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ABSTRACT

Scaling laws describe the relationship between the size of language models and
their capabilities. Unlike prior studies that evaluate a model’s capability via loss
or benchmarks, we estimate information-theoretically the number of knowledge
bits a model stores. We focus on factual knowledge represented as tuples, such
as (USA, capital, Washington D.C.) from a Wikipedia page. Through multiple
controlled datasets, we establish that language models can and only can store 2
bits of knowledge per parameter, even when quantized to int8, and such knowledge
can be flexibly extracted for downstream applications. More broadly, we present
12 results on how (1) training duration, (2) model architecture, (3) quantization,
(4) sparsity constraints such as MoE, and (5) data signal-to-noise ratio affect a
model’s knowledge storage capacity.

1 INTRODUCTION

The scaling laws of large language models remain a pivotal area of research, enabling predictions
about the performance of extremely large models through experiments with smaller ones. On the
training time aspect, established scaling laws (Hoffmann et al., 2022; Kaplan et al., 2020; Hernandez
et al., 2021; Alabdulmohsin et al., 2022; Henighan et al., 2020) discuss the optimal training flops
versus model size. However, recent studies (Muennighoff et al., 2023; Gunasekar et al., 2023; Li
et al., 2023) challenge these laws, demonstrating that training smaller models with significantly
more flops can yield superior results. While these laws talk about how much time/data is needed to
train a model of a certain size, another fundamental question is: what is the ultimate performance
a model can achieve, assuming sufficient training? Despite the known emergent behaviors in large
models (Bubeck et al., 2023; Yu et al., 2023), there is a lack of a principled, quantitative analysis on
how model size impacts its capacity when adequately trained.’

Traditional theory on overparameterization suggests that scaling up model size in sufficiently trained
models can enhance memorization of training data (Allen-Zhu et al., 2019b), improve generalization
error (Hestness et al., 2017; Rosenfeld, 2021; Rosenfeld et al., 2019), and better fit complex target
functions (Li & Liang, 2018; Allen-Zhu et al., 2019a). However, these results often overlook large
constant or polynomial factors, leading to a significant discrepancy from practical outcomes.

In this paper, we introduce a principled framework to examine highly accurate scaling laws concern-
ing model size versus its knowledge storage capacity. It is intuitive that larger language models can
store more knowledge, but does the total knowledge scale linearly with the model’s size? What is the
exact constant of this scaling? Understanding this constant is crucial for assessing the efficiency of
transformer models in knowledge storage and how various factors (e.g., architecture, quantization,
training duration, etc.) influence this capacity. Knowledge is a, if not the, pivotal component of
human intelligence, accumulated over our extensive history. Large language models like GPT-4 are
celebrated not just for their sophisticated logic but also for their superior knowledge base. Despite

!"There is a rich literature comparing how pretrained models perform on benchmark tasks. Most comparisons
are for different model families trained over different data: if LLaMA-70B is better than Mistral-7B, does the
gain come from its choice of pretrain data, or the architecture difference, or really the size of the model? Some
comparisons are among the same architecture, such as LLaMA-70B scores 63.6% on the world knowledge
benchmark while LLaMA-7B scores only 48.9% (Touvron et al., 2023b); does this mean increasing model size
by 10x increases its capacity only to 130% = 63.6,/48.9? Thus, it is highly important to use a more principled
framework to study scaling laws in a controlled setting.
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rumors of GPT-4 having over 1T parameters, is it necessary to store all human knowledge?

Knowledge Pieces. Defining “one piece of human knowledge” precisely is challenging. This paper
aims to make progress by focusing on a restricted, yet sufficiently interesting domain. We define a
piece of knowledge as a (name, attribute, value) tuple, e.g., (Anya Forger, birthday, 10/2/1996); and
many data in world knowledge benchmarks can be broken down into pieces like this.?

We generate synthetic knowledge-only datasets by uniformly at random generating (name, attribute,
value) tuples from a knowledge base and converting them into English descriptions. We pretrain
language models (e.g., GPT-2, LLaMA, Mistral) on these texts using a standard auto-regressive
objective from random initialization, and “estimate” the learned knowledge. By varying the number
of knowledge pieces and model sizes, we outline a knowledge capacity scaling law.

Our idealized setting, free from irrelevant data, allows for more accurate scaling law computations
— we also discuss how “junk” data affects capacity later in Section 9. In contrast, it is difficult
to quantify real-life knowledge; for instance, if LLaMA-70B outperforms LLaMA-7B by 30% on
a benchmark, it doesn’t necessarily mean a tenfold model scaling only boosts capacity by 30%
(see Footnote 1). The synthetic setting also lets us adjust various hyperparameters, like name/value
lengths and vocabulary size, to study their effects on knowledge capacity scaling laws. Most of the
paper shall focus on a setting with synthetically-generated human biographies as data, either using
predefined sentence templates or LLaMA2-generated biographies for realism.

Bit Complexity and Capacity Ratio. For IV knowledge pieces (i.e., IV tuples), we define the bit
complexity as the minimum bits required to encode these tuples. For any language model trained on
this data, we calculate its “bit complexity lower bound” (see Theorem 3.1), describing the minimum
number of bits needed for the model to store the knowledge at its given accuracy. This formula is
nearly as precise as the upper bound, within a 1 — o(1) factor. We train language models of varying
sizes on knowledge data with different /V values. By comparing the models’ trainable parameters
to the bit complexity lower bounds, we evaluate their knowledge storage efficiency. A model with
100M parameters storing 220M bits of knowledge has a capacity ratio of 2.2 bits per parameter.

Our results. Our findings are summarized as follows:

* SECTION 4: BASE SCALING LAW FOR GPT2.3

— REsULT 1+2+3: GPT2, trained with standard AdamW, consistently achieves a 2bit/param
capacity ratio across all data settings after sufficient training. This includes various model
sizes, depths, widths, data sizes, types (synthetic/semi-synthetic), and hyperparameters (e.g.,
name/value length, attribute number, value diversity).

