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Abstract
Word Sense Disambiguation (WSD) is a histor-001
ical task in computational linguistics that has002
received much attention over the years. How-003
ever, with the advent of Large Language Mod-004
els (LLMs), interest in this task (in its classical005
definition) has decreased. In this study, we eval-006
uate the performance of various LLMs on the007
WSD task. We extend a previous benchmark008
(XL-WSD) to re-design two subtasks suitable009
for LLM: 1) given a word in a sentence, the010
LLM must generate the correct definition; 2)011
given a word in a sentence and a set of pre-012
defined meanings, the LLM must select the013
correct one. The extended benchmark is built014
using the XL-WSD and BebelNet. The results015
indicate that LLMs perform well in zero-shot016
learning but cannot surpass current state-of-the-017
art methods. However, a fine-tuned model with018
a medium number of parameters outperforms019
all other models, including the state-of-the-art.020

1 Introduction021

The Word Sense Disambiguation (WSD) task (Ide022

and Véronis, 1998; Navigli, 2009; Bevilacqua et al.,023

2021) has a long tradition in computational linguis-024

tics. The most used definition of WSD is selecting025

the correct meaning for a word occurrence in a026

text from a set of possible meanings provided by a027

sense inventory. The classical definition requires028

the existence of a sense inventory that provides for029

each word a list of possible meanings. This inven-030

tory can be a dictionary, a thesaurus, or a semantic031

network such as WordNet (Miller, 1995). However,032

since the existence of a sense inventory can be a033

limit in particular contexts, the task of Word Sense034

Discrimination/Induction was introduced. In this035

case, the task is to infer the different word usages036

by clustering the word occurrences according to037

their meaning; in this way, occurrences that share038

the same meaning are grouped in the same clus-039

ter, and the final set of clusters corresponds to the040

differing meanings of that word.041

In the past, several techniques were exploited to 042

solve both tasks. In particular, the WSD methodolo- 043

gies evolved according to advances in Artificial In- 044

telligence and Machine Learning. The first period 045

was characterized by using rules-based systems 046

followed by knowledge-based approaches when 047

digital sense inventory became available. With 048

the availability of digital corpora, supervised ap- 049

proaches were introduced to take advantage of man- 050

ually annotated data. With the advent of the web, 051

large corpora and large knowledge graphs automat- 052

ically extracted for the web revolutionized super- 053

vised and knowledge-based approaches. A new set 054

of approaches was proposed when language models 055

based on the transformers’ architecture (Vaswani, 056

2017) were introduced. The ability of these models 057

to represent words in context through dense vectors 058

opens new possibilities for the disambiguation and 059

discrimination of word meanings. 060

The more recent novelty that revolutionized com- 061

putational linguistics is the introduction of Large 062

Language Models (LLMs). Essentially, an LLM 063

is based on the transformer architecture trained on 064

vast amounts of text data to understand and gen- 065

erate human-like language. LLMs have proven 066

their ability to solve different tasks in a zero-shot 067

or few-shot setting without using specific training 068

data. However, it is also possible to fine-tune an 069

LLM on specific tasks using training data. The 070

capability of LLMs to solve several tasks without 071

training suggests an intrinsic ability to understand 072

the semantics behind the language. The impressive 073

results achieved by LLMs might make us lose sight 074

of or underestimate the problem of automatic dis- 075

ambiguation of meaning. In this work, we want 076

to measure how state-of-the-art LLMs can solve 077

the WSD task to understand if the model somehow 078

stores knowledge about word meanings. The WSD 079

task must be redesigned considering the generative 080

abilities of LLMs. Therefore, we extend a previous 081

benchmark with two subtasks suitable for testing 082
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an LLM. We re-design the WSD task in two ways:083

1) the model is tested in generating the definition084

of a word in a sentence; 2) the model is evaluated085

in selecting the correct meaning of a word in a086

sentence from a predefined set of possible choices087

following a multiple choices paradigm often used088

to evaluate LLMs.089

Our study considers only open LLMs with a090

different number of parameters and several lan-091

guages: English, Spanish, French, Italian and Ger-092

man. The performance is evaluated according to a093

gold standard, considering the quality of the gener-094

ated definition (sub-task 1) and the correctness of095

the selected sense (sub-task 2).096

The main contributions of our work are 1) the097

extension of an existing multilingual benchmark098

for testing and training LLMs in the context of099

the WSD task; 2) an extensive evaluation of open100

state-of-the-art LLMs; 3) the release of several fine-101

tuned models trained on our dataset1.102

The paper is structured as follows: Section 2103

discusses related works that leverage LLMs for104

solving WSD; Section 3 provides details about the105

benchmark used to evaluate LLMs in the WSD task,106

while Section 4 describes the methodology used to107

generate and select answers exploiting LLMs. Re-108

sults are discussed in Section 5, and final remarks109

are reported in Section 6.110

2 Related Work111

Transformer-based language models are widely112

used for solving the WSD task. A deep overview113

is proposed in (Loureiro et al., 2021). BERT (De-114

vlin, 2018) and its variations excel in understand-115

ing context-sensitive semantic nuances, making116

them dominant in evaluation benchmarks. The au-117

thors find that BERT-like models can accurately118

distinguish between different word senses, even119

with limited examples for each sense. The anal-120

ysis also shows that while language models can121

nearly solve coarse-grained noun disambiguation122

under ideal conditions (ample training data and123

resources), such scenarios are rare in real-world124

applications, leaving significant challenges. More-125

over, the article compares two WSD strategies: fine-126

tuning and feature extraction. The authors conclude127

that feature extraction is more robust, especially in128

dealing with sense bias and when training data is129

limited. Notably, averaging contextualized embed-130

1We plan to release code, models, models’ outputs and
datasets in case of acceptance.

