, surpassing ChatTTS’s 4.4%. These928

trends highlight each model’s distinct strengths in929

handling language-specific characteristics.930

TTS Quality Comparison To understand the931

performance difference, We assess the TTS qual-932

ity with our proposed normalized intelligibility933

metric for both models. As shown in Figure 7,934

XTTS achieves superior intelligibility in English935

(0.96 vs 0.74) while ChatTTS excels in Chinese936

(0.87 vs 0.59). Nevertheless, XTTS performs better937

on in-domain Chinese data, suggesting that while938

ChatTTS produces more intelligible speech in gen-939

eral, XTTS is more effective within the specific940
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Figure 7: Comparison of Whisper-medium ASR perfor-
mance on in-domain (CV16) and out-of-domain (Fleurs)
test sets, as well as TTS quality, when training with syn-
thetic Chinese and English speech generated by XTTS
and ChatTTS.

domain represented by Common Voice 16. This 941

discrepancy may be attributed to domain-matched 942

acoustic patterns and speaking styles that XTTS 943

models more accurately. Meanwhile, on out-of- 944

domain data (Fleurs), ChatTTS’s superior general 945

intelligibility dominates, leading to stronger per- 946

formance. In English, XTTS demonstrates higher 947

intelligibility and more robust ASR results com- 948

pared to ChatTTS. Overall, these findings under- 949

score how a TTS model’s domain alignment and 950

language-specific strengths can influence synthetic 951

data quality and downstream ASR performance. 952

C Audio Prompt Details 953

We collect a diverse set of audio clips from various 954

sources to serve as audio prompts for our TTS mod- 955

els. To prevent redundancy in voice characteristics, 956

we extract speaker embeddings from each reference 957

clip using the ECAPA2 speaker encoder (Thien- 958

pondt and Demuynck, 2023) and remove duplicates 959

by comparing their cosine similarity, applying a 960

threshold of 0.8. Table 6 summarizes the sources 961

of these audio clips. 962

D Textual Data Details 963

Our textual corpus is sourced from a wide range of 964

domains. Since some sources include sequences 965

that are too long for TTS synthesis, we first seg- 966

ment the text using a sentencizer. We then filter out 967

sentences that are either too short, too long, or con- 968

tain an excessive number of non-alphabetic charac- 969

ters. To reduce redundancy, we perform sentence- 970

level de-duplication. A detailed breakdown of our 971

corpus sources is provided below. 972

Wikipedia Wikipedia is a collaborative online 973

encyclopedia containing millions of articles, serves 974
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Model
Transformer Vocabulary

Vocoder Parameters Lang
Layers Width Heads Text Audio

XTTS 30 1,024 16 6,681 1,024 Hifi-GAN (2020) 467M 16
ChatTTS 20 768 12 21,178 626 Vocos (2023) 280M 2

Table 5: Architecture details of XTTS and ChatTTS.

Dataset Num. Clips

Emilia (He et al., 2024) 560K
CommonVoice (Ardila et al., 2019) 230K
WenetSpeech (Zhang et al., 2022) 102K
CML-TTS (de Oliveira et al., 2023) 92K
LibriTTS (Zen et al., 2019) 10K

Total 994K

Table 6: Audio prompt distribution. The audio clips
used for voice cloning comes from various sources.