Remark 1.1. This predicts a sufficiently trained 7B language model can store 14B bits of
knowledge, surpassing the knowledge of English Wikipedia and textbooks by our estimation.*
Remark 1.2. When we say the model stores knowledge, it isn’t word-by-word memorization. In-
stead, the knowledge is flexibly extractable (e.g., via QAs like “What is Anya Forger’s birthday)
and applicable in downstream tasks (e.g., comparing birthdays) via fine-tune.

SECTION 5: HOW TRAINING TIME AFFECTS MODEL CAPACITY.

Achieving a 2bit/param capacity requires each knowledge piece to be visited 1000 times during
training, termed 1000-exposure to differentiate from traditional “1000-pass” terminology, as a
single data pass can expose a knowledge piece 1000 times.’

L]

— RESULT 4: With 100 exposures, an undertrained GPT2’s capacity ratio falls to 1bit/param.
Remark 1.3. Another perspective on Result 4 is that rare knowledge, encountered only 100 times
during training, is stored at a 1bit/param ratio.

SECTION 6: HOW MODEL ARCHITECTURE AFFECTS MODEL CAPACITY.
We tested LLaMA, Mistral, and GPT?2 architectures with reduced or even no MLP layers.

Examples: (Africa, largest country, Sudan) and (It Happened One Night, director, Frank Capra) in Trivi-
aQA, or (Teton Dam, collapse date, 06/05/1976) and (USA, Capital, Washington D.C.) in NQ data.

3In this paper, GPT2 refers to that the GPT2 model with rotary embedding and without dropout.

“English Wikipedia now contains 4.5 billion words, and we estimate that the non-overlapping contents of
English textbooks have fewer than 16 billion words, see Remark J.1. This amounts to 20.5 billion words, and
we believe they contain fewer than 14 billion bits of knowledge.

SFor example, it is plausible that one pass through Wiki data might present the knowledge piece (US, capital,
Washington D.C.) 1000 times, and one pass through the Common Crawl might present it a million times.
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— REsuULT 5: In the 1000-exposure setting, a 2bit/param capacity ratio appears to be a universal
rule: all models, even without MLP layers, closely achieve this ratio.
— REsULT 6: With 100 exposures, some archs show limitations; notably, LLaMA/Mistral’s
capacity ratio is 1.3x lower than GPT2’s, even after best-tuned learning rates.
— REsSULT 7: Further controlled experiments indicate that “gated MLP” usage leads to
LLaMA/Mistral architecture’s underperformance in knowledge storage.
Remark 1.4. Our framework offers a principled playground to compare models. This con-
trasts with traditional comparisons based on loss/perplexity, which can produce debatable con-
clusions.® Controlled data also reveal more significant differences between models.’
e SECTION 7: HOW QUANTIZATION AFFECTS MODEL CAPACITY. (deferred to appendix)
We applied GPTQ (Frantar et al., 2022) to quantize models from the base scaling laws to int8 or
int4. Surprisingly,
— RESULT 8: Quantizing to int8 does not compromise model capacity (even for models on the
boundary of 2bit/param); however, quantizing to int4 reduces capacity to 0.7bit/param.
Remark 1.5. Since int8 is 8bit, LLMs can exceed 1/4 of the theoretical limit for storing knowl-
edge; thus knowledge must be very compactly stored inside the model across all layers.

e SECTION 8: HOW SPARSITY (MOE) AFFECTS MODEL CAPACITY.
Mixture-of-experts (MoE) models offer faster inference than dense models but often underper-

form dense models with the same total parameter count (not effective parameters). We show that
this performance drop is likely not due to a lack of knowledge storage capability.

— RESULT 9: MoE models, even with 32 experts, only reduce 1.3x in capacity compared to the
base scaling laws, despite using just 8.8% of the total parameters during inference.

* Section 9: HOW JUNK KNOWLEDGE AFFECTS MODEL CAPACITY.
Not all pretrain data are equally useful. Much of the internet data lacks valuable knowledge

for training language models (Li et al., 2023), while knowledge-rich sources like Wikipedia
represent only a small fraction of the training tokens.

— REsULT 10+11: Junk data significantly reduces model capacity. As an example, with a 1:7
ratio of “useful to junk” training tokens, capacity for useful knowledge loses by a factor of
20x, even when useful knowledge is exposed 100 times.®

— RESULT 12: An effective mitigation is to prepend a special token to all useful knowledge.
This is akin to adding a domain name like wikipedia.org at the start of every Wikipedia
paragraph; the model autonomously identifies high-quality data without prior knowledge of
valuable domains. In the example above, the loss factor improves from 20x to 2x.

Conclusion. Overall, our approach to studying knowledge capacity scaling laws offers a flexible
and more accurate playground compared to traditional methods that evaluate language models
trained on internet data against real-world benchmarks. In this paper, we’ve conducted a thorough
comparison across different model architectures and types of knowledge. While we haven’t explored
various quantization methods, this represents a promising direction for future research. We’ve also
investigated the impact of junk data and proposed mitigation strategies. We believe the insights
gained from this principled exploration can assist practitioners in making informed decisions about
model selection, training data preparation, and further theoretical research into LLMs.

2 PRELIMINARIES

In this paper, a piece of knowledge is a tuple of three strings: (name, attribute, value) = (n, a, v).
For instance, n = “Anya”, a = “birthday”, v = “Oct 2, 1996”.

Knowledge (Theoretical Setting). The complexity of a knowledge set is determined not only by
the number of knowledge pieces but also by the length of the value string v, the diversity of the

% A model might achieve better perplexity by performing much better on simpler data but poorer on complex
data, or by excelling in reasoning but not in knowledge. Our results offer a more nuanced view: GatedMLP
doesn’t affect frequent knowledge but does impact moderately rare knowledge (e.g., with 100 exposures).

"For example, Shazeer (2020) found GatedMLP offers a ~ 1% accuracy boost on benchmark tasks; our
findings of a 1.3x difference translates for instance to accuracies 90% vs. 70%.