dings as a feature extraction method is effective, 131

performing well even with just few training sen- 132

tences per word sense. However, no works about 133

the usage of recent LLMs for WSD are proposed. 134

In our work, we try to investigate the ability of 135

LLMs in a zero-shot setting without any training 136

data and considering a fine-grained sense inven- 137

tory. Moreover, we also propose an analysis of a 138

fine-tuned LLM when training data are available. 139

Another interesting analysis of WSD approaches 140

based on BERT-like models is proposed in (Bevilac- 141

qua et al., 2021). This work analyzes several WSD 142

approaches including ones that leverage language- 143

models both for extracting contextual-embeddings 144

used as features and as starting point for training 145

a supervised model on sense-annotated data. This 146

paper is strongly related to our work because it pro- 147

vides an extensive evaluation of the same dataset 148

we considered. 149

Another interesting work is the one proposed 150

by (Cabiddu et al., 2023), where several language 151

models, including large models such as GPT and 152

GPT-2, are evaluated in three behavioural experi- 153

ments used to measure children’s sense disambigua- 154

tion capabilities. The study is interesting because 155

it tries to compare how semantics is perceived by 156

children and how it is represented in transformer- 157

based models. The authors find a model bias with 158

respect to the most dominant meaning and a neg- 159

ative correlation between the training size and the 160

model performance. However, the authors limit 161

their analysis to this dataset, which is very specific. 162

We find a unique work that uses LLMs on a task 163

similar to WSD. In (Kritharoula et al., 2023), the 164

authors combine transformer-based methods for 165

multimodal retrieval and LLMs to solve the task of 166

Visual WSD (VWSD). VWSD is a novel task that 167

aims to retrieve an image among a set of candidates 168

that better represents the meaning of an ambiguous 169

word within a given context. LLMs are used as 170

knowledge bases to enhance the textual context 171

and resolve ambiguity related to the target word. 172

In conclusion, several works exploited 173

transformer-based architectures similar to BERT 174

for WSD essentially in two ways: 1) extraction 175

of contextual embeddings used as features; 2) 176

supervised models that fine-tune the language 177

model on sense-annotated data. However, no 178

works have exploited recent decoder-only LLMs as 179

word sense disambiguators in a zero-shot setting 180

(completely unsupervised) or as a base for further 181

fine-tuning on annotated data. Our work tries to 182
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fill this gap by considering the more recent and183

state-of-the-art open LLMs.184

3 The Benchmark185

To evaluate LLMs on the WSD task, we need a186

sense-annotated corpus, i.e., a collection of sen-187

tences in which each word is tagged with its correct188

meaning taken from a sense inventory. For this rea-189

son, we also require a sense inventory that provides190

the set of possible meanings for each word. There-191

fore, our benchmark requires both a multilingual192

corpus and a multilingual sense inventory.193

We will introduce some formal notations before194

delving into the description of the benchmark con-195

struction. Given a sentence Sk and one of its word196

occurrences wi, we define Li as the list of pos-197

sible meanings of wi and mj ∈ Li, the mean-198

ing assigned to wi. Each meaning has several199

glosses, one for each language taken into account,200

and we use mj,lang ∈ Li to refer to it. In our201

case, lang ∈ {en, it, es, fr, de}. Starting from202

the multilingual sense-annotated corpus and the203

corresponding sense inventory, we need a strategy204

for building two types of prompts for testing LLMs.205

The first prompt aims to assess the ability of206

the LLM to generate an accurate definition of a207

word within a specific sentence. For each sense208

annotated word occurrence, we create the prompt209

(Liu et al., 2023) in Table 1 for each language. The210

table reports only the prompt for English; the others211

are provided in the Appendix B. We also store the212

correct definition mj in the benchmark in a field213

called output.214

Prompt template (generation)
Give a brief definition of the word "wi" in the
sentence given as input. Generate only the
definition. Input: "Sk"

English prompt
Give a brief definition of the word "art" in the
sentence given as input. Generate only the
definition. Input: "The art of change-ringing is
peculiar to the English, and, like most English
peculiarities, unintelligible to the rest of the
world."

Table 1: Prompt for the generation benchmark.

