
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

KNOWLEDGE CAPACITY SCALING LAWS FOR LAN-
GUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Scaling laws describe the relationship between the size of language models and
their capabilities. Unlike prior studies that evaluate a model’s capability via loss
or benchmarks, we estimate information-theoretically the number of knowledge
bits a model stores. We focus on factual knowledge represented as tuples, such
as (USA, capital, Washington D.C.) from a Wikipedia page. Through multiple
controlled datasets, we establish that language models can and only can store 2
bits of knowledge per parameter, even when quantized to int8, and such knowledge
can be flexibly extracted for downstream applications. More broadly, we present
12 results on how (1) training duration, (2) model architecture, (3) quantization,
(4) sparsity constraints such as MoE, and (5) data signal-to-noise ratio affect a
model’s knowledge storage capacity.

1 INTRODUCTION

The scaling laws of large language models remain a pivotal area of research, enabling predictions
about the performance of extremely large models through experiments with smaller ones. On the
training time aspect, established scaling laws (Hoffmann et al., 2022; Kaplan et al., 2020; Hernandez
et al., 2021; Alabdulmohsin et al., 2022; Henighan et al., 2020) discuss the optimal training flops
versus model size. However, recent studies (Muennighoff et al., 2023; Gunasekar et al., 2023; Li
et al., 2023) challenge these laws, demonstrating that training smaller models with significantly
more flops can yield superior results. While these laws talk about how much time/data is needed to
train a model of a certain size, another fundamental question is: what is the ultimate performance
a model can achieve, assuming sufficient training? Despite the known emergent behaviors in large
models (Bubeck et al., 2023; Yu et al., 2023), there is a lack of a principled, quantitative analysis on
how model size impacts its capacity when adequately trained.1

Traditional theory on overparameterization suggests that scaling up model size in sufficiently trained
models can enhance memorization of training data (Allen-Zhu et al., 2019b), improve generalization
error (Hestness et al., 2017; Rosenfeld, 2021; Rosenfeld et al., 2019), and better fit complex target
functions (Li & Liang, 2018; Allen-Zhu et al., 2019a). However, these results often overlook large
constant or polynomial factors, leading to a significant discrepancy from practical outcomes.

In this paper, we introduce a principled framework to examine highly accurate scaling laws concern-
ing model size versus its knowledge storage capacity. It is intuitive that larger language models can
store more knowledge, but does the total knowledge scale linearly with the model’s size? What is the
exact constant of this scaling? Understanding this constant is crucial for assessing the efficiency of
transformer models in knowledge storage and how various factors (e.g., architecture, quantization,
training duration, etc.) influence this capacity. Knowledge is a, if not the, pivotal component of
human intelligence, accumulated over our extensive history. Large language models like GPT-4 are
celebrated not just for their sophisticated logic but also for their superior knowledge base. Despite

1There is a rich literature comparing how pretrained models perform on benchmark tasks. Most comparisons
are for different model families trained over different data: if LLaMA-70B is better than Mistral-7B, does the
gain come from its choice of pretrain data, or the architecture difference, or really the size of the model? Some
comparisons are among the same architecture, such as LLaMA-70B scores 63.6% on the world knowledge
benchmark while LLaMA-7B scores only 48.9% (Touvron et al., 2023b); does this mean increasing model size
by 10x increases its capacity only to 130% = 63.6/48.9? Thus, it is highly important to use a more principled
framework to study scaling laws in a controlled setting.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

rumors of GPT-4 having over 1T parameters, is it necessary to store all human knowledge?

Knowledge Pieces. Defining “one piece of human knowledge” precisely is challenging. This paper
aims to make progress by focusing on a restricted, yet sufficiently interesting domain. We define a
piece of knowledge as a (name, attribute, value) tuple, e.g., (Anya Forger, birthday, 10/2/1996); and
many data in world knowledge benchmarks can be broken down into pieces like this.2

We generate synthetic knowledge-only datasets by uniformly at random generating (name, attribute,
value) tuples from a knowledge base and converting them into English descriptions. We pretrain
language models (e.g., GPT-2, LLaMA, Mistral) on these texts using a standard auto-regressive
objective from random initialization, and “estimate” the learned knowledge. By varying the number
of knowledge pieces and model sizes, we outline a knowledge capacity scaling law.

Our idealized setting, free from irrelevant data, allows for more accurate scaling law computations
— we also discuss how “junk” data affects capacity later in Section 9. In contrast, it is difficult
to quantify real-life knowledge; for instance, if LLaMA-70B outperforms LLaMA-7B by 30% on
a benchmark, it doesn’t necessarily mean a tenfold model scaling only boosts capacity by 30%
(see Footnote 1). The synthetic setting also lets us adjust various hyperparameters, like name/value
lengths and vocabulary size, to study their effects on knowledge capacity scaling laws. Most of the
paper shall focus on a setting with synthetically-generated human biographies as data, either using
predefined sentence templates or LLaMA2-generated biographies for realism.

Bit Complexity and Capacity Ratio. For N knowledge pieces (i.e., N tuples), we define the bit
complexity as the minimum bits required to encode these tuples. For any language model trained on
this data, we calculate its “bit complexity lower bound” (see Theorem 3.1), describing the minimum
number of bits needed for the model to store the knowledge at its given accuracy. This formula is
nearly as precise as the upper bound, within a 1− o(1) factor. We train language models of varying
sizes on knowledge data with different N values. By comparing the models’ trainable parameters
to the bit complexity lower bounds, we evaluate their knowledge storage efficiency. A model with
100M parameters storing 220M bits of knowledge has a capacity ratio of 2.2 bits per parameter.

Our results. Our findings are summarized as follows:

• SECTION 4: BASE SCALING LAW FOR GPT2. 3

– RESULT 1+2+3: GPT2, trained with standard AdamW, consistently achieves a 2bit/param
capacity ratio across all data settings after sufficient training. This includes various model
sizes, depths, widths, data sizes, types (synthetic/semi-synthetic), and hyperparameters (e.g.,
name/value length, attribute number, value diversity).

Remark 1.1. This predicts a sufficiently trained 7B language model can store 14B bits of
knowledge, surpassing the knowledge of English Wikipedia and textbooks by our estimation.4
Remark 1.2. When we say the model stores knowledge, it isn’t word-by-word memorization. In-
stead, the knowledge is flexibly extractable (e.g., via QAs like “What is Anya Forger’s birthday”)
and applicable in downstream tasks (e.g., comparing birthdays) via fine-tune.

• SECTION 5: HOW TRAINING TIME AFFECTS MODEL CAPACITY.
Achieving a 2bit/param capacity requires each knowledge piece to be visited 1000 times during
training, termed 1000-exposure to differentiate from traditional “1000-pass” terminology, as a
single data pass can expose a knowledge piece 1000 times.5

– RESULT 4: With 100 exposures, an undertrained GPT2’s capacity ratio falls to 1bit/param.
Remark 1.3. Another perspective on Result 4 is that rare knowledge, encountered only 100 times
during training, is stored at a 1bit/param ratio.

• SECTION 6: HOW MODEL ARCHITECTURE AFFECTS MODEL CAPACITY.
We tested LLaMA, Mistral, and GPT2 architectures with reduced or even no MLP layers.

2Examples: (Africa, largest country, Sudan) and (It Happened One Night, director, Frank Capra) in Trivi-
aQA, or (Teton Dam, collapse date, 06/05/1976) and (USA, Capital, Washington D.C.) in NQ data.

3In this paper, GPT2 refers to that the GPT2 model with rotary embedding and without dropout.
4English Wikipedia now contains 4.5 billion words, and we estimate that the non-overlapping contents of

English textbooks have fewer than 16 billion words, see Remark J.1. This amounts to 20.5 billion words, and
we believe they contain fewer than 14 billion bits of knowledge.

5For example, it is plausible that one pass through Wiki data might present the knowledge piece (US, capital,
Washington D.C.) 1000 times, and one pass through the Common Crawl might present it a million times.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

– RESULT 5: In the 1000-exposure setting, a 2bit/param capacity ratio appears to be a universal
rule: all models, even without MLP layers, closely achieve this ratio.

– RESULT 6: With 100 exposures, some archs show limitations; notably, LLaMA/Mistral’s
capacity ratio is 1.3x lower than GPT2’s, even after best-tuned learning rates.

– RESULT 7: Further controlled experiments indicate that “gated MLP” usage leads to
LLaMA/Mistral architecture’s underperformance in knowledge storage.

Remark 1.4. Our framework offers a principled playground to compare models. This con-
trasts with traditional comparisons based on loss/perplexity, which can produce debatable con-
clusions.6 Controlled data also reveal more significant differences between models.7

• SECTION 7: HOW QUANTIZATION AFFECTS MODEL CAPACITY. (deferred to appendix)
We applied GPTQ (Frantar et al., 2022) to quantize models from the base scaling laws to int8 or
int4. Surprisingly,
– RESULT 8: Quantizing to int8 does not compromise model capacity (even for models on the

boundary of 2bit/param); however, quantizing to int4 reduces capacity to 0.7bit/param.
Remark 1.5. Since int8 is 8bit, LLMs can exceed 1/4 of the theoretical limit for storing knowl-
edge; thus knowledge must be very compactly stored inside the model across all layers.

• SECTION 8: HOW SPARSITY (MOE) AFFECTS MODEL CAPACITY.
Mixture-of-experts (MoE) models offer faster inference than dense models but often underper-
form dense models with the same total parameter count (not effective parameters). We show that
this performance drop is likely not due to a lack of knowledge storage capability.
– RESULT 9: MoE models, even with 32 experts, only reduce 1.3x in capacity compared to the

base scaling laws, despite using just 8.8% of the total parameters during inference.
• Section 9: HOW JUNK KNOWLEDGE AFFECTS MODEL CAPACITY.

Not all pretrain data are equally useful. Much of the internet data lacks valuable knowledge
for training language models (Li et al., 2023), while knowledge-rich sources like Wikipedia
represent only a small fraction of the training tokens.
– RESULT 10+11: Junk data significantly reduces model capacity. As an example, with a 1:7

ratio of “useful to junk” training tokens, capacity for useful knowledge loses by a factor of
20x, even when useful knowledge is exposed 100 times.8

– RESULT 12: An effective mitigation is to prepend a special token to all useful knowledge.
This is akin to adding a domain name like wikipedia.org at the start of every Wikipedia
paragraph; the model autonomously identifies high-quality data without prior knowledge of
valuable domains. In the example above, the loss factor improves from 20x to 2x.

Conclusion. Overall, our approach to studying knowledge capacity scaling laws offers a flexible
and more accurate playground compared to traditional methods that evaluate language models
trained on internet data against real-world benchmarks. In this paper, we’ve conducted a thorough
comparison across different model architectures and types of knowledge. While we haven’t explored
various quantization methods, this represents a promising direction for future research. We’ve also
investigated the impact of junk data and proposed mitigation strategies. We believe the insights
gained from this principled exploration can assist practitioners in making informed decisions about
model selection, training data preparation, and further theoretical research into LLMs.

2 PRELIMINARIES

In this paper, a piece of knowledge is a tuple of three strings: (name, attribute, value) = (n, a, v).
For instance, n = “Anya”, a = “birthday”, v = “Oct 2, 1996”.

Knowledge (Theoretical Setting). The complexity of a knowledge set is determined not only by
the number of knowledge pieces but also by the length of the value string v, the diversity of the

6A model might achieve better perplexity by performing much better on simpler data but poorer on complex
data, or by excelling in reasoning but not in knowledge. Our results offer a more nuanced view: GatedMLP
doesn’t affect frequent knowledge but does impact moderately rare knowledge (e.g., with 100 exposures).

7For example, Shazeer (2020) found GatedMLP offers a ∼ 1% accuracy boost on benchmark tasks; our
findings of a 1.3x difference translates for instance to accuracies 90% vs. 70%.

8The loss factor improves to 3x/1.5x/1.3x with 300/600/1000 exposures of useful knowledge, compared to
Result 4 which involves training without junk for only 100 exposures.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

vocabulary, and other factors. For instance, if the attribute a =“passport number,” then the value
v contains more bits of knowledge compared with a =“gender,” because the former has signifi-
cantly higher diversity. If the attribute a =“birth date,” then the value v could consist of 3 chunks:
(10, 2, 1996). Considering these examples, we propose a set of hyperparameters that may influence
the complexity of knowledge:

1. N — the number of (distinct) names n, denoted by N .
2. K — the number of attributes a, with A representing the set of attributes.
3. T — the number of tokens T , where every character in v belongs to T for some |T | = T . For

example, we can think of T as “vocab size” in a tokenizer.
4. C and L — the number of chunks and the length of each chunk for the value: each value

v ∈ (T L)C can be expressed as v = (v1, v2, · · · , vC), where vi ∈ T L.
5. D — the diversity of chunks: for each piece of knowledge (n, a, v) and i ∈ [C], the chunk vi

belongs to Da ⊂ T L, for some set with cardinality D := |Da| ≪ TL.
Remark 2.1. For notation simplicity, we have assumed that all chunks within an attribute a ∈ A
share the same diversity set Da, and all chunks are of equal length, etc. This enables us to more
easily demonstrate the influence of each hyperparameter on a model’s capacity. In practice, different
attributes may have different diversity sets or value lengths — e.g., Dpassport could be much larger
than Dgender. Our theoretical results do apply to these settings, albeit with more complex notation.

In our theoretical result, we introduce a dataset bioD(N,K,C,D,L, T) defined as follows:

Definition 2.2 (bioD data generation). Consider a fixed set of K attributes, such as a set A ={
“ID 1” . . . “ID K”}, and a fixed set N0 of candidate names (with N0 := |N0| ≫ N).

1. Generate N names uniformly at random (without replacement) from N0 to form N .
2. For each attribute a ∈ A, generate D distinct strings w1,a, · · · , wD,a ∈ T L uniformly at

random (without replacement) to form the diversity set Da.
3. For each name n ∈ N and attribute a ∈ A, generate value v⋆(n, a) = (v1, v2, · · · , vC) by

sampling each vi ∈ Da uniformly at random.

Let Z :=
{
(n, a, v⋆(n, a)

}
n∈N ,a∈A be the knowledge set.

Proposition 2.3 (trivial, bit complexity upper bound). Given N0 and A and T , to describe a
knowledge set generated in Def 2.2, one needs at most the following number of bits:

log2
(|N0|

N

)
+NKC log2 D +K log2

(
TL

D

)
≈ N log2

|N0|
N +NKC log2 D +KD log2

TL

D .

Knowledge (Empirical Setting). We utilize both the synthetic bioD dataset, generated as per
Def 2.2, and several human biography datasets to evaluate language model scaling laws. Allen-Zhu
& Li (2024) introduced a synthetic biography dataset comprising N randomly-generated (fake) in-
dividuals, each characterized by six attributes: birth date, birth city, university, major, employer, and
working city.9 To translate these tuples into natural language, in their bioS dataset, each individual
is described by six randomly selected English sentence templates corresponding to their attributes.
We direct readers to their paper for more details but provide an illustration below:
Anya Briar Forger was born on October 2, 1996. She spent her early years in Princeton, NJ. She received mentorship and guidance from faculty
members at Massachusetts Institute of Technology. She completed her education with a focus on Communications. She had a professional
role at Meta Platforms. She was employed in Menlo Park, CA.

(2.1)In this paper, we explore three variations of such datasets:

• bioS(N) represents an online dataset for N individuals, where each biography is generated with
new randomness for the selection and ordering of six sentence templates on-the-fly.

• bioSsimple(N) denotes a similar dataset, but here, each biography is generated once with a fixed
random selection and ordering of the sentence templates.

• bioR(N) refers to the same dataset, but with each biography written 40 times by LLaMA2 (Tou-
vron et al., 2023b) to increase realism and diversity.

9All attributes, except for the working city (determined by the employer’s headquarters), are chosen uni-
formly and independently at random. There are N0 = 400×400×1000 possible person names, 12×28×200
birth dates, 200 birth cities, 300 universities, 100 majors, and 263 employers. Additionally, a random pronoun
with 2 possibilities is chosen for each person.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

These datasets correspond to the bioS multi+permute, bioS single+permute, and bioR multi data
types discussed in (Allen-Zhu & Li, 2024), albeit with minor differences. While their study focused
on N = 100K, we expand our scope for bioS to consider N up to 20M ; for bioR, we limit N to
1M , which already yields a dataset size of 22GB.

As introduced in Section 1, if each knowledge piece is seen 1000 times during training, we call
this 1000 exposures. For bioS(N), 1000 exposures will unlikely include identical biography data
because there are 50 sentence templates for each attribute and a total of 506 × 6! possible biogra-
phies per person. For bioSsimple(N), 1000 exposures mean 1000 passes of the data. For bioR(N),
1000/100 exposures mean only 25/2.5 passes of the training data.

For the bioD dataset, we define N0 to be identical to bioS, with |N0| = 400 × 400 × 1000. We
encapsulate a person’s attributes within a single paragraph, employing random sentence orderings
and a consistent sentence template. For example:

Anya Briar Forger’s ID 7 is v7,1, . . . , v7,C . Her ID 2 is v2,1, . . . , v2,C . [...] Her ID 5 is v5,1, . . . , v5,C .

In this paper, we primarily utilize bioS. To illustrate broader applicability and to better connect to
theoretical bounds, we also present results for bioSsimple, bioR, and bioD.

Models. GPT2 was introduced in (Radford et al., 2019). Due to its limitations from the absolute
positional embedding, we adopt its rotary positional embedding variant (Su et al., 2021; Black et al.,
2022), which we still refer to as GPT2 for convenience. Additionally, we disable dropout, which
has been shown to improve performance in language models (Touvron et al., 2023b). We explore
a wide range of model sizes while using a fixed dimension-per-head of 64. The notation GPT2-
ℓ-h represents ℓ layers, h heads, and 64h dimensions; for example, GPT2-small corresponds to
GPT2-12-12. The default GPT2Tokenizer is used, converting people’s names and most attributes
into tokens of variable lengths. In examining the impact of model architectures on scaling laws in
Section 6, we will also use LLaMA/Mistral architectures (Touvron et al., 2023a; Jiang et al., 2023).

Training. We train language models from scratch (i.e., random initialization) using the specified
datasets. Knowledge paragraphs about individuals are randomly concatenated, separated by <EOS>
tokens, and then randomly segmented into 512-token windows. The standard autoregressive loss is
employed for training. Unless specified otherwise, training utilizes the default AdamW optimizer
and mixed-precision fp16. Learning rates and weight decays are moderately tuned (see appendix).

3 BIT COMPLEXITY LOWER BOUND AND CAPACITY FACTORS

When assessing the knowledge stored in a model, we cannot simply rely on the average, word-by-
word cross-entropy loss. For example, the phrase “received mentorship and guidance from faculty
members” in (2.1) does not constitute useful knowledge. We should instead focus on the sum of the
loss for exactly the knowledge tokens.

Consider a model F with weight parameters W ∈ W . Assume F is trained on a
bioD(N,K,C,D,L, T) dataset Z as defined in Def 2.2 using any optimizer; this process is rep-
resented as W = W (Z) (the model’s weight is trained as a function of the training dataset Z).
During the evaluation phase, we express F through two functions: F⊤(W,R), which generates
names, and F⊥(W,n, a,R), which generates values given (n, a), where R denotes the randomness
used in generation. Let F⊥

1 (W (Z), n, a,R) represent the first chunk of F⊥(W (Z), n, a,R). We
evaluate F by calculating the following three cross-entropy losses:

lossname(Z) := En∈N − logPrR
[
F⊤(W (Z), R) = n

]
lossvalue1(Z) := En∈N ,a∈A − logPrR

[
F⊤
1 (W (Z), n, a,R) = v⋆1(n, a)

]
lossvalue(Z) := En∈N ,a∈A − logPrR

[
F⊥(W (Z), n, a,R) = v⋆(n, a)

]
We shall explain in Appendix I that these quantities are easy to be derived from the auto-regressive
entropy-loss using examples, and below we quickly state our bit-complexity lower bound theorem:

Theorem 3.1 (bit complexity lower bound). Suppose N ≥ Ω(D logN). We have

log2 |W| ≥ EZ

[
N log2

N0−N
elossname(Z) +NK log2

DC

elossvalue(Z) +KD log2
TL−D

De(1+o(1))lossvalue1(Z) − o(KD)
]

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

106 107 108

model size (#params)

106

107

108

109

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

8-2 2-4 5-33-44-37-26-25-24-2 2-32-2 3-2 4-46-3

3-22-2
6-22-3 7-25-2 8-2 2-44-3 6-3 6-45-44-4 2-63-45-34-2 8-42-83-6

5-32-48-2 4-37-26-25-2
2-34-23-2

2-2

12-4 6-65-68-4 4-6
10-42-83-4 4-46-3 9-68-6

10-6
16-46-42-65-4 3-6

6-45-42-64-46-33-45-3

6-2
7-2

4-32-48-2
5-2

2-34-2

8-87-86-6
12-44-6

16-4 8-6
10-69-65-6

10-4
4-12

10-83-6 2-88-4
12-66-8

2-86-4
8-4

10-42-65-4
3-6 4-6 5-6

12-4
4-46-35-3

3-4
2-44-3

6-6
10-8

4-128-87-8
16-4 8-6

2-20
12-89-6

10-6
12-66-8

6-12
3-20

16-8
8-12

3-6
8-4

4-6

12-88-8
2-20

12-12
8-16

6-20
3-20

4-12
12-16

6-24
12-410-4

16-8
8-126-6

7-8
5-62-8

4-20
20-12

10-68-69-6
6-1616-4 6-8

6-12
16-12

10-8
12-6

8-20

6-4

16-2012-6
10-8

20-16
24-16

8-16
16-16

20-12
8-24
12-20

28-16
6-24

8-20

8-6

7-8
4-20

6-12
12-24

8-12
4-12

6-208-8
6-16

16-12
16-8

3-20
9-6

6-6

12-86-8

2-20
12-16

12-12

16-4

14-20
10-6

16-8

6-20

20-16
2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=10000000
N=5000000
N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000
N=20000
N=10000

(a) bioS(N) data — 1000 exposures

106 107 108

model size (#params)

106

107

108

109

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

3-2

2-3
8-2

4-2

2-2

12-43-6 6-66-4 5-63-4

6-2

2-84-6
10-4

5-2

5-42-6 8-44-4
16-46-32-4

7-2

5-34-3

5-6

2-3

12-4
10-4 6-6 8-86-42-6

4-3

10-6

8-2

4-6
12-6

7-2

6-8 7-8

5-2
6-2

5-32-4

3-6

4-2

5-4
9-68-6

16-48-4
2-8

3-4
4-46-3

2-20
12-6

16-8
4-1216-4

7-8
6-12

10-46-4

12-42-8

8-8
12-8

10-8

3-4

4-6
5-6

6-3

6-6
8-6

4-4
2-6

8-45-4

5-3

9-6
10-66-8

2-4

3-6

4-3

10-8

6-6

6-12
10-6

8-8

3-20

12-4

16-8
2-20

6-20
7-88-6

12-6

8-16
16-12

10-4

8-12
6-16

12-12
4-20

5-6

12-8

2-8
4-6

4-126-8

3-6

9-6

6-4
8-4

16-4

20-12
10-8

8-124-12
12-8

6-122-20
7-8

16-4

3-20

10-6

6-16

8-6

20-16

6-6

16-12

9-6

12-12
12-16

8-8

4-20
8-24
12-20

16-16
6-24

6-2016-8
12-66-8

8-20
8-16

10-8

20-16

12-6

3-20

20-20
24-16

12-164-20

8-16

8-8

24-20
8-24

2-20

6-24

16-8

6-20
12-24

20-20
24-20

12-24
24-168-24

20-1612-16
6-24

6-208-16
4-203-20

24-20
20-20

28-20
24-16

12-32

20-16

8-24

12-16

6-24

12-24

8-16
6-20

24-20

20-16

24-16

12-32
20-20

28-2012-248-24

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=20000000
N=10000000
N=5000000
N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

(b) bioS(N) data — 100 exposures

Figure 1: Scaling laws for GPT2 on bioS(N) data using fp16 (mixed-precision) for 1000/100 exposures.
Conclusion. The peak capacity ratios consistently exceed R(F) ≥ 2 (resp. ≥ 1) for 1000 exposures
(resp. 100 exposures) of pretraining on each knowledge piece, regardless of model depth/size.

Remarks. Each dot ℓ-h represents GPT2 with ℓ layers, h heads, and 64d dimensions. The learned
knowledge is calculated by the bit-complexity lower bound Theorem 3.1. Larger models? Training
GPT2-20-16 on bioS(10M) for 1000 exposures costs 8.5 days with 64 A100s, while GPT2-12-32
on bioS(20M) for 100 exposures took 2.4 days. In our synthetic setting, we see no need to scale up
further. Instead, we prefer to allocate GPUs to explore other aspects covered in this paper.

The goal of the paper is to study how the number of model parameters competes with this bound. We
defer the proof in Appendix I, and shall explain over there why proving such bound is non-trivial.

Motivated by Theorem 3.1, ignoring lower order terms, we define the empirical capacity ratio as

Definition 3.2. Given a model F with P parameters trained over a bioD(N,K,C,D,L, T) dataset
Z , suppose it gives p1 = lossname(Z), p2 = lossvalue(Z), p3 = lossvalue1(Z), we define its
capacity ratio and max capacity ratio

R(F) :=
N log2

N0
ep1

+NK log2
DC

ep2
+KD log2

TL

Dep3

P .

Rmax(F) :=
N log2

N0
N +NKC log2 D+KD log2

TL

D

P .

Remark 3.3. One must have R(F) ≤ Rmax(F), and equality is obtained if the model is perfect.
For a fixed dataset, further increases in model size do not yield additional knowledge, thus Rmax(F)
approaches zero as the model size P increases. On the other hand, Theorem 3.1 implies, ignoring
lower-order terms, that if the model parameters are 8-bit (such as int8), then R(F) ≤ 8.

For our bioS(N) data, we define a slightly reduced capacity ratio by omitting the diversity term.

Definition 3.4. Given a model F with P parameters trained over the bioS(N) dataset Z , suppose
it gives p1 = lossname(Z) and p2 = lossvalue(Z), its capacity ratio10

R(F) :=
N log2

N0
ep1

+N log2
S0
ep2

P and Rmax(F) :=
N log2

N0
N +N log2 S0

P

for N0 = 400× 400× 1000 and S0 = 2× (12 · 28 · 200)× 200× 300× 100× 263 (c.f. Footnote 9).
Remark 3.5. Ignoring names, each person contains log2(S0) ≈ 47.6 bits of knowledge.

4 RESULTS 1-3: BASE SCALING LAWS

We first train a series of GPT2 models on the bioS(N) datasets (see Section 2) using mixed-
precision fp16. The training protocol ensures that each piece of knowledge is presented 1000 times,
a process we refer to as “1000 exposures.” It’s important to clarify that this differs from making
1000 passes over the data. For example, a single pass through Wiki data might expose the knowl-
edge (US, capital, Washington D.C.) 1000 times, whereas a pass through the Common Crawl might
do so a million times. Our synthetic bioS(N) data, trained for 1000 exposures, aims to replicate
such scenarios. Our initial findings are as follows:11

10Here, one can let K = {birth date, birth city, university,major, employer, gender} and accordingly define
lossvalue(Z) := En∈N

∑
a∈K − logPrR

[
F⊥(W (Z), n, a,R) = v⋆(n, a)

]
.

11We focus on models with depth ≥ 2, and 1-layer models show slightly lower capacity ratios (see Figure 6).
Our model selection covers most natural combinations of transformer width/depth, details in Appendix D.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Result 1 (Figure 1(a)). When trained for 1000 exposures on bioS(N), with N ranging from 10K to
10M, GPT2 models with sizes from 1M to 0.5B parameters (irrespective of depth or width) demon-
strate the following:

(a) the peak capacity ratio R(F) consistently exceeds R(F) ≥ 2;
(b) models with Rmax(F) ≤ 1.8 attain near-perfect knowledge accuracies Rmax(F) ≈ R(F);
(c) across all models, R(F) ≤ 2.3.

Remark 4.1. Result 1(a), 1(b), and 1(c) elucidate three distinct facets of the scaling law.

• Result 1(a) highlights the maximum capacity across models; however, this could be misleading
if only a single model achieves this peak.

• Result 1(b) reinforces this by showing that all models with a maximum capacity Rmax(F) ≤ 1.8
can achieve such maximum capacity, i.e., R(F) ≈ Rmax(F). In words, this indicates that for a
dataset containing B bits of knowledge, selecting a model size P ≥ B/1.8 is sufficient.

• Result 1(c) further strengthens this by indicating that no model exceeds capacity ratio 2.3.

For clarity, in subsequent results of this paper, we focus solely on the peak capacity ratio, with the
understanding that observations similar to Result 1(b) and Result 1(c) consistently apply.

Knowledge extraction. The “2bit/param” is not only word-by-word memorization. Such knowl-
edge is also extractable (e.g., via fine-tuning using QAs “What is Anya Forger’s birthday?”) and can
be used for downstream tasks (Allen-Zhu & Li, 2024; 2023b). We also verify this in Appendix D.2.

We defer Result 2 and Result 3 to Appendix A. They show that a similar 2 bit/param laws also
apply to other data formats and especially to the bioD(N,K,C,D,L, T) data family not only with
increasing N , but also with a wide range of hyperparameters K,C,D,L, T .

5 RESULT 4: TRAINING TIME VS SCALING LAW

What if the model is not sufficiently trained? For instance, there might be instances where knowl-
edge appears only 100 times throughout the pretraining phase. We also calculate the capacity ratios
for models trained with 100 exposures on bioS(N). Our findings can be summarized as follows:

Result 4 (Figure 1(b)). When trained for only 100 exposures on the bioS(N) dataset, with N
ranging from 10K to 10M, across a broad spectrum of GPT2 models with sizes from 1M to 0.5B, the
peak capacity ratio R(F) consistently exceeds R(F) ≥ 1.

Therefore, although 1000 exposures may be necessary for a model to reach its maximum storage
capacity, training with just 100 exposures results in a capacity loss of no more than 2x.

In Section 9, we shall also consider knowledge that has extremely low (e.g., 1) or high (e.g., 1M)
exposures. It may not be interesting to study them in isolation, but it becomes more intriguing
when they are examined alongside “standard” knowledge, which has appeared, for instance, for 100
exposures, and how this impacts the model’s capacity. These will be our Result 10 through 12.

6 RESULTS 5-7: MODEL ARCHITECTURE VS SCALING LAW

Several transformer architectures have been widely adopted, with LLaMA and Mistral among the
most notable. We outline their key distinctions from GPT2, with further details in Appendix E:

1. LLaMA/Mistral use GatedMLP layers, which is V (σ(W1x) · (W2x)) instead of V σ(Wx).
Shazeer (2020) suggested that gated activation might yield marginally improved performance.