8The loss factor improves to 3x/1.5x/1.3x with 300/600/1000 exposures of useful knowledge, compared to
Result 4 which involves training without junk for only 100 exposures.
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vocabulary, and other factors. For instance, if the attribute @ ="“passport number,” then the value
v contains more bits of knowledge compared with a =*“gender,” because the former has signifi-
cantly higher diversity. If the attribute a =*birth date,” then the value v could consist of 3 chunks:
(10,2, 1996). Considering these examples, we propose a set of hyperparameters that may influence
the complexity of knowledge:

1. N — the number of (distinct) names 7, denoted by V.

2. K — the number of attributes a, with A representing the set of attributes.

3. T — the number of tokens 7', where every character in v belongs to 7 for some | 7| = T'. For
example, we can think of 7" as “vocab size” in a tokenizer.
4. C and L — the number of chunks and the length of each chunk for the value: each value
v € (TE)C can be expressed as v = (vq,v2,- -+ ,vc), where v; € T,
5. D — the diversity of chunks: for each piece of knowledge (n,a,v) and ¢ € [C], the chunk v;
belongs to D, C TL, for some set with cardinality D := |D,| < TT.
Remark 2.1. For notation simplicity, we have assumed that all chunks within an attribute a € A
share the same diversity set D,, and all chunks are of equal length, etc. This enables us to more
easily demonstrate the influence of each hyperparameter on a model’s capacity. In practice, different
attributes may have different diversity sets or value lengths — e.g., Dpagsport could be much larger
than Dgenger. Our theoretical results do apply to these settings, albeit with more complex notation.

In our theoretical result, we introduce a dataset bioD(N, K, C, D, L, T)) defined as follows:

Definition 2.2 (bioD data generation). Consider a fixed set of K attributes, such as a set A =
{ “ID1”...“ID K”}, and a fixed set Ny of candidate names (with Ny := |[Np| > N).

1. Generate N names uniformly at random (without replacement) from Ny to form N.

2. For each attribute a € A, generate D distinct strings wi,q, - ,Wp,q € TE uniformly at
random (without replacement) to form the diversity set D,,.
3. For each name n € N and attribute a € A, generate value v*(n,a) = (vi,v2,- -+ ,vc) by

sampling each v; € D, uniformly at random.

Let Z := {(n,a,v*(n,a)} be the knowledge set.

neN,ac A

Proposition 2.3 (trivial, bit complexity upper bound). Given Ny and A and T, to describe a
knowledge set generated in Def 2.2, one needs at most the following number of bits:

logy (W) + NEKClog, D + Klog, (%)) ~ Nlog, Aol 4+ NKClog, D+ KDlog, %o .

Knowledge (Empirical Setting). We utilize both the synthetic bioD dataset, generated as per
Def 2.2, and several human biography datasets to evaluate language model scaling laws. Allen-Zhu
& Li (2024) introduced a synthetic biography dataset comprising /N randomly-generated (fake) in-
dividuals, each characterized by six attributes: birth date, birth city, university, major, employer, and
working city.” To translate these tuples into natural language, in their bioS dataset, each individual
is described by six randomly selected English sentence templates corresponding to their attributes.
We direct readers to their paper for more details but provide an illustration below:

Anya Briar Forger was born on October 2, 1996. She spent her early years in Princeton, NJ. She received mentorship and guidance from faculty

members at Massachusetts Institute of Technology. She completed her education with a focus on Communications. She had a professional
role at Meta Platforms. She was employed in Menlo Park, CA.

In this paper, we explore three variations of such datasets: @D
* bioS(N) represents an online dataset for N individuals, where each biography is generated with
new randomness for the selection and ordering of six sentence templates on-the-fly.
. bioSS'mple(N ) denotes a similar dataset, but here, each biography is generated once with a fixed
random selection and ordering of the sentence templates.
* bioR(NV) refers to the same dataset, but with each biography written 40 times by LLaMA2 (Tou-
vron et al., 2023b) to increase realism and diversity.

°All attributes, except for the working city (determined by the employer’s headquarters), are chosen uni-
formly and independently at random. There are Ny = 400 x 400 x 1000 possible person names, 12 x 28 x 200
birth dates, 200 birth cities, 300 universities, 100 majors, and 263 employers. Additionally, a random pronoun
with 2 possibilities is chosen for each person.
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These datasets correspond to the bioS multi+permute, bioS single+permute, and bioR multi data
types discussed in (Allen-Zhu & Li, 2024), albeit with minor differences. While their study focused
on N = 100K, we expand our scope for bioS to consider N up to 20M/; for bioR, we limit N to
1M, which already yields a dataset size of 22GB.

As introduced in Section 1, if each knowledge piece is seen 1000 times during training, we call
this 1000 exposures. For bioS(NV), 1000 exposures will unlikely include identical biography data
because there are 50 sentence templates for each attribute and a total of 50 x 6! possible biogra-

phies per person. For biOSSimple(N), 1000 exposures mean 1000 passes of the data. For bioR(V),
1000/100 exposures mean only 25/2.5 passes of the training data.

For the bioD dataset, we define Ny to be identical to bioS, with |[Ap| = 400 x 400 x 1000. We
encapsulate a person’s attributes within a single paragraph, employing random sentence orderings
and a consistent sentence template. For example:

Anya Briar Forger’s ID 7is v7,1,...,v7,c. HerID 2is va1,...,v2,c. [..] Her ID Sis vs 1, ..., v5,c.

In this paper, we primarily utilize bioS. To illustrate broader applicability and to better connect to
theoretical bounds, we also present results for bioSS'mple, bioR, and bioD.

Models. GPT2 was introduced in (Radford et al., 2019). Due to its limitations from the absolute
positional embedding, we adopt its rotary positional embedding variant (Su et al., 2021; Black et al.,
2022), which we still refer to as GPT2 for convenience. Additionally, we disable dropout, which
has been shown to improve performance in language models (Touvron et al., 2023b). We explore
a wide range of model sizes while using a fixed dimension-per-head of 64. The notation GPT2-
{-h represents ¢ layers, h heads, and 64h dimensions; for example, GPT2-small corresponds to
GPT2-12-12. The default GPT2Tokenizer is used, converting people’s names and most attributes
into tokens of variable lengths. In examining the impact of model architectures on scaling laws in
Section 6, we will also use LLaMA/Mistral architectures (Touvron et al., 2023a; Jiang et al., 2023).