While constructing the prompt, we need to man-215

age the cases in which a word wi occurs more than216

once in the sentence Sk. In these cases, we change217

the prompt as follows: “Give a brief definition218

of the x occurrence of the word "wi"...”, where 219

X = {first, second, third, fourth, fifth} and 220

x ∈ X . We exclude cases where the word occurs 221

more than six times, and we translate the set X 222

according to each language. 223

The goal of the second kind of prompt is to eval- 224

uate the LLM’s ability to select the correct sense 225

from a set of predefined possibilities following a 226

multiple-choice paradigm. In this case, we exploit 227

the list of all possible meanings Li. In particular, 228

from Li, we remove all the annotated meanings2 229

and obtain the set Ci. Then, we randomly add to 230

Ci one of the correct meanings; in this way, Ci con- 231

tains only one correct sense. For each occurrence 232

of a sense-annotated word in the corpus, we create 233

the prompt in Table 2 for each language. The ta- 234

ble reports only the prompt for English; the others 235

are provided in the Appendix B. Additionally, we 236

store the identifier (i.e. the option’s number) cor- 237

responding to the correct answer in a field called 238

output. 239

Prompt template (multiple choice)
Given the word "wi" in the input sentence,
choose the correct meaning from the following:
Ci. Generate only the number of the selected
option.

English prompt
Given the word "art" in the input sentence,
choose the correct meaning from the follow-
ing:
1) Photographs or other visual representations
in a printed publication
2) A superior skill that you can learn by study
and practice and observation
3) The products of human creativity; works of
art collectively
4) The creation of beautiful or significant
things.
Generate only the number of the selected op-
tion.
Input: "The art of change-ringing is peculiar
to the English, and, like most English peculiar-
ities, unintelligible to the rest of the world."

Table 2: Prompt for the multiple choice benchmark.

We also manage the case where the word wi 240

occurs more than once by modifying the prompt 241

2In the sense-annotated corpus, a word occurrence can be
annotated with more than one correct meaning.
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as in the first benchmark. Moreover, given that242

the model is asked to choose among different op-243

tions in this benchmark, we need to manage cases244

in which the size of Ci is less than two. In these245

cases, we remove the occurrence from the dataset.246

Monosemic words are not considered in the con-247

struction of both tasks3.248

We use XL-WSD (Pasini et al., 2021) as our249

sense-annotated corpus. This dataset serves as a250

cross-lingual evaluation benchmark for the WSD251

task, featuring sense-annotated development and252

test sets in 18 languages from six different linguis-253

tic families. Additionally, it includes language-254

specific training data, making it highly useful for255

evaluating WSD performance in a multilingual con-256

text. As stated previously, this study is focused on257

five languages: English, Italian, Spanish, French,258

and German. The sense inventory adopted in XL-259

WSD is BabelNet (Navigli and Ponzetto, 2010).260

However, not all senses in BabelNet have a gloss261

for each of the chosen languages. For this rea-262

son, we build two versions of the dataset: without263

translation in which we consider only the word264

occurrences that have glosses in BabelNet for each265

language, and with translation in which English266

glosses4 are automatically translated when they are267

not available in BabelNet for a particular language.268

We use the 1.3B variant of the Meta NLLB-200269

model5 for the translation. We selected this transla-270

tion model because it has a good performance and271

computational cost trade-off. Moreover, it is open.272

The Table 3 reports the number of instances for273

each kind of task. Statistics for each language are274

reported in Appendix A.275

Without translation
Generation Multiple-choice

Training set 1,204,430 861,791
Test set 10,480 9,847

With translation
Generation Multiple-choice

Training set 1,451,650 1,170,921
Test set 11,473 11,168

Table 3: Task statistics: number of instances.

3For the first benchmark based on definition generation, it
is also possible to consider monosemic words. We exclude
this hypothesis since we want to test LLMs in the case of
polysemy.

4The English gloss is always available.
5https://huggingface.co/facebook/nllb-200-1.

3B

4 Methodology 276

We follow two distinct methodologies to evaluate 277

LLMs in solving the WSD task. In the first ap- 278

proach, known as (zero-shot), we directly prompt 279

a selection of open LLMs with a varying number 280

of parameters, without any task-specific training, 281

to assess their inherent ability to solve the WSD 282

problem. In the second approach, we fine-tune an 283

open LLM with a small number of parameters. Our 284

aim is twofold: 1) testing existing open models in 285

solving the disambiguation task without additional 286

training and 2) determining whether a model with 287

a small number of parameters can solve the disam- 288

biguation task with proper fine-tuning. We select a 289

model with a small number of parameters to allow 290

the training on more accessible hardware. 291

4.1 Zero-shot 292

The methodology of this approach is straightfor- 293

ward. We select a set of open LLMs with a dif- 294

ferent number of parameters and directly prompt 295

them using the benchmarks described in Section 296

3. Then, we measure the quality of the generated 297

definitions and the accuracy in selecting the correct 298

sense from the predefined alternatives. We perform 299

two separate evaluations: the former involves only 300

the original glosses, while the latter also contains 301

the machine-translated ones. 302

For prompting the models, we use a cloud ser- 303

vice6. We consider the following LLMs: Llama- 304

3.1-instruct-8B (Dubey et al., 2024), Mistral- 305

instruct-7B-v03 (Jiang et al., 2023), Gemma2- 306

9B (Team and el., 2024), Llama-3.1-instruct-70B, 307

Qwen2-72B-Instruct (Yang et al., 2024) and Llama- 308

3.1-instruct-405B. 309

All models are tested using a greedy search ap- 310

proach as an inference strategy to avoid variability 311

over different runs. 312

4.2 Fine-tuning 313

We use LLAMA 3.1 8B INSTRUCT as the base 314

model to fine-tune. The LLAMA 3.1 family of 315

models has been designed and trained with multi- 316

linguality in mind, by properly balancing the lan- 317

guages in the training mixture. Therefore, the 318

LLAMA 3.1 models are already skilled in un- 319

derstanding and generating text in multiple lan- 320

guages. Specifically, they support the following 321

6together.ai: https://www.together.ai/. We spend
about 15$ for performing all the experiments.
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languages: English, German, French, Italian, Por-322