2. Unlike GPT2, LLaMA/Mistral do not tie weights.
3. Mistral features larger MLP layers compared to GPT2/LLaMA.
4. Mistral promotes group-query attention, not so by GPT2/LLaMA.
5. LLaMA/Mistral employ a different tokenizer than GPT2.
6. GPT2 uses the gelu activation function, LLaMA/Mistral opt for silu.
7. GPT2 implements layer normalization with a trainable bias.

Do these architectural variations impact the models’ maximum capacities? Our findings suggest
that, in terms of knowledge capacity, GPT2 — when enhanced with rotary embedding and without
dropout — performs no worse than any other architecture choice above in the sufficient training

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

106 107 108

model size (#params)

106

107

108

109

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

3-2

2-3
8-2

4-2

2-2

12-43-6 6-66-4 5-63-4

6-2

2-84-6
10-4

5-2

5-42-6 8-44-4
16-46-32-4

7-2

5-34-3

5-6

2-3

12-4
10-4 6-6 8-86-42-6

4-3

10-6

8-2

4-6
12-6

7-2

6-8 7-8

5-2
6-2

5-32-4

3-6

4-2

5-4
9-68-6

16-48-4
2-8

3-4
4-46-3

2-20
12-6

16-8
4-1216-4

7-8
6-12

10-46-4

12-42-8

8-8
12-8

10-8

3-4

4-6
5-6

6-3

6-6
8-6

4-4
2-6

8-45-4

5-3

9-6
10-66-8

2-4

3-6

4-3

10-8

6-6

6-12
10-6

8-8

3-20

12-4

16-8
2-20

6-20
7-88-6

12-6

8-16
16-12

10-4

8-12
6-16

12-12
4-20

5-6

12-8

2-8
4-6

4-126-8

3-6

9-6

6-4
8-4

16-4

20-12
10-8

8-124-12
12-8

6-122-20
7-8

16-4

3-20

10-6

6-16

8-6

20-16

6-6

16-12

9-6

12-12
12-16

8-8

4-20
8-24
12-20

16-16
6-24

6-2016-8
12-66-8

8-20
8-16

10-8

20-16

12-6

3-20

20-20
24-16

12-164-20

8-16

8-8

24-20
8-24

2-20

6-24

16-8

6-20
12-24

20-20
24-20

12-24
24-168-24

20-1612-16
6-24

6-208-16
4-203-20

24-20
20-20

28-20
24-16

12-32

20-16

8-24

12-16

6-24

12-24

8-16
6-20

24-20

20-16

24-16

12-32
20-20

28-2012-248-24

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=20000000
N=10000000
N=5000000
N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

(a) GPT2, same as Figure 1(b)

106 107 108

model size (#params)

106

107

108

109

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

3-6 2-8
12-45-6

10-48-4
2-6

6-4 4-65-4
4-3

16-46-6

8-2

6-3
4-4

5-2

2-3

7-2
2-46-2

4-2

5-3

3-2

3-4

2-2

8-87-8
10-66-8

12-68-69-6

2-8

3-6
8-46-4

12-4
10-4 5-64-6

2-6

16-4
5-44-46-3

6-6

5-3 3-44-32-4
8-2

3-2
4-2

2-3
5-2

7-2
6-2

3-6

16-8
2-20
6-12

12-8
10-8

4-128-87-8
12-68-69-6

10-612-4
16-46-6

6-8
5-6

2-6 2-8

4-68-4
6-4

10-4

5-44-4
6-33-45-3

4-3
2-4

8-16
6-20

12-12
4-20

16-12
6-16

3-20
8-1216-8

6-12
2-2012-810-8

4-128-87-812-6
6-8

8-6
16-4

10-6
9-6

6-6

12-4

5-6

10-4
4-62-88-43-66-4

2-6

8-12

20-16
6-206-16

16-8
2-20

12-12
8-164-20

20-12
16-123-20

12-16
12-20
8-24

6-24
16-16

8-20
6-1212-8

10-84-12
8-87-812-66-8

10-6

9-68-6

16-4

6-6

24-16
20-20

12-24

16-8

10-8

6-24
8-24

3-20

8-8

24-20

2-20

20-16
12-16

4-20

12-6

6-208-16

24-20
24-168-24

20-20
12-2420-166-24

4-20

6-20

16-8

12-16

8-163-20

24-2028-20

6-20

8-24

12-16

6-24

20-16

8-16

12-32
20-2012-2424-16

12-32
24-20

28-20
20-20

20-16
8-24

12-24

24-16

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=20000000
N=10000000
N=5000000
N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

(b) LLaMA

106 107 108

model size (#params)

106

107

108

109

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

6-6
12-45-6

10-44-68-4 2-8
3-66-45-42-6

4-46-35-33-44-38-2
2-4

7-26-25-2
2-3

4-23-2

2-2

12-66-8 7-88-6
10-69-6

16-4
12-4 6-65-6

10-48-4
4-6

2-8
3-66-44-4 2-6

5-46-3
4-3

5-33-4
8-2 2-47-26-2

5-2

2-3
4-23-2

15-8
6-12
2-20

12-8
10-8

4-128-8
12-67-86-8

10-69-68-616-46-612-45-610-44-68-4 2-83-66-45-4
2-64-46-35-33-44-3

8-2

2-4

6-20
16-12

15-8
8-16

12-12
4-20

6-16
3-20

6-12
16-8

2-20
12-8

8-1210-84-12
8-812-67-86-810-69-68-616-46-6

12-4

5-610-44-6

8-4

2-8
3-66-4

5-4

2-6

19-1615-8

12-20
8-24

6-24
16-16

8-20
20-12

12-16
6-20

8-16
16-12

12-124-20
6-16

3-208-126-12

16-8

4-12

2-20
12-8

10-8
8-8

12-6

12-4

10-6

16-4

6-6 9-6

5-6

7-86-8

8-6

12-24
24-20

20-20
24-16

20-16
8-24

15-8

6-24
12-166-208-164-203-2016-8

2-2010-8
8-8

7-810-6

24-20
20-20

12-24

15-8

6-24

24-1620-168-2412-16
6-20

8-16

3-20

4-20
16-8

12-32
28-2024-20

20-2012-2424-1620-168-246-2412-16
6-208-16

28-20

12-32

24-20
20-20

20-16

12-2424-16
8-24

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=20000000
N=10000000
N=5000000
N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

(c) Mistral

106 107 108

model size (#params)

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

8-87-82-8
16-4

4-4
6-35-3

4-2

6-84-6 6-6

3-2

12-4
12-69-6

10-68-6

3-4

5-2

2-4

3-6

7-26-2

8-4

4-3

2-3

5-6

8-2

6-42-6

10-45-4
5-3

3-4

4-3

2-6

10-4

4-4

5-4

5-6

6-4
3-6

12-4

16-4

8-4

2-4

4-6

9-6

8-2

8-86-6
10-6

6-3

2-8

7-8
4-12

12-8
10-86-8

6-12
2-20

16-88-6
12-6

8-812-6
12-8

4-12
10-87-8

8-1610-6
6-12

6-166-8
8-6

9-6

8-12
16-8

3-20
2-20

4-20
12-12

8-46-4
5-4

4-4

16-46-6

3-6

10-42-8

2-6

4-6
5-612-4

10-6

6-6

20-16
12-20
8-24

8-20
6-24

16-16
12-16

20-12
6-20

16-12
8-16

12-12
6-16

4-20
8-126-12

16-8
3-202-20

12-810-88-8
4-12

7-8
12-6

9-6
8-6

6-8

16-45-6

28-16
12-24

16-20
24-16

14-20
20-16

12-20
16-16

8-24
6-24

8-20
20-12

12-16
6-208-16

16-12

8-8

10-84-12

4-20
12-12

6-12

8-12

2-20

6-16

12-8

3-2016-8

7-812-66-8

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=1000000
N=500000
N=200000
N=100000
N=50000

(d) GPT2 with 1/4-sized MLP

106 107 108

model size (#params)

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

10-87-8 8-8 4-12
12-6

10-6
12-86-89-616-4

8-6

2-6

3-4
4-4

6-3
2-44-3

5-3

12-4
5-610-4

6-6
4-68-4 2-83-65-4

6-4

8-27-2
6-25-2

2-3

6-12
6-16

3-20
16-8

8-122-20
12-8

10-84-12
7-8

8-812-66-810-69-6
16-4

8-66-6
12-410-4

5-6
4-62-83-6

8-4

6-3

6-4

4-4

5-34-3 2-4

2-6
5-4

3-4

8-16
12-12

16-12
6-206-163-208-12

16-86-122-20

4-2012-8

8-20
12-16

20-12
10-8

9-6
10-68-6

6-8 4-12

12-67-8
8-8

5-6
12-4

16-4
6-6

4-6

10-4
2-8

6-4 3-6

2-6

8-4

20-12
12-16

20-16
16-16

20-208-20

16-20
8-24

16-8

8-16

16-12

3-20

4-20

6-24

2-20

6-12

12-12

8-12

6-20

28-16

12-8

12-20

6-16

12-24
14-20

24-16

6-810-6

8-8

4-12

12-6
9-6

7-8
8-6

10-8

28-20
24-20

28-16
36-16

20-20
12-24

16-20
24-16

14-2020-16
8-24

12-2016-166-24
20-12

12-16

8-20

6-20

16-12

6-16

12-12
8-16

4-20
3-2016-8 8-126-1210-8 12-8

2-20

4-12

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=1000000
N=500000
N=200000
N=100000
N=50000

(e) GPT2 with no MLP

Figure 2: Scaling laws for other model architectures on the bioS(N) data with 100 exposures.

Conclusion. In the 100-exposure setting, LLaMA/Mistral may underperform GPT2’s scaling law by
1.3x, even for large models. Reducing the size of GPT2’s MLP layer by 1/4 does not affect its scaling
law, but removing all MLP layers degrades performance. See Figure 5 for a closer comparison.

regime. We summarize the main findings below, deferring details to Appendix E.1:

Result 5 (Figure 11). In the 1000-exposure setting, architectures do not matter much:

• LLaMA architecture performs comparably to GPT2, albeit slightly inferior for the tiny model
(i.e., < 10M). This discrepancy can be mitigated by also requiring LLaMA architecture to tie
weights, as shown in Figure 11(c) compared to Figure 11(b).

• A similar observation applies to Mistral architecture (see Figure 11(d)).
• Reducing the MLP size of GPT2 architecture by 1/4 or even eliminating all MLP layers does

not affect its capacity ratio, see Figure 11(e) and Figure 11(f). This suggests, contrary to con-
ventional beliefs, the Attention layers are also capable of storing knowledge.

This indicates that the 2bit/param capacity ratio is a relatively universal law among most typical
(decoder-only) language model architectures. However, differences in architectures become appar-
ent in the insufficient training regime:

Result 6 (Figure 2). In the 100-exposure setting:

• Even for large models, LLaMA architecture’s capacity ratio can be 1.3x worse than GPT2, even
after optimally tuning learning rates. The results are similar for Mistral.

• Reducing GPT2’s MLP size by 1/4 has a negligible impact on the capacity ratio.
• Removing MLPs decreases the capacity ratio by more than 1.5x.

To investigate why the LLaMA is inferior to GPT2 in the 100-exposure (insufficiently trained) set-
ting, we closely examine LLaMA by gradually modifying its architecture back to GPT2 to identify
the key architectural changes. We call this Result 7 and defer the details to Appendix B. The quick
takeaway is that the use of GatedMLP layers in LLaMA made its knowledge capacity worse.

7 RESULT 8: QUANTIZATION VS SCALING LAWS

While deferring to Appendix C, the following figure summarizes our findings at a high level:

scaling law (quantization)

quantizing → int8 does not affect
scaling laws at all

quantizing → int4 hurts capacity
by more than 2x

b
io

S
d

at
a

b
io

D
 d

at
a

float16/32 int8 int4

float16/32 int8 int4

no diff worsen >2x

no diff worsen by >2x

10001010101010100100110101010111 01111010 1101

– Result 8

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

8 RESULT 9: MIXTURE OF EXPERTS VS SCALING LAWS

An important way to enhance efficiency in modern language models is the incorporation of sparsity.
The Mixture of Experts (MoE) plays a crucial role in this regard (Fedus et al., 2022; Shazeer et al.,
2016). A question arises: do MoE models scale differently in terms of the capacity ratio? For an
MoE model, let P denote the total number of parameters in the model, including all experts. Due
to its inherent sparsity, the effective number of parameters can be much less than P . Our primary
observation is that MoE models scale similarly to dense models, even with 32 experts/layer.

Consider, for instance, GPT2, but with its MLP layer (d → 4d → d) replaced by 32 experts, each
following a d → d → d configuration. This setup uses 64d2 total parameters, but during inference,
only 2d2 parameters are used per token (e.g., when using topk = 1). After including the Attention
layers, which each have 4d2 parameters, the ratio between the total and the effective number of
parameters for the 32-expert MoE models is approximately 4d2+64d2

4d2+2d2 ≈ 11.3.

One might wonder, given that during inference time, the model uses only 11.3x fewer parameters,
whether this affects the model’s capacity ratio by a factor close to 11.3x or closer to 1x? We show:

Result 9 (Figure 14 in Appendix G)). MoE is nearly fully efficient in storing knowledge, capable
of leveraging all its parameters despite the sparsity constraint. Specifically, consider the GPT2-
MoE model with 32 experts. If we compute its capacity ratio with respect to the total number of
parameters and compare that to GPT2:

• in the 1000-exposure settings, the peak capacity ratio decreases by 1.3x; and
• in the 100-exposure settings, the peak capacity ratio decreases by 1.5x.

Remark 8.1 (topk). Result 9 holds even in the “sparsest” setting where topk = 1 and cap factor =
2 in the MoE routing. The results are similar when using topk = 2 and cap factor = 1 or topk = 2
and cap factor = 2 — we discuss more in Appendix G.
Remark 8.2. It is typically observed in practice that MoE models underperform compared to dense
models with the same number of total parameters. We demonstrate that this degradation does not
come from the model’s knowledge storage capability.

9 RESULTS 10-12: JUNK DATA VS SCALING LAWS

Not all data are useful for knowledge acquisition. For instance, while Wikipedia is full of valuable
information, the Common Crawl of web pages may not be (there are also many pieces of information
on those webpages, but they may not be useful for a language model to learn, such as the serial
number of a random product). How does the presence of low-quality data impact the scaling laws
of useful knowledge capacity? To investigate this, we create a mixed dataset where:

• 1/8 of tokens originate from bioS(N) for various N (referred to as useful data), and
• 7/8 of tokens originate from bioS(N ′) for a large N ′ = 100M (referred to as junk data).

We train models on this mixture, ensuring each piece of useful data is seen for 100 exposures, thus
making the total training 8 times longer compared to 100 exposures without junk (i.e., Figure 1(b)).
We focus on the capacity ratio of the useful data (the data in bioS(N)) and compare that to
Figure 1(b).12 How much does the capacity ratio degrade in the presence of junk data?

Result 10 (Figure 3(a)-3(e)). When 7/8 of the training tokens come from junk data (i.e., bioS(N ′)
for N ′ = 100M), transformer’s learning speed for useful data significantly degrades:

• If trained for the same 100 exposures, the capacity ratio may degrade by 20x compared with
training without junk (compare Figure 3(b) with Figure 3(a)).

• Even trained for 300/600/1000 exposures, the capacity ratio still degrades by 3x/1.5x/1.3x com-
pared with 100 exposures without junk (Figure 3(c), 3(d), and 3(e) vs. Figure 3(a)).

This underscores the critical importance of pretrain data quality: even if junk data is entirely ran-
dom, it hurts model’s capacity even with sufficient training. In contrast, if 7/8 of data is bioS(N ′)
for very small N ′, simulating highly repetitive knowledge in training tokens (e.g., “da Vinci painted
the Mona Lisa” in a million variations), this doesn’t hurt the model’s capacity for useful knowledge:

12The model’s ability to learn from junk data is negligible; each person in bioS(N ′) appears only 0.2 times
during training when N = 200k, or 0.05 times when N = 50k.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

train with junk for 100 exposures

scaling laws (pretrain data of mixed qualities)

• “Junk” data significantly harm LLM’s knowledge capacity on good data (sometimes by 20x times!) – Result 10

1/8 good data 7/8 training tokens from “junk” data

e.g. Wikipediae.g. common crawls, internet “junks”

train without junk
for 100 exposures 20x worse

3x worse

a simple fix!

• add domain name (e.g., “wikipedia.org”) at front of all pretrain data paragraphs
LLMs can automatically detect domains rich in high-quality knowledge and prioritize learning from them

data data data

• repetitive knowledge … does not harm … – Result 11

– Result 12
10x better! 3x better!

train with junk for 300 exposures

illustration

Figure 3a
Figure 3b

Figure 3c

Figure 3g Figure 3h

106 107 108

model size (#params)
105

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

3-2

2-3
8-2

4-2

12-43-6 6-66-4 5-63-4

6-2

2-84-6
10-4

5-2

5-42-6 8-44-4
16-46-32-4

7-2

5-34-3

5-6

2-3

12-4
10-4 6-6 8-86-42-6

4-3

10-6

8-2

4-6
12-6

7-2

6-8 7-8

5-2
6-2

5-32-4

3-6

4-2

5-4
9-68-6

16-48-4
2-8

3-4
4-46-3

2-20
12-6

16-8
4-1216-4

7-8
6-12

10-46-4

12-42-8

8-8
12-8

10-8

3-4

4-6
5-6

6-3

6-6
8-6

4-4
2-6

8-4
5-4

5-3

9-6
10-66-8

2-4

3-6

4-3

10-8

6-6

6-12
10-6

8-8

3-20

12-4

16-8
2-20

6-20
7-88-6

12-6

8-16
16-12

10-4

8-12
6-16

12-12
4-20

5-6

12-8

2-8
4-6

4-12
6-8

3-6

9-6

6-4

8-4

16-4

20-12
10-8

8-124-12
12-8

6-122-20
7-8

16-4

3-20

10-6

6-16

8-6

20-16

6-6

16-12

9-6

12-12
12-16

8-8

4-20
8-24
12-20

16-16
6-24

6-2016-8
12-66-8

8-20
8-16

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=1000000
N=500000
N=200000
N=100000
N=50000

(a) no junk, 100 exposures

106 107 108

model size (#params)
105

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

2-8

8-6

3-6

10-6
6-65-6

6-3

5-4

8-8
10-8

2-8

12-6

5-6
6-6

3-6

8-6 10-6

10-6
12-6

2-20

8-8

3-20
16-8

8-6
10-8

6-6

3-20

12-16

4-20

6-208-16
6-2416-8

2-20

10-8

12-6

8-6

8-8
10-6

12-16

12-24

6-20

8-16
6-24

24-16

20-16

3-20

8-24

4-20

16-8

10-8

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=1000000
N=500000
N=200000
N=100000
N=50000

(b) 7/8 junk 100 exposures

106 107 108

model size (#params)
105

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

6-3

3-6

5-6

6-2

6-6

5-3

10-6

8-2

4-3

5-4

2-3

8-62-8

6-3

8-812-6

10-8

2-8
3-6

5-4

10-6

8-6
5-6 6-6

8-6

6-6

10-8

5-6

3-20

10-6
2-8

12-6

16-88-8

3-6

2-20

6-24
12-16

8-8

12-6

8-16
3-20

10-8

4-2016-8

6-20
2-20

10-68-6

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=500000
N=200000
N=100000
N=50000

(c) 7/8 junk 300 exposures

106 107 108

model size (#params)
105

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

10-6

2-3

8-6

6-3

6-65-63-65-4

4-3

8-26-2

2-8
5-3

5-6
2-8 6-6

10-8
10-6

3-6
8-88-6

5-4

12-6

6-3

2-2012-6
3-208-8

16-8
10-8

10-68-65-6
3-6

2-8
6-6

6-20
12-1616-8

4-20
8-16

8-8
12-6

10-6

8-6

6-2410-8
3-202-20

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=500000
N=200000
N=100000
N=50000

(d) 7/8 junk 600 exposures

106 107 108

model size (#params)
105

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

10-62-85-4

6-2

5-3
4-3

2-3

8-2

6-6
6-3

5-63-6 8-6

5-4

6-3

10-85-6
12-6 8-82-8

10-66-6 8-63-6

10-8
2-20

3-20

6-62-8

8-8

3-6
5-6

16-88-6
10-6

12-6

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=200000
N=100000
N=50000

(e) 7/8 junk 1000 expo-
sures

106 107 108

model size (#params)
105

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

2-3

3-65-4
4-3

2-8 5-6

8-2

8-65-3

6-2

6-3
6-6

10-6

10-88-6 8-8
12-6

10-65-4
3-6 5-6

6-3

2-8 6-6

16-8

3-6

12-65-6 8-6 8-8
2-8

10-6
2-20

10-8
3-206-6

16-8
6-24

10-8
8-16

3-20
6-20

12-1610-6
4-208-8

8-6

2-2012-6

12-2410-8

6-24
8-24

24-1616-8
20-16

4-20
6-20

8-16
12-16

3-202-20
2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=1000000
N=500000
N=200000
N=100000
N=50000

(f) 7/8 rep-junk, 100 ex-
posures

106 107 108

model size (#params)
105

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

5-6

4-3

2-8 6-6

6-3

5-4
5-3

3-6

8-26-2

10-68-6

2-3

3-6

10-8

6-3

5-4

10-68-66-65-6
12-6 8-82-8

16-8
3-20

12-6 8-8

2-20

10-6

10-88-6
6-65-62-8

3-6

6-248-1616-8

12-166-20
4-202-20 3-2010-88-8

12-610-68-6

8-24
20-16

12-2424-166-24
6-20

12-16

8-16

4-203-2016-82-20
10-8

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=1000000
N=500000
N=200000
N=100000
N=50000

(g) 7/8 junk, 100 expo-
sures, add special symbol

106 107 108

model size (#params)
105

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

10-68-66-65-62-83-65-46-35-34-3
8-26-22-3

10-88-8
12-6

10-68-66-65-62-83-65-46-3

12-6
3-20

16-8
2-20

10-88-8
10-68-66-65-62-83-6

12-16
4-20

10-6

3-20
6-24

6-20
8-16

16-8
2-20

10-88-812-68-6

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=1000000
N=500000
N=200000
N=100000
N=50000

(h) 7/8 junk, 300 expo-
sures, add special symbol

Figure 3: Capacity ratios with 7/8 junk data (useful data observed 100/300/600/1000 exposures in training).
Conclusions. In Figure 3(b)-3(e), when junk data mimics random knowledge, capacity ratios are
significantly impacted unless training time is substantially increased. In Figure 3(f), if the junk data
is highly repetitive, there is no degradation. In Figure 3(g)+3(h), adding a special symbol token to
useful data, akin to domain names like wikipedia.org, mitigates capacity degradation.

Result 11 (Figure 3(f)). If 7/8 of the training tokens come from highly repetitive data (i.e., bioS(N ′)
for N ′ = 1K), this does not affect the learning speed of useful knowledge:

• The 100-exposure capacity ratio of useful data is unchanged (Figure 3(f) vs. Figure 3(a)).

Finally, if pretrain data’s quality is poor and hard to improve, a backup strategy exists:
Result 12 (Figure 3(g)+3(h)). When 7/8 of training tokens are from junk (i.e., bioS(N ′) for N ′ =
100M), adding a special token at the start of every useful data greatly improves capacity :

• With 100 exposures, the capacity ratio degrades only by 2x (Figure 3(g) vs. Figure 3(a)).
• With 300 exposures, the capacity ratio matches that of the 100-exposure scaling law without

junk (compare Figure 3(h) with Figure 3(a)).

Let us connect Result 12 to practice. First, adding a special token to high-credibility data is very
practical: imagine adding the domain name “wikipedia.org” at the beginning of all Wikipedia para-
graphs. (Adding a special token to junk data would be less meaningful.) More generally, one
can envision adding domain names to every piece of the pretraining data. This would significantly
enhance the model’s knowledge capacities, because Result 12 shows that language models can au-
tomatically detect which domains are rich in high-quality knowledge and prioritize learning
from them. We emphasize that the model does not need prior knowledge to identify which domains
contain high-quality knowledge; this process is entirely autonomous.

(Adding domain tokens has other applications such as domain adaptations (Daumé III, 2009),
and is also known to help distinguishing good and bad data based on their consistency with the
QAs (Krasheninnikov et al., 2023).)

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

CONCLUSION

See the end of Section 1.

REFERENCES

Ibrahim M Alabdulmohsin, Behnam Neyshabur, and Xiaohua Zhai. Revisiting neural scaling laws
in language and vision. Advances in Neural Information Processing Systems, 35:22300–22312,
2022.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of Language Models: Part 1, Learning Hierarchical
Language Structures. ArXiv e-prints, abs/2305.13673, May 2023a. Full version available at
http://arxiv.org/abs/2305.13673.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of Language Models: Part 3.2, Knowledge Manip-
ulation. ArXiv e-prints, abs/2309.14402, September 2023b. Full version available at http:
//arxiv.org/abs/2309.14402.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of Language Models: Part 3.1, Knowledge Storage
and Extraction. In ICML, 2024. Full version available at http://arxiv.org/abs/2309.
14316.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparame-
terized neural networks, going beyond two layers. Advances in neural information processing
systems, 32, 2019a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International conference on machine learning, pp. 242–252. PMLR, 2019b.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Ho-
race He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth,
Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. GPT-
NeoX-20B: An open-source autoregressive language model. In Proceedings of the ACL Work-
shop on Challenges & Perspectives in Creating Large Language Models, 2022. URL https:
//arxiv.org/abs/2204.06745.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Hal Daumé III. Frustratingly easy domain adaptation. arXiv preprint arXiv:0907.1815, 2009.
William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter

models with simple and efficient sparsity. The Journal of Machine Learning Research, 23(1):
5232–5270, 2022.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate post-training
compression for generative pretrained transformers. arXiv preprint arXiv:2210.17323, 2022.

Olga Golovneva, Zeyuan Allen-Zhu, Jason Weston, and Sainbayar Sukhbaatar. Reverse training to
nurse the reversal curse. arXiv preprint arXiv:2403.13799, 2024.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, et al. Textbooks are
all you need. arXiv preprint arXiv:2306.11644, 2023.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative
modeling. arXiv preprint arXiv:2010.14701, 2020.

Danny Hernandez, Jared Kaplan, Tom Henighan, and Sam McCandlish. Scaling laws for transfer.
arXiv preprint arXiv:2102.01293, 2021.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
empirically. arXiv preprint arXiv:1712.00409, 2017.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

11

http://arxiv.org/abs/2305.13673
http://arxiv.org/abs/2309.14402
http://arxiv.org/abs/2309.14402
http://arxiv.org/abs/2309.14316
http://arxiv.org/abs/2309.14316
https://arxiv.org/abs/2204.06745
https://arxiv.org/abs/2204.06745

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. LoRA: Low-Rank Adaptation of Large Language Models. In ICLR, 2021.

Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang, Ze Liu, Han Hu, Zilong Wang, Rafael Salas,
Jithin Jose, Prabhat Ram, Joe Chau, Peng Cheng, Fan Yang, Mao Yang, and Yongqiang Xiong.
Tutel: Adaptive mixture-of-experts at scale. CoRR, abs/2206.03382, June 2022. URL https:
//arxiv.org/pdf/2206.03382.pdf.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Dmitrii Krasheninnikov, Egor Krasheninnikov, Bruno Mlodozeniec, and David Krueger. Meta-(out-
of-context) learning in neural networks. arXiv preprint arXiv:2310.15047, 2023.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. In Advances in Neural Information Processing Systems, 2018.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463, 2023.

Niklas Muennighoff, Alexander M Rush, Boaz Barak, Teven Le Scao, Aleksandra Piktus, Noua-
mane Tazi, Sampo Pyysalo, Thomas Wolf, and Colin Raffel. Scaling data-constrained language
models. arXiv preprint arXiv:2305.16264, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Jonathan S Rosenfeld. Scaling laws for deep learning. arXiv preprint arXiv:2108.07686, 2021.
Jonathan S Rosenfeld, Amir Rosenfeld, Yonatan Belinkov, and Nir Shavit. A constructive prediction

of the generalization error across scales. arXiv preprint arXiv:1909.12673, 2019.
Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.
Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and

Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
International Conference on Learning Representations, 2016.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer
with rotary position embedding, 2021.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Dingli Yu, Simran Kaur, Arushi Gupta, Jonah Brown-Cohen, Anirudh Goyal, and Sanjeev Arora.
Skill-mix: A flexible and expandable family of evaluations for ai models. arXiv preprint
arXiv:2310.17567, 2023.

12

https://arxiv.org/pdf/2206.03382.pdf
https://arxiv.org/pdf/2206.03382.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

APPENDIX I: MISSING RESULTS
A RESULTS 2-3: BASE SCALING LAWS

A.1 DATA FORMATS — DIVERSITY AND REWRITING

We conduct the same analysis on bioSsimple and bioR. Recall from Section 2, bioSsimple is a vari-
ant of bioS with reduced text diversity (one biography per person), while bioR is generated by
LLaMA2, resulting in close-to-real human biographies. We have:

Result 2 (Figure 8 in Appendix D.3). In the same 1000-exposure setting, peak capacity ratios for
GPT2 trained on bioSsimple and bioR are also approximately 2, albeit slightly lower. Thus:

• Diverse data (rewriting the same data multiple times) does not hurt — and may sometimes
improve — the model’s capacity!

Let’s highlight the significance of Result 2. Recall from Section 2:

• Training on bioSsimple data for 1000 exposures equals 1000 passes over the data.

• Training on bioS data for 1000 exposures is less than 1 pass.

• Training on bioR data for 1000 exposures equals 25 passes.

Therefore, comparing bioS and bioSsimple, it’s more advantageous to rewrite the data 1000 times
(in this ideal setting), training each for one pass (as done in the bioS data), rather than training the
same data for 1000 passes (as done in the bioSsimple data). This is because, without data diversity,
the model wastes capacity memorizing sentence structures, resulting in a capacity loss.

In a realistic scenario, tools like LLaMA2 can rewrite pretrain data like we did in bioR. Rewriting
data 40 times can produce 40 distinct English paragraphs, sometimes with (different) hallucinated
contents. Does this require the model to be 40x larger? No, our comparison between bioS and bioR
shows that, if trained for the same duration (40 rewrites each for 25 passes), the model’s capacity
ratio remains nearly the same, slightly lower due to irrelevant data introduced by LLaMA2.