Training. We train language models from scratch (i.e., random initialization) using the specified
datasets. Knowledge paragraphs about individuals are randomly concatenated, separated by <EOS>
tokens, and then randomly segmented into 512-token windows. The standard autoregressive loss is
employed for training. Unless specified otherwise, training utilizes the default AdamW optimizer
and mixed-precision fp16. Learning rates and weight decays are moderately tuned (see appendix).

3 BIT COMPLEXITY LOWER BOUND AND CAPACITY FACTORS

When assessing the knowledge stored in a model, we cannot simply rely on the average, word-by-
word cross-entropy loss. For example, the phrase “received mentorship and guidance from faculty
members” in (2.1) does not constitute useful knowledge. We should instead focus on the sum of the
loss for exactly the knowledge tokens.

Consider a model F' with weight parameters W &€ W. Assume F' is trained on a
bioD(N, K,C, D, L,T) dataset Z as defined in Def 2.2 using any optimizer; this process is rep-
resented as W = W (Z) (the model’s weight is trained as a function of the training dataset Z).
During the evaluation phase, we express F through two functions: F'T (W, R), which generates
names, and F'- (W, n, a, R), which generates values given (7, a), where R denotes the randomness
used in generation. Let Fi-(W(Z2),n,a, R) represent the first chunk of F-(W(Z),n,a, R). We
evaluate F' by calculating the following three cross-entropy losses:

lossname(Z2) := Epen —logPrg [FT(W(Z), R) = n}
lossyaiue1(Z) := Epenaca — logPrp [FJ(W(Z), n,a, R) = vi(n, a)}
lossyaiue(Z) := Epenaca —log Pry [Fl (W(Z),n,a, R) = v*(n, a)}
We shall explain in Appendix I that these quantities are easy to be derived from the auto-regressive
entropy-loss using examples, and below we quickly state our bit-complexity lower bound theorem:
Theorem 3.1 (bit complexity lower bound). Suppose N > Q(Dlog N). We have

_ c L_
log, W[ > Ez [N 108y srsmermrzy + NEK10gy o —zy + KD ogy 5orrrattymossmrmer — O(KD)}
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(a) bioS(NV) data— 1000 exposures (b) bioS(V) data — 100 exposures

Figure 1: Scaling laws for GPT2 on bioS(V) data using fp16 (mixed-precision) for 1000/100 exposures.
Conclusion. The peak capacity ratios consistently exceed R(F') > 2 (resp. > 1) for 1000 exposures
(resp. 100 exposures) of pretraining on each knowledge piece, regardless of model depth/size.

Remarks. Each dot ¢-h represents GPT2 with / layers, h heads, and 64d dimensions. The learned
knowledge is calculated by the bit-complexity lower bound Theorem 3.1. Larger models? Training
GPT2-20-16 on bioS(10M) for 1000 exposures costs 8.5 days with 64 A100s, while GPT2-12-32
on bioS(20M) for 100 exposures took 2.4 days. In our synthetic setting, we see no need to scale up
further. Instead, we prefer to allocate GPUs to explore other aspects covered in this paper.

The goal of the paper is to study how the number of model parameters competes with this bound. We
defer the proof in Appendix I, and shall explain over there why proving such bound is non-trivial.

Motivated by Theorem 3.1, ignoring lower order terms, we define the empirical capacity ratio as

Definition 3.2. Given a model F with P parameters trained over a bioD(N, K, C, D, L, T') dataset
Z, suppose it gives p1 = 108Spame(Z), p2 = 10ssyaiue(Z), p3 = 10SSyaiue1 (£), we define its
capacity ratio and max capacity ratio

nC

N L
. Nlogy, pf +NKlog, o +K D log, ﬁ
R(F) = 1

R (F) = N log, %+NK01;g2 D+KDlog, T2
Remark 3.3. One must have R(F) < R™(F), and equality is obtained if the model is perfect.
For a fixed dataset, further increases in model size do not yield additional knowledge, thus R™®*(F')
approaches zero as the model size P increases. On the other hand, Theorem 3.1 implies, ignoring
lower-order terms, that if the model parameters are 8-bit (such as int8), then R(F') < 8.

For our bioS(V) data, we define a slightly reduced capacity ratio by omitting the diversity term.

Definition 3.4. Given a model F with P parameters trained over the bioS(N) dataset Z, suppose
it gives p1 = 108S,4me(Z2) and pa = 1088414 (2), its capacity ratio!”

N log, 238 +N log, 59 N log, X0+ N log, S
R(F) = 2 Pl = 2 P2 and Rmax(F) = og2 NP 082 P0o

Sor No = 400 x 400 x 1000 and Sy = 2 x (12-28-200) x 200 x 300 x 100 x 263 (c.f. Footnote 9).
Remark 3.5. Ignoring names, each person contains log,(Sg) ~ 47.6 bits of knowledge.

4 RESULTS 1-3: BASE SCALING LAWS

We first train a series of GPT2 models on the bioS(N) datasets (see Section 2) using mixed-
precision fp16. The training protocol ensures that each piece of knowledge is presented 1000 times,
a process we refer to as “1000 exposures.” It’s important to clarify that this differs from making
1000 passes over the data. For example, a single pass through Wiki data might expose the knowl-
edge (US, capital, Washington D.C.) 1000 times, whereas a pass through the Common Crawl might
do so a million times. Our synthetic bioS(V) data, trained for 1000 exposures, aims to replicate
such scenarios. Our initial findings are as follows: '

'"Here, one can let JC = {birth date, birth city, university, major, employer, gender} and accordingly define
lossyaiue(Z) := Bnen D4 — log Prr [FH(W(Z),n,a,R) =v*(n,a)].