tuguese, Hindi, Spanish, and Thai. All languages323

considered in this work are also natively supported324

by LLAMA 3.1 8B INSTRUCT, making it the ideal325

starting point.326

We use a full-parameter training approach for327

the fine-tuning strategy, using DeepSpeed ZeRO 37328

(Rajbhandari et al., 2020) for parallelization. We329

rely on a compute node consisting of four A100330

64GB VRAM GPUs. We use the LLAMA 3.1331

instruct template to format the prompt without any332

system message. We use a maximum sequence333

length of 512, discarding examples exceeding this334

value. The value was selected after studying the335

number of tokens in the training sets with and with-336

out translation (also considering the tokens added337

by the instruction formatting). In all cases, the 95th338

percentile of the number of tokens was less than339

512. Other relevant hyperparameters are reported340

in Table 4.341

Parameter Value
batch size 512
lr 4e-5
lr schedule cosine
lr warmup ratio 0.00
weight decay 0
epochs 1
optimizer AdamW

Table 4: Hyperparameters for fine-tuning

5 Evaluation342

This section reports the results of both evaluations:343

the first involves several LLMs in a zero-shot set-344

ting, while the second is based on a fine-tuned345

model based on LLAMA 3.1 8B INSTRUCT.346

We select two metrics to evaluate the quality of347

generated definitions: 1) RougeL refers to the over-348

lap of longest co-occurring in sequence n-grams349

between the reference text and the generated one;350

2) BERTscore (Zhang et al., 2019) exploits the351

pre-trained contextual embeddings from BERT and352

matches words in reference and generated defini-353

tion by cosine similarity. RougeL gives us an idea354

of the syntactic similarity, while the BERTscore355

measures semantic coherence. The BERTscore356

is necessary since the LLM can generate a most357

extended or lexically different definition that is358

7https://github.com/microsoft/DeepSpeed

semantically correct. For the computation of the 359

BERTscore we use an English BERT model for 360

evaluating the English part of the dataset, while 361

we exploit a multilingual version of BERT for the 362

other languages. We use accuracy to measure the 363

LLM’s ability to select the correct sense from a set 364

of alternatives. 365

We explore different settings since we use ma- 366

chine translation to create the missing glosses for 367

all the languages. We perform zero-shot experi- 368

ments on two benchmark subsets: 1) without ma- 369

chine translation and 2) with machine translation. 370

We perform four runs when a fine-tuned model is 371

involved, considering that translated glosses can 372

also be used during the fine-tuning. Table 5 shows 373

all the combinations and the corresponding labels 374

used to reference each configuration. We perform 375

only two runs for the zero-shot evaluation since we 376

do not consider training data and need to test on 377

two sub-sets: one with translation and one without 378

translation. 379

Training data Test data Label
Without translation Without translation FF
Without translation Machine translated FT
Machine translated Without translation TF
Machine translated Machine translated TT

Table 5: Different evaluation settings according to the
kind of glosses: original glosses in BabelNet and ma-
chine translation of missing glosses.

5.1 Zero-shot results 380

In this section, we report the zero-shot evalua- 381

tion results. Table 6 shows results without ma- 382

chine translation, while Table 7 with translation. 383

Gemma2-9B is the best medium model in the 384

multiple-choice task (accuracy) for all languages 385

without translation. We can observe similar per- 386

formance between llama3.1-8B and Gemma2-9B 387

in terms of the quality of generated definitions. 388

Llama3.1-8B achieves the better RougeL score for 389

all languages, while BERTscores are similar to 390

Gemma2-9B. Mistral-7B achieves the worst results, 391

but it is also the smallest model. 392

As expected, larger LLMs provide better re- 393

sults than the medium counterparts. Interestingly, 394

Llama3.1-70B and Llama3.1-405B provide similar 395

results despite the significant difference in the num- 396

ber of parameters. While Llama3.1-405B achieves 397

the best accuracy for English, its performance is 398

only slightly better than that of Llama3.1-70B. No- 399

5
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Llama3.1 8B-Instruct Mistral 7B-Instruct Gemma2 9B-Instruct
RougeL BERTscore Accuracy RougeL BERTscore Accuracy RougeL BERTscore Accuracy

EN .2260 .8638 .5587 .1149 .8314 .6171 .2116 .8650 .6762
IT .1363 .6985 .4604 .0747 .6532 .5324 .1221 .6986 .5840
ES .1811 .7262 .5802 .1408 .6872 .5898 .1570 .7158 .6503
FR .1901 .7247 .5090 .1437 .6888 .6290 .1208 .6815 .6493
DE .1586 .7050 .6217 .1101 .6808 .6130 .1091 .6791 .6826