Allen-Zhu & Li (2024) suggested that rewriting pretraining data is crucial for making knowledge
extractable rather word-by-word memorization.13 However, they did not explore the impact on the
model’s capacity. Our paper addresses this gap, indicating that rewriting pretraining data does not
compromise — and may even enhance — the model’s knowledge capacity.

A.2 PARAMETERIZED SCALING LAWS

We further investigate scaling laws within the bioD(N,K,C,D,L, T) data family. Unlike with hu-
man biographies, where variation is limited to N , the bioD dataset allows for more flexible manipu-
lation of the remaining hyperparameters K,C,D,L, T . This enables us to examine how variations
in these parameters affect the model’s peak capacity.

Result 3 (Figure 4). Across a broad spectrum of values, with K,C ranging from 1 to 50, D from
10 to 10, 000, L from 1 to 50, and T from 20 to 40, 000, we observe that:

• GPT2 models consistently exhibit a peak capacity ratio R(F) ≥ 2.

B RESULT 7: MODEL ARCHITECTURE VS SCALING LAW - A CLOSER LOOK

To investigate why the LLaMA architecture is inferior to GPT2 in the 100-exposure (insufficiently
trained) setting, we closely examine LLaMA by gradually modifying its architecture back towards
GPT2 to identify the key architectural changes. We start by tying weights, as this enhances tiny
LLaMA model’s capacity in the 1000-exposure setting (Result 5). As illustrated in Figure 5:

13As demonstrated by (Allen-Zhu & Li, 2024), in low-diversity datasets like bioSsimple, knowledge can be
word-by-word memorized but is nearly 0% extractable for downstream tasks. Others discover that rewriting
data can improve the reversal extractability of knowledge (Golovneva et al., 2024; Allen-Zhu & Li, 2023b).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

N1000k-D10-C1-K1-L1-T40k

N1000k-D10-C1-K2-L1-T40k

N500k-D10-C1-K5-L1-T40k

N500k-D10-C1-K10-L1-T40k

N500k-D10-C1-K20-L1-T40k

N200k-D10-C1-K50-L1-T40k

N1000k-D10-C1-K1-L4-T40k

N1000k-D10-C1-K2-L4-T40k

N500k-D10-C1-K5-L4-T40k

N500k-D10-C1-K10-L4-T40k

N500k-D10-C1-K20-L4-T40k

N200k-D10-C1-K50-L4-T40k

N1000k-D10000-C1-K1-L4-T40k

N1000k-D10000-C1-K2-L4-T40k

N500k-D10000-C1-K5-L4-T40k

N500k-D10000-C1-K10-L4-T40k

N200k-D10000-C1-K20-L4-T40k

N100k-D10000-C1-K50-L4-T40k

0.5

1.0

2.0

4.0

#
 b

it
 /

pa
ra

m

5-6

4-4

8-6

3-6

14-4

5-4

4-6

3-6

4-6
5-6

14-4

4-45-4

8-6
10-6

5-4

4-6

3-6

5-3

5-6
14-4
8-6

4-4

10-6

4-6
5-6

10-6
3-12

8-6

14-4

3-6

4-45-4

14-4

5-6

5-4
3-6

3-12

4-6

4-4

10-6

8-6

8-6

3-12

10-6

4-12

5-6

3-6

14-4

5-4
4-6

8-6

3-12
4-12

10-6

5-6

4-6

3-6
5-4

14-4

14-4

8-610-6

3-6

5-44-4

5-6
4-6

8-6

3-6

3-12

4-6

10-6

5-6

4-12

14-4

12-8
16-8

12-8

3-12
4-12

10-6

4-6
5-6

8-6

14-4

8-6

5-6
14-4

4-6

5-4

3-6

4-4

4-12
12-8
16-8

10-6

6-16

3-12

5-6

14-48-6

12-8

3-6
4-6

10-6

5-6

14-4

4-12

8-6

3-12

5-4

8-16

10-6

4-12

3-1212-8

6-16

16-84-12

16-8

3-12

4-6

12-8

5-6

10-6

14-4
8-6

4-12
12-8

10-6

16-8

8-6

3-12

4-65-614-4

10-6

3-6

5-6

3-12

4-614-4

4-12

8-6

16-8

12-8

14-4
5-6

3-12

10-6
4-6

12-8
4-1216-8

8-6

2 bit/param
1 bit/param
0.5 bit/param

acc = 0%
acc = 25%
acc = 50%
acc = 75%
acc = 100%

(a) how K impacts capacity ratio

N1000k-D10-K1-C1-L1-T40k

N1000k-D10-K1-C2-L1-T40k

N500k-D10-K1-C5-L1-T40k

N500k-D10-K1-C10-L1-T40k

N500k-D10-K1-C20-L1-T40k

N200k-D10-K1-C50-L1-T40k

N1000k-D10-K1-C1-L4-T40k

N1000k-D10-K1-C2-L4-T40k

N500k-D10-K1-C5-L4-T40k

N500k-D10-K1-C10-L4-T40k

N500k-D10-K1-C20-L4-T40k

N200k-D10-K1-C50-L4-T40k

N1000k-D10000-K1-C1-L4-T40k

N1000k-D10000-K1-C2-L4-T40k

N500k-D10000-K1-C5-L4-T40k

N500k-D10000-K1-C10-L4-T40k

N200k-D10000-K1-C20-L4-T40k

N100k-D10000-K1-C50-L4-T40k

0.5

1.0

2.0

4.0

#
 b

it
 /

pa
ra

m

4-6

8-6

5-6

10-6

14-4

5-4
3-6

8-6

4-4

5-6

3-6

5-4

4-6

14-4

14-4
8-6

4-6

3-6

5-6

10-6

4-45-4

12-8
16-8

4-12

3-12

8-6

14-4

10-6

4-12

16-8

12-8

10-63-12

8-6

10-6
3-12

14-4
8-6

4-12

5-6

4-6
8-610-6

14-4

3-12

16-8

4-1212-8

4-12

3-6

12-8

3-12

10-6

4-6
14-4

8-6

5-6 4-1212-8
16-8

6-16

10-6

3-12

5-6
4-614-4

12-8

10-6

3-12

8-6

4-12
8-610-6

14-4
3-65-6

4-4
5-4

4-6

3-12

16-8

10-6

4-12

6-16

12-8

4-6

5-4

5-6

3-6

3-12

8-6
10-6

10-6

8-6

3-12

16-8

12-8

4-12
4-6
5-6

4-4

14-4

8-6

3-6

5-4

4-6
5-6

8-6

3-12

14-4

4-12

10-6

10-6

8-6

3-12

14-4

3-6

4-4

5-6

4-6

5-4

10-6

4-12

16-8

14-4

3-12

12-8

8-6

2 bit/param
1 bit/param
0.5 bit/param

acc = 0%
acc = 25%
acc = 50%
acc = 75%
acc = 100%

(b) how C impacts capacity ratio

N800k-D10000-K1-C1-L2-T1k

N800k-D10000-K1-C1-L10-T1k

N800k-D10000-K1-C1-L20-T1k

N800k-D10000-K1-C1-L50-T1k

N200k-D10000-K1-C4-L2-T1k

N200k-D10000-K1-C4-L10-T1k

N200k-D10000-K1-C4-L20-T1k

N200k-D10000-K1-C4-L50-T1k

N200k-D10000-K4-C1-L2-T1k

N200k-D10000-K4-C1-L10-T1k

N200k-D10000-K4-C1-L20-T1k

N200k-D10000-K4-C1-L50-T1k

N1000k-D10-K1-C1-L1-T1k

N1000k-D10-K1-C1-L10-T1k

N1000k-D10-K1-C1-L20-T1k

N1000k-D10-K1-C1-L50-T1k

N300k-D10-K1-C4-L1-T1k

N300k-D10-K1-C4-L10-T1k

N300k-D10-K1-C4-L20-T1k

N300k-D10-K1-C4-L50-T1k

N300k-D10-K4-C1-L1-T1k

N300k-D10-K4-C1-L10-T1k

N300k-D10-K4-C1-L20-T1k

N300k-D10-K4-C1-L50-T1k

0.5

1.0

2.0

4.0

#
 b

it
 /

pa
ra

m

4-6
5-6

4-4
5-4

5-3

3-65-6
14-4
8-6

5-4

4-6

3-6

4-4
5-3

14-4

3-6

5-6

8-6

5-4

4-6
14-4

10-6

4-6
5-6

8-6

3-6

5-6

3-6

2-4

5-4

4-4

4-6

5-3

10-6

4-6

3-6

14-4

3-12

5-6

8-6

5-4

3-6

5-3

4-4

4-6
5-6

2-4
7-2

8-6

3-6

5-6

10-6

4-6

14-4

5-6

3-6

4-6

5-4

4-4

5-3
3-6

8-6

5-4

4-6

10-6

5-6
14-4 5-6

5-3

8-6

14-4

4-4

4-6

2-4

3-6

5-44-6

14-4

5-6

8-6

3-12

3-6

10-6

3-6
4-6

10-6

5-6

3-12

14-4
8-6

10-6
3-12

8-6

5-6
14-4

4-6

3-6

10-6

8-6

4-6

4-12

14-4

3-12

5-6

4-6

5-4

3-6

2-4

4-4

5-3

7-2

5-6

4-6

14-4

5-3

5-6

8-6

4-4

2-4

5-4

3-6
8-6

3-12

10-6

4-12

3-6

14-4

4-6
5-6

5-6

8-6
10-6

14-4

4-6

3-12

5-3

4-6

4-4
5-4

5-6

3-6

5-4

4-6
5-6

5-3

3-6

4-4

7-22-4

8-6

4-6

3-6

3-12

5-6

4-12

14-4

10-6

8-610-6

16-8

3-12

12-8

4-12

4-4

5-3

5-6

5-4

3-6

4-6

2 bit/param
1 bit/param
0.5 bit/param

acc = 0%
acc = 25%
acc = 50%
acc = 75%
acc = 100%

(c) how L impacts capacity ratio

N1000k-D10000-K1-C1-L4-T20

N1000k-D10000-K1-C1-L4-T200

N1000k-D10000-K1-C1-L4-T4k

N1000k-D10000-K1-C1-L4-T40k

N500k-D10000-K1-C4-L4-T20

N500k-D10000-K1-C4-L4-T200

N500k-D10000-K1-C4-L4-T4k

N500k-D10000-K1-C4-L4-T40k

N200k-D10000-K4-C4-L4-T20

N200k-D10000-K4-C4-L4-T200

N200k-D10000-K4-C4-L4-T4k

N200k-D10000-K4-C4-L4-T40k

N400k-D10-K4-C4-L4-T20

N400k-D10-K4-C4-L4-T200

N400k-D10-K4-C4-L4-T4k

N400k-D10-K4-C4-L4-T40k

0.5

1.0

2.0

4.0

#
 b

it
 /

pa
ra

m

14-4

4-12

4-6

8-6
10-6

5-6

3-12

12-8
16-8

3-12
4-12

5-6

3-12

8-6

12-8

14-4

10-6

4-12

12-8
16-8

8-610-6
3-12
4-12

4-12

8-6

14-4

10-63-12

5-6

16-8

4-12

8-6
10-6
3-12

12-8

14-4

4-12

3-6

8-6

3-12

14-4

10-6

5-6

4-6
10-6

12-8

3-12

16-8

4-12

8-6

12-8

14-4
8-6

10-6

16-8

4-12

3-12 10-6
3-12
4-12
12-8

14-4

4-6

8-6

5-6

12-8

14-4

8-610-6

3-12

4-6

4-12

5-6

3-6

4-6

3-12

14-4

5-6

3-6

4-12

8-6

12-8

10-6

8-6

14-4

4-6
3-6
5-6

3-12

10-6

12-8

4-12

8-6

12-8

4-12

10-6
3-12

4-6
5-6

14-4

4-65-6

10-6

14-4

4-4
5-4

8-6

3-6

10-6

5-6
4-6
8-6

3-124-1216-8

12-8

14-4

2 bit/param
1 bit/param
0.5 bit/param

acc = 0%
acc = 25%
acc = 50%
acc = 75%
acc = 100%

(d) how T impacts capacity ratio

Figure 4: Scaling laws for GPT2 models trained on the bioD(N,K,C,D,L, T) data for 1000 exposures.

Conclusion. The peak capacity ratios consistently exceed R(F) ≥ 2 with a wide range of
K,C,D,L, T .

Remarks. Models with accuracies ≤ 50% are excluded here but included in Figure 9. We disregard
N ’s influence, akin to Figure 1(a), and concentrate on the five hyperparameters K,C,L, T,D. Each
of the four sub-figures varies a primary hyperparameter while fixing the other four. More details in
Appendix D.4.

• For large models, replacing LLaMA architecture’s gated MLP with a standard MLP (while
keeping silu unchanged) noticeably improves LLaMA’s capacity ratio.14

• For tiny LLaMA models, switching back to the GPT2Tokenizer is also necessary to match
GPT2’s performance, though this is a minor issue.15

• Other modifications, such as changing from silu to gelu or adding trainable biases to layer-
norms, do not noticeably affect the capacity ratios (so we ignore those figures).

In summary,

Result 7. In the insufficient training regime (notably, the 100-exposure setting), except for tiny
models, architectural differences generally do not affect performance, except

• Using gated MLP reduces the model’s capacity ratio (Figure 5);

• Removing all MLP layers lowers the model’s capacity ratio, although significantly reducing the
size of MLPs (e.g., by a 1/4 factor) does not.

We propose that our experiments with the controllable biography dataset could serve as a valuable
testbed for future architectural designs.

14As discussed in Appendix E, gated MLP layers are less stable to train, thus requiring more time.
15This only applies to tiny models and is specific to the biography data we consider here: GPT2Tokenizer

may tokenize years such as 1991 into a single token, while LLaMATokenizer will tokenize it into four digit
tokens.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

106 107 108

model size (#params)

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

3-6 2-8
12-45-6

10-48-4

2-6

6-4 4-65-4

4-3

16-46-6

8-2

6-3
4-4

5-2

2-3

7-2
2-46-2

4-2

5-3

3-2

3-4

2-2

8-87-8
10-66-8

12-68-6 9-6

2-8

3-6
8-4

6-4

12-4
10-4 5-64-6

2-6

16-4

5-44-4
6-3

6-6

5-3 3-44-32-4

8-2

3-2
4-2

2-3
5-2

7-2

6-2

3-6

16-8
2-20
6-12

12-8
10-8

4-128-87-8
12-68-6 9-6

10-612-4
16-46-6

6-8
5-6

2-6 2-8

4-6
8-4

6-4

10-4

5-44-4

6-33-45-3
4-3

2-4

8-16
6-20

12-12
4-20

16-12
6-16

3-20
8-1216-8

6-12
2-2012-810-8

4-128-8
7-812-6

6-8

8-6
16-4

10-6
9-6

6-6

12-4

5-6

10-4

4-6
2-88-4

3-6
6-4

2-6

8-12

6-206-16
16-8

2-20

12-12
8-164-20

20-12
16-123-20

12-16
6-24

8-20

6-1212-8
10-84-12

8-87-812-6
6-8

10-6

9-6
8-6

16-4

6-6

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=1000000
N=500000
N=200000
N=100000
N=50000

(a) LLaMA(gated MLP)

106 107 108

model size (#params)

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

16-4
12-45-6 6-6

10-44-63-6
8-4 2-86-45-42-66-3

4-4
3-45-3

4-3
8-2

7-2

2-4

6-2
5-2

2-3

4-23-2

2-2

7-8
12-66-89-6 8-8

10-6
16-46-6

12-4 8-65-6
10-44-62-88-4

3-6
6-45-42-64-46-3

3-45-3
4-3
2-4

8-27-26-2
5-22-3

6-12
2-20

10-4

16-8
12-8

10-8
4-128-87-86-8

12-616-4
10-69-68-612-4 6-65-6

4-62-8
8-4

3-6

6-4
5-42-6

6-3
4-4

5-3
3-4

4-3

10-6

8-12
16-810-87-812-6

3-20
12-8

6-162-208-8

4-20
6-12

16-12
8-16

12-124-12
6-8

6-20

9-6
16-4

8-6
6-6

5-6
12-410-4

4-62-88-4
3-6

12-16
12-12

6-163-20
8-12

6-24
20-12

8-20
6-20

8-16
16-12

4-206-12
16-8

2-20
12-810-84-12

12-67-8
8-8

9-6

6-6

8-6

10-6

16-4

6-8

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=1000000
N=500000
N=200000
N=100000
N=50000

(b) LLaMAtied weights + standard MLP

106 107 108

model size (#params)

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

16-46-6
12-45-6

10-44-62-88-46-4 3-65-42-64-46-3
3-45-3

4-38-2

2-4

7-26-2
5-2

2-3
4-23-2

2-2

7-8 8-8
12-66-8

10-68-6 9-6
16-46-6

12-45-6
3-6

5-4
6-4

2-8
8-4 4-6

10-4

2-64-46-33-45-34-3

8-2

2-4

7-26-25-2
4-2

2-3

16-8
6-12

2-20
10-8

12-8
4-127-8

8-8
12-66-8

10-69-68-616-46-612-45-610-44-62-83-6
8-4

6-42-6
5-44-46-33-4

2-4
5-34-3

6-20
8-16

12-128-12
4-2016-8

16-12
3-20

6-166-12
2-2012-810-8

4-12
8-87-8

12-66-810-69-6
8-6

16-4

6-6
12-4
5-6

10-4
4-6

2-8
3-68-4

6-24
12-16

8-20
20-1216-12

6-208-1612-12

4-203-20
6-16

8-12
16-86-12

2-20
12-8

4-12
10-8

8-8
7-8

12-6

6-8
10-69-6

8-6

16-4

6-6

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=1000000
N=500000
N=200000
N=100000
N=50000

(c) LLaMAtied weights + GPT2Tokenizer (gated MLP)

106 107 108

model size (#params)

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

6-6
16-48-4

12-43-6 2-84-6 5-6
10-4

6-3

2-6
3-4

5-4
5-3

4-4
6-4

4-38-2
6-2

2-4

7-2
5-2

2-3

4-2

3-22-2

7-8 8-8
12-66-8

10-6
12-4

16-410-4 6-64-6
8-6 9-65-6

4-2
2-3

6-2
7-2

5-2

4-4

2-8

8-2

6-3
5-3

3-4

2-44-3

8-4
2-6

6-4 3-65-4

6-12
2-20

16-8
12-87-8 8-89-6

10-8
10-66-8

4-12
12-6

8-4

6-612-4
16-4

6-4

8-6
10-42-84-6

5-6

3-6
5-4
2-6

4-46-33-4
5-3

4-32-4

6-20
16-12

12-12
8-16

4-20
8-12

3-20
6-12

16-8
6-16

12-8
2-20

12-610-6
6-8

10-8

9-6

4-127-8
8-6

8-8

16-46-6
12-4
5-6

2-84-610-48-43-6

12-16
20-12

8-20
6-24

4-20
16-12

6-20
8-16

12-123-202-20

6-168-126-12
16-8

9-6

12-810-8
4-12

8-6

10-6

6-8
7-8

8-8
12-6

16-4
6-6

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=1000000
N=500000
N=200000
N=100000
N=50000

(d) LLaMAtied weights + GPT2Tokenizer + standard MLP

Figure 5: A closer comparison on LLaMA’s scaling laws with bioS(N) data for 100 exposures.

Conclusion. Switching from gated MLP to a standard MLP (left vs. right) enhances larger model’s
capacity ratios. For tiny models, using GPT2Tokenizer (top vs. bottom) is beneficial (this is a minor
point).

Remarks. For a strong comparison we used one learning rate choice in Figure 5(d) and 5(b), but
present the best among three choices for Figure 5(a) and 5(c). Further details can be found in
Appendix E.2.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C RESULT 8: QUANTIZATION VS SCALING LAWS

We have trained and tested models using (mixed precision) 16-bit floats. What happens if we quan-
tize them to int8/int4 after training? We used the auto gptq package, which is inspired by the
GPTQ paper (Frantar et al., 2022), for quantization.

Result 8. Quantizing language models (e.g., GPT2) trained with 16-bit floats:

• to int8 has a negligible impact on their capacity;

• to int4 reduces their capacity by more than 2x.

(see Figure 12 for bioS data and Figure 13 for bioD data in Appendix F)

Thus, even for models at peak capacity of 2 bits/param, quantizing to int8 does not affect capacity.
Given that 2 bits/param was the best capacity ratio even after 1,000 training exposures on high-
quality data, we conclude that extending training may not further improve the model’s capacity, but
quantization can.

Since an int8-based model has an absolute upper bound R(F) ≤ 8 on capacity ratio, we have:

Corollary C.1. Language models, like GPT2, can exceed 1/4 of the absolute theoretical limit for
storing knowledge.

Unfortunately, using this quantization package, reducing the model to int4 significantly diminishes
its capacity (more than 2x loss from int8 to int4). This suggests for high-quality int4 models, incor-
porating quantization during training may be necessary.

C.1 WHERE IS THE KNOWLEDGE STORED?

We have seen that LLMs can efficiently compress knowledge into their parameter space, achieving
2bit/param even with 8-bit parameters. This raises the question: how and where is such knowledge
stored? Our preliminary answer is that knowledge can be compactly stored within the model in a
not-so-redundant manner. It is unlikely that the MLP layers alone store knowledge, as Attention
layers, being of comparable sizes, also contribute to knowledge storage (c.f. Result 5). Moreover,
particularly in models near the capacity boundary, removing the last transformer layer of an L-layer
model to “probe” for remaining knowledge reveals that the “leftover knowledge” can be significantly
less than 1 − 1

L of the total.16 This suggests knowledge is stored not in individual layers but in a
complex manner, akin to a safe with combination locks, where removing one layer may eliminate
much more than 1

L of the total knowledge.

16This experiment, deemed not particularly interesting, was omitted from the paper. The probing technique
used is Q-probing from Allen-Zhu & Li (2024).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

APPENDIX II: MISSING DETAILS
D MORE ON GPT2 SCALING LAWS

In this paper, our primary focus is on bioS(N) for N ranging between 10K and 20M. Notably,
bioS(20M) encompasses approximately 1B bits of knowledge (refer to Theorem 3.1).

GPT2 model. As elaborated in Section 2, we refer to the original GPT2 model (Radford et al.,
2019) as GPT2, after substituting its positional embedding with rotary embedding (Su et al., 2021;
Black et al., 2022) and removing its dropout layer (Touvron et al., 2023b). These modifications
are widely recognized for enhancing performance in language modeling tasks (see also (Allen-Zhu
& Li, 2023a) for a controlled experiment comparing that). We explore various GPT2 model sizes,
maintaining a dimension-per-head of 64. The notation GPT2-ℓ-h represents the (modified) GPT2
architecture with ℓ layers, h heads, and 64h dimensions. The context length is set to 512.

Details on our specifications of LLaMA, Mistral, and other architectures will be provided in
Appendix E as needed.

Model sizes. In this study, we calculate model sizes after excluding all unused tokens in the embed-
ding layer. For example, while the GPT2 embedding layer typically has 50256× (64h) parameters,
our bioS(N) data utilizes only 3275 tokens (after applying GPT2’s tokenizer), reducing the effective
embedding layer size to 3275 × (64h). This adjustment explains why, for bioS data, GPT2small,
typically known to have 124M parameters, is counted as having only 88M parameters in this paper.

We have selected a broad range of GPT2-ℓ-h models with practical ℓ and h values, excluding those
with similar model sizes. Their selection is detailed in Figure 1, encompassing both wide and shal-
low transformers (e.g., GPT2-2-20, GPT2-3-20, GPT2-4-20) and skinny and deep transformers (e.g.,
GPT2-16-4, GPT2-16-8, GPT2-28-20). For reference, GPT2 small/med/large correspond to GPT2-
12-12, GPT2-24-16, GPT2-36-20, respectively.

We primarily focus on models with ℓ ≥ 2, as 1-layer transformers may demonstrate slightly lower
capacity ratios. (For those interested, 1-layer transformers are included in Figure 6, which is identi-
cal to Figure 1 but includes these models.)

Model sizes for datasets bioS(N) with N ≥ 2M . In the 1000-exposure setting, to conserve
computational resources, when exploring scaling laws for N = 2M, 5M, 10M, 20M , we concen-
trate on one model size per dataset — specifically GPT2-16-8, GPT2-6-20, GPT2-20-16, GPT2-25-
20 — as they approach the 2bit/param threshold (i.e., they satisfy Rmax(F) ≈ 2). In this context,
our key finding is the validation of the 2bit/param capacity ratio, thus examining a limited selection
of model sizes is adequate.

For the 100-exposure setting, we evaluate a broader range of model sizes per dataset. This approach
is not only due to the tenfold reduction in training time compared to the 1000-exposure setting but

106 107 108

model size (#params)

106

107

108

109

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

8-2 1-62-4 5-33-44-37-26-21-3 5-24-2 1-42-32-21-2
3-2 4-46-3

3-21-32-2

1-2

6-22-3 7-25-2 8-2 2-44-3 1-66-3 1-8 6-45-44-4 2-63-45-34-2 1-4 8-42-83-6

5-32-48-2 4-37-26-25-2
2-3

1-4
4-23-2

1-3
2-2

1-2

1-6
12-4 6-65-68-4

1-124-6
10-42-83-4 4-4 1-86-3 9-68-6

10-6
16-46-42-65-4 3-6

6-45-42-61-8
4-46-33-45-3

6-2
1-67-2

4-32-48-2
5-2

2-3
1-4

4-2

8-87-86-6
12-4

1-124-6
16-4 8-6

10-69-65-6
10-4

4-12
10-83-6 2-88-4

12-66-8

2-86-4
8-4

10-42-6
1-125-4

3-6 4-6 5-6
12-4

1-8

4-46-35-3
3-4

1-6

2-44-3

6-6
10-8

4-128-87-8
16-4 8-6

2-20
12-89-6

10-6
12-66-8

6-12
3-20

16-8
8-12

3-6
8-4

4-6

12-88-8
2-20

12-12
8-16

6-20
3-20

4-12
12-16

6-24
12-410-4

16-8
8-126-6

7-8
5-62-8

4-20

1-12

20-12
10-68-69-6

6-1616-4 6-8
6-12

16-12
10-8

12-6
8-20

6-4

16-2012-6
10-8

20-16
24-16

8-16
16-16

20-12
8-24
12-20

28-16
6-24

8-20

8-6

7-8
4-20

6-12
12-24

8-12
4-12

6-208-8
6-16

16-12
16-8

3-20
9-6

6-6

12-86-8

2-20
12-16

12-12

16-4

14-20
10-6

16-8

6-20

20-16
2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=10000000
N=5000000
N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000
N=20000
N=10000

(a) bioS(N) data — 1000 exposure — peak R(F) ≥
2

106 107 108

model size (#params)

106

107

108

109

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

3-2

2-3
8-2

4-2

1-3
2-2

1-2

12-43-6 6-66-4 5-63-4

6-2

1-12
2-84-6
10-4

5-2

5-42-6 8-4

1-4

4-4
16-4

1-8

6-32-4
7-2

5-3

1-6

4-3

5-6

1-4

2-3

12-4
10-4 6-6 8-86-42-6

1-8

4-3

10-6

8-2

4-6
12-6

1-67-2

6-8 7-8

5-2
6-2

5-32-4

3-6

4-2

5-4
9-68-6

16-48-4

1-12

2-8
3-4

4-46-3

2-20
12-6

16-8
4-1216-4

7-8
6-12

10-46-4

12-42-8

8-8
12-8

10-8

3-4

4-6
5-6

1-126-3

6-6

1-6

1-8

8-6

4-4
2-6

8-45-4

5-3

9-6
10-66-8

2-4

3-6

4-3

10-8

6-6

6-12
10-6

8-8

3-20

1-12

12-4

16-8
2-20

6-20
7-88-6

12-6

8-16
16-12

10-4

8-12
6-16

12-12
4-20

5-6

12-8

2-8
4-6

4-126-8

3-6

9-6

6-4
8-4

16-4

20-12
10-8

8-124-12
12-8

6-122-20
7-8

16-4

3-20

10-6

6-16

8-6

20-16

6-6

16-12

9-6

12-12
12-16

8-8

4-20
8-24
12-20

16-16
6-24

6-2016-8
12-66-8

8-20
8-16

10-8

20-16

12-6

3-20

20-20
24-16

12-164-20

8-16

8-8

24-20
8-24

2-20

6-24

16-8

6-20
12-24

20-20
24-20

12-24
24-168-24

20-1612-16
6-24

6-208-16
4-203-20

24-20
20-20

28-20
24-16

12-32

20-16

8-24

12-16

6-24

12-24

8-16
6-20

24-20

20-16

24-16

12-32
20-20

28-2012-248-24

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=20000000
N=10000000
N=5000000
N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

(b) bioS(N) data — 100 exposure — peak R(F) ≥ 1

Figure 6: Scaling laws for GPT2 pretrained on bioS(N) data with fp16 (mixed-precision) for 1000/100 expo-
sures, now including 1-layer transformers comparing to Figure 1. Conclusion: 1-layer transform-
ers show a minor capacity ratio deficiency, especially in the 100-exposure setting.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

also to facilitate a detailed comparison of model architectures in the 100-exposure setting, aiming
for precision at higher model sizes.

Training parameters. We employ the AdamW optimizer with a cosine learning rate scheduler.
This includes 1K steps of warmup, followed by a cosine decay of the learning rate from 1 to 0.1
times the reference rate. We use mixed-precision fp16 training unless otherwise stated.

D.1 BASE SCALING LAWS

Our base scaling laws for the 1000-exposure and 100-exposure bioS(N) data are presented in Fig-
ures 1(a) and 1(b), respectively.

For the 1000-exposure setting, the model’s final performance is not very sensitive to learning rate
choices due to sufficient training. The following parameters were chosen for generating Figure 1(a):
Parameter 1 (Figure 1(a)). In the 1000-exposure setting for GPT2 models on bioS(N) data:

• For N = 10K, we use wd = 0.02, lr = 0.001, and batch size 24 (about 140K training steps);
• For N = 20K, we use wd = 0.02, lr = 0.001, and batch size 48 (about 140K training steps);
• For N = 50K, we use wd = 0.02, lr = 0.001, and batch size 96 (about 175K training steps);
• For N = 100K, 200K, we use wd = 0.02, lr = 0.001, batch size 192 (about 175K, 349K training steps);
• For N = 500K, 1M , we use wd = 0.01, lr = 0.0005, batch size 192 (about 435K, 870K training steps);
• For N = 2M , we use wd = 0.005, lr = 0.0003, and batch size 1536 (about 220K training steps);
• For N = 5M , we use wd = 0.002, lr = 0.0003, and batch size 1536 (about 540K training steps);
• For N = 10M , we use wd = 0.001, lr = 0.0003, and batch size 1536 (about 1M training steps).