"'We focus on models with depth > 2, and 1-layer models show slightly lower capacity ratios (see Figure 6).
Our model selection covers most natural combinations of transformer width/depth, details in Appendix D.
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Result 1 (Figure 1(a)). When trained for 1000 exposures on bioS(N), with N ranging from 10K to
10M, GPT2 models with sizes from IM to 0.5B parameters (irrespective of depth or width) demon-
strate the following:

(a) the peak capacity ratio R(F') consistently exceeds R(F') > 2;
(b) models with R™*(F') < 1.8 attain near-perfect knowledge accuracies R™™(F') = R(F);
(c) across all models, R(F') < 2.3.

Remark 4.1. Result 1(a), 1(b), and 1(c) elucidate three distinct facets of the scaling law.

* Result 1(a) highlights the maximum capacity across models; however, this could be misleading
if only a single model achieves this peak.

¢ Result 1(b) reinforces this by showing that all models with a maximum capacity R™*(F') < 1.8
can achieve such maximum capacity, i.e., R(F) &= R™*(F'). In words, this indicates that for a
dataset containing B bits of knowledge, selecting a model size P > B/1.8 is sufficient.

 Result 1(c) further strengthens this by indicating that no model exceeds capacity ratio 2.3.

For clarity, in subsequent results of this paper, we focus solely on the peak capacity ratio, with the
understanding that observations similar to Result 1(b) and Result 1(c) consistently apply.

Knowledge extraction. The “2bit/param” is not only word-by-word memorization. Such knowl-
edge is also extractable (e.g., via fine-tuning using QAs “What is Anya Forger’s birthday?”’) and can
be used for downstream tasks (Allen-Zhu & Li, 2024; 2023b). We also verify this in Appendix D.2.

We defer Result 2 and Result 3 to Appendix A. They show that a similar 2 bit/param laws also
apply to other data formats and especially to the bioD(N, K, C, D, L, T) data family not only with
increasing IV, but also with a wide range of hyperparameters X, C, D, L, T.

5 RESULT 4: TRAINING TIME VS SCALING LAW

What if the model is not sufficiently trained? For instance, there might be instances where knowl-
edge appears only 100 times throughout the pretraining phase. We also calculate the capacity ratios
for models trained with 100 exposures on bioS(NV). Our findings can be summarized as follows:

Result 4 (Figure 1(b)). When trained for only 100 exposures on the bioS(N) dataset, with N
ranging from 10K to 10M, across a broad spectrum of GPT2 models with sizes from IM to 0.5B, the
peak capacity ratio R(F') consistently exceeds R(F) > 1.

Therefore, although 1000 exposures may be necessary for a model to reach its maximum storage
capacity, training with just 100 exposures results in a capacity loss of no more than 2x.

In Section 9, we shall also consider knowledge that has extremely low (e.g., 1) or high (e.g., IM)
exposures. It may not be interesting to study them in isolation, but it becomes more intriguing
when they are examined alongside “standard” knowledge, which has appeared, for instance, for 100
exposures, and how this impacts the model’s capacity. These will be our Result 10 through 12.

6 RESULTS 5-7: MODEL ARCHITECTURE VS SCALING LAw

Several transformer architectures have been widely adopted, with LLaMA and Mistral among the
most notable. We outline their key distinctions from GPT2, with further details in Appendix E:

1. LLaMA/Mistral use GatedMLP layers, which is V(o(Wyz) - (Waz)) instead of Vo(Wx).
Shazeer (2020) suggested that gated activation might yield marginally improved performance.
Unlike GPT2, LLaMA/Mistral do not tie weights.

Mistral features larger MLP layers compared to GPT2/LLaMA.

Mistral promotes group-query attention, not so by GPT2/LLaMA.

LLaMA/Mistral employ a different tokenizer than GPT2.

GPT?2 uses the gelu activation function, LLaMA/Mistral opt for silu.

GPT2 implements layer normalization with a trainable bias.

Nounkwb

Do these architectural variations impact the models’ maximum capacities? Our findings suggest
that, in terms of knowledge capacity, GPT2 — when enhanced with rotary embedding and without
dropout — performs no worse than any other architecture choice above in the sufficient training
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Figure 2: Scaling laws for other model architectures on the bioS(V) data with 100 exposures.

Conclusion. In the 100-exposure setting, LLaMA/Mistral may underperform GPT2’s scaling law by
1.3x, even for large models. Reducing the size of GPT2’s MLP layer by 1/4 does not affect its scaling
law, but removing all MLP layers degrades performance. See Figure 5 for a closer comparison.

regime. We summarize the main findings below, deferring details to Appendix E.1:

Result 5 (Figure 11). In the 1000-exposure setting, architectures do not matter much:

e LLaMA architecture performs comparably to GPT2, albeit slightly inferior for the tiny model
(i.e., < 10M). This discrepancy can be mitigated by also requiring LLaMA architecture to tie
weights, as shown in Figure 11(c) compared to Figure 11(b).

* A similar observation applies to Mistral architecture (see Figure 11(d)).

* Reducing the MLP size of GPT2 architecture by 1/4 or even eliminating all MLP layers does
not affect its capacity ratio, see Figure 11(e) and Figure 11(f). This suggests, contrary to con-
ventional beliefs, the Attention layers are also capable of storing knowledge.

This indicates that the 2bit/param capacity ratio is a relatively universal law among most typical
(decoder-only) language model architectures. However, differences in architectures become appar-
ent in the insufficient training regime:

Result 6 (Figure 2). In the 100-exposure setting:

» Even for large models, LLaMA architecture’s capacity ratio can be 1.3x worse than GPT2, even
after optimally tuning learning rates. The results are similar for Mistral.

* Reducing GPT2’s MLP size by 1/4 has a negligible impact on the capacity ratio.

* Removing MLPs decreases the capacity ratio by more than 1.5x.

To investigate why the LLaMA is inferior to GPT2 in the 100-exposure (insufficiently trained) set-
ting, we closely examine LLaMA by gradually modifying its architecture back to GPT2 to identify
the key architectural changes. We call this Result 7 and defer the details to Appendix B. The quick
takeaway is that the use of GatedMLP layers in LLaMA made its knowledge capacity worse.