Llama 3.1 70B-Instruct Qwen2-72B-Instruct Llama 3.1 405B-Instruct
RougeL BERTscore Accuracy RougeL BERTscore Accuracy RougeL BERTscore Accuracy

EN .2437 .8654 .7520 .1670 .8455 .7370 .2393 .8669 .7532
IT .1439 .7018 .6298 .1131 .6773 .6396 .1524 .7072 .6259
ES .1900 .7231 .7012 .1749 .7096 .7214 .1915 .7297 .7214
FR .1713 .7054 .7059 .1596 .7057 .7624 .1751 .7003 .7149
DE .1454 .6991 .7739 .1276 .6955 .7652 .1343 .6894 .7957

Table 6: Zero-shot results without machine translation.

tably, Qwen2-72B-Instruct achieves good results400

for Spanish and French.401

Results with machine translation are shown in402

Table 7. The results are pretty similar to those of the403

experiments without machine translation. Among404

medium-sized models, Gemma2-9B provides bet-405

ter accuracy, but Llama3.1-8B provides the best406

quality in the generation. Llama3.1-405B achieves407

the best accuracy and generation quality for larger408

models, although Llama3.1-70B occasionally pro-409

vides similar or better performance. Only for Ital-410

ian, the Qwen2-72B model has the best accuracy.411

These findings indicate that machine translation412

does not significantly affect the performance be-413

haviour between LLMs. However, we observe a414

general decrease in performance across all LLMs415

and metrics.416

5.2 Fine-tuning results417

This section reports results for the Llama3.1-8B418

fine-tuned model (Llama3.1-8B-FT). We consider419

different training sizes (10K, 20K and the whole420

dataset (ALL)) and different data subsets with or421

without translated glosses during the training and422

testing, following the configurations shown in Ta-423

ble 5. For 10K and 20K subsets, we maintain a bal-424

anced distribution between the generation and the425

multiple-choice tasks. Specifically, we randomly426

select x instances for each language for each task427

type, where x corresponds to either 10K or 20K.428

Therefore, the whole training dataset consists of429

100K and 200K for the 10K and 20K filtering, re-430

spectively.431

The FF and FT settings results for the models432

trained without machine translation are in Table 8.433

These results refer to the model fine-tuned only on434

the original glosses without machine translation.435

It is essential to highlight that results for English436

change only when the training set varies since the 437

machine translation does not affect the English test 438

set. Generally, accuracy increases with the size of 439

the training, except for German. German has fewer 440

training instances, and its performance is affected 441

when the whole training set is used since our model 442

is trained simultaneously in all languages. 443

Results of the model fine-tuned on machine- 444

translated glosses are reported in Table 9. The 445

impact of machine translation during the training 446

is minimal. If we consider tables 8 and 9, where 447

during the test, we do not use machine translation, 448

we observe similar results. Some languages are 449

more affected by the introduction of machine trans- 450

lation since these increase the number of instances, 451

but not all languages are equally represented in the 452

training data. 453

Introducing translated instances in the test set 454

impacts performance for many reasons. First, the 455

number of instances to test increases, and we may 456

introduce instances with more polysemy, especially 457

in the multiple-choice benchmark, in which we 458

add new glosses and potentially introduce more 459

alternatives. 460

To compare our results with the ones proposed 461

in (Pasini et al., 2021), we must consider the test 462

set with translated glosses to cover all the instances 463

in the original dataset. We only consider configura- 464

tions on the multiple-choice benchmark since the 465

XL-WSD evaluation metric (F1) is based on sense 466

prediction. The quality of the definition genera- 467

tion cannot be compared with other systems since 468

the other WSD approaches do not generate a sense 469

definition. Since the multiple-choice task is also 470

performed as a generative problem, we need to 471

transform the answer provided by the LLM into the 472

BabelNet sense id used by the XL-WSD scoring 473

tool. This process is not trivial and requires several 474
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Llama3.1 8B-Instruct Mistral 7B-Instruct Gemma2 9B-Instruct
RougeL BERTscore Accuracy RougeL BERTscore Accuracy RougeL BERTscore Accuracy

EN .2260 .8638 .5587 .1149 .8314 .6171 .2116 .8650 .6762
IT .1318 .6934 .4054 .0741 .6513 .4619 .1227 .6971 .5304
ES .1740 .7231 .4575 .1339 .6823 .4749 .1519 .7131 .5142
FR .1717 .6934 .4942 .1299 .6807 .5506 .1129 .6819 .6274
DE .1512 .6934 .5728 .0961 .6671 .5432 .1018 .6776 .5975

Llama 3.1 70B-Instruct Qwen2-72B-Instruct Llama 3.1 405B-Instruct
RougeL BERTscore Accuracy RougeL BERTscore Accuracy RougeL BERTscore Accuracy

EN .2437 .8654 .7520 .1670 .8455 .7370 .2393 .8669 .7532
IT .1416 .7000 .5688 .1145 .6747 .5837 .1500 .7053 .5716
ES .1851 .7211 .5676 .1650 .7034 .5721 .1858 .7265 .5766
FR .1554 .7012 .6991 .1430 .6934 .6940 .1594 .6952 .6799
DE .1263 .6928 .6444 .1191 .6817 .6617 .1150 .6850 .6642

Table 7: Zero-shot results with machine translation.