Remark D.1 (fp16 vs bf16). Training on GPT2 is conducted using mixed-precision fp16. We also
tried bf16 and the results are nearly identical.
Remark D.2 (parameters). These optimization parameters are very natural, as it is generally impos-
sible to have a fixed set of parameters for model sizes across a large multiplicative range. Notably:

• Larger model sizes naturally require smaller learning rates.

• Language models typically need at least 50K training steps regardless of batch size. Thus, for
small N , we reduce the batch size to ensure the total number of training steps exceeds this
threshold. For very large models, a larger batch size is preferred to enable GPU parallelism.

• When lr remains constant, wd should be relatively reduced as the number of training steps
increases. Mathematically, the model weights should be “halved” for every Θ(1

lr×wd) training
steps. Therefore, it’s advisable to reduce the wd parameter when training for longer periods.

Remark D.3 (# GPUs). In this paper, we do not specify the number of GPUs as it is irrelevant. The
results remain the same whether using 64 GPUs each with a batch size of 24, 48 GPUs each with a
batch size of 32, or 1536 GPUs each with a batch size of 1.

For the 100-exposure setting, careful tuning of learning rates is required. The following parameters
were chosen for generating Figure 1(b): (Note: N = 10K, 20K are not considered for the 100-
exposure setting due to the excessively short training process.)
Parameter 2 (Figure 1(b)). In the 100-exposure setting for GPT2 models on bioS(N) data:

• For N = 50K, we use wd = 0.01, lr = 0.001, and batch size 12;
• For N = 100K, we use wd = 0.01, lr = 0.001, and batch size 24;
• For N = 200K, we use wd = 0.01, lr = 0.001, and batch size 48; (except for GPT2-2-20, where
lr = 0.0005 is used)

• For N = 500K, we use wd = 0.01, lr = 0.0005, and batch size 96;
• For N = 1M , we use wd = 0.01, lr = 0.0005, and batch size 192;
• For N = 2M , we use wd = 0.01, lr = 0.0003/0.0005/0.001, and batch size 384;
• For N = 5M , we use wd = 0.01, lr = 0.0003/0.0005, and batch size 768;
• For N = 10M , we use wd = 0.01, lr = 0.0002/0.0003/0.0005, and batch size 1024;
• For N = 20M , we use wd = 0.002, lr = 0.0002/0.0003/0.0005, and batch size 1536.17

D.2 KNOWLEDGE MEMORIZATION VS. EXTRACTION

It was recently discovered by Allen-Zhu & Li (2024) that although models memorize knowledge,
this knowledge may not be extractable (e.g., via fine-tuning) for application in downstream tasks. It

17Except for GPT2-28-20 we run out of GPU memory so reduce to batch size 1280.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

106 107 108

model size (#params)

104

105

106

107

ac
cu

ra
cy

 (
#

 o
f p

eo
pl

e)

8-2 2-4 5-33-44-37-26-25-24-2 2-32-2 3-2 4-46-3

3-22-2
6-22-3 7-25-2 8-2 2-44-3 6-3 6-45-44-4 2-63-45-34-2 8-42-83-6

5-32-48-2 4-37-26-25-2
2-3

4-23-2

2-2

12-4 6-65-68-4 4-6
10-42-83-4 4-46-3 9-68-6

10-6
16-46-42-65-4 3-6

6-45-42-64-46-33-45-3

6-27-2

4-3
2-4

8-2

5-2

2-3

4-2

8-87-86-6
12-44-6

16-4 8-6
10-69-65-6

10-4
4-12

10-83-6 2-88-4
12-66-8

2-86-4
8-4

10-4
2-6
5-4

3-6 4-6 5-6
12-4

4-4
6-35-3

3-4

2-4
4-3

6-6
10-8

4-128-87-8
16-4 8-6

2-20
12-89-6

10-6
12-66-8

6-12
3-20

16-8
8-123-6

8-4
4-6

12-88-8
2-20

12-12
8-16

6-20
3-20

4-12
12-16

6-24

12-410-4

16-8
8-126-6

7-8

5-6

2-8

4-20
20-12

10-68-69-6
6-1616-4 6-8

6-12
16-12

10-8
12-6

8-20

6-4

16-2012-6
10-8

20-16
24-16

8-16
16-16

20-12
8-24
12-20

28-16
6-24

8-20

8-6

7-8
4-20

6-12
12-24

8-12
4-12

6-208-8
6-16

16-12
16-8

3-20

9-6

6-6

12-8
6-8

2-20
12-16

12-12

16-4

14-20
10-6

16-8

6-20

20-16

35 param / person
70 param / person
140 param / person
280 param / person

N=10000000
N=5000000
N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000
N=20000
N=10000

(a) 1000 exposures — memorizable knowledge accu-
racy

106 107 108

model size (#params)

104

105

106

107

ac
cu

ra
cy

 (
#

 o
f p

eo
pl

e)

3-2 4-22-2
2-36-27-2 5-34-3 3-42-48-25-2 6-3 4-4

5-32-48-2 2-88-43-66-45-42-64-46-33-44-37-26-25-22-34-23-2
2-2

12-4 6-65-6
10-68-6

16-4
10-44-6

3-2

2-2

2-85-4 3-67-2 4-32-4
8-43-4

2-3

4-48-2

4-2

9-66-42-66-35-3
6-2

5-2

2-82-6
5-3

6-4 3-6 5-64-63-4
16-4

10-46-3

6-2

2-4

8-45-4

7-2

4-3

2-3

10-8
4-128-87-8

12-66-8
10-69-68-66-6

12-44-4

8-2

5-2
4-2

6-6 7-88-6
16-4

12-4

4-3

5-64-62-8
10-4

5-4

3-66-4
2-6

3-4
6-3

4-4

3-20
8-12

16-8
6-12

2-20
12-8

10-8
4-128-8

12-66-8
10-69-68-4

5-3

2-4

6-24
8-20

12-16
20-12

6-20
16-12

8-16
12-12
4-20

6-16
3-20

16-8
8-12

6-12
2-20

12-8
10-8

4-128-87-8
12-610-66-89-68-6

3-6

6-6

4-6

16-4

12-410-4

8-4

5-6
2-8

28-16
12-24

16-20
24-16

14-20
20-16

12-20
8-24

16-16
6-24

8-20
12-16

20-12
6-20

16-12
8-16

12-12
4-20

6-16
3-20

8-12
16-8

6-12
2-20

12-810-84-128-87-812-66-8
10-69-6

8-6
16-4

6-6

16-8

6-20

20-16

35 param / person
70 param / person
140 param / person
280 param / person

N=10000000
N=5000000
N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000
N=20000
N=10000

(b) 1000 exposures — extractable knowledge accu-
racy

106 107 108

model size (#params)

104

105

106

107

ac
cu

ra
cy

 (
#

 o
f p

eo
pl

e)

3-2

2-3

8-2

4-2

2-2

12-43-6 6-66-4 5-63-4

6-2

2-84-6
10-4

5-2

5-42-6 8-44-4
16-46-32-4

7-2

5-34-3

5-6

2-3

12-4
10-4 6-6 8-86-42-6

4-3

10-6

8-2

4-6
12-6

7-2

6-8 7-8

5-2

6-2

5-3
2-4

3-6

4-2

5-4
9-68-6

16-48-42-8

3-4
4-4

6-3

2-20
12-6

16-8
4-1216-4

7-8
6-12

10-4
6-4

12-42-8

8-8
12-8

10-8

3-4

4-6
5-6

6-3

6-6
8-6

4-4

2-6

8-4

5-4

5-3

9-6
10-66-8

2-4

3-6

4-3

10-8

6-6

6-12
10-6

8-8

3-20

12-4

16-8
2-20

6-20
7-8

8-6

12-6

8-16
16-12

10-4

8-12
6-16

12-12
4-20

5-6

12-8

2-84-6

4-12
6-8

3-6

9-6

6-4

8-4

16-4

20-12

10-8

8-12
4-12

12-8
6-122-20

7-8

16-4

3-20

10-6

6-16

8-6

20-16

6-6

16-12

9-6

12-12
12-16

8-8

4-20
8-24
12-20

16-16
6-24

6-20
16-8

12-6
6-8

8-20
8-16

10-8

20-16

12-6

3-20

20-20
24-16

12-16
4-20

8-16

8-8

24-20
8-24

2-20

6-24

16-8

6-20
12-24

20-20
24-20

12-24
24-168-2420-16

12-16

6-24
6-20

8-164-20
3-20

24-20
20-20

28-20

24-16

12-32

20-16

8-24

12-16

6-24

12-24

8-16
6-20

24-20

20-16
24-16

20-20

28-20
12-24

8-24

35 param / person
70 param / person
140 param / person
280 param / person

N=20000000
N=10000000
N=5000000
N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

(c) 100 exposures — memorizable knowledge accu-
racy

106 107 108

model size (#params)

104

105

106

107

ac
cu

ra
cy

 (
#

 o
f p

eo
pl

e)

5-2

16-46-6
12-45-6

10-44-62-88-43-66-45-42-64-46-35-3
3-4

4-3
2-4

8-2
7-26-22-3

4-2
3-2

8-87-810-4 6-8
12-6

10-69-68-6
16-46-612-45-64-62-88-43-66-45-42-6

4-4

6-3

3-4
5-3

4-32-4

8-2

16-4

6-8

8-4

2-20
16-8

6-12
12-8

10-8
4-128-87-8

12-6
10-69-68-66-6

12-410-4

5-64-62-8
3-66-4

5-42-6
4-4

6-3
3-4

7-8

6-20
16-12

8-16
12-12
4-20

6-16
3-20

8-12
16-8

6-12
2-20

12-810-8
4-12

8-8
12-66-810-69-6

8-616-4
6-6

12-4

5-6

10-44-6
2-8

6-24
8-16

8-6

20-16
12-20
8-24

16-16
8-20

12-16
20-12

6-20
16-12

12-12
4-20

6-16
3-20

8-1216-8
6-122-2012-810-84-128-8

7-8

12-6

6-810-6

9-6

12-24
24-16

20-20
20-16

24-20
8-24

6-24
12-16

6-208-16
4-20

3-20

2-20 16-8

20-168-24

24-20
12-2420-20

24-16

6-2412-16

6-20

8-16

4-20
3-20

12-32

20-20

28-20

24-20

12-24

24-16
20-16

8-24

6-24

12-16

12-2420-20
8-24

28-20

24-20

12-32

35 param / person
70 param / person
140 param / person
280 param / person

N=20000000
N=10000000
N=5000000
N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

(d) 100 exposures — extractable knowledge accuracy

Figure 7: Our scaling laws from Figure 1 also apply to extractable knowledge (see definitions in Section D.2).
This figure is for the bioS(N) datasets using GPT2 models.

Remarks. Recall from Remark 3.5 that each person’s biography contains over 47.6 bits of knowledge
(excluding names), explaining why the y-axis in this figure is ∼ 50 times smaller than in Figure 1.

is essential to verify that the “2 bit/param” knowledge learned by models is indeed extractable. This
verification is achieved by applying a fine-tuning task (e.g., “What is Anya’s birthday? Answer:
October 2, 1996”) to half of the individuals and then testing its performance on the remainder.

Specifically, on the original bioS(N) data, we compute two quantities for each model:

• MEMORIZABLE KNOWLEDGE ACCURACY (# OF PEOPLE).

We apply the model to the original training data, such as “Anya Briar Forger was born on”
and check if it can correctly generate “October 2, 1996”. For each person, we evaluate all
five attributes and compute their average accuracy.18 We then sum this accuracy up over all N
people. (Ideally, a perfect model would have this “accuracy” equal to N .)

• EXTRACTABLE KNOWLEDGE ACCURACY (# OF PEOPLE).

Following the pretrain-finetune framework of (Allen-Zhu & Li, 2024), we fine-tune any given
pretrained model on half of the individuals using LoRA (Hu et al., 2021) with question-
answering texts like “What is the birthday of Anya Briar Forger? Answer: October 2, 1996.”
We then test its generation accuracy on the remaining half of the individuals. High accuracy
indicates that the knowledge is not only memorized but can also be flexibly extracted for down-
stream tasks. Again, for each person, we evaluate all five attributes and compute their average
accuracy. We then sum this across all N/2 people and multiply by 2. (Once again, a perfect
model would have this equal to N .)

18We exclude the company city attribute because it can be uniquely determined by the employer name, thus
providing no additional knowledge.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

106 107 108

model size (#params)

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

5-22-3 8-26-2 7-24-23-22-2

2-2 3-2 4-2 5-2 8-27-22-36-2 3-46-34-32-4 5-3

2-4

2-2

7-2 4-3

3-2

6-2
4-2

5-38-22-3
5-2

2-64-43-46-3 6-45-4 3-6 2-88-4
10-44-6

5-4 6-4

8-2

4-4 2-6

4-3

7-2

6-35-3

2-3
5-2

2-4
3-4

6-2

4-2

3-6
10-69-6

10-4 5-64-6 6-6
12-48-4 2-8

16-4 8-6

3-68-4 4-62-6

4-4

2-4

5-4

4-3

6-3

6-4

5-3

5-62-8
12-4

3-4

10-4
10-69-68-6

16-4 8-87-86-6
10-86-8

12-6
4-12

10-4

8-6

12-4

9-616-4
8-8

12-12
4-20

8-4

8-12
6-6

6-4

12-6
12-86-8

3-6

10-8
2-20

2-8

10-6

4-6

5-6

7-8
4-12

16-8
3-20

6-16
6-12

12-8

6-8
8-6

4-12
12-12

3-20
8-16

6-20
16-12

2-20

9-6
12-6

6-16
7-8

10-8
6-12

8-12
16-8

20-12

16-4

10-6

4-208-8

6-6

8-20
6-24

12-16

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=1000000
N=500000
N=200000
N=100000
N=50000
N=20000
N=10000

(a) on bioSsimple data that has no sentence diversity

106 107 108

model size (#params)

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

2-3 8-25-2 6-2 7-2
2-2

3-2
4-2

7-26-25-24-2
2-3

3-2
2-2

3-46-38-2
4-32-4 5-3

7-2
2-48-2

5-3

5-2

4-3
3-46-3

6-22-3
4-2

3-2

2-2

6-45-42-6
3-64-4

8-4 2-8
10-44-6

3-65-4
6-4

4-4
3-4
6-3

2-6

5-3
4-3

7-2
8-2

6-2

2-4

5-2

2-3

4-2

10-44-62-8
10-69-68-65-6

12-4
16-46-68-4

4-6
5-6

2-8

3-4

2-4

5-3

16-4

6-3

3-6

8-4

4-3

10-4
12-4

6-4

6-6

5-4
4-4 2-6

7-8
12-66-8

10-69-68-6
4-128-8

10-8

12-12

10-4

2-20

8-4

16-8

5-6

3-20
8-128-8

4-20

6-4
2-8

6-6

12-8
6-1610-88-6

7-8

12-4

9-616-4

4-12

3-6

10-6
12-66-8

4-6

6-12

7-8

6-122-2010-66-8

6-6

20-124-20

8-6

16-8

16-4

12-163-20
6-20

6-2412-8
8-12

12-12
8-16

12-6

16-12

9-6

10-84-12

6-16
8-20

8-8

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=1000000
N=500000
N=200000
N=100000
N=50000
N=20000
N=10000

(b) on the semi-real bioR data generated by LLaMA2

Figure 8: Scaling laws for the bioSsimple and bioR data with 1000 exposures.

Our results are presented in Figure 7. By comparing, for instance, Figure 7(a) against Figure 7(b),
it is evident that our scaling laws apply not only to memorizable knowledge but also largely to
extractable knowledge. Only for models precisely at the capacity ratio boundary is there a 1.2x
decrease in total accuracy.19

Parameter 3 (Figure 7). When dealing with models of significantly different sizes for LoRA
finetuning, it’s necessary to adjust the LoRA rank sizes. In (Allen-Zhu & Li, 2024),
the authors primarily used a rank r′ = 128 update for the embedding layer and ranks
r = 8 or 16 for the query/value matrices, with their base model being either GPT2-12-
12 or GPT2-12-20. In this paper, we explore a broader range of rank choices: (r′, r) ∈
{(8, 2), (16, 2), (8, 4), (32, 4), (8, 8), (32, 8), (128, 8), (32, 16), (128, 16)}, presenting only the best
results.20

We disable learning rate warmup, set the batch size to 96, the learning rate to 0.001 (with linear
decay down to 0), weight decay at 0.1, and finetune for 75,000 steps.

D.3 OTHER BIOGRAPHY DATASETS

We also examine the bioSsimple(N) datasets, which are identical to bioS(N) except that each in-
dividual’s knowledge is stored in a fixed ordering of six fixed sentences (see Section 2). Allen-
Zhu & Li (2024) found that in such cases, the knowledge data are memorizable but nearly 0%
extractable. As shown in Figure 8(a), in these instances, the capacity ratio slightly decreases com-
pared to Figure 1(a). This implies, in this ideal setting, adding data diversity — by rewriting the
same knowledge multiple times using different writing templates — not only enhances the model’s
ability to extract knowledge, as noted by (Allen-Zhu & Li, 2024), but also, surprisingly, increases
the model’s capacity, as observed in this study.

Moreover, we explore the semi-real dataset bioR(N), which resembles bioS(N) but with the biog-
raphy paragraph generated by LLaMA2, and each individual is generated 40 times (using random
seeds and prompts to encourage LLaMA2 to generate as diverse paragraphs as possible for each
person). This results in a total of 22GB of text, comparable to the size of Wikipedia data.

The scaling law for the bioR(N) data is presented in Figure 8(b), indicating that the capacity ratio
slightly decreases for larger models. This trend is expected, as LLaMA2 introduces numerous ir-
relevant details into the human biographies — usually different irrelevant details for each LLaMA2
generation — thereby consuming more model capacity. The decrease is more significant for smaller
models, which may have greater difficulty comprehending the diverse English sentences in the data.

Parameter 4 (Figure 8). In both experiments, we adhere to the same set of optimizer parameters
used in Figure 1(a), as detailed in Parameter 1.

19This decrease is in accuracy, not bits; a model may have a large amount of extractable knowledge in bits
but not in accuracy. One can also compute knowledge bits in the extractable setting, but we omit such results
for brevity.

20Selecting the best LoRA option is justified as our aim is to determine the maximum extractable knowledge
bits, and thus, any LoRA option demonstrating high test-set accuracy fulfills our objective.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D.4 MORE ON PARAMETERIZED SCALING LAWS

In the parameterized scaling laws, we utilize the bioD(N,K,C,D,L, T) dataset from Def 2.2.
Parameter 5 (Figure 4, 9, 10). For GPT2 models on the bioD dataset, we focus on the 1000-exposure case,
with wd = 0.01, lr = 0.0005, and a batch size of 192.

Remark D.4 (parameters). Contrary to Parameter 1, it is not necessary to vary the training param-
eters, as our experiments with GPT2 models span a much narrower range of model sizes. We have
adjusted the choice of N to ensure that the optimal 2bit/param models are within a factor of 20 of
each other in terms of model sizes.

Our results are presented in Figure 4 (in the main body, limited to models with accuracy ≤ 50% for
clarity) and in Figure 9 (including all models).

Furthermore, from the bit complexity lower bound (see Def 3.2)

N log2
N0

ep1︸ ︷︷ ︸
name

+NK log2
DC

ep2︸ ︷︷ ︸
value

+KD log2
TL

Dep3︸ ︷︷ ︸
diversity

(D.1)

we also dissect how the three components contribute to this overall lower bound. As shown in
Figure 10, although the “value” component typically dominates, for certain hyperparameter settings,
the “name” or “diversity” components can also be significant. This underscores the importance of
proving our Theorem 3.1 lower bound, which is a sum of all three terms.

N1000k-D10-C1-K1-L1-T40k

N1000k-D10-C1-K2-L1-T40k

N500k-D10-C1-K5-L1-T40k

N500k-D10-C1-K10-L1-T40k

N500k-D10-C1-K20-L1-T40k

N200k-D10-C1-K50-L1-T40k

N1000k-D10-C1-K1-L4-T40k

N1000k-D10-C1-K2-L4-T40k

N500k-D10-C1-K5-L4-T40k

N500k-D10-C1-K10-L4-T40k

N500k-D10-C1-K20-L4-T40k

N200k-D10-C1-K50-L4-T40k

N1000k-D10000-C1-K1-L4-T40k

N1000k-D10000-C1-K2-L4-T40k

N500k-D10000-C1-K5-L4-T40k

N500k-D10000-C1-K10-L4-T40k

N200k-D10000-C1-K20-L4-T40k

N100k-D10000-C1-K50-L4-T40k

0.5

1.0

2.0

4.0

#
 b

it
 /

pa
ra

m

5-6

4-4

8-6

3-6

14-4

5-4

4-6

5-3
3-6

4-6
5-6

14-4

4-45-4

8-6
10-6

5-3 5-4

4-6

3-6

5-3

5-6
14-4
8-6

4-4

10-6

5-3

4-6
5-6

10-6
3-12

8-6

14-4

3-6

4-45-4

14-4

5-3

5-6

5-4
3-6

3-12

4-6

4-4

10-6

8-6

8-6

3-12

10-6

4-12

5-6

3-6

14-4

5-4
4-6

8-6

3-12
4-12

10-6

5-6

4-6

3-6
5-4

14-4

14-4

8-610-6

3-6

5-44-45-3

5-6
4-62-4

5-2

2-2

4-2

7-2

3-2

8-6

3-6

2-4

3-12

4-6

10-6

5-6

4-12

14-45-4

12-8

4-45-3

16-8

12-8

3-12
4-12

10-6

4-6
5-6

8-6

14-4

8-6

5-6
14-4

4-6

5-4

3-6

4-45-3

4-12
12-8
16-8

10-6

6-16

3-12

5-43-6

5-6

14-48-6
4-6
4-4

12-8

3-62-4

4-65-3

10-6

5-6
4-4

14-4

4-12

8-6

3-12

7-2

5-4

8-16

10-6

4-12

14-4
3-1212-8
4-6

6-16

8-6

16-8

5-6

3-64-12

16-8

3-12

4-6

12-8

5-6

10-6

14-4
8-6

4-12
12-8

10-6

16-8

8-6

3-12

4-65-614-4

10-6

3-6

5-6

3-12

4-614-4

4-12

8-6

16-8

12-8

14-4
5-6

3-12

10-63-6
4-6

12-8

2-4
4-12

5-4

16-8

8-6
4-4

2 bit/param
1 bit/param
0.5 bit/param

acc = 0%
acc = 25%
acc = 50%
acc = 75%
acc = 100%

(a) how K impacts capacity ratio

N1000k-D10-K1-C1-L1-T40k

N1000k-D10-K1-C2-L1-T40k

N500k-D10-K1-C5-L1-T40k

N500k-D10-K1-C10-L1-T40k

N500k-D10-K1-C20-L1-T40k

N200k-D10-K1-C50-L1-T40k

N1000k-D10-K1-C1-L4-T40k

N1000k-D10-K1-C2-L4-T40k

N500k-D10-K1-C5-L4-T40k

N500k-D10-K1-C10-L4-T40k

N500k-D10-K1-C20-L4-T40k

N200k-D10-K1-C50-L4-T40k

N1000k-D10000-K1-C1-L4-T40k

N1000k-D10000-K1-C2-L4-T40k

N500k-D10000-K1-C5-L4-T40k

N500k-D10000-K1-C10-L4-T40k

N200k-D10000-K1-C20-L4-T40k

N100k-D10000-K1-C50-L4-T40k

0.5

1.0

2.0

4.0

#
 b

it
 /

pa
ra

m

4-6

8-6

5-6

10-6

14-4

4-45-4
3-6

5-3

8-6

4-4

5-6

5-3

3-6

5-4

4-6

14-4

14-4
8-6

5-3

4-6

3-6

5-6

10-6

4-45-4

12-8
16-8

4-12

3-12

5-6

8-6

14-4

10-6

4-6

4-12

16-8

12-8

10-6

14-4

3-12

4-6

8-6

5-6

10-6
3-12

14-4
8-6

4-12

5-6

5-4
4-6
3-6 5-43-64-6

8-610-6

5-6
14-4

3-12

4-4

16-8

4-1212-8

2-4

4-12

5-3
3-6

12-8

4-4

3-12

10-6

4-6
14-4

8-6

5-6
5-4

4-1212-8

14-4

16-8

8-6

6-16

10-6

3-12

5-6
4-63-6

3-65-6

2-4
4-614-4

5-34-4

12-8

10-6

3-12

8-6

5-4

4-12
8-610-6

14-4

5-23-65-6

4-4

2-4

5-45-37-2

4-6
2-2

3-2
4-2

5-6
3-64-6

3-12

16-8

8-610-6

4-12

14-4

6-16

12-8

4-6

5-3
5-4

5-6

4-43-6

3-12

8-6
14-4
10-6

14-4

10-6

8-6

3-12

4-6

16-8

5-6

12-8

4-12
4-6

5-3

5-6

4-4

14-4

8-6

3-6

5-4

5-4
3-64-6
5-6

8-6

3-12

14-4

4-12

10-6

10-6

8-6

3-12

14-4

3-6

4-4

5-6

4-6

5-45-3

10-6

4-12

16-8

14-4

3-12

12-8

8-6

4-65-6
2 bit/param
1 bit/param
0.5 bit/param

acc = 0%
acc = 25%
acc = 50%
acc = 75%
acc = 100%

(b) how C impacts capacity ratio

N800k-D10000-K1-C1-L2-T1k

N800k-D10000-K1-C1-L10-T1k

N800k-D10000-K1-C1-L20-T1k

N800k-D10000-K1-C1-L50-T1k

N200k-D10000-K1-C4-L2-T1k

N200k-D10000-K1-C4-L10-T1k

N200k-D10000-K1-C4-L20-T1k

N200k-D10000-K1-C4-L50-T1k

N200k-D10000-K4-C1-L2-T1k

N200k-D10000-K4-C1-L10-T1k

N200k-D10000-K4-C1-L20-T1k

N200k-D10000-K4-C1-L50-T1k

N1000k-D10-K1-C1-L1-T1k

N1000k-D10-K1-C1-L10-T1k

N1000k-D10-K1-C1-L20-T1k

N1000k-D10-K1-C1-L50-T1k

N300k-D10-K1-C4-L1-T1k

N300k-D10-K1-C4-L10-T1k

N300k-D10-K1-C4-L20-T1k

N300k-D10-K1-C4-L50-T1k

N300k-D10-K4-C1-L1-T1k

N300k-D10-K4-C1-L10-T1k

N300k-D10-K4-C1-L20-T1k

N300k-D10-K4-C1-L50-T1k

0.5

1.0

2.0

4.0

#
 b

it
 /

pa
ra

m

4-6

7-2

5-6

2-4
4-4
5-4

5-3

3-65-6
14-4
8-6

5-4

4-6

3-6

4-4
5-3

14-4

3-6

5-6

8-6

4-45-4
5-3

4-6

5-35-4

14-4

10-6

4-6

4-4

5-6

8-6

3-6

5-6

3-6

7-2
2-4

5-4

4-4

4-6

5-3

10-6

4-6

3-65-44-4

14-4

3-12

5-6

8-6

5-4

3-6

5-3

4-4

4-6
5-6

2-4
7-2

8-6

3-6

5-6

10-6

4-6

4-4

14-4

5-45-3

5-6

3-6
4-6

5-4

7-22-4

4-4

5-3
3-6
4-4

8-6

5-4

4-6

10-6

5-6

5-3

14-4 5-6

5-3

8-6

14-4

4-4

4-6

2-4

3-6

5-44-6

14-4

5-6

8-6

5-4

3-12

3-64-4

10-6

3-6
5-44-6

10-6

5-6

3-12

4-4

14-4
8-6

10-6
3-12

5-4

8-6

5-614-4

4-6

3-6
5-3
4-4

5-4

10-6

8-6

4-6

4-12

3-614-4

3-12

4-4
5-6

5-2

4-6

5-4

3-6

2-4

4-4

5-3

7-2

5-6

4-6

14-4

5-3

5-6

8-6

4-4

2-4

5-4
3-68-6

3-12

10-6

4-12

5-4
3-6

14-4

4-6
5-6

4-4
5-6

5-43-6

8-6
10-6

14-4

4-6

3-12

2-45-3
7-2

4-6

4-4
5-4

5-6

3-6

5-4

5-2

4-6
5-6

5-3

3-6

4-4

7-22-4

8-6

4-6

4-43-6

3-12

5-6

4-12

5-4

14-4

10-6

3-6

4-6

8-610-6

16-8

5-6

3-12

14-4

12-8

4-12

7-2
5-2

4-4

5-3

5-6

5-4

3-6

2-4

4-6

2 bit/param
1 bit/param
0.5 bit/param

acc = 0%
acc = 25%
acc = 50%
acc = 75%
acc = 100%

(c) how L impacts capacity ratio

N1000k-D10000-K1-C1-L4-T20

N1000k-D10000-K1-C1-L4-T200

N1000k-D10000-K1-C1-L4-T4k

N1000k-D10000-K1-C1-L4-T40k

N500k-D10000-K1-C4-L4-T20

N500k-D10000-K1-C4-L4-T200

N500k-D10000-K1-C4-L4-T4k

N500k-D10000-K1-C4-L4-T40k

N200k-D10000-K4-C4-L4-T20

N200k-D10000-K4-C4-L4-T200

N200k-D10000-K4-C4-L4-T4k

N200k-D10000-K4-C4-L4-T40k

N400k-D10-K4-C4-L4-T20

N400k-D10-K4-C4-L4-T200

N400k-D10-K4-C4-L4-T4k

N400k-D10-K4-C4-L4-T40k

0.5

1.0

2.0

4.0

#
 b

it
 /

pa
ra

m

14-4

4-12

4-6

8-6
10-6

5-6

5-4

3-12

3-6

12-8

5-6

16-8

10-6

14-4
3-12
8-6

4-12

4-65-6

3-12

8-6

12-8

14-4

3-6

10-6

4-12

12-8
16-8

8-610-6

14-4

3-12
4-12

5-6

4-12

8-6

14-4

10-63-12

5-6

5-44-6
3-6

16-8

4-12

8-6
10-6
3-12

12-8

14-4
4-63-6
5-6

4-12

4-4
5-43-6

8-6

3-12

14-4

10-6

5-6

4-6
10-6

5-6

12-8

3-12

14-4

16-8

4-6

4-12

8-6

12-8

5-63-6
14-4

4-6

8-6
10-6

16-8

4-12

3-12 10-6
3-12
4-12
12-8

14-4

4-6

8-6

3-6
5-6

12-8

14-4

8-610-6

3-12

4-6

4-12

5-6

5-3
5-4
2-4
3-6

4-4

4-6

3-12

14-4

5-6

5-43-6

4-12

8-6

12-8

10-6

5-4

8-6

14-4

4-6
3-6
5-6

3-12

10-6

12-8

4-12

8-6

12-8

4-12

10-6
3-12

5-44-6
5-6

14-4

3-6

4-63-25-6
4-2

7-2

2-2

2-4

5-3

10-6

14-4

4-4
5-4

8-6

3-6
5-2

5-4
3-6

5-3

10-6

5-6
4-6
8-6

4-4

3-124-1216-8

2-4

12-8

14-4

2 bit/param
1 bit/param
0.5 bit/param

acc = 0%
acc = 25%
acc = 50%
acc = 75%
acc = 100%

(d) how T impacts capacity ratio

Figure 9: Same as Figure 4, but including models with accuracies below 50% (which may overlap with higher-
accuracy models). The peak capacity ratios consistently exceed R(F) ≥ 2.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