7 RESULT 8: QUANTIZATION VS SCALING LAWS

While deferring to Appendix C, the following figure summarizes our findings at a high level:

—Result 8

bioS data

quantizing — int8 does not affect
scaling laws at all

quantizing — int4 hurts capacity float16/32 '

by more than 2x
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8 RESULT 9: MIXTURE OF EXPERTS VS SCALING LAWS

An important way to enhance efficiency in modern language models is the incorporation of sparsity.
The Mixture of Experts (MoE) plays a crucial role in this regard (Fedus et al., 2022; Shazeer et al.,
2016). A question arises: do MoE models scale differently in terms of the capacity ratio? For an
MoE model, let P denote the total number of parameters in the model, including all experts. Due
to its inherent sparsity, the effective number of parameters can be much less than P. Our primary
observation is that MoE models scale similarly to dense models, even with 32 experts/layer.

Consider, for instance, GPT2, but with its MLP layer (d — 4d — d) replaced by 32 experts, each
following a d — d — d configuration. This setup uses 64d? total parameters, but during inference,
only 2d? parameters are used per token (e.g., when using topk = 1). After including the Attention
layers, which each have 4> parameters, the ratio between the total and the effective number of

2 2
parameters for the 32-expert MoE models is approximately % ~ 11.3.

One might wonder, given that during inference time, the model uses only 11.3x fewer parameters,
whether this affects the model’s capacity ratio by a factor close to 11.3x or closer to 1x? We show:

Result 9 (Figure 14 in Appendix G)). MoE is nearly fully efficient in storing knowledge, capable
of leveraging all its parameters despite the sparsity constraint. Specifically, consider the GPT2-
MOoE model with 32 experts. If we compute its capacity ratio with respect to the total number of
parameters and compare that to GPT2:

* in the 1000-exposure settings, the peak capacity ratio decreases by 1.3x; and
* in the 100-exposure settings, the peak capacity ratio decreases by 1.5x.

Remark 8.1 (topk). Result 9 holds even in the “sparsest” setting where topk = 1 and cap_factor =
2 in the MoE routing. The results are similar when using topk = 2 and cap_factor = 1 or topk = 2
and cap_factor = 2 — we discuss more in Appendix G.

Remark 8.2. It is typically observed in practice that MoE models underperform compared to dense
models with the same number of total parameters. We demonstrate that this degradation does not
come from the model’s knowledge storage capability.

9 RESULTS 10-12: JUNK DATA VS SCALING LAWS

Not all data are useful for knowledge acquisition. For instance, while Wikipedia is full of valuable
information, the Common Craw] of web pages may not be (there are also many pieces of information
on those webpages, but they may not be useful for a language model to learn, such as the serial
number of a random product). How does the presence of low-quality data impact the scaling laws
of useful knowledge capacity? To investigate this, we create a mixed dataset where:

* 1/8 of tokens originate from bioS(NV) for various N (referred to as useful data), and
* 7/8 of tokens originate from bioS(N’) for a large N' = 100M (referred to as junk data).

We train models on this mixture, ensuring each piece of useful data is seen for 100 exposures, thus
making the total training 8 times longer compared to 100 exposures without junk (i.e., Figure 1(b)).
We focus on the capacity ratio of the useful data (the data in bioS(/N)) and compare that to
Figure 1(b).'> How much does the capacity ratio degrade in the presence of junk data?

Result 10 (Figure 3(a)-3(e)). When 7/8 of the training tokens come from junk data (i.e., bioS(N")
for N' = 100M ), transformer’s learning speed for useful data significantly degrades:

e If trained for the same 100 exposures, the capacity ratio may degrade by 20x compared with
training without junk (compare Figure 3(b) with Figure 3(a)).

* Even trained for 300/600/1000 exposures, the capacity ratio still degrades by 3x/1.5x/1.3x com-
pared with 100 exposures without junk (Figure 3(c), 3(d). and 3(e) vs. Figure 3(a)).

This underscores the critical importance of pretrain data quality: even if junk data is entirely ran-
dom, it hurts model’s capacity even with sufficient training. In contrast, if 7/8 of data is bioS(N")
for very small N/, simulating highly repetitive knowledge in training tokens (e.g., “da Vinci painted
the Mona Lisa” in a million variations), this doesn’t hurt the model’s capacity for useful knowledge:

"2The model’s ability to learn from junk data is negligible; each person in bioS(NN') appears only 0.2 times
during training when N = 200k, or 0.05 times when N = 50k.
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* “Junk” data significantly harm LLM’s knowledge capacity on good data (sometimes by 20x times!) —Result 10
/ e.g. common crawls, internet “junks” e.g. Wikipedia
* repetitive knowledge does not harm —Result 11
» R 1/8 good data 7/8 training tokens from “junk” data
train without junk train with junk for 100 exposures
for 100 exposures oy w train with junk for 300 exposures
/ simple fix! !
- Result12 10x beter! 3x better!
gure 3g X better! sure x better!

* add domain name (e.g., “wikipedia.org”) at front of all pretrain data paragraphs [| data [ data [l data
LLMs can automatically detect domains rich in high-quality knowledge and prioritize learning from them

model size (vporams) model s ams)

(a) no junk, 100 exposures (b) 7/8 junk 100 exposures (c)

Tl Sl

model size (#params) model size (#params)

(e) 7/8 junk 1000 expo- (f) 7/8 rep-junk, 100 ex- (g) 7/8 junk, 100 expo- (h) 7/8 junk, 300 expo-
sures posures sures, add special symbol sures, add special symbol

Figure 3: Capacity ratios with 7/8 junk data (useful data observed 100/300/600/1000 exposures in training).
Conclusions. In Figure 3(b)-3(e), when junk data mimics random knowledge, capacity ratios are
significantly impacted unless training time is substantially increased. In Figure 3(f), if the junk data
is highly repetitive, there is no degradation. In Figure 3(g)+3(h), adding a special symbol token to
useful data, akin to domain names like wikipedia.org, mitigates capacity degradation.