as a valuable source of high-quality natural text,975

therefore has been widely used for training lan-976

guage models (Touvron et al., 2023a,b).977

WMT (Barrault et al., 2019) We also collected978

textual data from the training split of WMT19 trans-979

lation task, which is a widely-used training data980

source in machine translation research.981

Books Our Books dataset is sourced primarily982

from Project Gutenberg, a digital library of public983

domain literature. Book-level de-duplication is984

performed to ensure the quality and uniqueness of985

the corpus.986

Europarl (Koehn, 2005) Europarl is a parallel987

corpus created for training machine translation988

systems, containing aligned text in European lan-989

guages extracted from European Parliament pro-990

ceedings. We utilize 8th version of the dataset.991

SkyPile (Wei et al., 2023) SkyPile is a large-992

scale Chinese dataset containing approximately993

150 billion tokens, curated specifically for pre-994

training large language models. The corpus is995

compiled from diverse Chinese web pages across996

the public internet and undergoes rigorous qual-997

ity control, including thorough document-level de-998

duplication and content filtering.999

E Training Details1000

Whisper We train Whisper using AdamW (β1 =1001

0.9, β2 = 0.98, ϵ = 1e − 8) with a weight de-1002

cay of 0.01. We use constant learning rate 7e− 61003

after 5% warm-up steps. To optimize distributed 1004

training, we leverage DeepSpeed ZeRO-2 (Rajb- 1005

handari et al., 2019). Additionally, we concatenate 1006

short audio clips—up to Whisper’s 30-second in- 1007

put limit—to improve efficiency. Unless otherwise 1008

specified, our batch size is 128. In experiments pre- 1009

sented in Section 5.2, we increase it to 768, while 1010

in Section 5.5 experiment, we further increase it to 1011

1,024. For evaluation, we generate transcripts with 1012

greedy decoding. 1013

XTTS Before fine-tuning, we expand the model’s 1014

text vocabulary by incorporating 2,000 additional 1015

Vietnamese tokens by running Byte-Pair Encoding 1016

algorithms over Vietnamese textual data. We used 1017

the AdamW optimizer β1 = 0.9, β2 = 0.96, and 1018

ϵ = 1e− 8 with weight decay 0.01, and a learning 1019

rate of 5e-6. The batch size is set to 32. 1020

F Related Work 1021

F.1 Synthetic Data for Multilingual ASR 1022

Recently we have witnessed the application of syn- 1023

thetic data in various domains and modalities, e.g., 1024

contrastive representation learning (Wang and Lu, 1025

2022; Tian et al., 2023), math reasoning (Wang 1026

and Lu, 2023; Wang et al., 2024). Our work fo- 1027

cuses on improving multilingual ASR models using 1028

synthetic audio generated by zero-shot TTS mod- 1029

els, with particular emphasis on low-resource lan- 1030

guages. This research builds upon previous efforts 1031

that address data scarcity through synthetic data 1032

generation. Bartelds et al. (2023) demonstrated 1033

that both self-training and TTS-generated data can 1034

effectively overcome data availability limitations in 1035

resource-scarce languages. Their work specifically 1036

examined four languages: Gronings, West-Frisian, 1037

Besemah, and Nasa, showing significant improve- 1038

ments in ASR performance. Baas and Kamper 1039

(2021) explored voice conversion (VC) models 1040

for data augmentation in low-resource languages. 1041

Their key finding was that a VC system trained on 1042

a well-resourced language like English could gen- 1043

erate effective training data for previously unseen 1044

low-resource languages. More recently, Gao et al. 1045
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(2024) proposed using diffusion models to gener-1046

ate high-quality synthetic audio for self-supervised1047

pre-training. The authors suggest that diffusion1048

models are particularly adept at capturing complex1049

speech structures from real audio, making the syn-1050

thetic data especially valuable for self-supervised1051

learning tasks.1052

F.2 Text-Based Back-Translation1053

Back-Translation (Sennrich et al., 2016a; Edunov1054

et al., 2018) is originally proposed machine trans-1055

lation (Sennrich et al., 2016b; Pan et al., 2024)1056

to augment the limited parallel training corpus1057

from the large amount of monolingual textual1058

data. It is designed to translate the target-language1059

data into the source language, generatin addi-1060

tional synthetic parallel data that boosts overall1061

translation quality (Sennrich et al., 2016a). This1062

method capitalizes on monolingual text resources,1063

which are more abundant than parallel corpora,1064

thereby increasing model robustness and reduc-1065

ing overfitting. Subsequent work has explored1066

variants of back-translation such as iterative back-1067

translation, filtering synthetic data by quality, and1068

domain adaptation strategies (Edunov et al., 2018;1069

Hoang et al., 2018). In addition, dual learning1070

frameworks have incorporated back-translation and1071

forward-translation jointly for unsupervised and1072

semi-supervised machine translation scenarios (He1073

et al., 2016; Lample et al., 2018). These develop-1074

ments underscore the broader impact of synthetic1075

data in enhancing model performance, even where1076

labeled data are sparse.1077

F.3 Speech Translation1078

Beyond text-based machine translation, speech1079

translation deals with converting audio signals in1080

one language to either text or audio in another lan-1081

guage, frequently via cascading automatic speech1082

recognition and machine translation modules or1083

through end-to-end systems (Cheng et al., 2024;1084

Huang et al., 2023). One persistent challenge in this1085

domain, especially for lower-resource languages,1086

is the scarcity of paired audio-transcript data. A1087

widely used approach to address this limitation is1088

to create pseudo-labeled data by transcribing ex-1089

isting audio and then translating the resulting tran-1090

scripts (Communication et al., 2023; Puvvada et al.,1091

2024). A natural future direction for our Speech1092

Back-Translation approach could be extended to1093

speech translation tasks by synthesizing speech1094

from existing parallel corpora.1095

Language
Amount (Hrs)