N1000k-D10-C1-K1-L1-T40k

N1000k-D10-C1-K2-L1-T40k

N500k-D10-C1-K5-L1-T40k

N500k-D10-C1-K10-L1-T40k

N500k-D10-C1-K20-L1-T40k

N200k-D10-C1-K50-L1-T40k

N1000k-D10-C1-K1-L4-T40k

N1000k-D10-C1-K2-L4-T40k

N500k-D10-C1-K5-L4-T40k

N500k-D10-C1-K10-L4-T40k

N500k-D10-C1-K20-L4-T40k

N200k-D10-C1-K50-L4-T40k

N1000k-D10000-C1-K1-L4-T40k

N1000k-D10000-C1-K2-L4-T40k

N500k-D10000-C1-K5-L4-T40k

N500k-D10000-C1-K10-L4-T40k

N200k-D10000-C1-K20-L4-T40k

N100k-D10000-C1-K50-L4-T40k

0.5

1.0

2.0

4.0

#
 b

it
 /

pa
ra

m

5-6

4-4

8-6

3-6

14-4

5-4

4-6

5-3
3-6

4-6
5-6

14-4

4-45-4

8-6
10-6

5-3 5-4

4-6

3-6

5-3

5-6
14-4
8-6

4-4

10-6

5-3

4-6
5-6

10-6
3-12

8-6

14-4

3-6

4-45-4

14-4

5-3

5-6

5-4
3-6

3-12

4-6

4-4

10-6

8-6

8-6

3-12

10-6

4-12

5-6

3-6

14-4

5-4
4-6

8-6

3-12
4-12

10-6

5-6

4-6

3-6
5-4

14-4

14-4

8-610-6

3-6

5-44-45-3

5-6
4-62-4

5-2

2-2

4-2

7-2

3-2

8-6

3-6

2-4

3-12

4-6

10-6

5-6

4-12

14-45-4

12-8

4-45-3

16-8

12-8

3-12
4-12

10-6

4-6
5-6

8-6

14-4

8-6

5-6
14-4

4-6

5-4

3-6

4-45-3

4-12
12-8
16-8

10-6

6-16

3-12

5-43-6

5-6

14-48-6
4-6
4-4

12-8

3-62-4

4-65-3

10-6

5-6
4-4

14-4

4-12

8-6

3-12

7-2

5-4

8-16

10-6

4-12

14-4
3-1212-8
4-6

6-16

8-6

16-8

5-6

3-64-12

16-8

3-12

4-6

12-8

5-6

10-6

14-4
8-6

4-12
12-8

10-6

16-8

8-6

3-12

4-65-614-4

10-6

3-6

5-6

3-12

4-614-4

4-12

8-6

16-8

12-8

14-4
5-6

3-12

10-63-6
4-6

12-8

2-4
4-12

5-4

16-8

8-6
4-4

2 bit/param
1 bit/param
0.5 bit/param

perc = 0%
perc = 25%
perc = 50%
perc = 75%
perc = 100%

(a) percentage of bits belonging to “name” in (D.1)

N1000k-D10-C1-K1-L1-T40k

N1000k-D10-C1-K2-L1-T40k

N500k-D10-C1-K5-L1-T40k

N500k-D10-C1-K10-L1-T40k

N500k-D10-C1-K20-L1-T40k

N200k-D10-C1-K50-L1-T40k

N1000k-D10-C1-K1-L4-T40k

N1000k-D10-C1-K2-L4-T40k

N500k-D10-C1-K5-L4-T40k

N500k-D10-C1-K10-L4-T40k

N500k-D10-C1-K20-L4-T40k

N200k-D10-C1-K50-L4-T40k

N1000k-D10000-C1-K1-L4-T40k

N1000k-D10000-C1-K2-L4-T40k

N500k-D10000-C1-K5-L4-T40k

N500k-D10000-C1-K10-L4-T40k

N200k-D10000-C1-K20-L4-T40k

N100k-D10000-C1-K50-L4-T40k

0.5

1.0

2.0

4.0

#
 b

it
 /

pa
ra

m

5-6

4-4

8-6

3-6

14-4

5-4

4-6

5-3
3-6

4-6
5-6

14-4

4-45-4

8-6
10-6

5-3 5-4

4-6

3-6

5-3

5-6
14-4
8-6

4-4

10-6

5-3

4-6
5-6

10-6
3-12

8-6

14-4

3-6

4-45-4

14-4

5-3

5-6

5-4
3-6

3-12

4-6

4-4

10-6

8-6

8-6

3-12

10-6

4-12

5-6

3-6

14-4

5-4
4-6

8-6

3-12
4-12

10-6

5-6

4-6

3-6
5-4

14-4

14-4

8-610-6

3-6

5-44-45-3

5-6
4-62-4

5-2

2-2

4-2

7-2

3-2

8-6

3-6

2-4

3-12

4-6

10-6

5-6

4-12

14-45-4

12-8

4-45-3

16-8

12-8

3-12
4-12

10-6

4-6
5-6

8-6

14-4

8-6

5-6
14-4

4-6

5-4

3-6

4-45-3

4-12
12-8
16-8

10-6

6-16

3-12

5-43-6

5-6

14-48-6
4-6
4-4

12-8

3-62-4

4-65-3

10-6

5-6
4-4

14-4

4-12

8-6

3-12

7-2

5-4

8-16

10-6

4-12

14-4
3-1212-8
4-6

6-16

8-6

16-8

5-6

3-64-12

16-8

3-12

4-6

12-8

5-6

10-6

14-4
8-6

4-12
12-8

10-6

16-8

8-6

3-12

4-65-614-4

10-6

3-6

5-6

3-12

4-614-4

4-12

8-6

16-8

12-8

14-4
5-6

3-12

10-63-6
4-6

12-8

2-4
4-12

5-4

16-8

8-6
4-4

2 bit/param
1 bit/param
0.5 bit/param

perc = 0%
perc = 25%
perc = 50%
perc = 75%
perc = 100%

(b) percentage of bits belonging to “diversity” in (D.1)

N1000k-D10-K1-C1-L1-T40k

N1000k-D10-K1-C2-L1-T40k

N500k-D10-K1-C5-L1-T40k

N500k-D10-K1-C10-L1-T40k

N500k-D10-K1-C20-L1-T40k

N200k-D10-K1-C50-L1-T40k

N1000k-D10-K1-C1-L4-T40k

N1000k-D10-K1-C2-L4-T40k

N500k-D10-K1-C5-L4-T40k

N500k-D10-K1-C10-L4-T40k

N500k-D10-K1-C20-L4-T40k

N200k-D10-K1-C50-L4-T40k

N1000k-D10000-K1-C1-L4-T40k

N1000k-D10000-K1-C2-L4-T40k

N500k-D10000-K1-C5-L4-T40k

N500k-D10000-K1-C10-L4-T40k

N200k-D10000-K1-C20-L4-T40k

N100k-D10000-K1-C50-L4-T40k

0.5

1.0

2.0

4.0
#

 b
it

 /
pa

ra
m

4-6

8-6

5-6

10-6

14-4

4-45-4
3-6

5-3

8-6

4-4

5-6

5-3

3-6

5-4

4-6

14-4

14-4
8-6

5-3

4-6

3-6

5-6

10-6

4-45-4

12-8
16-8

4-12

3-12

5-6

8-6

14-4

10-6

4-6

4-12

16-8

12-8

10-6

14-4

3-12

4-6

8-6

5-6

10-6
3-12

14-4
8-6

4-12

5-6

5-4
4-6
3-6 5-43-64-6

8-610-6

5-6
14-4

3-12

4-4

16-8

4-1212-8

2-4

4-12

5-3
3-6

12-8

4-4

3-12

10-6

4-6
14-4

8-6

5-6
5-4

4-1212-8

14-4

16-8

8-6

6-16

10-6

3-12

5-6
4-63-6

3-65-6

2-4
4-614-4

5-34-4

12-8

10-6

3-12

8-6

5-4

4-12
8-610-6

14-4

5-23-65-6

4-4

2-4

5-45-37-2

4-6
2-2

3-2
4-2

5-6
3-64-6

3-12

16-8

8-610-6

4-12

14-4

6-16

12-8

4-6

5-3
5-4

5-6

4-43-6

3-12

8-6
14-4
10-6

14-4

10-6

8-6

3-12

4-6

16-8

5-6

12-8

4-12
4-6

5-3

5-6

4-4

14-4

8-6

3-6

5-4

5-4
3-64-6
5-6

8-6

3-12

14-4

4-12

10-6

10-6

8-6

3-12

14-4

3-6

4-4

5-6

4-6

5-45-3

10-6

4-12

16-8

14-4

3-12

12-8

8-6

4-65-6
2 bit/param
1 bit/param
0.5 bit/param

perc = 0%
perc = 25%
perc = 50%
perc = 75%
perc = 100%

(c) percentage of bits belonging to “name” in (D.1)

N1000k-D10-K1-C1-L1-T40k

N1000k-D10-K1-C2-L1-T40k

N500k-D10-K1-C5-L1-T40k

N500k-D10-K1-C10-L1-T40k

N500k-D10-K1-C20-L1-T40k

N200k-D10-K1-C50-L1-T40k

N1000k-D10-K1-C1-L4-T40k

N1000k-D10-K1-C2-L4-T40k

N500k-D10-K1-C5-L4-T40k

N500k-D10-K1-C10-L4-T40k

N500k-D10-K1-C20-L4-T40k

N200k-D10-K1-C50-L4-T40k

N1000k-D10000-K1-C1-L4-T40k

N1000k-D10000-K1-C2-L4-T40k

N500k-D10000-K1-C5-L4-T40k

N500k-D10000-K1-C10-L4-T40k

N200k-D10000-K1-C20-L4-T40k

N100k-D10000-K1-C50-L4-T40k

0.5

1.0

2.0

4.0

#
 b

it
 /

pa
ra

m

4-6

8-6

5-6

10-6

14-4

4-45-4
3-6

5-3

8-6

4-4

5-6

5-3

3-6

5-4

4-6

14-4

14-4
8-6

5-3

4-6

3-6

5-6

10-6

4-45-4

12-8
16-8

4-12

3-12

5-6

8-6

14-4

10-6

4-6

4-12

16-8

12-8

10-6

14-4

3-12

4-6

8-6

5-6

10-6
3-12

14-4
8-6

4-12

5-6

5-4
4-6
3-6 5-43-64-6

8-610-6

5-6
14-4

3-12

4-4

16-8

4-1212-8

2-4

4-12

5-3
3-6

12-8

4-4

3-12

10-6

4-6
14-4

8-6

5-6
5-4

4-1212-8

14-4

16-8

8-6

6-16

10-6

3-12

5-6
4-63-6

3-65-6

2-4
4-614-4

5-34-4

12-8

10-6

3-12

8-6

5-4

4-12
8-610-6

14-4

5-23-65-6

4-4

2-4

5-45-37-2

4-6
2-2

3-2
4-2

5-6
3-64-6

3-12

16-8

8-610-6

4-12

14-4

6-16

12-8

4-6

5-3
5-4

5-6

4-43-6

3-12

8-6
14-4
10-6

14-4

10-6

8-6

3-12

4-6

16-8

5-6

12-8

4-12
4-6

5-3

5-6

4-4

14-4

8-6

3-6

5-4

5-4
3-64-6
5-6

8-6

3-12

14-4

4-12

10-6

10-6

8-6

3-12

14-4

3-6

4-4

5-6

4-6

5-45-3

10-6

4-12

16-8

14-4

3-12

12-8

8-6

4-65-6
2 bit/param
1 bit/param
0.5 bit/param

perc = 0%
perc = 25%
perc = 50%
perc = 75%
perc = 100%

(d) percentage of bits belonging to “diversity” in (D.1)

N800k-D10000-K1-C1-L2-T1k

N800k-D10000-K1-C1-L10-T1k

N800k-D10000-K1-C1-L20-T1k

N800k-D10000-K1-C1-L50-T1k

N200k-D10000-K1-C4-L2-T1k

N200k-D10000-K1-C4-L10-T1k

N200k-D10000-K1-C4-L20-T1k

N200k-D10000-K1-C4-L50-T1k

N200k-D10000-K4-C1-L2-T1k

N200k-D10000-K4-C1-L10-T1k

N200k-D10000-K4-C1-L20-T1k

N200k-D10000-K4-C1-L50-T1k

N1000k-D10-K1-C1-L1-T1k

N1000k-D10-K1-C1-L10-T1k

N1000k-D10-K1-C1-L20-T1k

N1000k-D10-K1-C1-L50-T1k

N300k-D10-K1-C4-L1-T1k

N300k-D10-K1-C4-L10-T1k

N300k-D10-K1-C4-L20-T1k

N300k-D10-K1-C4-L50-T1k

N300k-D10-K4-C1-L1-T1k

N300k-D10-K4-C1-L10-T1k

N300k-D10-K4-C1-L20-T1k

N300k-D10-K4-C1-L50-T1k

0.5

1.0

2.0

4.0

#
 b

it
 /

pa
ra

m

4-6

7-2

5-6

2-4
4-4
5-4

5-3

3-65-6
14-4
8-6

5-4

4-6

3-6

4-4
5-3

14-4

3-6

5-6

8-6

4-45-4
5-3

4-6

5-35-4

14-4

10-6

4-6

4-4

5-6

8-6

3-6

5-6

3-6

7-2
2-4

5-4

4-4

4-6

5-3

10-6

4-6

3-65-44-4

14-4

3-12

5-6

8-6

5-4

3-6

5-3

4-4

4-6
5-6

2-4
7-2

8-6

3-6

5-6

10-6

4-6

4-4

14-4

5-45-3

5-6

3-6
4-6

5-4

7-22-4

4-4

5-3
3-6
4-4

8-6

5-4

4-6

10-6

5-6

5-3

14-4 5-6

5-3

8-6

14-4

4-4

4-6

2-4

3-6

5-44-6

14-4

5-6

8-6

5-4

3-12

3-64-4

10-6

3-6
5-44-6

10-6

5-6

3-12

4-4

14-4
8-6

10-6
3-12

5-4

8-6

5-614-4

4-6

3-6
5-3
4-4

5-4

10-6

8-6

4-6

4-12

3-614-4

3-12

4-4
5-6

5-2

4-6

5-4

3-6

2-4

4-4

5-3

7-2

5-6

4-6

14-4

5-3

5-6

8-6

4-4

2-4

5-4
3-68-6

3-12

10-6

4-12

5-4
3-6

14-4

4-6
5-6

4-4
5-6

5-43-6

8-6
10-6

14-4

4-6

3-12

2-45-3
7-2

4-6

4-4
5-4

5-6

3-6

5-4

5-2

4-6
5-6

5-3

3-6

4-4

7-22-4

8-6

4-6

4-43-6

3-12

5-6

4-12

5-4

14-4

10-6

3-6

4-6

8-610-6

16-8

5-6

3-12

14-4

12-8

4-12

7-2
5-2

4-4

5-3

5-6

5-4

3-6

2-4

4-6

2 bit/param
1 bit/param
0.5 bit/param

perc = 0%
perc = 25%
perc = 50%
perc = 75%
perc = 100%

(e) percentage of bits belonging to “name” in (D.1)

N800k-D10000-K1-C1-L2-T1k

N800k-D10000-K1-C1-L10-T1k

N800k-D10000-K1-C1-L20-T1k

N800k-D10000-K1-C1-L50-T1k

N200k-D10000-K1-C4-L2-T1k

N200k-D10000-K1-C4-L10-T1k

N200k-D10000-K1-C4-L20-T1k

N200k-D10000-K1-C4-L50-T1k

N200k-D10000-K4-C1-L2-T1k

N200k-D10000-K4-C1-L10-T1k

N200k-D10000-K4-C1-L20-T1k

N200k-D10000-K4-C1-L50-T1k

N1000k-D10-K1-C1-L1-T1k

N1000k-D10-K1-C1-L10-T1k

N1000k-D10-K1-C1-L20-T1k

N1000k-D10-K1-C1-L50-T1k

N300k-D10-K1-C4-L1-T1k

N300k-D10-K1-C4-L10-T1k

N300k-D10-K1-C4-L20-T1k

N300k-D10-K1-C4-L50-T1k

N300k-D10-K4-C1-L1-T1k

N300k-D10-K4-C1-L10-T1k

N300k-D10-K4-C1-L20-T1k

N300k-D10-K4-C1-L50-T1k

0.5

1.0

2.0

4.0

#
 b

it
 /

pa
ra

m

4-6

7-2

5-6

2-4
4-4
5-4

5-3

3-65-6
14-4
8-6

5-4

4-6

3-6

4-4
5-3

14-4

3-6

5-6

8-6

4-45-4
5-3

4-6

5-35-4

14-4

10-6

4-6

4-4

5-6

8-6

3-6

5-6

3-6

7-2
2-4

5-4

4-4

4-6

5-3

10-6

4-6

3-65-44-4

14-4

3-12

5-6

8-6

5-4

3-6

5-3

4-4

4-6
5-6

2-4
7-2

8-6

3-6

5-6

10-6

4-6

4-4

14-4

5-45-3

5-6

3-6
4-6

5-4

7-22-4

4-4

5-3
3-6
4-4

8-6

5-4

4-6

10-6

5-6

5-3

14-4 5-6

5-3

8-6

14-4

4-4

4-6

2-4

3-6

5-44-6

14-4

5-6

8-6

5-4

3-12

3-64-4

10-6

3-6
5-44-6

10-6

5-6

3-12

4-4

14-4
8-6

10-6
3-12

5-4

8-6

5-614-4

4-6

3-6
5-3
4-4

5-4

10-6

8-6

4-6

4-12

3-614-4

3-12

4-4
5-6

5-2

4-6

5-4

3-6

2-4

4-4

5-3

7-2

5-6

4-6

14-4

5-3

5-6

8-6

4-4

2-4

5-4
3-68-6

3-12

10-6

4-12

5-4
3-6

14-4

4-6
5-6

4-4
5-6

5-43-6

8-6
10-6

14-4

4-6

3-12

2-45-3
7-2

4-6

4-4
5-4

5-6

3-6

5-4

5-2

4-6
5-6

5-3

3-6

4-4

7-22-4

8-6

4-6

4-43-6

3-12

5-6

4-12

5-4

14-4

10-6

3-6

4-6

8-610-6

16-8

5-6

3-12

14-4

12-8

4-12

7-2
5-2

4-4

5-3

5-6

5-4

3-6

2-4

4-6

2 bit/param
1 bit/param
0.5 bit/param

perc = 0%
perc = 25%
perc = 50%
perc = 75%
perc = 100%

(f) percentage of bits belonging to “diversity” in (D.1)

N1000k-D10000-K1-C1-L4-T20

N1000k-D10000-K1-C1-L4-T200

N1000k-D10000-K1-C1-L4-T4k

N1000k-D10000-K1-C1-L4-T40k

N500k-D10000-K1-C4-L4-T20

N500k-D10000-K1-C4-L4-T200

N500k-D10000-K1-C4-L4-T4k

N500k-D10000-K1-C4-L4-T40k

N200k-D10000-K4-C4-L4-T20

N200k-D10000-K4-C4-L4-T200

N200k-D10000-K4-C4-L4-T4k

N200k-D10000-K4-C4-L4-T40k

N400k-D10-K4-C4-L4-T20

N400k-D10-K4-C4-L4-T200

N400k-D10-K4-C4-L4-T4k

N400k-D10-K4-C4-L4-T40k

0.5

1.0

2.0

4.0

#
 b

it
 /

pa
ra

m

14-4

4-12

4-6

8-6
10-6

5-6

5-4

3-12

3-6

12-8

5-6

16-8

10-6

14-4
3-12
8-6

4-12

4-65-6

3-12

8-6

12-8

14-4

3-6

10-6

4-12

12-8
16-8

8-610-6

14-4

3-12
4-12

5-6

4-12

8-6

14-4

10-63-12

5-6

5-44-6
3-6

16-8

4-12

8-6
10-6
3-12

12-8

14-4
4-63-6
5-6

4-12

4-4
5-43-6

8-6

3-12

14-4

10-6

5-6

4-6
10-6

5-6

12-8

3-12

14-4

16-8

4-6

4-12

8-6

12-8

5-63-6
14-4

4-6

8-6
10-6

16-8

4-12

3-12 10-6
3-12
4-12
12-8

14-4

4-6

8-6

3-6
5-6

12-8

14-4

8-610-6

3-12

4-6

4-12

5-6

5-3
5-4
2-4
3-6

4-4

4-6

3-12

14-4

5-6

5-43-6

4-12

8-6

12-8

10-6

5-4

8-6

14-4

4-6
3-6
5-6

3-12

10-6

12-8

4-12

8-6

12-8

4-12

10-6
3-12

5-44-6
5-6

14-4

3-6

4-63-25-6
4-2

7-2

2-2

2-4

5-3

10-6

14-4

4-4
5-4

8-6

3-6
5-2

5-4
3-6

5-3

10-6

5-6
4-6
8-6

4-4

3-124-1216-8

2-4

12-8

14-4

2 bit/param
1 bit/param
0.5 bit/param

perc = 0%
perc = 25%
perc = 50%
perc = 75%
perc = 100%

(g) percentage of bits belonging to “name” in (D.1)

N1000k-D10000-K1-C1-L4-T20

N1000k-D10000-K1-C1-L4-T200

N1000k-D10000-K1-C1-L4-T4k

N1000k-D10000-K1-C1-L4-T40k

N500k-D10000-K1-C4-L4-T20

N500k-D10000-K1-C4-L4-T200

N500k-D10000-K1-C4-L4-T4k

N500k-D10000-K1-C4-L4-T40k

N200k-D10000-K4-C4-L4-T20

N200k-D10000-K4-C4-L4-T200

N200k-D10000-K4-C4-L4-T4k

N200k-D10000-K4-C4-L4-T40k

N400k-D10-K4-C4-L4-T20

N400k-D10-K4-C4-L4-T200

N400k-D10-K4-C4-L4-T4k

N400k-D10-K4-C4-L4-T40k

0.5

1.0

2.0

4.0

#
 b

it
 /

pa
ra

m

14-4

4-12

4-6

8-6
10-6

5-6

5-4

3-12

3-6

12-8

5-6

16-8

10-6

14-4
3-12
8-6

4-12

4-65-6

3-12

8-6

12-8

14-4

3-6

10-6

4-12

12-8
16-8

8-610-6

14-4

3-12
4-12

5-6

4-12

8-6

14-4

10-63-12

5-6

5-44-6
3-6

16-8

4-12

8-6
10-6
3-12

12-8

14-4
4-63-6
5-6

4-12

4-4
5-43-6

8-6

3-12

14-4

10-6

5-6

4-6
10-6

5-6

12-8

3-12

14-4

16-8

4-6

4-12

8-6

12-8

5-63-6
14-4

4-6

8-6
10-6

16-8

4-12

3-12 10-6
3-12
4-12
12-8

14-4

4-6

8-6

3-6
5-6

12-8

14-4

8-610-6

3-12

4-6

4-12

5-6

5-3
5-4
2-4
3-6

4-4

4-6

3-12

14-4

5-6

5-43-6

4-12

8-6

12-8

10-6

5-4

8-6

14-4

4-6
3-6
5-6

3-12

10-6

12-8

4-12

8-6

12-8

4-12

10-6
3-12

5-44-6
5-6

14-4

3-6

4-63-25-6
4-2

7-2

2-2

2-4

5-3

10-6

14-4

4-4
5-4

8-6

3-6
5-2

5-4
3-6

5-3

10-6

5-6
4-6
8-6

4-4

3-124-1216-8

2-4

12-8

14-4

2 bit/param
1 bit/param
0.5 bit/param

perc = 0%
perc = 25%
perc = 50%
perc = 75%
perc = 100%

(h) percentage of bits belonging to “diversity” in (D.1)

Figure 10: Breakdown of knowledge components in the parameterized bioD scaling law experiments, as shown
in Figure 4. Refer to Equation (D.1) and the accompanying text.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

E MORE ON MODEL ARCHITECTURES

We explore alternative architectural choices for language models.

LLaMA/Mistral. Notably, as of the writing of this paper, LLaMA (Touvron et al., 2023a;b) and
Mistral (Jiang et al., 2023) stand out as popular, publicly-available large language models. We high-
light their key architecture differences from GPT2 — which we define as having rotary embedding
and no dropout.

1. LLaMA and Mistral employ MLP layers with gated activation, using V (σ(W1x) · (W2x)) in-
stead of V σ(Wx). Shazeer (2020) noted that gated activation appears to yield slightly better
performance.

2. Unlike GPT2, which ties the weights of the embedding layer and the output (LMHead) layer,
LLaMA and Mistral do not.

3. For a hidden dimension d, GPT2/LLaMA have 4d2 parameters in the attention layer and 8d2 in
the MLP layer, whereas Mistral allocates a larger 10.5d2 for its MLP layer.

4. Mistral promotes group-query attention (e.g., using 4 groups, thus reducing the K/V matrices
to d2/4 in size), unlike GPT2. LLaMA does not favor multi-query attention unless in its very
large models, such as the 70B variant.

5. LLaMA and Mistral utilize different tokenizers compared to GPT2, with Mistral’s tokenizer
being nearly identical to LLaMA’s.

6. GPT2 employs σ = gelu, while LLaMA/Mistral use σ = silu.
7. GPT2 incorporates layer normalization with trainable bias, which LLaMA/Mistral do not.

Given these distinctions, for LLaMA models, we use the notation LLaMA-ℓ-h for ℓ layers, h heads,
and 64h hidden dimensions; we omit group-query attention as LLaMA recommends it only for its
70B model. For Mistral, denoted as Mistral-ℓ-h, we enable group-query attention with 4 groups if
h = 0 (mod 4), 1 group for odd h, or 2 groups otherwise.

GPT2 with Smaller MLP. Mistral has a larger MLP layer, and it is often believed that the MLP
layer serves primarily for storing knowledge, in contrast to the Attention layer. But is this truly the
case?

To delve into this, we examine GPT21/4, which is GPT2 with its MLP layer reduced from d →
4d → d to d → d → d (thus, 1/4 of its original size), and GPT20, which is GPT2 but without any
MLP layer.

Experimental setups. Throughout this section, when presenting positive result (such as for GPT2)
we try to stick to one fixed set of learning rate choices; but when presenting a negative result (such
as for the LLaMA architecture), we present the best among three learning rate choices.