Llama3.1-8B-Instruct-FT / 10K Llama3.1-8B-Instruct-FT / 20K Llama3.1-8B-Instruct-FT / ALL
RougeL BERTscore Accuracy RougeL BERTscore Accuracy RougeL BERTscore Accuracy

Configuration FF
EN .4584 .9021 .7788 .5346 .9139 .7889 .7392 .9466 .8067
IT .4739 .8068 .7580 .5649 .8350 .7881 .7452 .8920 .8234
ES .5166 .8362 .8156 .6098 .8680 .8329 .7649 .9191 .8694
FR .6108 .8629 .8937 .6831 .8904 .9253 .7923 .9258 .9163
DE .6484 .8659 .9043 .6904 .8802 .8870 .7106 .8890 .8739

Configuration FT
EN .4584 .9021 .7788 .5346 .9139 .7889 .7392 .9466 .8067
IT .4139 .7856 .6648 .4920 .8100 .7032 .6436 .8581 .7499
ES .4046 .7942 .6416 .4600 .8123 .6551 .5689 .8482 .6924
FR .4484 .8026 .8156 .4913 .8189 .8323 .5581 .8405 .8464
DE .4476 .7884 .8346 .4705 .7969 .8741 .4837 .8021 .8395

Table 8: Evaluation results of the fine-tuned model trained on data without machine translation.

Llama3.1-8B-Instruct-FT / 10K Llama3.1-8B-Instruct-FT / 20K Llama3.1-8B-Instruct-FT / ALL
RougeL BERTscore Accuracy RougeL BERTscore Accuracy RougeL BERTscore Accuracy

Configuration TF
EN .4586 .9018 .7776 .5493 .9163 .7877 .7446 .9477 .8224
IT .4154 .7880 .7410 .5336 .8245 .7737 .7128 .8815 .8234
ES .4175 .8051 .8204 .4981 .8308 .8367 .6972 .8982 .8655
FR .5666 .8481 .9072 .6530 .8745 .8914 .7779 .9205 .9186
DE .5678 .8373 .9043 .6669 .8721 .8478 .7079 .8860 .8652

Configuration TT
EN .4586 .9018 .7776 .5493 .9163 .7877 .7446 .9477 .8224
IT .3825 .7767 .6621 .4920 .8096 .6967 .6703 .8662 .7575
ES .3790 .7877 .6499 .4469 .8085 .6744 .6460 .8729 .7079
FR .4623 .8100 .8233 .5290 .8301 .8105 .6497 .8716 .8399
DE .4573 .7897 .8247 .5143 .8090 .8222 .5553 .8250 .7852

Table 9: Evaluation results of the fine-tuned model trained on data with machine translation.

steps:475

1. We extract the choice from the LLM answer476

using a regular expression;477

2. The choice is used to extract the gloss from478

the instruction provided to the LLM;479

3. The gloss is used to retrieve the sense id by480

searching over the glosses of the possible481

senses of the target word;482

4. The multiple-choice dataset does not contain483

instances of monosemic words. We select the484

only available sense id as the prediction in 485

these cases. 486

Analyzing Tables 8 and 9, we observe that when 487

the translated test set is used, English, Italian 488

and Spanish achieve the best accuracy with the 489

whole machine-translated training set. Conversely, 490

French and German perform best with the training 491

set without machine translation: French performs 492

best with the whole training set, while German with 493

20K instances. We decide to consider the TT setting 494

for all the languages since, in a real scenario, using 495

different training for each language is not feasible. 496
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EN IT ES FR DE AVG
XLMR-Large .7628 .7766 .7585 .8388 .8318 .7937
XLMR-Base .7450 .7673 .7655 .8233 .8213 .7845
BERT-L .7677 - - - - -
BERT-M - .7616 .7466 .8164 .8063 -
LS-BERT - .7388 .7477 .8078 .8213 -
QInterf .8010⋄ .7980 .7900 .8500 .8500 -
Llama3.1-8B-FT / ALL .8652 .8205 .7769 .8836 .8898 .8472
Gemma2-9B (0-shot) .7343 .6295 .5997 .7370 .8016 .7004
Llama3.1-70B (0-shot) .7988 .6646 .6424 .7888 .8237 .7437
Llama3.1-405B (0-shot) .8040 .6699 .6509 .7759 .8329 .7467

Table 10: XL-WSD results. ⋄ The QInterf system is evaluated on a different portion of the English dataset that does
not include data from SemEval-2010.