Result 11 (Figure 3(f)). If 7/8 of the training tokens come from highly repetitive data (i.e., bioOS(N")
for N' = 1K), this does not affect the learning speed of useful knowledge:

* The 100-exposure capacity ratio of useful data is unchanged (Figure 3(f) vs. Figure 3(a)).

Finally, if pretrain data’s quality is poor and hard to improve, a backup strategy exists:

Result 12 (Figure 3(g)+3(h)). When 7/8 of training tokens are from junk (i.e., bioS(N') for N' =
100M ), adding a special token at the start of every useful data greatly improves capacity :

» With 100 exposures, the capacity ratio degrades only by 2x (Figure 3(g) vs. Figure 3(a)).
» With 300 exposures, the capacity ratio matches that of the 100-exposure scaling law without
Jjunk (compare Figure 3(h) with Figure 3(a)).

Let us connect Result 12 to practice. First, adding a special token to high-credibility data is very
practical: imagine adding the domain name “wikipedia.org” at the beginning of all Wikipedia para-
graphs. (Adding a special token to junk data would be less meaningful.) More generally, one
can envision adding domain names to every piece of the pretraining data. This would significantly
enhance the model’s knowledge capacities, because Result 12 shows that language models can au-
tomatically detect which domains are rich in high-quality knowledge and prioritize learning
from them. We emphasize that the model does not need prior knowledge to identify which domains
contain high-quality knowledge; this process is entirely autonomous.

(Adding domain tokens has other applications such as domain adaptations (Daumé III, 2009),
and is also known to help distinguishing good and bad data based on their consistency with the
QAs (Krasheninnikov et al., 2023).)

10
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CONCLUSION

See the end of Section 1.
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APPENDIX I: MISSING RESULTS

A RESULTS 2-3: BASE SCALING LAWS
A.1 DATA FORMATS — DIVERSITY AND REWRITING

We conduct the same analysis on bioS*™*® and bioR. Recall from Section 2, bioSS™"* is a vari-
ant of bioS with reduced text diversity (one biography per person), while bioR is generated by
LLaMAZ2, resulting in close-to-real human biographies. We have:

Result 2 (Figure 8 in Appendix D.3). In the same 1000-exposure setting, peak capacity ratios for
GPT? trained on bioS*™" and bioR are also approximately 2, albeit slightly lower. Thus:

. Diverse data (rewriting the same data multiple times) does not hurt — and may sometimes
improve — the model’s capacity!

Let’s highlight the significance of Result 2. Recall from Section 2:

Ssimple

¢ Training on bio data for 1000 exposures equals 1000 passes over the data.

* Training on bioS data for 1000 exposures is less than 1 pass.
* Training on bioR data for 1000 exposures equals 25 passes.

Therefore, comparing bioS and bioS*™"*, it’s more advantageous to rewrite the data 1000 times

(in this ideal setting), training each for one pass (as done in the bioS data), rather than training the
same data for 1000 passes (as done in the biOSs'mple data). This is because, without data diversity,
the model wastes capacity memorizing sentence structures, resulting in a capacity loss.

In a realistic scenario, tools like LLaMA?2 can rewrite pretrain data like we did in bioR. Rewriting
data 40 times can produce 40 distinct English paragraphs, sometimes with (different) hallucinated
contents. Does this require the model to be 40x larger? No, our comparison between bioS and bioR
shows that, if trained for the same duration (40 rewrites each for 25 passes), the model’s capacity
ratio remains nearly the same, slightly lower due to irrelevant data introduced by LLaMA2.

Allen-Zhu & Li (2024) suggested that rewriting pretraining data is crucial for making knowledge
extractable rather word-by-word memorization.'? However, they did not explore the impact on the
model’s capacity. Our paper addresses this gap, indicating that rewriting pretraining data does not
compromise — and may even enhance — the model’s knowledge capacity.

A.2 PARAMETERIZED SCALING LAWS

We further investigate scaling laws within the bioD(N, K, C, D, L, T') data family. Unlike with hu-
man biographies, where variation is limited to IV, the bioD dataset allows for more flexible manipu-
lation of the remaining hyperparameters K, C, D, L, T. This enables us to examine how variations
in these parameters affect the model’s peak capacity.

Result 3 (Figure 4). Across a broad spectrum of values, with K, C ranging from 1 to 50, D from
10 t0 10,000, L from 1 to 50, and T from 20 to 40,000, we observe that:

* GPT2 models consistently exhibit a peak capacity ratio R(F) > 2.

B RESULT 7: MODEL ARCHITECTURE VS SCALING LAW - A CLOSER LOOK

To investigate why the LLaMA architecture is inferior to GPT?2 in the 100-exposure (insufficiently
trained) setting, we closely examine LLaMA by gradually modifying its architecture back towards
GPT?2 to identify the key architectural changes. We start by tying weights, as this enhances tiny
LLaMA model’s capacity in the 1000-exposure setting (Result 5). As illustrated in Figure 5:

13 As demonstrated by (Allen-Zhu & Li, 2024), in low-diversity datasets like bioSs™P'e, knowledge can be
word-by-word memorized but is nearly 0% extractable for downstream tasks. Others discover that rewriting
data can improve the reversal extractability of knowledge (Golovneva et al., 2024; Allen-Zhu & Li, 2023b).