E.1 1000-EXPOSURE SETTING

In the 1000-exposure setting, we observe that the model architecture choices have a negligible im-
pact on the scaling laws. The results for LLaMA, Mistral, GPT20, and GPT21/4 architectures are
presented in Figure 11, with their parameter choices discussed below.
Parameter 6 (Figure 11). In the 1000-exposure setting, for LLaMA/Mistral models we use similar param-
eters as specified in Parameter 1, but we select the best of three learning rates to better demonstrate that GPT2
performs no worse than even the best tuned LLaMA/Mistral models:

• For N = 10K, we use wd = 0.02, lr = 0.0005/0.001/0.002, and batch size 24 with fp16;

• For N = 20K, we use wd = 0.02, lr = 0.0005/0.001/0.002, and batch size 48 with fp16;

• For N = 50K, we use wd = 0.02, lr = 0.0005/0.001/0.002, and batch size 96 with fp16;

• For N = 100K, 200K, we use wd = 0.02, lr = 0.0005/0.001/0.002, and batch size 192 with fp16;

• For N = 500K, 1M , we use wd = 0.01, lr = 0.0002/0.0003/0.0005, and batch size 192 with fp16;

• For N = 2M , we use wd = 0.005, lr = 0.0003/0.0005/0.001, and batch size 1536 with bf16;

• For N = 5M , we use wd = 0.002, lr = 0.0003/0.0005/0.001, and batch size 1536 with bf16;

• For N = 10M , we use wd = 0.001, lr = 0.0003/0.0005/0.001, and batch size 1536 with bf16.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

106 107 108

model size (#params)

106

107

108

109

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

8-2 2-4 5-33-44-37-26-25-24-2 2-32-2 3-2 4-46-3

3-22-2
6-22-3 7-25-2 8-2 2-44-3 6-3 6-45-44-4 2-63-45-34-2 8-42-83-6

5-32-48-2 4-37-26-25-2
2-34-23-2

2-2

12-4 6-65-68-4 4-6
10-42-83-4 4-46-3 9-68-6

10-6
16-46-42-65-4 3-6

6-45-42-64-46-33-45-3

6-2
7-2

4-32-48-2
5-2

2-34-2

8-87-86-6
12-44-6

16-4 8-6
10-69-65-6

10-4
4-12

10-83-6 2-88-4
12-66-8

2-86-4
8-4

10-42-65-4
3-6 4-6 5-6

12-4
4-46-35-3

3-4
2-44-3

6-6
10-8

4-128-87-8
16-4 8-6

2-20
12-89-6

10-6
12-66-8

6-12
3-20

16-8
8-12

3-6
8-4

4-6

12-88-8
2-20

12-12
8-16

6-20
3-20

4-12
12-16

6-24
12-410-4

16-8
8-126-6

7-8
5-62-8

4-20
20-12

10-68-69-6
6-1616-4 6-8

6-12
16-12

10-8
12-6

8-20

6-4

16-2012-6
10-8

20-16
24-16

8-16
16-16

20-12
8-24
12-20

28-16
6-24

8-20

8-6

7-8
4-20

6-12
12-24

8-12
4-12

6-208-8
6-16

16-12
16-8

3-20
9-6

6-6

12-86-8

2-20
12-16

12-12

16-4

14-20
10-6

16-8

6-20

20-16
2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=10000000
N=5000000
N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000
N=20000
N=10000

(a) GPT2, same as Figure 1(a)

106 107 108

model size (#params)

106

107

108

109

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

6-25-2 2-33-2 4-22-2

3-2 4-22-2
5-35-2 6-36-2 4-38-2 3-47-2 2-42-3

6-2
4-38-27-25-2 2-34-2

3-22-2

6-3
10-44-62-88-46-45-4 3-62-64-43-42-45-3

3-4
6-3 5-44-4 2-65-34-38-2

2-47-26-25-2
2-3

4-23-2

5-6
12-4 9-68-63-68-4

10-44-6 6-6
16-42-86-4

4-4

4-65-4
8-43-66-4

4-3

6-33-45-3

10-4 5-6
12-42-8

2-6

2-4

8-87-8
10-8

4-12
12-66-8

10-69-68-6
16-4

8-2

6-6

16-4

8-4

4-206-8

4-6

6-168-8
12-8

12-12
12-6

5-6

9-6
3-20

8-128-6
10-4

10-6 7-8

2-6

6-6

10-8
6-12

3-6

4-12

6-4

2-8

2-20
16-8

12-4

6-24

12-4

6-20
8-20

6-16

6-6

4-12
12-8

6-8

3-20

5-6

7-8
10-8

16-4

8-12
6-12

12-1610-69-6

12-6
2-20

16-12
12-12

20-128-8

8-6

16-8
8-164-20

16-8

6-20

20-16
2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=10000000
N=5000000
N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000
N=20000
N=10000

(b) LLaMA

106 107 108

model size (#params)

106

107

108

109

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

8-27-26-23-2 2-35-24-22-2

4-23-2
2-2

6-2 7-25-2 5-32-4 3-44-3 6-32-3 8-2 4-4

4-2

5-34-32-48-27-25-2
6-22-3

3-2

2-2

2-84-68-42-6 3-66-45-4
10-46-3 4-43-4

6-45-45-3
4-43-4

2-66-34-38-2
2-47-2

5-22-3

6-2

10-69-68-6
16-46-6

12-4
10-4 5-64-62-88-43-6

12-45-6
10-44-62-88-43-65-4

6-42-6
3-46-35-3

4-4

4-3

10-8
4-128-87-8

10-69-6 6-8
12-66-6

16-4 8-6

12-6
12-12
4-20

6-16
3-20

8-12
16-8

6-12
2-20

12-8
10-88-84-127-86-8

10-69-68-616-46-612-45-64-6
10-4

3-6
8-42-8

12-16
12-12

20-12
8-16 8-20

16-12
12-8

6-20
6-16

16-8
6-24

16-4

4-20
3-20

6-12 8-12
2-20

4-12
10-88-87-8

12-66-810-69-6
6-6

8-6

16-8

6-20

20-16
2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=10000000
N=5000000
N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000
N=20000
N=10000

(c) LLaMAtied weights

106 107 108

model size (#params)

106

107

108

109

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

4-2 5-23-22-2

3-22-2 4-3 5-38-27-2 2-42-35-26-24-2

8-27-26-25-2
2-34-2

3-22-2

4-3 5-3 2-64-4 2-83-66-43-46-3 8-45-42-4

5-44-46-35-33-44-38-2
2-47-26-22-35-2

4-23-2

8-6
16-46-6

12-45-6
10-44-68-4 2-83-66-42-6

2-2

2-6
10-44-68-4 2-83-66-45-4

4-4
6-3

5-3
3-44-3

8-2
2-4

6-8
10-6 8-8

10-8
4-12

12-67-89-68-66-6
16-4

12-45-6

7-2

2-6

16-8
6-16

3-20
8-129-6 8-87-8

6-12
4-1216-4

2-206-88-6
10-6

12-8
12-65-6

10-812-4
6-610-42-88-4

4-6

6-4

3-6
5-4

20-12
12-12

6-12
8-20

12-16
16-12

8-16
6-204-20

6-16
3-20

16-8
8-12

2-20
12-88-8

4-12
10-812-6

16-4

6-8 7-8
6-6

9-6
12-4

10-6
8-6

5-6

15-8

6-20

19-16
2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=10000000
N=5000000
N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000
N=20000
N=10000

(d) Mistral

106 107 108

model size (#params)

106

107

108

109

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

5-26-2 6-37-2 2-42-2 4-38-22-33-2 4-2 5-3 3-4

7-22-36-25-24-23-22-2

5-42-64-45-3 6-3 8-43-44-32-48-2 6-4 3-6

6-3 5-44-43-4
8-2

4-3
2-45-3

5-2
6-2

7-22-3
4-2

2-2

3-2

8-4 4-6
16-4 8-6

10-4 6-62-86-4 3-62-6 9-65-6
12-4

12-45-6
10-44-62-88-43-66-45-44-46-3

2-6

5-3
3-4

8-2

2-44-3

9-68-6 8-86-8
4-12
10-8

10-6
12-67-86-6

16-4

6-8
10-69-68-64-6

10-4
5-6

16-412-42-88-4

6-6
3-66-45-42-64-4

7-8
4-12

12-88-8
3-20

12-6
6-12

8-12
16-8

10-8
2-20

8-16
16-8

4-20

16-4

12-6

5-6

8-20
6-247-8

10-8
6-8

12-16
12-8

6-6

3-20
6-20

12-12
6-12

20-12
6-16

8-12
2-20

16-128-810-6

4-12
9-68-6

28-16
12-2416-8

12-6

8-20
8-24

24-16
10-8

6-24
20-16

16-20
12-20

14-2012-84-12

6-20
20-123-20

16-12
16-16

8-8

12-16

6-8

8-16
8-122-20

6-12
4-20

7-8

6-16
12-12

8-16

20-16

26-20
2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=10000000
N=5000000
N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000
N=20000
N=10000

(e) GPT2 with 1/4-sized MLP

106 107 108

model size (#params)

106

107

108

109

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

5-37-25-26-2 6-3 4-48-2 3-44-2
4-32-4

2-2

2-33-2

2-44-35-38-27-26-2
4-2

2-35-2

2-2
3-2

4-63-4 2-64-46-3 5-4 8-4
10-4

12-46-4 3-6 2-8

6-3

2-66-44-4
8-45-4

5-32-4

3-4
4-3

8-27-25-2
6-2 2-34-2

3-2

6-62-8 7-8
12-6

12-4
16-4 9-64-6

10-65-6 8-63-6 6-8
10-4

16-412-4 6-62-8
5-610-44-68-43-66-45-4

5-3

2-6
3-4

4-4
6-3

4-32-4

12-6
4-12

12-8
10-8

10-6
2-209-6 8-86-8

16-88-6
6-127-8

8-87-86-8
12-610-69-6

5-6
6-6

8-6

4-6

12-4

16-4

2-8
10-48-43-66-4

2-6

10-8
12-12

6-16
8-16

3-20
8-12

12-8
4-20

16-8
4-12

2-20
6-12

16-16
16-12

20-16
8-20

12-16
12-20

6-24
6-20

6-16
8-8

8-24
8-16

20-12
3-20

4-206-1212-84-12

8-12
2-20

9-6

16-8

10-6
6-8

7-8

12-12

12-6

10-8

8-6

24-20
28-16
12-24

16-8

6-24
36-16

4-12

8-12

20-20
16-16

12-8

20-12
16-20

16-12
3-20

8-20

2-20

6-12

4-20
12-126-16

24-16
14-20

20-16
12-20

10-8

8-24
12-16

6-20
8-16

12-16

19-20

15-32
2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=10000000
N=5000000
N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000
N=20000
N=10000

(f) GPT2 with no MLP

Figure 11: Scaling laws for other model architectures on the bioS(N) data with 1000 exposures.

Conclusion. In the 1000-exposure setting, all model architectures closely follow GPT2’s scaling
law — including LLaMA/Mistral or even removing the MLP layer completely. The only very
minor difference is observed in tiny models, where tying the model’s (embedding + output layer)
weights enhances its capacity, evident from comparing Figure 11(c) with Figure 11(b).

For GPT20 and GPT21/4, we use the same learning rates as specified in Parameter 1.

Remark E.1 (bf16 on gated MLP). As discussed in Section E.2, the training of LLaMA and Mistral
architectures is less stable due to the use of GatedMLP, leading to the necessity of switching to
(mixed-precision) bf16 training when required.

From Figure 11, it is evident that, except for tiny models, LLaMA, Mistral, GPT20, and GPT21/4

architectures closely follow GPT2’s scaling law over 1000 exposures. For tiny models with ≤ 10M
parameters, tying model weights increases their capacity (refer to Figure 11(c)). This indicates
that the 2bit/param capacity ratio is a relatively universal law among most typical (decoder-only)
language model architectures.

E.2 100-EXPOSURE SETTING

The 100-exposure setting reveals more intriguing comparisons. We contrast GPT2 with various
model architectures in Figure 2 and offer a detailed comparison between LLaMA and GPT2 archi-
tectures in Figure 5.

Figure 2(b) shows that the LLaMA architecture may lag behind GPT2’s scaling law by a factor of
1.3x, even for larger models.

We delve into the reasons behind this. By adjusting LLaMA’s architecture (e.g., switching Gat-
edMLP back to normal MLP), as shown in Figure 5, we find that replacing LLaMA’s GatedMLP
with a standard MLP is necessary to match GPT2’s scaling law. Notably, for a strong comparison,
when using GatedMLP we select the best result from three learning rates, whereas for a standard
MLP, akin to GPT2, we use a single learning rate. For smaller models, matching GPT2 requires
tying model weights and adopting GPT2’s tokenizer, though this is less significant.21

For other model architectures, Mistral, GPT20, and GPT21/4, their scaling laws in the 100-exposure
setting are presented in Figure 2. Figure 2(c) confirms that the Mistral architecture also underper-
forms GPT2 due to its use of gated MLP. Figure 2(d) reveals that reducing GPT21/4’s MLP layer
size by a quarter has a negligible impact on model capacity. However, removing the MLP layers

21The influence of the tokenizer on model capacity is noteworthy. For instance, LLaMA/Mistral tokenizers
tend to split birthday years into single-digit tokens, slightly slowing the training of smaller models, whereas the
GPT2Tokenizer uses a single token for the birth years such as 1991.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

entirely in GPT20 significantly reduces the model’s capacity, see Figure 2(e).

The 100-exposure setting represents an “insufficient training” paradigm. Thus, the comparisons are
not about one architecture being strictly worse than another (as they achieve similar capacity ratios
in a 1000-exposure setting, as shown in Figure 11). Our findings indicate that some architectures
are noticeably easier to train (thus learn knowledge faster):

• The GatedMLP architecture slows down the model’s learning speed, and we observe less stable
training with its use.22

• Removing MLP layers entirely slows down the model’s learning speed, whereas adjusting the
size of MLP layers (e.g., from 8d2 to 10.5d2 or down to 2d2) may not have a significant impact.

Additionally, we experimented with enabling trainable biases in LLaMA’s layernorms and switching
from silu to gelu (to more closely resemble GPT2), in a similar way as Figure 5, but found these
changes do not affect the model’s capacities. We ignore those experiments for clarity.

Below, we discuss our parameter choices for the experiments in Figure 2 and Figure 5.
Parameter 7 (Figure 2). In the 100-exposure setting,

(a) For LLaMA/Mistral models on bioS(N) data, aiming to present negative results, we select the best learn-
ing rate from three options in each data setting:

• For N = 50K, we use wd = 0.01, lr = 0.0003/0.0005/0.001, and batch size 12 with bf16;
• For N = 100K, we use wd = 0.01, lr = 0.0003/0.0005/0.001, and batch size 24 with bf16;
• For N = 200K, we use wd = 0.01, lr = 0.0003/0.0005/0.001, and batch size 48 with bf16;
• For N = 500K, we use wd = 0.01, lr = 0.0002/0.0003/0.0005, and batch size 96 with bf16;
• For N = 1M , we use wd = 0.01, lr = 0.0002/0.0003/0.0005, and batch size 192 with bf16;
• For N = 2M , we use wd = 0.01, lr = 0.0003/0.0005/0.001, and batch size 384 with bf16;
• For N = 5M , we use wd = 0.01, lr = 0.0003/0.0005/0.001, and batch size 768 with bf16;
• For N = 10M , we use wd = 0.01, lr = 0.0003/0.0005/0.001, and batch size 1536 with bf16;
• For N = 20M , we use wd = 0.002, lr = 0.0003/0.0005/0.001, and batch size 1536 with bf16.

(For N ≤ 1M , we also tested the same settings with fp16, finding similar results. However,
LLaMA/Mistral models tend to fail more often with fp16, so we primarily used bf16.)

(b) For GPT21/4:

• For N = 50K, we use wd = 0.01, lr = 0.0005/0.001, and batch size 12 with fp16;
• For N = 100K, we use wd = 0.01, lr = 0.0005/0.001, and batch size 24 with fp16;
• For N = 200K, we use wd = 0.01, lr = 0.0005/0.001, and batch size 48 with fp16;
• For N = 500K, we use wd = 0.01, lr = 0.0003/0.0005, and batch size 96 with fp16;
• For N = 1M , we use wd = 0.01, lr = 0.0003/0.0005, and batch size 192 with fp16.

(c) For GPT20, to present a negative result, we use the same settings as in Parameter 2(a):

• For N = 50K, we use wd = 0.01, lr = 0.0003/0.0005/0.001, and batch size 12 with bf16;
• For N = 100K, we use wd = 0.01, lr = 0.0003/0.0005/0.001, and batch size 24 with bf16;
• For N = 200K, we use wd = 0.01, lr = 0.0003/0.0005/0.001, and batch size 48 with bf16;
• For N = 500K, we use wd = 0.01, lr = 0.0002/0.0003/0.0005, and batch size 96 with bf16;
• For N = 1M , we use wd = 0.01, lr = 0.0002/0.0003/0.0005, and batch size 192 with bf16.

Parameter 8 (Figure 5). In the 100-exposure controlled comparison experiment,

• For presenting negative results (Figure 5(a) and Figure 5(c)), we select the best learning rate from three
options, identical to GPT20 in Parameter 2(c).

• For presenting positive results (Figure 5(b) and Figure 5(d)), we use a single set of learning rates, identical
to Parameter 2 but with fp16 replaced by bf16 for a stronger comparison.

22For example, mixed-precision fp16 training can sometimes fail for LLaMA/Mistral models smaller than
100M; hence, we use mixed-precision bf16 instead. Conversely, GPT2 models up to 1B can be trained with
fp16.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

F MORE ON QUANTIZATION

We use the auto gptq package (based on (Frantar et al., 2022)) to quantize the GPT2 model
results in Figure 1 for the bioS data and the GPT2 model results in Figure 4 for the bioD data. We
simply use a small set of 1000 people’s biographies to perform the quantization task. Our results are
presented in Figure 12 for the bioS data and in Figure 13 for the bioD data.

106 107 108

model size (#params)

106

107

108

109

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

8-2 2-4 5-33-44-37-26-25-24-2 2-32-2 3-2 4-46-3

3-22-2
6-22-3 7-25-2 8-2 2-44-3 6-3 6-45-44-4 2-63-45-34-2 8-42-83-6

5-32-48-2 4-37-26-25-2
2-34-23-2

2-2

12-4 6-65-68-4 4-6
10-42-83-4 4-46-3 9-68-6

10-6
16-46-42-65-4 3-6

6-45-42-64-46-33-45-3

6-2
7-2

4-32-48-2
5-2

2-34-2

8-87-86-6
12-44-6

16-4 8-6
10-69-65-6

10-4
4-12

10-83-6 2-88-4
12-66-8

2-86-4
8-4

10-42-65-4
3-6 4-6 5-6

12-4
4-46-35-3

3-4
2-44-3

6-6
10-8

4-128-87-8
16-4 8-6

2-20
12-89-6

10-6
12-66-8

6-12
3-20

16-8
8-12

3-6
8-4

4-6

12-88-8
2-20

12-12
8-16

6-20
3-20

4-12
12-16

6-24
12-410-4

16-8
8-126-6

7-8
5-62-8

4-20
20-12

10-68-69-6
6-1616-4 6-8

6-12
16-12

10-8
12-6

8-20

6-4

16-2012-6
10-8

20-16
24-16

8-16
16-16

20-12
8-24
12-20

28-16
6-24

8-20

8-6

7-8
4-20

6-12
12-24

8-12
4-12

6-208-8
6-16

16-12
16-8

3-20
9-6

6-6

12-86-8

2-20
12-16

12-12

16-4

14-20
10-6

16-8

6-20

20-16
2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=10000000
N=5000000
N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000
N=20000
N=10000

(a) Same Figure 1(a), 1000 expo-
sures

106 107 108

model size (#params)

106

107

108

109

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

6-33-45-34-3 4-47-26-2 8-22-3 2-44-2 5-23-22-2

2-2
3-2 2-85-47-2 4-32-4 2-64-2 5-2 4-4 6-4 3-68-45-33-42-3 6-38-26-2

4-2

5-32-3

2-2

4-3

3-2

2-46-2
7-25-2

8-2 8-64-6
16-4

12-4 6-66-4
10-64-4 9-62-86-3 5-4

10-48-43-4 5-63-62-6

6-45-44-4 2-66-33-45-34-32-4
6-2

8-27-2
5-2

2-34-2

12-4
16-4 8-8

10-4 7-8
4-125-6

10-64-6
10-8

12-68-4 6-6 6-83-6 2-8 9-68-6

8-4
10-42-8 5-64-6

12-43-62-65-4
6-4

4-46-33-45-34-32-4

2-20
12-87-86-88-69-6 8-8

10-8
4-12

8-12
6-12

3-20
16-8

16-4
10-6

12-66-6

20-12
12-16

6-24
8-20

6-20
2-20

16-12
12-12

8-16
4-20

6-16
12-8

3-20
10-8

2-8

8-8

8-4

6-65-612-4

16-8
4-128-6

12-6
8-12

10-4

6-816-4

3-6
4-6

7-8
6-12

10-69-6

12-24
8-16

12-20
8-24

20-12
12-8

12-12
6-127-8

8-8
3-20

10-6

8-20
4-1212-6

28-16
16-8

6-24
9-6

4-20
8-12

10-8

8-6
6-8

16-20
20-16

12-16
14-20

6-6

16-16
24-16

16-4

2-20
6-20

6-16
16-12

16-8

6-20

20-16
2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=10000000
N=5000000
N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000
N=20000
N=10000

(b) Figure 1(a) quantized to 8bit

106 107 108

model size (#params)

106

107

108

109

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

4-45-3 6-33-44-33-2 4-2
2-47-28-25-2 6-2

2-32-2 3-2

2-83-66-4 8-45-4
7-2

2-3
6-2

4-2

2-4
2-6

5-2

4-4
8-2

5-3 6-34-3 3-4

2-3

5-32-44-3

8-6
16-4 9-66-65-6

10-612-46-45-4
8-42-84-63-62-6

10-4
6-33-4

4-4
5-4

2-6

4-4

6-4

2-3

4-128-86-8
10-8

10-6
12-67-810-4

6-6 8-616-412-4
5-6

9-64-62-83-68-4 10-4

12-4
5-6

8-4

2-84-6

3-6

2-6

2-4

4-1210-6
8-89-6

3-208-6
6-8

16-4

12-8
6-6

12-6
6-127-8

2-20
16-810-8

8-12

16-8
3-20

16-12
6-24

8-20
20-12

6-20
12-166-16

4-20
8-16

12-128-126-12
2-2012-810-84-12

8-8

7-8

12-6

16-20
12-24
28-16

14-20
12-20

24-16
20-16

8-24
16-16

8-12

6-204-203-20

8-206-16
12-1612-12

8-16
16-12

6-24
20-12

16-8
6-12

2-20

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=1000000
N=500000
N=200000
N=100000
N=50000
N=20000
N=10000

(c) Figure 1(a) quantized to 4bit

106 107 108

model size (#params)

106

107

108

109

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

3-2

2-3
8-2

4-2

2-2

12-43-6 6-66-4 5-63-4

6-2

2-84-6
10-4

5-2

5-42-6 8-44-4
16-46-32-4

7-2

5-34-3

5-6

2-3

12-4
10-4 6-6 8-86-42-6

4-3

10-6

8-2

4-6
12-6

7-2

6-8 7-8

5-2
6-2

5-32-4

3-6

4-2

5-4
9-68-6

16-48-4
2-8

3-4
4-46-3

2-20
12-6

16-8
4-1216-4

7-8
6-12

10-46-4

12-42-8

8-8
12-8

10-8

3-4

4-6
5-6

6-3

6-6
8-6

4-4
2-6

8-45-4

5-3

9-6
10-66-8

2-4

3-6

4-3

10-8

6-6

6-12
10-6

8-8

3-20

12-4

16-8
2-20

6-20
7-88-6

12-6

8-16
16-12

10-4

8-12
6-16

12-12
4-20

5-6

12-8

2-8
4-6

4-126-8

3-6

9-6

6-4
8-4

16-4

20-12
10-8

8-124-12
12-8

6-122-20
7-8

16-4

3-20

10-6

6-16

8-6

20-16

6-6

16-12

9-6

12-12
12-16

8-8

4-20
8-24
12-20

16-16
6-24

6-2016-8
12-66-8

8-20
8-16

10-8

20-16

12-6

3-20

20-20
24-16

12-164-20

8-16

8-8

24-20
8-24

2-20

6-24

16-8

6-20
12-24

20-20
24-20

12-24
24-168-24

20-1612-16
6-24

6-208-16
4-203-20

24-20
20-20

28-20
24-16

12-32

20-16

8-24

12-16

6-24

12-24

8-16
6-20

24-20

20-16

24-16

12-32
20-20

28-2012-248-24

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=20000000
N=10000000
N=5000000
N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

(d) Same Figure 1(b), 100 exposures

106 107 108

model size (#params)

106

107

108

109

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

2-3

16-48-42-4
6-4 6-6

4-2
5-2

8-2

10-43-4
2-8

6-2

3-6 4-6

2-2

4-3
6-3

2-65-4
12-44-4
5-6

7-2

3-2

5-3

12-63-66-4

2-4
5-3

4-62-63-4
4-4

16-45-4
2-8 6-85-68-4

7-8
12-4 8-69-6

8-2

4-2

10-6

4-3

6-6

6-22-3
5-2

6-3

7-2

10-4 8-8

6-127-8
2-20

4-3

6-4

4-610-4

9-6
2-8

10-6 8-8
4-125-6

8-4

6-88-612-4

2-6

6-6

5-4

10-816-4
12-6

16-8

6-3

3-6

12-8

3-4
4-4

2-4

5-3

8-89-6

12-12
8-16

6-20
16-12

2-20
4-20

3-2010-8
6-16

12-8
16-812-6

3-6

4-126-8 7-8

8-12
10-6

6-6
8-6

10-4

6-12

16-412-45-64-62-88-4

8-24
6-20

20-16
12-20

4-20
6-24

16-12
6-16

8-2016-8

8-16
3-20

20-12
12-12

16-16
12-166-12

8-12

9-6

12-84-12
10-88-8

6-8

2-20
7-812-6

8-6
16-4

10-6

6-6

24-20
12-24

20-204-20

8-24
6-24

16-8

12-16
6-20

3-20

10-8
12-6

2-20

8-8

20-168-16

20-16

24-16

6-20

12-24
6-2412-16

20-208-24

24-20

8-16
4-203-20

24-20
20-20

12-3228-2012-24

12-16

20-16

24-16
8-246-24

6-208-16

24-16

8-24

28-2020-20
12-24

12-32

20-16

24-20

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=20000000
N=10000000
N=5000000
N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

(e) Figure 1(b) quantized to 8bit

106 107 108

model size (#params)

106

107

108

109

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

10-46-4
4-6 6-68-4

12-4

3-4

7-2

5-63-6 2-85-42-6

16-4

2-4

4-4

8-23-2

6-3
4-3

2-2
5-2

2-3

6-2

5-3

4-2
7-26-2

4-6

2-6

2-3

4-4

2-8

6-3
5-3

3-4
4-3

5-4

3-6

12-4

6-4

5-2

2-4

8-2

5-6
6-89-6

10-4
8-4

8-88-6 7-86-6
12-616-4

10-6

4-2

6-8

6-4

8-4

6-12

16-4

9-6

6-6

10-6

10-4

12-6

5-4

10-8
8-6

5-6

6-3

12-4

4-3

4-12

3-6

3-4

2-6

16-8

4-4

2-4

12-88-8

5-3

2-8

2-20

4-6

7-8

16-12
4-203-2016-8

6-16
12-128-12

6-20
8-162-20

8-8

6-8

6-1212-810-8
7-8

12-6

4-12

2-8
9-6

6-6

10-6

5-6 8-64-6

8-4

3-6

16-16

6-8

4-12

8-24
16-12

20-16
6-24

20-12
12-208-206-20

16-8

6-16

2-20

8-16

8-12

12-16

6-6

6-12

4-20

12-8

10-8

3-20
12-12

8-8

8-6

10-6
7-8

9-6

20-20
12-24

24-16
8-2412-16

6-20

20-16

8-16

6-24

8-8

10-8

3-20

4-20

16-8

12-6

2-20

20-20

24-20

20-16
24-16

12-24

6-24

8-24

6-20 12-16

4-20

8-16

3-20

28-20

12-32

24-20
20-20

24-16

12-24

8-24

20-16

12-16

6-24
20-16

24-16

12-32

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=20000000
N=10000000
N=5000000
N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

(f) Figure 1(b) quantized to 4bit

Figure 12: Scaling laws for GPT2 after quantizing Figure 1 into int8 and int4.

Conclusion. Quantizing a mixed-precision fp16 trained model into int8 shows no change, but
quantizing into int4 results in a capacity ratio loss greater than 2x.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