In Table 10, we report the F1 computed using497

the official scoring tool released by the XL-WSD498

creator. The table also shows the results of current499

best systems: XLMR-Large and XLMR-Base based500

on (Conneau et al., 2020), supervised approaches501

based on BERT. Moreover, we report several BERT-502

based systems: BERT-L is the large model specific503

for English, BERT-M is the multilingual model and504

LS-BERT is the language-specific model. Finally,505

we add a recent system QInterf (Zhang et al., 2024)506

based on a quantum interference model that calcu-507

lates the probability that the target word belongs508

to a superposition state representing the multiple509

glosses of the same word sense. Table 10 also510

shows the best LLMs in the zero-shot setting and511

our fine-tuned model (Llama-8B-FT / ALL). Our512

fine-tuned model performs best for all languages,513

with a remarkable result of .8652 for English. The514

results allow some interesting considerations:515

• LLMs in zero-shot learning are not able to516

overcome the baseline models except large517

models that provide better results for English518

and German;519

• all LLMs in zero-shot setting show poor per-520

formance for Italian and Spanish;521

• a medium model (Llama3.1-8B) fine-tuned on522

training data provides impressive results and523

always overcomes large models and baselines,524

resulting in state-of-the-art performance.525

6 Conclusions and Future Work526

In this work, we investigate the performance of527

several LLMs in solving the WSD task. For that528

purpose, we extend an existing benchmark (XL-529

WSD) to support two new subtasks: 1) given a530

word occurrence in a sentence, the LLM must pro- 531

vide the correct definition; 2) given a word occur- 532

rence in a sentence and a set of predefined mean- 533

ings, the LLM must select the correct on. To build 534

our benchmark, we exploit the XL-WSD dataset 535

and BebelNet. Moreover, we use training data 536

available in XL-WSD for fine-tuning and LLM 537

based on Llama3.1-8B. Results show that LLMs 538

can provide good performance in zero-shot learn- 539

ing but are not able to overcome current state-of- 540

the-art approaches. The best performances are ob- 541

tained by large models, while medium ones provide 542

poor results. However, the fine-tuned model with 543

a medium number of parameters is able to over- 544

come all the models, including the current state- 545

of-the-art approaches. The fine-tuned model can 546

achieve an impressive accuracy of .8472 averaging 547

all languages, and a remarkable accuracy of .8652 548

in English. 549

7 Limitations 550

The current version of our work presents some 551

limitations summarized in the following points: 552

1. Not all the languages presented in XL-WSD 553

are taken into account. We focused on lan- 554

guages with adequate resources to ensure a 555

robust evaluation pipeline. However, we plan 556

to extend the analysis to underrepresented lan- 557

guages. 558

2. The few-shot approach is not considered. We 559

have decided to exclude this approach to re- 560

duce the complexity of the paper. For the same 561

reason, we did not consider a multi-prompt 562

evaluation. Nonetheless, we are aware of their 563

potential and will explore them in the future. 564
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3. The fine-tuning approach involves only one565

model with a medium number of parameters,566

excluding larger models used in the zero-shot567

evaluation. This choice was made to inves-568

tigate strategies that can be implemented on569

affordable hardware.570

4. While the exclusion of ChatGPT may be seen571

as a limitation, we aim to promote the use of572

open models to improve reproducibility and573

transparency in research. In line with this,574

we also use Llama3.1-405b, which provides575

performance similar to ChatGPT-4o in several576

state-of-the-art benchmarks.577

8 Ethical considerations578

Our work is heavily based on pre-trained LLMs de-579

veloped by external organizations. The pre-training580

procedure was performed without our supervision,581

and the datasets used for pre-training and fine-582

tuning were also not checked. Therefore, the mod-583

els may produce inaccurate or biased results that584

reflect the potential issues present in the original585

training data.586

To reduce inaccuracies, human experts manually587

checked the prompt templates for each language.588

These experts participated voluntarily and were589

fully informed about our research objectives and590

the use of the data they checked, ensuring trans-591

parency in their involvement and contributions.592
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A Appendix A687

This appendix reports some detailed statistics about688

the dataset. Table 11 shows the number of instances689

for each kind of benchmark and language without690

glosses translation. Meanwhile, Table 12 reports691

the same statistics when machine translation is ex-692

ploited to create missing glosses.693

Without machine translation
generation selection

training set test set training set test set
EN 565,831 6,757 421,213 6,605
IT 242,343 1,673 192,962 1,529
ES 216,317 1,248 153,817 1,041
FR 121,014 539 63,429 442
DE 58,925 263 30,370 230

Table 11: Number of instances for each language with-
out machine translation.

With machine translation
generation selection

training set test set training set test set
EN 565,831 6,757 421,213 6,605
IT 308,903 1,888 271,864 1,823
ES 345,258 1,601 319,156 1,554
FR 157,787 812 113,307 781
DE 73,871 415 45,381 405

Table 12: Number of instances for each language with
machine translation.

B Appendix B 694

This appendix reports prompts in languages other 695

than English. Native-language speakers or transla- 696

tion experts have checked all prompts. Some sen- 697

tences have grammatical issues since the XL-WSD 698

dataset could contain data obtained from machine- 699

translated corpora. Prompts for Italian are in tables 700

13 and 14. Prompts for Spanish are in tables 15 701

and 16. Prompts for French are in tables 17 and 18. 702

Prompts for German are in tables 19 and 20. 703

Prompt template (generation)
Fornisci una breve definizione della parola
"wi" nella frase data in input. Genera solo
la definizione. Input: "Sk"

Italian prompt
Fornisci una breve definizione della parola
"sforzo" nella frase data in input. Genera solo
la definizione. Input: "Che sforzo fate per val-
utare i risultati del vostro programme?"

Table 13: Prompt for the Italian generation benchmark.