Real Synthetic

English 3,951 75,159
French 2,486 94,822
German 3,706 90,782
Spanish 1,674 47,745
Chinese 204 37,910
Dutch 1,525 41,095
Italian 839 38,069
Czech 119 33,312
Hungarian 156 33,492
Vietnamese 104 13,444

Total 14,864 505,830

Table 7: Statistics of the training data in our 500K-hour
experiment.

G 500K-Hour Training Data Statistics 1096

The detailed statistics of training data used in our 1097

500K-hour scaling up experiments are presented 1098

in Table 7. 1099

H Additional 500K-Hour Scaling Results 1100

In this section, we show detailed results for each 1101

languages from Section 5.5. The results for 1102

Multilingual Librispeech (MLS), Voxpopuli, and 1103

Common Voice 16 are presented in Table 8, Ta- 1104

ble 9, and Table 10 respectively. Additionally, we 1105

make comparisons with state-of-the-art multilin- 1106

gual ASR models: SeedASR (Bai et al., 2024), 1107

SeamlessM4T (Communication et al., 2023), Ca- 1108

nary (Puvvada et al., 2024), and Whisper-large and 1109

Whisper-large-v2 (Radford et al., 2022). 1110
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Model Size
High Mid

en fr de es nl it

SeedASR - 4.1 5.1 - 3.8 - -
SeamlessM4T-medium 1.2B 9.8 7.9 8.9 5.4 13.6 12.3
Canary 1.0B 5.1 4.4 4.7 3.4 - -

Whisper-large 1.5B 7.2 8.8 7.4 5.3 11.1 14.1
Whisper-large-v2 1.5B 6.8 7.4 6.4 4.6 10.0 12.9

Whisper-large-v3 1.5B 5.3 5.6 6.0 4.0 10.4 9.9
+ Real-only (15K Hrs) - 5.5 5.1 5.7 3.5 10.2 8.5
+ Speech BT (500K Hrs) - 5.2 4.3 4.9 3.0 8.5 6.7

Table 8: Performance comparison across languages on Multilingual LibriSpeech (MLS).

Model Size
High Mid Low

en fr de es nl it cs hu

SeamlessM4T-medium 1.2B 8.2 11.8 14.0 8.8 17.2 22.8 11.0 14.1
Canary 1.0B 6.0 9.2 10.7 7.0 - - - -

Whisper-large 1.5B 8.1 10.5 15.2 8.5 17.6 22.9 17.7 18.4
Whisper-large-v2 1.5B 7.9 10.4 13.1 7.9 15.8 23.2 14.3 18.3

Whisper-large-v3 1.5B 9.7 10.4 19.7 10.6 24.9 32.3 12.4 16.3
+ Real-only (15K Hrs) - 6.0 8.9 9.6 7.0 12.5 21.7 9.5 11.7
+ Speech BT (500K Hrs) - 5.6 8.4 9.0 7.4 12.5 19.8 7.6 8.3

Table 9: Performance comparison across languages on Voxpopuli.

Model Size
High Mid Low

en fr de es zh nl it cs hu vi

SeamlessM4T-medium 1.2B 11.3 14.5 12.1 9.8 18.7 15.2 10.4 14.4 34.8 24.1
Canary 1.0B 8.6 6.9 5.1 4.4 - - - - - -

Whisper-large 1.5B 12.2 15.0 8.9 7.6 17.3 8.1 10.1 19.9 23.8 24.5
Whisper-large-v2 1.5B 11.7 13.7 7.8 6.9 16.9 6.9 9.3 16.5 20.3 22.8

Whisper-large-v3 1.5B 10.7 11.8 6.5 5.5 16.1 4.9 6.9 10.9 15.3 20.5
+ Real-only (15K Hrs) - 9.7 8.7 5.9 4.4 14.3 4.3 5.5 9.2 11.4 16.9
+ Speech BT (500K Hrs) - 8.8 7.3 5.0 4.2 13.6 3.7 4.9 5.2 6.0 13.6

Table 10: Performance comparison across languages on Common Voice 16.
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