N1000k-D10-C1-K1-L1-T40k

N1000k-D10-C1-K2-L1-T40k

N500k-D10-C1-K5-L1-T40k

N500k-D10-C1-K10-L1-T40k

N500k-D10-C1-K20-L1-T40k

N200k-D10-C1-K50-L1-T40k

N1000k-D10-C1-K1-L4-T40k

N1000k-D10-C1-K2-L4-T40k

N500k-D10-C1-K5-L4-T40k

N500k-D10-C1-K10-L4-T40k

N500k-D10-C1-K20-L4-T40k

N200k-D10-C1-K50-L4-T40k

N1000k-D10000-C1-K1-L4-T40k

N1000k-D10000-C1-K2-L4-T40k

N500k-D10000-C1-K5-L4-T40k

N500k-D10000-C1-K10-L4-T40k

N200k-D10000-C1-K20-L4-T40k

N100k-D10000-C1-K50-L4-T40k

0.5

1.0

2.0

4.0

#
 b

it
 /

pa
ra

m

5-6

4-4

8-6

3-6

14-4

5-4

4-6

3-6

4-6
5-6

14-4

4-45-4

8-6
10-6

5-4

4-6

3-6

5-3

5-6
14-4
8-6

4-4

10-6

4-6
5-6

10-6
3-12

8-6

14-4

3-6

4-45-4

14-4

5-6

5-4
3-6

3-12

4-6

4-4

10-6

8-6

8-6

3-12

10-6

4-12

5-6

3-6

14-4

5-4
4-6

8-6

3-12
4-12

10-6

5-6

4-6

3-6
5-4

14-4

14-4

8-610-6

3-6

5-44-4

5-6
4-6

8-6

3-6

3-12

4-6

10-6

5-6

4-12

14-4

12-8
16-8

12-8

3-12
4-12

10-6

4-6
5-6

8-6

14-4

8-6

5-6
14-4

4-6

5-4

3-6

4-4

4-12
12-8
16-8

10-6

6-16

3-12

5-6

14-48-6

12-8

3-6
4-6

10-6

5-6

14-4

4-12

8-6

3-12

5-4

8-16

10-6

4-12

3-1212-8

6-16

16-84-12

16-8

3-12

4-6

12-8

5-6

10-6

14-4
8-6

4-12
12-8

10-6

16-8

8-6

3-12

4-65-614-4

10-6

3-6

5-6

3-12

4-614-4

4-12

8-6

16-8

12-8

14-4
5-6

3-12

10-6
4-6

12-8
4-1216-8

8-6

2 bit/param
1 bit/param
0.5 bit/param

acc = 0%
acc = 25%
acc = 50%
acc = 75%
acc = 100%

(a) varying K, 16bit mixed preci-
sion

N1000k-D10-C1-K1-L1-T40k

N1000k-D10-C1-K2-L1-T40k

N500k-D10-C1-K5-L1-T40k

N500k-D10-C1-K10-L1-T40k

N500k-D10-C1-K20-L1-T40k

N200k-D10-C1-K50-L1-T40k

N1000k-D10-C1-K1-L4-T40k

N1000k-D10-C1-K2-L4-T40k

N500k-D10-C1-K5-L4-T40k

N500k-D10-C1-K10-L4-T40k

N500k-D10-C1-K20-L4-T40k

N200k-D10-C1-K50-L4-T40k

N1000k-D10000-C1-K1-L4-T40k

N1000k-D10000-C1-K2-L4-T40k

N500k-D10000-C1-K5-L4-T40k

N500k-D10000-C1-K10-L4-T40k

N200k-D10000-C1-K20-L4-T40k

N100k-D10000-C1-K50-L4-T40k

0.5

1.0

2.0

4.0

#
 b

it
 /

pa
ra

m

8-6

14-4

5-6

4-6

3-6

5-4

4-4

8-6

14-4

5-4

5-6

4-6

4-4

3-6

5-6

3-6

8-6

4-6

14-4

10-6

5-4
4-4

3-12

8-6

5-4
4-4
3-6

4-6

14-4

10-6

5-6

4-4

5-6

8-6

5-4

4-6

3-6

10-6

14-4

5-3

4-6

5-4

10-6

5-6

3-6

8-6

4-4

14-4

3-12

4-12

3-6

10-6

5-4

3-12

14-4

5-6

4-6

8-6

3-6

4-12

3-12

10-6

5-4

14-4
8-6

4-6
5-6

12-8
16-8

4-12

4-6
5-6

3-12

8-6
10-6

14-4 14-4
8-6

4-12

10-6
3-12

4-6

16-8

12-8

5-6

10-6

3-124-12

8-6

14-44-65-6

12-8

3-6
4-12

3-12

10-6

8-6

14-4
5-6

16-8

12-8

4-6

3-12

5-6

4-12

4-6
14-4

12-8

3-6
8-610-6

4-12

10-6

3-12

6-16

8-65-6

12-8
16-8

10-6

3-65-6
14-4

8-6

4-6

5-44-4

14-4

12-8

10-6
8-65-6

4-12

4-6

3-12
16-8

8-16

16-8

3-12

6-16

10-6

12-8
4-12

4-6

16-8

5-6

12-8

4-12

10-6

14-4
8-6

3-12

2 bit/param
1 bit/param
0.5 bit/param

acc = 0%
acc = 25%
acc = 50%
acc = 75%
acc = 100%

(b) varying K, 8bit

N1000k-D10-C1-K1-L1-T40k

N1000k-D10-C1-K2-L1-T40k

N500k-D10-C1-K5-L1-T40k

N500k-D10-C1-K10-L1-T40k

N500k-D10-C1-K20-L1-T40k

N200k-D10-C1-K50-L1-T40k

N1000k-D10-C1-K1-L4-T40k

N1000k-D10-C1-K2-L4-T40k

N500k-D10-C1-K5-L4-T40k

N500k-D10-C1-K10-L4-T40k

N500k-D10-C1-K20-L4-T40k

N200k-D10-C1-K50-L4-T40k

N1000k-D10000-C1-K1-L4-T40k

N1000k-D10000-C1-K2-L4-T40k

N500k-D10000-C1-K5-L4-T40k

N500k-D10000-C1-K10-L4-T40k

N200k-D10000-C1-K20-L4-T40k

N100k-D10000-C1-K50-L4-T40k

0.25

0.5

1.0

2.0

#
 b

it
 /

pa
ra

m

8-6
5-64-6

3-6

14-4

14-4

10-6
3-12
8-6

5-6

3-12
10-6
8-6

14-4

5-6

10-6
8-6

14-4

5-6

4-12

3-12

10-6

4-12

3-12

10-6

8-6

16-8

4-1212-8
16-8

12-8
4-12

3-12

16-8

12-8
4-12 16-8

4-1212-8

3-12

4-1212-8

10-6
8-6

3-12
12-8
4-128-6

3-1210-6
6-16
12-8

16-8

3-12

4-12

16-8

12-8

4-12

3-12

10-6
8-6

14-4

5-6
8-6

14-4

5-6
4-6 8-16

6-16

14-4

10-6
8-6
4-65-6

3-6
2-2

2 bit/param
1 bit/param
0.5 bit/param

acc = 0%
acc = 25%
acc = 50%
acc = 75%
acc = 100%

(c) varying K, 4bit

N1000k-D10-K1-C1-L1-T40k

N1000k-D10-K1-C2-L1-T40k

N500k-D10-K1-C5-L1-T40k

N500k-D10-K1-C10-L1-T40k

N500k-D10-K1-C20-L1-T40k

N200k-D10-K1-C50-L1-T40k

N1000k-D10-K1-C1-L4-T40k

N1000k-D10-K1-C2-L4-T40k

N500k-D10-K1-C5-L4-T40k

N500k-D10-K1-C10-L4-T40k

N500k-D10-K1-C20-L4-T40k

N200k-D10-K1-C50-L4-T40k

N1000k-D10000-K1-C1-L4-T40k

N1000k-D10000-K1-C2-L4-T40k

N500k-D10000-K1-C5-L4-T40k

N500k-D10000-K1-C10-L4-T40k

N200k-D10000-K1-C20-L4-T40k

N100k-D10000-K1-C50-L4-T40k

0.5

1.0

2.0

4.0

#
 b

it
 /

pa
ra

m

4-6

8-6

5-6

10-6

14-4

5-4
3-6

8-6

4-4

5-6

3-6

5-4

4-6

14-4

14-4
8-6

4-6

3-6

5-6

10-6

4-45-4

12-8
16-8

4-12

3-12

8-6

14-4

10-6

4-12

16-8

12-8

10-63-12

8-6

10-6
3-12

14-4
8-6

4-12

5-6

4-6
8-610-6

14-4

3-12

16-8

4-1212-8

4-12

3-6

12-8

3-12

10-6

4-6
14-4

8-6

5-6 4-1212-8
16-8

6-16

10-6

3-12

5-6
4-614-4

12-8

10-6

3-12

8-6

4-12
8-610-6

14-4
3-65-6

4-4
5-4

4-6

3-12

16-8

10-6

4-12

6-16

12-8

4-6

5-4

5-6

3-6

3-12

8-6
10-6

10-6

8-6

3-12

16-8

12-8

4-12
4-6
5-6

4-4

14-4

8-6

3-6

5-4

4-6
5-6

8-6

3-12

14-4

4-12

10-6

10-6

8-6

3-12

14-4

3-6

4-4

5-6

4-6

5-4

10-6

4-12

16-8

14-4

3-12

12-8

8-6

2 bit/param
1 bit/param
0.5 bit/param

acc = 0%
acc = 25%
acc = 50%
acc = 75%
acc = 100%

(d) varying C, 16bit mixed preci-
sion

N1000k-D10-K1-C1-L1-T40k

N1000k-D10-K1-C2-L1-T40k

N500k-D10-K1-C5-L1-T40k

N500k-D10-K1-C10-L1-T40k

N500k-D10-K1-C20-L1-T40k

N200k-D10-K1-C50-L1-T40k

N1000k-D10-K1-C1-L4-T40k

N1000k-D10-K1-C2-L4-T40k

N500k-D10-K1-C5-L4-T40k

N500k-D10-K1-C10-L4-T40k

N500k-D10-K1-C20-L4-T40k

N200k-D10-K1-C50-L4-T40k

N1000k-D10000-K1-C1-L4-T40k

N1000k-D10000-K1-C2-L4-T40k

N500k-D10000-K1-C5-L4-T40k

N500k-D10000-K1-C10-L4-T40k

N200k-D10000-K1-C20-L4-T40k

N100k-D10000-K1-C50-L4-T40k

0.5

1.0

2.0

4.0

#
 b

it
 /

pa
ra

m

4-6

8-6

4-45-4

3-6

5-6
14-4

10-6

5-4

14-4

4-6
5-6

3-6

8-6

4-12
12-8

10-6

8-6

3-12

16-8

8-6

5-6

4-12

3-12

4-6

10-6

14-4

10-6

4-45-4

4-6

8-6

5-6

3-6

14-4

16-8

12-8

8-6
10-6

4-12

3-12

16-8

10-6
3-12

12-8

8-6

4-12

8-6

3-6

5-6

4-4

4-6

14-4

5-4

3-12

8-6

3-6

10-6

5-4

4-6
5-6

16-8

10-6

6-16

3-12
12-8
4-125-6

10-6

8-6

4-6

14-4

3-12

3-6

4-45-4

16-8

4-12

6-16

3-12
12-8

10-6

16-8

12-8
4-12

3-12

10-6

14-4

8-6

4-1212-8

10-6

3-12

14-4
4-6

8-6

5-6

4-1212-8

3-12

14-4

8-6

5-6

10-6

3-6
4-6

8-6

5-6

10-6

3-6

4-4

14-4
4-6

5-4

10-6

8-6

16-8

4-12
12-8

3-12

3-12

4-6

4-12

14-4

5-6

10-6

8-6

2 bit/param
1 bit/param
0.5 bit/param

acc = 0%
acc = 25%
acc = 50%
acc = 75%
acc = 100%

(e) varying C, 8bit

N1000k-D10-K1-C1-L1-T40k

N1000k-D10-K1-C2-L1-T40k

N500k-D10-K1-C5-L1-T40k

N500k-D10-K1-C10-L1-T40k

N500k-D10-K1-C20-L1-T40k

N200k-D10-K1-C50-L1-T40k

N1000k-D10-K1-C1-L4-T40k

N1000k-D10-K1-C2-L4-T40k

N500k-D10-K1-C5-L4-T40k

N500k-D10-K1-C10-L4-T40k

N500k-D10-K1-C20-L4-T40k

N200k-D10-K1-C50-L4-T40k

N1000k-D10000-K1-C1-L4-T40k

N1000k-D10000-K1-C2-L4-T40k

N500k-D10000-K1-C5-L4-T40k

N500k-D10000-K1-C10-L4-T40k

N200k-D10000-K1-C20-L4-T40k

N100k-D10000-K1-C50-L4-T40k

0.25

0.5

1.0

2.0

#
 b

it
 /

pa
ra

m

4-12

12-8

16-8

16-8
12-8
4-12

10-6
8-6 16-8

12-8

16-8

12-8

3-1210-6
8-6

5-6

6-16

16-8
4-123-12
12-8

10-6
3-128-6

5-6

6-163-12

4-12

16-812-8
12-816-83-12

4-123-124-1212-8

8-6

10-612-8
10-6
4-12
3-12

8-6

3-6

5-614-4
4-6

10-6
8-6

2-2

8-6

5-6

14-4

4-6
8-6
5-6

3-6

4-6
14-4

3-12
4-12

3-124-12 10-6
8-6

2 bit/param
1 bit/param
0.5 bit/param

acc = 0%
acc = 25%
acc = 50%
acc = 75%
acc = 100%

(f) varying C, 4bit

N800k-D10000-K1-C1-L2-T1k

N800k-D10000-K1-C1-L10-T1k

N800k-D10000-K1-C1-L20-T1k

N800k-D10000-K1-C1-L50-T1k

N200k-D10000-K1-C4-L2-T1k

N200k-D10000-K1-C4-L10-T1k

N200k-D10000-K1-C4-L20-T1k

N200k-D10000-K1-C4-L50-T1k

N200k-D10000-K4-C1-L2-T1k

N200k-D10000-K4-C1-L10-T1k

N200k-D10000-K4-C1-L20-T1k

N200k-D10000-K4-C1-L50-T1k

N1000k-D10-K1-C1-L1-T1k

N1000k-D10-K1-C1-L10-T1k

N1000k-D10-K1-C1-L20-T1k

N1000k-D10-K1-C1-L50-T1k

N300k-D10-K1-C4-L1-T1k

N300k-D10-K1-C4-L10-T1k

N300k-D10-K1-C4-L20-T1k

N300k-D10-K1-C4-L50-T1k

N300k-D10-K4-C1-L1-T1k

N300k-D10-K4-C1-L10-T1k

N300k-D10-K4-C1-L20-T1k

N300k-D10-K4-C1-L50-T1k

0.5

1.0

2.0

4.0

#
 b

it
 /

pa
ra

m

4-6
5-6

4-4
5-4

5-3

3-65-6
14-4
8-6

5-4

4-6

3-6

4-4
5-3

14-4

3-6

5-6

8-6

5-4

4-6
14-4

10-6

4-6
5-6

8-6

3-6

5-6

3-6

2-4

5-4

4-4

4-6

5-3

10-6

4-6

3-6

14-4

3-12

5-6

8-6

5-4

3-6

5-3

4-4

4-6
5-6

2-4
7-2

8-6

3-6

5-6

10-6

4-6

14-4

5-6

3-6

4-6

5-4

4-4

5-3
3-6

8-6

5-4

4-6

10-6

5-6
14-4 5-6

5-3

8-6

14-4

4-4

4-6

2-4

3-6

5-44-6

14-4

5-6

8-6

3-12

3-6

10-6

3-6
4-6

10-6

5-6

3-12

14-4
8-6

10-6
3-12

8-6

5-6
14-4

4-6

3-6

10-6

8-6

4-6

4-12

14-4

3-12

5-6

4-6

5-4

3-6

2-4

4-4

5-3

7-2

5-6

4-6

14-4

5-3

5-6

8-6

4-4

2-4

5-4

3-6
8-6

3-12

10-6

4-12

3-6

14-4

4-6
5-6

5-6

8-6
10-6

14-4

4-6

3-12

5-3

4-6

4-4
5-4

5-6

3-6

5-4

4-6
5-6

5-3

3-6

4-4

7-22-4

8-6

4-6

3-6

3-12

5-6

4-12

14-4

10-6

8-610-6

16-8

3-12

12-8

4-12

4-4

5-3

5-6

5-4

3-6

4-6

2 bit/param
1 bit/param
0.5 bit/param

acc = 0%
acc = 25%
acc = 50%
acc = 75%
acc = 100%

(g) varying L, 16bit mixed preci-
sion

N800k-D10000-K1-C1-L2-T1k

N800k-D10000-K1-C1-L10-T1k

N800k-D10000-K1-C1-L20-T1k

N800k-D10000-K1-C1-L50-T1k

N200k-D10000-K1-C4-L2-T1k

N200k-D10000-K1-C4-L10-T1k

N200k-D10000-K1-C4-L20-T1k

N200k-D10000-K1-C4-L50-T1k

N200k-D10000-K4-C1-L2-T1k

N200k-D10000-K4-C1-L10-T1k

N200k-D10000-K4-C1-L20-T1k

N200k-D10000-K4-C1-L50-T1k

N1000k-D10-K1-C1-L1-T1k

N1000k-D10-K1-C1-L10-T1k

N1000k-D10-K1-C1-L20-T1k

N1000k-D10-K1-C1-L50-T1k

N300k-D10-K1-C4-L1-T1k

N300k-D10-K1-C4-L10-T1k

N300k-D10-K1-C4-L20-T1k

N300k-D10-K1-C4-L50-T1k

N300k-D10-K4-C1-L1-T1k

N300k-D10-K4-C1-L10-T1k

N300k-D10-K4-C1-L20-T1k

N300k-D10-K4-C1-L50-T1k

0.5

1.0

2.0

4.0

#
 b

it
 /

pa
ra

m4-4
5-4

5-6

3-6

4-6

5-3
7-22-4

5-6

4-6

4-4

3-6

5-3

5-4
5-4

5-3

3-6

4-4

2-4

4-6
5-6

5-4

4-4

3-6

5-3

4-6
5-6

14-4

5-4

3-6

8-6

5-6

4-6

2-45-3

7-2

4-6
5-6

5-4

4-4

3-6
8-6

14-4

4-6

3-6

5-6

10-6

7-22-45-3

4-6
5-6

4-4

3-6

5-4
3-6

4-4
5-4

4-6
5-6

5-3

4-6

4-4
5-4

5-32-4

8-6

3-6

14-4

5-6

3-6

5-6

4-6

3-12

10-6

8-6

14-4

5-3

5-4

14-4

2-4

3-6
4-6

4-4

8-6

5-6

3-12

3-6

8-6

5-6
14-4

10-6

4-6
14-4
8-6

3-6

5-6

3-12

10-6

4-6 4-6

10-6

5-6
14-4

3-12

3-6

8-6
3-6

4-6

5-4

5-3

4-4

5-6

5-6

4-6

10-6

14-4

3-6

4-12

8-6

3-12

14-4

5-6

8-6
10-6
3-12

4-6

8-6

4-6

3-6

5-6

10-6

14-4

10-6

5-6
14-4

4-6

5-4
3-6

8-6

10-6

8-6

3-12

12-8

4-12

16-8

14-4

5-6

3-6

3-12

4-6

10-6

8-6

4-12

14-4

3-6

4-4

5-6

5-3

4-6

8-6

5-4
14-4

4-12

5-6

3-12

10-6

8-6

2 bit/param
1 bit/param
0.5 bit/param

acc = 0%
acc = 25%
acc = 50%
acc = 75%
acc = 100%

(h) varying L, 8bit

N800k-D10000-K1-C1-L2-T1k

N800k-D10000-K1-C1-L10-T1k

N800k-D10000-K1-C1-L20-T1k

N800k-D10000-K1-C1-L50-T1k

N200k-D10000-K1-C4-L2-T1k

N200k-D10000-K1-C4-L10-T1k

N200k-D10000-K1-C4-L20-T1k

N200k-D10000-K1-C4-L50-T1k

N200k-D10000-K4-C1-L2-T1k

N200k-D10000-K4-C1-L10-T1k

N200k-D10000-K4-C1-L20-T1k

N200k-D10000-K4-C1-L50-T1k

N1000k-D10-K1-C1-L1-T1k

N1000k-D10-K1-C1-L10-T1k

N1000k-D10-K1-C1-L20-T1k

N1000k-D10-K1-C1-L50-T1k

N300k-D10-K1-C4-L1-T1k

N300k-D10-K1-C4-L10-T1k

N300k-D10-K1-C4-L20-T1k

N300k-D10-K1-C4-L50-T1k

N300k-D10-K4-C1-L1-T1k

N300k-D10-K4-C1-L10-T1k

N300k-D10-K4-C1-L20-T1k

N300k-D10-K4-C1-L50-T1k

0.25

0.5

1.0

2.0

#
 b

it
 /

pa
ra

m

3-6
4-65-68-6

14-4

5-64-6

3-6

4-6
5-6

3-6
8-6

14-4

5-64-6

3-6

5-6
4-6
3-6

5-6
4-6
3-6

4-65-6

3-6

8-6

10-64-6

14-4
5-68-610-6

3-12

10-6

5-6
3-64-68-6

14-4

5-6
4-6

3-6

3-64-65-6

5-4

5-6
4-6

5-4

3-6
3-12

10-6

10-6

8-6

14-4

5-6

10-6
3-12
8-6

14-4

5-6

3-12 8-614-4

5-6
4-6

3-6
4-123-12

2 bit/param
1 bit/param
0.5 bit/param

acc = 0%
acc = 25%
acc = 50%
acc = 75%
acc = 100%

(i) varying L, 4bit

N1000k-D10000-K1-C1-L4-T20

N1000k-D10000-K1-C1-L4-T200

N1000k-D10000-K1-C1-L4-T4k

N1000k-D10000-K1-C1-L4-T40k

N500k-D10000-K1-C4-L4-T20

N500k-D10000-K1-C4-L4-T200

N500k-D10000-K1-C4-L4-T4k

N500k-D10000-K1-C4-L4-T40k

N200k-D10000-K4-C4-L4-T20

N200k-D10000-K4-C4-L4-T200

N200k-D10000-K4-C4-L4-T4k

N200k-D10000-K4-C4-L4-T40k

N400k-D10-K4-C4-L4-T20

N400k-D10-K4-C4-L4-T200

N400k-D10-K4-C4-L4-T4k

N400k-D10-K4-C4-L4-T40k

0.5

1.0

2.0

4.0

#
 b

it
 /

pa
ra

m

14-4

4-12

4-6

8-6
10-6

5-6

3-12

12-8
16-8

3-12
4-12

5-6

3-12

8-6

12-8

14-4

10-6

4-12

12-8
16-8

8-610-6
3-12
4-12

4-12

8-6

14-4

10-63-12

5-6

16-8

4-12

8-6
10-6
3-12

12-8

14-4

4-12

3-6

8-6

3-12

14-4

10-6

5-6

4-6
10-6

12-8

3-12

16-8

4-12

8-6

12-8

14-4
8-6

10-6

16-8

4-12

3-12 10-6
3-12
4-12
12-8

14-4

4-6

8-6

5-6

12-8

14-4

8-610-6

3-12

4-6

4-12

5-6

3-6

4-6

3-12

14-4

5-6

3-6

4-12

8-6

12-8

10-6

8-6

14-4

4-6
3-6
5-6

3-12

10-6

12-8

4-12

8-6

12-8

4-12

10-6
3-12

4-6
5-6

14-4

4-65-6

10-6

14-4

4-4
5-4

8-6

3-6

10-6

5-6
4-6
8-6

3-124-1216-8

12-8

14-4

2 bit/param
1 bit/param
0.5 bit/param

acc = 0%
acc = 25%
acc = 50%
acc = 75%
acc = 100%

(j) varying T , 16bit mixed preci-
sion

N1000k-D10000-K1-C1-L4-T20

N1000k-D10000-K1-C1-L4-T200

N1000k-D10000-K1-C1-L4-T4k

N1000k-D10000-K1-C1-L4-T40k

N500k-D10000-K1-C4-L4-T20

N500k-D10000-K1-C4-L4-T200

N500k-D10000-K1-C4-L4-T4k

N500k-D10000-K1-C4-L4-T40k

N200k-D10000-K4-C4-L4-T20

N200k-D10000-K4-C4-L4-T200

N200k-D10000-K4-C4-L4-T4k

N200k-D10000-K4-C4-L4-T40k

N400k-D10-K4-C4-L4-T20

N400k-D10-K4-C4-L4-T200

N400k-D10-K4-C4-L4-T4k

N400k-D10-K4-C4-L4-T40k

0.5

1.0

2.0

4.0

#
 b

it
 /

pa
ra

m

16-8

3-12
4-12
12-8

3-12
4-12

8-6

14-4

5-6

10-6

3-12

12-8

4-12

10-6

5-6

8-6

14-4

8-6

12-8

10-6

4-12

5-6
14-4

4-6

3-12

12-8

4-12

16-8

3-12

10-6

8-6

12-8

4-12

5-6

8-6

3-12

14-4

4-6

10-6
4-12

10-6

16-8

3-12

12-8

8-6

12-8

4-12

3-12

4-6

14-4

5-6

10-6

8-6

4-12

14-4

3-12

5-6

8-6
10-6

4-6

3-6

12-8

4-12

14-4

3-12

16-8

8-6
10-6

4-12

4-6

10-6

12-8

14-4

3-12

5-6

8-65-6

10-6

12-8

3-6

8-6

14-4

4-12

4-6

3-12
4-1216-8

12-8

5-6

14-4

10-6
8-6

4-6

3-12

3-64-6

8-6

5-4

5-6
14-4

10-6

4-4

16-8

10-6

4-12
12-8

3-12

8-6

14-4

3-12

5-6

4-12

10-6

4-6

2 bit/param
1 bit/param
0.5 bit/param

acc = 0%
acc = 25%
acc = 50%
acc = 75%
acc = 100%

(k) varying T , 8bit

N1000k-D10000-K1-C1-L4-T20

N1000k-D10000-K1-C1-L4-T200

N1000k-D10000-K1-C1-L4-T4k

N1000k-D10000-K1-C1-L4-T40k

N500k-D10000-K1-C4-L4-T20

N500k-D10000-K1-C4-L4-T200

N500k-D10000-K1-C4-L4-T4k

N500k-D10000-K1-C4-L4-T40k

N200k-D10000-K4-C4-L4-T20

N200k-D10000-K4-C4-L4-T200

N200k-D10000-K4-C4-L4-T4k

N200k-D10000-K4-C4-L4-T40k

N400k-D10-K4-C4-L4-T20

N400k-D10-K4-C4-L4-T200

N400k-D10-K4-C4-L4-T4k

N400k-D10-K4-C4-L4-T40k

0.25

0.5

1.0

2.0

#
 b

it
 /

pa
ra

m

3-12

10-6

4-12

8-6

4-1212-8

3-12

10-6

10-6

3-124-12 4-12
12-8

4-12

3-1210-6
8-6 16-84-12

12-8 3-12
12-8

4-12
16-8

12-8

4-12

16-8

12-8
4-12

3-12

4-12

12-8

3-12

12-8

3-124-12

10-68-6

5-6

10-6
8-6
4-65-6

3-6

14-4

2-2

3-1210-6
12-816-8

4-12

8-6
16-8

12-8

4-12

3-12

12-8
16-8

2 bit/param
1 bit/param
0.5 bit/param

acc = 0%
acc = 25%
acc = 50%
acc = 75%
acc = 100%

(l) varying T , 4bit

Figure 13: 8-bit/4-bit quantization of GPT2 models trained on bioD(N,K,C,D,L, T) data for 1000
exposures. Left: Identical to Figure 4, showing only models with accuracy ≥ 50%; Middle: After
quantization to 8-bit; Right: After quantization to 4-bit, including models with all accuracies.

Observation: For the bioD data family, quantizing to 8-bit has negligible impact on model capaci-
ties. Quantizing to 4-bit reduces capacity by more than 2x, especially for large D and L, leading to
significantly larger reductions and explaining the missing columns in Figure 13(i)).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

106 107 108

model size (#params)

106

107

108

109

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

2-2 5-2 8-22-3 7-2 2-44-23-2 4-3 5-36-2

3-2 4-2 2-32-2 6-42-65-44-45-3 6-33-44-32-47-2 8-26-25-2

2-2
3-45-34-32-48-27-26-24-2 5-22-33-2

16-46-6
12-4

10-4 5-64-62-88-43-65-4 6-42-64-46-3
2-2

6-24-2 5-23-2
2-3

6-3 6-45-42-63-45-3 4-44-38-27-2 2-4 8-86-8
12-68-6

16-4 9-6
10-6 7-86-6

12-45-6
10-44-62-88-43-6

3-45-34-3
4-2

3-2

7-25-2
8-22-46-2

2-3

12-42-84-6
10-4 5-68-46-4 3-66-3 2-65-44-4 16-8

6-12
2-20

12-8
10-88-8

4-127-8
12-66-8

10-69-68-66-6 16-4

4-3

3-66-42-6
5-43-4

4-46-35-3
2-48-2

6-2 7-2

8-4
12-4

10-44-6 6-6
16-4 6-88-6

10-6
12-62-8 5-6 7-89-6

4-20
6-20

3-20
8-16

16-12
8-12

6-16
6-12

12-8
16-8

12-12
2-20

4-12
10-88-8

6-4
5-6
12-4 6-6

10-44-62-8
8-43-6

2-6
5-44-46-33-4

12-8
2-20

4-128-8
10-8

6-127-8
12-6

10-69-6 6-8
16-4 8-6

16-12
6-20

8-16
8-12
3-20

4-20
12-12

16-8
6-16

12-4

7-8

6-12

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=10000000
N=5000000
N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000
N=20000
N=10000

(a) 1000 exposures

106 107 108

model size (#params)

106

107

108

109

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

2-2

4-2

3-44-3

3-2

5-32-48-25-2
2-3 6-2 7-2

4-23-2

5-2
2-3 6-2

2-2

4-3
3-46-3 4-45-3

7-2
8-2
2-4

6-42-65-4

4-2
3-2

7-2
2-3

6-2
8-2

5-34-3

3-4
2-4

5-2

2-64-4
3-66-45-4

4-62-8
6-3

12-45-6
10-48-4

7-2

4-3

6-3

6-2

2-4

4-4

8-2

5-4

3-4

3-6

2-6
6-4

5-3

8-4

4-6
7-85-6 6-8

12-6
10-612-410-4

9-62-8
6-6 8-616-4

6-6

6-4

3-4

5-6

2-64-4

8-4
12-4

10-4
4-6

6-3

2-83-6

5-4

10-88-6

6-12

16-4

7-8
12-88-86-8
2-20

4-1210-69-6
12-6

3-202-20
10-6

16-88-812-6

5-6

10-8

3-6

6-6

4-20

8-6

2-8

16-8

3-20
4-20

12-6

10-8

8-6

2-20

8-8

10-6

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=5000000
N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

(b) 100 exposures

Figure 14: Scaling laws for the mixture-of-experts GPT2 models with 32 experts on the bioS(N) data.

Remarks. Compared to Figure 1, using MoE with 32 experts reduces the 1000-exposure capacity
by 1.3x and the 100-exposure one by 1.5x, despite the MoE model using 11.3x fewer parameters
during inference. For the strongest result we use topk = 1, cap factor = 2; other variants are in
Figure 15.

G MORE ON MIXTURE OF EXPERTS

We utilize the tutel package for implementing Mixture-of-Experts (MoE) on GPT2 mod-
els (Hwang et al., 2022). In MoE, the parameter topk determines the number of experts each token
is routed to. It is recommended by some practitioners to use topk = 2 during training and topk = 1
during testing. Additionally, the cap factor parameter ensures that, given M experts, each expert
receives no more than cap factor

M fraction of the data.

Using topk = 1 and cap factor = 1 is generally not advisable. Thus, to provide the strongest
result, we set topk = 1, cap factor = 2 for the 1000/100-exposure scaling laws in Figure 14.
(During testing, we increase the capacity factor to cap factor = 8.)

For the 100-exposure scaling law, we additionally compare three configurations:
(topk, cap factor) = (1, 2), (2, 1), (2, 2), finding minimal differences among them as shown
in Figure 15. Remember from Section 6 that differences in model architecture usually become
apparent in the insufficient training regime; this is why we opt for 100-exposure instead of
1000-exposure. Notably, (topk, cap factor) = (2, 2) performs best (among the three) for deep
models, such as GPT2-16-4 with 32 experts.

Due to their sparsity, MoE models often require higher learning rates compared to dense models.
Consequently, we adjust the optimizer parameters as follows:
Parameter 9 (Figure 14, Figure 15). In the 1000-exposure setting for GPT2-MoE models with 32 experts,
we slightly increase the learning rates while keeping other parameters nearly identical to Parameter 1:

• For N = 10K, we use wd = 0.02, lr = 0.001/0.002, and batch size 24 with fp16;
• For N = 20K, we use wd = 0.02, lr = 0.001/0.002, and batch size 48 with fp16;
• For N = 50K, we use wd = 0.02, lr = 0.001/0.002, and batch size 96 with fp16;
• For N = 100K, 200K, we use wd = 0.02, lr = 0.001/0.002, batch size 192 with fp16;
• For N = 500K, 1M , we use wd = 0.01, lr = 0.0005/0.001, batch size 192 with fp16;
• For N = 2M , we use wd = 0.005, lr = 0.002, and batch size 1536 with fp16;
• For N = 5M , we use wd = 0.002, lr = 0.0005, and batch size 1536 with fp16;
• For N = 10M , we use wd = 0.001, lr = 0.0005, and batch size 1536 with fp16.