Prompt template (multiple choice)
Data la parola "wi" nella frase in input, scegli
il significato corretto tra i seguenti: Ci. Genera
solo il numero dell’opzione selezionata. Input:
"Sk"

Italian prompt
Data la parola "valutare" nella frase in input,
scegli il significato corretto tra i seguenti:
1) Esaminare o ascoltare (prove o un intero
caso) per via giudiziaria.
2) Fare la stima commerciale di qlco.
3) Assegnare un valore a.
4) Ritenere dopo valutazione.
5) Apprezzare, tenere in grande stima.
6) Avere una certa opinione di qualcuno.
Genera solo il numero dell’opzione selezion-
ata.
Input: "Che sforzo fate per valutare i risultati
del vostro programme?"

Table 14: Prompt for the Italian multiple choice bench-
mark.
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Prompt template (generation)
Proporciona una definición breve de la palabra
"wi" en la frase dada en entrada. Genera solo
la definición. Input: "Sk"

Spanish prompt
Proporciona una definición breve de la palabra
"reducido" en la frase dada en entrada. Genera
solo la definición. Input: "¿ Mida su relación
con el absentismo reducido, el volumen de
negocios, los accidentes y las quejas, y con la
mejora de la calidad y la producción?"

Table 15: Prompt for the Spanish generation benchmark.

Prompt template (multiple choice)
Dada la palabra "wi" en la frase de entrada,
elija el significado correcto entre los sigu-
ientes: Ci. Genera solo el número de la opción
seleccionada. Input: "Sk"

Spanish prompt
Dada la palabra "esfuerzo" en la frase de en-
trada, elija el significado correcto entre los
siguientes:
1) Actividad seria y consiente para hacer o
lograr algo.
2) utilización de la fuerza y de otros medios
por encima de lo normal con el fin de lograr
un determinado objetivo
3) Ejercicio intenso o violento.
4) Enérgico intento de conseguir algo.
5) Intento que requiere un esfuerzo para con-
seguir un objetivo.
Genera solo el número de la opción selec-
cionada.
Input: "¿ Qué esfuerzo hace para evaluar los
resultados de su programa?"

Table 16: Prompt for the Spanish multiple choice bench-
mark.

Prompt template (generation)
Donnez une brève définition du mot "wi" dans
la phrase d’entrée donnée. Ne donnez que la
définition. Input: "Sk"

French prompt
Donnez une brève définition du mot "produc-
tion" dans la phrase d’entrée donnée. Ne don-
nez que la définition. Input: "Mesurez -vous
son rapport à la réduction de l’absentéisme, de
chiffre d’affaires, des accidents et des griefs,
ainsi qu’à l’amélioration de la qualité et de la
production?"

Table 17: Prompt for the French generation benchmark.

Prompt template (multiple choice)
Étant donné le mot "wi" dans la phrase saisie,
choisissez la signification correcte parmi les
suivantes: Ci. Ne donnez que le numéro de
l’option sélectionnée. Input: "Sk"

French prompt
Étant donné le mot "essayez" dans la phrase
saisie, choisissez la signification correcte
parmi les suivantes:
1) Mettre à l’essai.
2) S’exercer à faire ou à effectuer quelque
chose.
3) Tester l’apparence et la taille de (un vête-
ment) en le portant.
Ne donnez que le numéro de l’option sélec-
tionnée.
Input: "Lorsque de améliorations sont recom-
mandées dans les conditions de travail -
comme l’éclairage, les salles de repos, les
restaurants, la climatisation - essayez -vous
de déterminer leur efficacité sur la productiv-
ité?"

Table 18: Prompt for the French multiple choice bench-
mark.
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Prompt template (generation)
Geben Sie eine kurze Definition des Wortes
"wi" in dem gegebenen Satz an. Erzeugen Sie
nur die Definition. Input: "Sk"

German prompt
Geben Sie eine kurze Definition des Wortes
"Ziele" in dem gegebenen Satz an. Erzeugen
Sie nur die Definition. Input: "Erreicht sie
diese Ziele?"

Table 19: Prompt for the German generation bench-
mark.

Prompt template (multiple choice)
Wählen Sie für das Wort "wi" im Eingabesatz
die richtige Bedeutung aus den folgenden
Angaben: Ci. Erzeugt nur die Nummer der
ausgewählten Option. Input: "Sk"

German prompt
Wählen Sie für das Wort "Wahl" im
Eingabesatz die richtige Bedeutung aus den
folgenden Angaben:
1) Die Auswahl von etwas aus mehreren
Möglichkeiten oder Alternativen.
2) Ein Stimmzettel, auch Wahlzettel, ist ur-
sprünglich ein Zettel, auf dem der Wähler
seine Wahl handschriftlich kundtun kann.
3) Weiler in Russland
4) Eine Wahl im Sinne der Politikwissenschaft
ist ein Verfahren in Staaten, Gebietskörper-
schaften und Organisationen zur Bestellung
einer repräsentativen Person oder mehrerer
Personen als entscheidungs- oder herrschaft-
sausübendes Organ.
Erzeugt nur die Nummer der ausgewählten
Option.
Input: "Stellen Sie bei Verhandlungen mit
Ihrer Gewerkschaft sicher, dass die Mitarbeiter
die Wahl zwischen neuen Leistungen und
ihren Cents pro Stunde Lohnkosten haben."

Table 20: Prompt for the German multiple choice bench-
mark.
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