In the 100-exposure setting, we also use higher learning rates compared to Parameter 2:

• For N = 50K, we use wd = 0.01, lr = 0.001/0.002/0.005, and batch size 12 with fp16;
• For N = 100K, we use wd = 0.01, lr = 0.001/0.002/0.005, and batch size 24 with fp16;
• For N = 200K, we use wd = 0.01, lr = 0.001/0.002/0.005, and batch size 48 with fp16;
• For N = 500K, we use wd = 0.01, lr = 0.001/0.002, and batch size 96 with fp16;
• For N = 1M , we use wd = 0.01, lr = 0.0005/0.001/0.002, and batch size 192 with fp16;
• For N = 2M , we use wd = 0.005, lr = 0.0005/0.001, and batch size 192 with fp16;
• For N = 5M , we use wd = 0.005, lr = 0.0003/0.0005/0.001, and batch size 384 with fp16.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

107 108

model size (#params)
106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

2-2

4-2

3-44-3

3-2

5-32-4
8-25-2

2-3 6-2 7-2
4-2

3-2

5-2

2-3 6-2

2-2

4-3
3-4 6-3

4-45-3

7-2

8-2

2-4

6-42-6 5-4

4-2

3-2

7-2
2-3

6-2

8-2

5-34-3

3-4

2-4

5-2

2-64-4
3-66-45-4

4-62-8

6-3

12-45-6
10-48-4

7-2

4-3

6-3

6-2

2-4

4-4

8-2

5-4

3-4

3-6

2-6

6-4

5-3

8-4

4-6
7-85-6

6-8
12-6

10-612-410-4

9-6
2-8

6-6 8-616-4

6-6

6-4

3-4

5-6

2-6
4-4

8-4
12-4

10-4

4-6

6-3

2-83-6

5-4

10-8
8-6

16-4

7-8 8-86-8
4-1210-69-6

12-6

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=1000000
N=500000
N=200000
N=100000
N=50000

(a) topk = 1, cap factor = 2

107 108

model size (#params)
106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

2-2

3-45-34-32-48-27-26-25-2

2-3

4-23-2

4-2
3-2

2-2

5-2

2-3 6-2

6-45-42-64-46-33-45-34-32-4
8-2

7-2

2-4

3-45-34-3

5-2

4-2

8-2
6-2

3-2

7-2
2-3

12-45-6
10-44-62-88-43-66-45-4

2-64-4
6-3

3-4

2-4

6-4

6-3

6-2

5-4

8-2

2-6

4-3

3-6

4-4

7-2

5-3

7-8
12-66-8

10-69-68-616-4
6-612-45-610-4

4-62-88-4

6-6

3-6
4-6

12-4

2-8

2-6
4-4

3-4

10-4

5-6

6-3

5-4

8-4
6-4

10-8
4-128-87-812-66-810-69-68-6

16-4

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=1000000
N=500000
N=200000
N=100000
N=50000

(b) topk = 2, cap factor = 1

107 108

model size (#params)
106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

2-2

3-45-34-32-48-27-2

6-2
5-2

2-3
4-23-2

3-2

2-2

5-2

2-3 6-2

4-2

6-45-42-64-46-33-45-34-32-48-2
7-2

7-2
6-2

3-4
2-4

3-2

4-3

4-2

5-3

8-22-3

5-2

12-45-6
10-44-62-88-43-66-45-4

2-64-4
6-3

3-6

7-2

5-4

6-3

4-4
2-6

8-2

3-4

6-4

2-4 4-3

5-3

6-2

7-8
12-66-8

10-69-68-6
16-46-612-45-610-44-6

2-8
8-4

6-6

3-4
4-4

5-4

5-6

6-4

2-8

2-6

6-3

10-4

8-4

12-4
3-6

4-6

10-8
4-128-87-8

12-66-810-69-68-616-4

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=1000000
N=500000
N=200000
N=100000
N=50000

(c) topk = 2, cap factor = 2

Figure 15: Scaling laws for the GPT2 MoE models with 32 experts on the bioS(N) data for 100 exposures.
This figure complements Figure 14 by comparing the effects of varying topk and cap factor in the
100-exposure insufficiently-trained regime. Conclusion: minimal differences are observed across
these settings, though deeper models (e.g., GPT2-16-4 with 32 experts) seem easier to train with
topk = cap factor = 2.

H MORE ON JUNK DATA VS. SCALING LAWS

Recall from Section 9 that our dataset is a mixture, with 1/8 of the tokens coming from bioS(N) for
various N (referred to as “useful data”), and the remaining 7/8 from “junk data.” We explored three
scenarios:

(a) Junk data being bioS(N ′) for N ′ = 100M , representing completely random junk;
(b) Junk data being bioS(N ′) for N ′ = 1K, representing highly repetitive data; and
(c) Junk data being bioS(N ′) for N ′ = 100M , but with a special token appended to the front of

each piece of useful data.23

For simplicity, within each 512-token context window, we either include only useful data or only
junk data (separated by <EOS> tokens). The outcomes are similar when mixing useful and junk
data in the same context window. In all three cases, we initially consider a 100-exposure training
setting where the useful data receive 100 exposures each during pretraining — thus, the total number
of training tokens is approximately 8 times more than in Figure 1(b) (our scaling law for the 100-
exposure case without junk data).

In case (A), presenting a negative result, we also explore 300-exposure, 600-exposure, and 1000-
exposure training settings. Given that the 1000-exposure setting requires 48x more training to-
kens compared to Figure 1(b), or 4.8x more compared to Figure 1(a), we limited experiments to
bioS(N) with N ≤ 200K to conserve computational resources. Similarly, for 300-exposure and
600-exposure, we only considered N ≤ 500K.

In case (B), presenting a positive result, we limited our consideration to 100-exposure with N ≤
1M .

In case (C), presenting a moderately positive result, we explored both 100-exposure and 300-
exposure settings, where, in the 300-exposure setting, we again limited to N ≤ 500K.

Overall, due to the significantly different training durations (i.e., number of training tokens) across
the 100-, 300-, 600-, and 1000-exposure settings, we had to adjust their batch sizes, weight decay,
and learning rates accordingly. These adjustments are discussed below.
Parameter 10 (Figure 3). We adhere to the general advice provided in Remark D.2 for selecting parameters
in all experiments shown in Figure 3. For negative results (e.g., Figure 3(b), 3(c)), we opted for a smaller batch
size to increase the number of trainable steps and explored a wider range of learning rate options. Conversely,
for positive results (e.g., Figure 3(f), 3(e)), we sometimes chose a larger batch size to benefit from faster, GPU-
accelerated training times and considered a narrower set of learning rate choices. Overall, we have meticulously
selected parameters to strengthen negative results as much as possible while intentionally not optimizing posi-
tive results to the same extent. This approach ensures a stronger comparison and effectively communicates the
key message of this section. Specifically,

• For Figure 3(b) which is Case (a) of 100-exposure:

23This is akin to adding a domain name like wikipedia.org at the beginning of the data; the model lacks prior
knowledge that these special token data signify high-quality, useful data. It’s up to the model and the training
process to autonomously discover this.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

– For N = 50K, we use wd = 0.01, lr = 0.0003/0.0005/0.001, and batch size 12;
– For N = 100K, we use wd = 0.01, lr = 0.0003/0.0005/0.001, and batch size 24;
– For N = 200K, we use wd = 0.01, lr = 0.0003/0.0005/0.001, and batch size 48;
– For N = 500K, we use wd = 0.005, lr = 0.00005/0.0001/0.0002/0.0003/0.0005, and batch size

192;
– For N = 1M , we use wd = 0.005, lr = 0.00005/0.0001/0.0002/0.0003/0.0005, and batch size

192.

• For Figure 3(c) which is Case (a) of 300-exposure:

– For N = 50K, we use wd = 0.01, lr = 0.0003/0.0005/0.001, and batch size 96;
– For N = 100K, we use wd = 0.01, lr = 0.0003/0.0005/0.001, and batch size 192;
– For N = 200K, we use wd = 0.01, lr = 0.0003/0.0005/0.001, and batch size 192;
– For N = 500K, we use wd = 0.01, lr = 0.0003/0.0005/0.001, and batch size 192.

• For Figure 3(d) which is Case (a) of 600-exposure:

– For N = 50K, we use wd = 0.01, lr = 0.0003/0.0005/0.001, and batch size 384;
– For N = 100K, we use wd = 0.01, lr = 0.0003/0.0005/0.001, and batch size 384;
– For N = 200K, we use wd = 0.01, lr = 0.0003/0.0005/0.001, and batch size 384;
– For N = 500K, we use wd = 0.002, lr = 0.0003/0.0005/0.001, and batch size 768.

• For Figure 3(e) which is Case (a) of 1000-exposure:

– For N = 50K, we use wd = 0.01, lr = 0.0005/0.001, and batch size 384;
– For N = 100K, we use wd = 0.01, lr = 0.0005/0.001, and batch size 768;
– For N = 200K, we use wd = 0.01, lr = 0.0005/0.001, and batch size 1536.

• For Figure 3(f) which is Case (b) of 100-exposure:

– For N = 50K, we use wd = 0.01, lr = 0.0003/0.0005, and batch size 12;
– For N = 100K, we use wd = 0.01, lr = 0.0003/0.0005, and batch size 24;
– For N = 200K, we use wd = 0.01, lr = 0.0003/0.0005/0.001, and batch size 96;
– For N = 500K, we use wd = 0.01, lr = 0.0003/0.0005, and batch size 192;
– For N = 1M , we use wd = 0.01, lr = 0.0003, and batch size 192.

• For Figure 3(g) which is Case (c) of 100-exposure:

– For N = 50K, we use wd = 0.01, lr = 0.0003/0.0005/0.001, and batch size 12;
– For N = 100K, we use wd = 0.01, lr = 0.0003/0.0005/0.001, and batch size 24;
– For N = 200K, we use wd = 0.01, lr = 0.0002/0.0003/0.0005/0.001, and batch size 96;
– For N = 500K, we use wd = 0.005, lr = 0.0002/0.0003/0.0005, and batch size 192;
– For N = 1M , we use wd = 0.005, lr = 0.0002/0.0003/0.0005, and batch size 192.

• For Figure 3(h) which is Case (c) of 300-exposure:

– For N = 50K, we use wd = 0.01, lr = 0.0003/0.0005/0.001, and batch size 96;
– For N = 100K, we use wd = 0.01, lr = 0.0003/0.0005/0.001, and batch size 192;
– For N = 200K, we use wd = 0.01, lr = 0.0003/0.0005/0.001, and batch size 192;
– For N = 500K, we use wd = 0.005, lr = 0.0003/0.0005/0.001, and batch size 384.

I PROOF OF THEOREM 3.1

When assessing the knowledge stored in a model, we cannot simply rely on the average, word-by-
word cross-entropy loss. For example, the phrase “received mentorship and guidance from faculty
members” in (2.1) does not constitute useful knowledge. We should instead focus on the sum of the
loss for exactly the knowledge tokens.

Consider a model F with weight parameters W ∈ W . Assume F is trained on a
bioD(N,K,C,D,L, T) dataset Z as defined in Def 2.2 using any optimizer; this process is rep-
resented as W = W (Z) (the model’s weight is trained as a function of the training dataset Z).
During the evaluation phase, we express F through two functions: F⊤(W,R), which generates
names, and F⊥(W,n, a,R), which generates values given (n, a), where R denotes the randomness
used in generation. Let F⊥

1 (W (Z), n, a,R) represent the first chunk of F⊥(W (Z), n, a,R). We

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

evaluate F by calculating the following three cross-entropy losses:24

lossname(Z) := E
n∈N

− logPr
R

[
F⊤(W (Z), R) = n

]
lossvalue1(Z) := E

n∈N ,a∈A
− logPr

R

[
F⊤
1 (W (Z), n, a,R) = v⋆1(n, a)

]
lossvalue(Z) := E

n∈N ,a∈A
− logPr

R

[
F⊥(W (Z), n, a,R) = v⋆(n, a)

]
We shall explain in Appendix I that these quantities are easy to be derived from the auto-regressive
entropy-loss using examples, and below we quickly state our bit-complexity lower bound theorem:

Theorem I.1 (bit complexity lower bound). Suppose N ≥ Ω(D logN). We have

log2 |W| ≥ E
Z

[
N log2

N0 −N

elossname(Z)
+NK log2

DC

elossvalue(Z)
+KD log2

TL −D

De(1+o(1))lossvalue1(Z)
− o(KD)

]
= N log2

N0 −N

eEZ lossname(Z)
+NK log2

DC

eEZ lossvalue(Z)
+KD log2

TL −D

De(1+o(1))EZ lossvalue1(Z)
− o(KD)

Remark I.2. For a language model, such quantities can be computed from its auto-regressive cross-
entropy loss. For instance, when evaluating the model on the sentence “Anya Briar Forger’s
ID 7 is v7,1, . . . , v7,C ,” summing up (not averaging!) the loss over the tokens in “Anya Briar
Forger” yields exactly − logPrR

[
F⊤(W (Z), R) = n

]
for n = “Anya Briar Forger”; sum-

ming up the loss over the token v7,1 results in − logPrR
[
F⊤
1 (W (Z), n, a,R) = v7,1

]
for

this n and a = “ID 7”; and summing up the loss over the entire sequence v7,1, . . . , v7,C gives
− logPrR

[
F⊤(W (Z), n, a,R) = v7,1, . . . , v7,C

]
. This holds regardless of the tokenizer or value

length.

Theorem 3.1 (bit complexity lower bound). Suppose N ≥ Ω(D logN). We have

log2 |W| ≥ E
Z

[
N log2

N0 −N

elossname(Z)
+NK log2

DC

elossvalue(Z)
+KD log2

TL −D

De(1+o(1))lossvalue1(Z)
− o(KD)

]
= N log2

N0 −N

eEZ lossname(Z)
+NK log2

DC

eEZ lossvalue(Z)
+KD log2

TL −D

De(1+o(1))EZ lossvalue1(Z)
− o(KD)

The goal of the paper is to study how the number of model parameters competes with this bound.

Corollary I.3 (no-error case). In the ideal case, if for every data Z , F can generate a name from
N with exact 1/N probability each, then lossname(Z) = logN ; and if F can 100% accurately
generate values given (n, a) pairs, then lossvalue(Z) = lossvalue1(Z) = 0. In such a case,

log2 |W| ≥ N log2
N0 −N

N
+NKC log2 D +KD log2

TL −D

D
− o(KD)

asymptotically matching the upper bound Proposition 2.3.
Remark I.4 (why “sum of 3”). It is essential to obtain a lower bound that is the sum of the three
components; neglecting any may result in a suboptimal bound (see examples in Appendix D.4).
Remark I.5 (why “random data”). Studying a lower bound for a fixed dataset Z is impossible — a
model could hard-code Z into its architecture even without any trainable parameter. Therefore, it is
necessary to consider a lower bound with respect to a distribution over datasets.

Proof difficulties. If names are fixed (N = N0) and there are N pieces of knowledge, each
uniformly chosen from a fixed set [T], it is straightforward that any model F (W), capable of learning
such knowledge perfectly, must satisfy log2 |W| ≥ N log2 T . To relate this to Theorem 3.1, we
encounter three main challenges. First, the model F may only learn the knowledge with a certain
degree of accuracy, as defined by the cross-entropy loss. Second, N ≠ N0 so names need to be
learned — even a perfect model cannot achieve zero cross-entropy loss when generating names.
Third, there is a dependency between knowledge pieces — the value depends on the name and the
choice of the diversity set (i.e., Da). The proof of Theorem 3.1 is deferred to Appendix I.

24We use En or En,a to denote uniform random selection of n ∈ N , a ∈ A.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

I.1 A USEFUL LEMMA

We present a crucial lemma that establishes the bit complexity required to encode random variables
based on the probability that these variables match specific reference values.

Lemma I.6. Let Q1, . . . ,Qk be fixed sets (we call domains), and assume that for each i ∈ [k], Qi is
independently and randomly chosen from its corresponding domain Qi. Denote Q = (Q1, . . . , Qk)
and view Q as the training data.

Assume there exists a function W (Q) ∈ W , which we regard as the parameters of a model computed
(i.e., trained) from the training data Q.

Furthermore, consider an evaluation function Fi that predicts

∀i ∈ [k] : Pi = Fi(W (Q), Q1, Q2, · · · , Qi−1, R) with pi(Q) := Pr
R
[Pi = Qi | Q] .

Here, F is parameterized by W (Q) and may rely on previous data Q1, . . . , Qi−1, and new random-
ness R. Then, it follows that

log |W| ≥
∑
i∈[k]

log
(
E
Q
[pi(Q)]× |Qi|

)
≥ E

Q

[∑
i∈[k]

log
(
pi(Q)× |Qi|

)]
. (I.1)

Proof of Lemma I.6. Since the second inequality of (I.1) trivially comes from Jensen’s inequality,
we only prove the first one.

When i = 1, we have P1 = F1(W (Q), R) and one can prove the lemma by a simple counting
argument, using the property that ∀R, P1 = F1(W (Q), R) has at most |W| choices of values.

When i ≥ 2, we can merge data points Q1, Q2 to be a new data point Q′ with domain Q′ =
Q1 × Q2. We can construct P ′ = (P1, P2) from function F1, F2 by sampling R1 to generate
P1 = F1(W (Q), R), and then sample independent R2 to generate P2 = F2(W (Q), Q1, R). We
know that PrR1,R2

[P ′ = Q′ | Q] = PrR1
[P1 = Q1 | Q]PrR2

[P2 = Q2 | Q] = p1(Q) · p2(Q).
The lemma now follows using the following identity:

log(p1(Q)|Q1|) + log(p2(Q)|Q2|) = log(p1(Q)p2(Q)|Q1||Q2|) . □

I.2 WARMUP EXAMPLES

Let us first see two warmup applications of Lemma I.6.

Value-only. Let g1, . . . , gN ∈ [T], where each gi is i.i.d. uniformly chosen at random from
[T]. Think of these as values. Suppose a model, parameterized by W , is trained on the training
data Z =

(
g1, ..., gN

)
. Assume this model, for a given index i ∈ [N], can generate a random

prediction fi corresponding to gi. We can represent this model as fi(W (Z), R), where R denotes
the randomness. The cross-entropy loss for this scenario (averaged over all possible training data) is
expressed as

loss := E
g
[loss(g)] := E

g

[1

N

∑
i∈[N]

− logPr
fi
[fi = gi]

]
≥ 0

Now we apply Lemma I.6 by setting Q1 = ...QN = [T], Qi = gi, and Pi = fi. We have

log |W| ≥ E
g

[∑
i∈[N]

logPr
fi
[fi = gi] + log T

]
= N log T −N E

g
loss(g) = E

g
N log

T

eloss(g)
.

Changing the base immediately yields a bit complexity lower bound of log2 |W| ≥ N log2
T

eloss . As
the loss approaches zero, this matches the bit complexity upper bound.

Name-only. Let g1, . . . , gN ∈ [N0] be N distinct elements from [N0], sampled uniformly at
random without replacement, and considered as names. Suppose a model f , parameterized by W , is
trained on the dataset Z =

(
g1, . . . , gN

)
to predict a name. We denote this as f(W (Z), R), where

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

R represents randomness. The cross-entropy loss for this scenario is defined as

loss := E
g
[loss(g)] := E

g

[1

N

∑
i∈[N]

− logPr
f
[f = gi]

]
≥ 0

To apply Lemma I.6, we define Q1 = [N0], Q2 = [N0−1], and continue until QN = [N0−N +1].
After uniformly randomly generating Q1, . . . , QN from Q1, . . . ,QN , we construct (g1, . . . , gN) ∈
[N]N as follows: set g1 = Q1; for g2, set it to Q2 if Q2 < Q1, otherwise g2 = Q2 + 1; and in
general, define gi as the Qi-th smallest element in [N0] \ {g1, . . . , gi−1}. This method provides
an alternative way to generate Z = (g1, . . . , gN), denoted as Z(Q). For each i ∈ [N], we define
Pi as follows: first, generate f = f(W(Z), Ri) using fresh randomness Ri. Set Pi := s if f is
the s-th smallest element in [N0] \ {g1, . . . , gi−1}, or a special symbol such as ∅ if f is among
{g1, . . . , gi−1}. (Note importantly, this definition of Pi necessitates knowledge of g1, . . . , gi−1;
however, this is permissible as Lemma I.6 allows Pi to depend on Q1, . . . , Qi−1.) For every fixed
Q (and thus fixed g),∑
i∈[N]

log
(
pi(Q)

)
=

∑
i∈[N]

log
(
Pr
Pi

[Pi = Qi]
)
=

∑
i∈[N]

log
(
Pr
Ri

[f(W(Z), Ri) = gi]
)
= −N loss(g)

Applying Lemma I.6 we have

log |W| ≥ E
Q

[∑
i∈[N]

log
(
pi(Q)× |N0 − i+ 1|

)]
≥ E

Q

[
N log

N0 −N

eloss(g)

]
= N log

N0 −N

eEQ loss(g)
.

Ideally, if the model f can perfectly memorize the entire training set {Z} = (g1, . . . , gN), its best
possible loss loss(g) = logN is achieved. Thus, if the model can perfectly learn this training
set, the bit complexity lower bound satisfies log |W| ≥ N log N0−N

N ≥ (1 − o(1))N log N0

N when
N ≪ N0.

I.3 MAIN PROOF

We recommend that readers first review the warmup examples in Section I.2 before proceeding with
this proof.

Proof of Theorem 3.1. Let us first construct the domains Qi’s in Lemma I.6.

1. Let Q1 = [N0], Q2 = [N0 − 1] · · · QN = [N0 −N + 1].

2. Let
(
QN+jD+1, . . .QN+jD+D

)
=

(
[TL], [TL−1], . . . , [TL−D+1]

)
for every j = 0, . . . ,K−

1.

3. Let QN+KD+1 = · · · = QN+KD+NK = [DC].

Recall that each Qi is independently and uniformly generated at random from Qi. We now present
an alternative method for generating the training dataset Z(Q).

1. Construct N = (n1, . . . , nN) as follows: Let n1 be the Q1-th name from N0; for i > 1, let ni

be the Qi-th name from N0 \ {n1, . . . , ni−1}.

2. For each a′ ∈ [K], let a be the a′-th attribute in A. Construct Da = (w1, . . . , wD) as follows:
Let w1 be the QN+(a′−1)D+1-th element in T L; for i > 1, let wi be the QN+(a′−1)D+i-th
element in T L \ {w1, . . . , wi−1}.

3. For the n′-th name n and the a′-th attribute a, assign its value v⋆(n, a) = (v1, . . . , vC) ∈ (Da)
C

by setting each vi as the si-th element in Da, where the integer sequence (s1, . . . , sC) :=
QN+KD+(n′−1)K+a′ ∈ [DC].

It is easy to verify that this gives the same dataset distribution as Def 2.2. Next, consider Q being
fixed (thus the dataset Z being fixed), we construct P1, P2, · · · , PN+KD+NK using the given model
functions F⊤(W (Z), R) and F⊥(W (Z), n, a,R).

Name part. For the name part, construct Pi for i ∈ [N] following the approach from the
“value-only” warmup example. Specifically, let Ri be fresh randomness, and define Pi = s if
F⊤(W ({Z}), Ri) matches the s-th element in N0 \ {n1, . . . , ni−1}, or an arbitrary symbol ∅ if it

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

falls within {n1, . . . , ni−1}.25 Adopting the analysis from the “name-only” warmup example, we
obtain ∑

i∈[N] logPrPi
[Pi = Qi] = −N lossname(Z) . (I.2)

Diversity Part. For the diversity component, we construct the Pi’s as follows. For each
a′ ∈ [K], let a denote the a′-th attribute in A. We form PN+(a′−1)D+i by initially cal-
culating F⊥(W (Z), n, a,Ri), where n ∈ N is selected uniformly at random. 26 Subse-
quently, if F⊥(W (Z), n, a,Ri) corresponds to the s-th element in T L \ {w1, . . . , wi−1}, then set
PN+(a′−1)D+i = s; otherwise, set PN+(a′−1)D+i = ∅.27

Now, let a be the a′-th element in A. Consider Q as fixed, with randomness arising solely from the
calculation of Pi’s. Note that Q establishes an order of elements in Da, denoted by w1, . . . , wD. We
have∑
i∈[D]

log Pr
PN+(a′−1)D+i

[PN+(a′−1)D+i = QN+(a′−1)D+i] =
∑
i∈[D]

log E
n∈N

Pr
R

[[
F⊥
1 (W (Z), n, a,R) = wi

]]
=

∑
w∈Da

log E
n∈N

Pr
R

[[
F⊥
1 (W (Z), n, a,R) = w

]]
=: ♠a

Let us denote by Nw,a the set of n ∈ N so that v⋆(n, a) = w. We have

♠a =
∑

w∈Da

log
∑
n∈N

Pr
R

[
F⊥
1 (W (Z), n, a,R) = w

]
−D logN

①
≥

∑
w∈Da

log
∑

n∈Nw,a

Pr
R

[
F⊥
1 (W (Z), n, a,R) = w

]
−D logN

=
∑

w∈Da

log
1

|Nw,a|
∑

n∈Nw,a

Pr
R

[
F⊥
1 (W (Z), n, a,R) = w

]
−D logN +

∑
w∈D

log |Nw,a|

②
≥

∑
w∈Da

1

|Nw,a|
∑

n∈Nw,a

logPr
R

[
F⊥
1 (W (Z), n, a,R) = w

]
−D logN +

∑
w∈D

log |Nw,a|

Above, ① uses monotonicity of the log function and ② uses convexity of the log function. Using
simple Chernoff bound, one can see that as long a N ≥ Ω(D logN), with high probability |Nw,a| ≥
(1− o(1))ND for all w ∈ D. Thus, we know with high probability

♠a ≥ (1 + o(1))D
∑

w∈Da

1

N

∑
n∈Nw,a

logPr
R

[
F⊥
1 (W (Z), n, a,R) = w

]
−D logD − o(D)

= (1 + o(1))D
1

N

∑
n∈N

logPr
R

[
F⊥
1 (W (Z), n, a,R) = v⋆(n, a)

]
−D logD − o(D)

Thus, summing up over all the diversity part, we have (recall we are fixing Q and thus fixing Z)∑
i∈[KD]

log Pr
PN+i

[PN+i = QN+i]

≥ (1 + o(1))D
1

NK

∑
n∈N ,a∈A

logPr
R

[
F⊥
1 (W (Z), n, a,R) = v⋆(n, a)

]
−KD logD − o(KD)

= −(1 + o(1))Dlossvalue1(Z)−KD logD − o(KD) . (I.3)

25Importantly, Pi may depend on n1, . . . , ni−1; however, since Lemma I.6 permits Pi to depend on
Q1, . . . , Qi−1, this is acceptable.

26Importantly, PN+(a′−1)D+i depends on N ; however, since Lemma I.6 permits Pi to depend on
Q1, . . . , Qi−1, and since N is uniquely determined by Q1, . . . , QN , this is acceptable.

27Importantly, PN+(a′−1)D+i depends on w1, . . . , wi−1; however, since Lemma I.6 permits Pi to depend
on QN+(a′−1)D+1, . . . , QN+(a′−1)D+i−1, this is acceptable.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Value part. For the value part, we construct PN+KD+1, . . . , PN+KD+NK as follows. For
PN+KD+(n′−1)K+a′ , letting n be the n′-th name in N and a be the a′-th attribute in A.
Let us compute F⊥(W (Z), n, a,R) and find the corresponding s1, . . . , sC ∈ [D] such that
F⊥
i (W (Z), n, a,R) is the si-th element in Da for each i ∈ [C]. If not found, we define

PN+KD+(n′−1)K+a′ = ∅; otherwise, define PN+KD+(n′−1)K+a′ = (s1, . . . , sC) ∈ [DC].28

Following the same simple argument as the “value-only” warmup example, we have∑
i∈[NK]

log Pr
PN+KD+i

[PN+KD+i = QN+KD+i] =
∑

n∈N ,a∈A
Pr

[
F⊥(W (Z), n, a,R) = v⋆(n, a)

]
= −NKlossvalue(Z)

(I.4)

Summing (I.2) (I.3) and (I.4), and applying Lemma I.6, we have

log |W| ≥ E
Z

[
N log

N0 −N

elossname(Z)
+NK log

DC

elossvalue(Z)
+KD log

TL −D

De(1+o(1))lossvalue1(Z)
− o(KD)

]
.

This finishes the proof of Theorem 3.1. □

J MISSING REMARK

Remark J.1. Due to the significant overlap among textbooks, especially those designed for PreK-12
education, estimating the total amount of knowledge contained within all English-language text-
books can be challenging. However, we attempt to do so as follows.

According to a 2023 article, Pearson Education, a UK-based educational publisher, reported the
highest revenue in 2021, with Wiley and McGraw Hill being the top two US-based educational
publishers in terms of revenue.29

• Pearson’s official website lists fewer than 2,100 textbooks.30

• Wiley’s official website lists fewer than 69,000 textbooks.31

• McGraw Hill lists fewer than 22,000 textbooks for PreK-12 education, many of which have
significant content overlap (as many are tailored for one of the 50 US states).32 They list fewer
than 2,000 textbooks for higher education.

Taking these figures into account, it seems reasonable to estimate that the content of all English-
language textbooks could be condensed into no more than 100,000 textbooks. Assuming an average
of 160,000 words per book (e.g., 400 pages with 400 words each), this would amount to a total of
16 billion words.

28Again, importantly, we can do so because PN+KD+(n′−1)K+a′ depends on N ,Da but they can be com-
puted using the values of Q1, . . . , QN+KD .

29https://wordsrated.com/education-book-publishing-companies-statistics/,
accessed March 2024.

30https://www.pearson.com/en-us/pearsonplus/search.html for their full list of eText-
books and http://www.mypearsonstore.com/bookstore/browse.asp for their full list of hard
copy books, both accessed March 2024.

31https://www.wiley.com/en-us/subjects, accessed March 2024. We wrote a code to sum
up all the books in all of their subcategories; our code may double count books, so this is only a safe upper
bound. We used this number instead of the “21,000” online books mentioned on https://www.wiley.
com/learn/librarysolutions/online-books-purchase.html, accessed March 2024.

32https://www.mheducation.com/search.html?searchQuery=&page=1&sortby=
title_desc&order=desc&bu=seg&TYPE=Products&PRODUCT_TYPE_PATH=_Student+
Materials, accessed March 2024.

35

https://wordsrated.com/education-book-publishing-companies-statistics/
https://www.pearson.com/en-us/pearsonplus/search.html
http://www.mypearsonstore.com/bookstore/browse.asp
https://www.wiley.com/en-us/subjects
https://www.wiley.com/learn/librarysolutions/online-books-purchase.html
https://www.wiley.com/learn/librarysolutions/online-books-purchase.html
https://www.mheducation.com/search.html?searchQuery=&page=1&sortby=title_desc&order=desc&bu=seg&TYPE=Products&PRODUCT_TYPE_PATH=_Student+Materials
https://www.mheducation.com/search.html?searchQuery=&page=1&sortby=title_desc&order=desc&bu=seg&TYPE=Products&PRODUCT_TYPE_PATH=_Student+Materials
https://www.mheducation.com/search.html?searchQuery=&page=1&sortby=title_desc&order=desc&bu=seg&TYPE=Products&PRODUCT_TYPE_PATH=_Student+Materials

	1 Introduction
	2 Preliminaries
	3 Bit Complexity Lower Bound and Capacity Factors
	4 Results 1-3: Base Scaling Laws
	5 Result 4: Training Time vs Scaling Law
	6 Results 5-7: Model Architecture vs Scaling Law
	7 Result 8: Quantization vs Scaling Laws
	8 Result 9: Mixture of Experts vs Scaling Laws
	9 Results 10-12: Junk Data vs Scaling Laws
	A Results 2-3: Base Scaling Laws
	A.1 Data Formats — Diversity and Rewriting
	A.2 Parameterized Scaling Laws

	B Result 7: Model Architecture vs Scaling Law - A Closer Look
	C Result 8: Quantization vs Scaling Laws
	C.1 Where Is the Knowledge Stored?

	D More on GPT2 Scaling Laws
	D.1 Base Scaling Laws
	D.2 Knowledge Memorization vs. Extraction
	D.3 Other Biography Datasets
	D.4 More on Parameterized Scaling Laws

	E More on Model Architectures
	E.1 1000-Exposure Setting
	E.2 100-Exposure Setting

	F More on Quantization
	G More on Mixture of Experts
	H More on Junk Data vs. Scaling Laws
	I Proof of Theorem 3.1
	I.1 A Useful Lemma
	I.2 Warmup Examples
	I.3 Main Proof

	J Missing Remark