13



Under review as a conference paper at ICLR 2025

O D O O O O I 0
N N e W o

m 0
— 2 bit/param 4 L. — 2bit/param
— 1bit/param & B e £ — 1bit/param £
—— 0.5 bit/jparam 2 — W fg .8 —— 0.5 bit/param o8
% s %8 g H
N g
e acc=0% W R B g ~ e acc=0% <
* acc=25% — D 10k . acc=25% | 10
N Y K * o acc=50% 2
5 %
3 acc = 75%
acc = 100% acc = 100%
3 o ot 3 Ot oo* 3 0 O oo*
50 o o 8, o a0 8, o o % o 300 o0 0 a0 0 0 o0, a0 o0 o, a0, o0 8 o o
AL 0% 00 R 00 00 O 0 00 0 e A I I I I I I I I A = i
S GO TR W (ot T ¥ O o T O o O B 0 T T e e 0T D 0 P
PO 0 0 0 C 0 0 0 0 10 o 0 0 o o P e T SO T O 0 0 o 0T O 0 o o o e e e e e
D[ HOCGOC OGO (G Y 10 0 o o (o o (e o D0 0t Gt ot o0 i 0 a0 o o o o o e oo
o o e e S o o 9 o o o S o o o oS o o o e T D o o 9 o o e S (o o o oS o
OO O ¥
e WO 0 o W o T e e e 0 W O e e e
0
— 2 bit/param — 2 bitjparam . K
— 1bitjparam — 1bitparam |, = PR S T £
—— 0.5 bit/param —— 0.5 bit/param |7 -, % % W % o8
a %, G ]
“ , b s
« acc=0% |4 " N, Z
e - % % =
© acc=25% 2 108
% w e e % s
© acc=50% |v %,
@ RS #*
acc = 75% % %
acc = 100%
A % U % D P A% ¥l ¥ ¥ ¥ ¥ ¥ 0 g0 B¢ 0% 10 00 a¥ oF a® o0 (¢ 0% a0 00 ¥ 0%
20 e e e e e o o o i o o o v o o o i e o e S R N A L A TN N VS,
PERCRERNE RN LRI RCRI RS NCNCNI RN NN RN NCR SRS A s T 8
O A A Y S A IV T I N
OB B C B C N T U CL T A ERCAR T O O I S GO o T o O o o T o T o T o
o O O O G e o 0 o oo B I N i SN
o 0 3 A D o o O o o 0 0 % 0 0 o a0 o a6 o o8 e 9 o
(P A OO O o O D o0 ¥
o T O D R D O S R O O 3 (9 o (9 o P 05 o e (o e o
O R e T et 96 g T o0 o e
\x

(c) how L impacts capacity ratio (d) how T impacts capacity ratio

Figure 4: Scaling laws for GPT2 models trained on the bioD(N, K, C, D, L, T') data for 1000 exposures.

Conclusion.
K,C,D,L,T.

The peak capacity ratios consistently exceed R(F) > 2 with a wide range of

Remarks. Models with accuracies < 50% are excluded here but included in Figure 9. We disregard
N’s influence, akin to Figure 1(a), and concentrate on the five hyperparameters K, C, L, T, D. Each
of the four sub-figures varies a primary hyperparameter while fixing the other four. More details in
Appendix D.4.

* For large models, replacing LLaMA architecture’s gated MLP with a standard MLP (while
keeping silu unchanged) noticeably improves LLaMA’s capacity ratio.'*

 For tiny LLaMA models, switching back to the GPT2Tokenizer is also necessary to match
GPT2’s performance, though this is a minor issue.'”

* Other modifications, such as changing from silu to gelu or adding trainable biases to layer-
norms, do not noticeably affect the capacity ratios (so we ignore those figures).

In summary,

Result 7. In the insufficient training regime (notably, the 100-exposure setting), except for tiny
models, architectural differences generally do not affect performance, except

* Using gated MLP reduces the model’s capacity ratio (Figure 5);

* Removing all MLP layers lowers the model’s capacity ratio, although significantly reducing the
size of MLPs (e.g., by a 1/4 factor) does not.

We propose that our experiments with the controllable biography dataset could serve as a valuable
testbed for future architectural designs.

14 As discussed in Appendix E, gated MLP layers are less stable to train, thus requiring more time.

'SThis only applies to tiny models and is specific to the biography data we consider here: GPT2Tokenizer
may tokenize years such as 1991 into a single token, while LLaMATokenizer will tokenize it into four digit
tokens.
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Figure 5: A closer comparison on LLaMA’s scaling laws with bioS(V) data for 100 exposures.

Conclusion. Switching from gated MLP to a standard MLP (left vs. right) enhances larger model’s
capacity ratios. For tiny models, using GPT2Tokenizer (top vs. bottom) is beneficial (this is a minor
point).

Remarks. For a strong comparison we used one learning rate choice in Figure 5(d) and 5(b), but
present the best among three choices for Figure 5(a) and 5(c). Further details can be found in
Appendix E.2.
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C RESULT 8: QUANTIZATION VS SCALING LAWS

We have trained and tested models using (mixed precision) 16-bit floats. What happens if we quan-
tize them to int8/int4 after training? We used the auto_gpt g package, which is inspired by the
GPTQ paper (Frantar et al., 2022), for quantization.

Result 8. Quantizing language models (e.g., GPT2) trained with 16-bit floats:
* to int8 has a negligible impact on their capacity;
* to int4 reduces their capacity by more than 2x.

(see Figure 12 for bioS data and Figure 13 for bioD data in Appendix F)

Thus, even for models at peak capacity of 2 bits/param, quantizing to int8 does not affect capacity.
Given that 2 bits/param was the best capacity ratio even after 1,000 training exposures on high-
quality data, we conclude that extending training may not further improve the model’s capacity, but
quantization can.

Since an int8-based model has an absolute upper bound R(F) < 8 on capacity ratio, we have:

Corollary C.1. Language models, like GPT2, can exceed 1/4 of the absolute theoretical limit for
storing knowledge.

Unfortunately, using this quantization package, reducing the model to int4 significantly diminishes
its capacity (more than 2x loss from int8 to int4). This suggests for high-quality int4 models, incor-
porating quantization during training may be necessary.

C.1 WHERE IS THE KNOWLEDGE STORED?

We have seen that LLMs can efficiently compress knowledge into their parameter space, achieving
2bit/param even with 8-bit parameters. This raises the question: how and where is such knowledge
stored? Our preliminary answer is that knowledge can be compactly stored within the model in a
not-so-redundant manner. It is unlikely that the MLP layers alone store knowledge, as Attention
layers, being of comparable sizes, also contribute to knowledge storage (c.f. Result 5). Moreover,
particularly in models near the capacity boundary, removing the last transformer layer of an L-layer
model to “probe” for remaining knowledge reveals that the “leftover knowledge” can be significantly
less than 1 — % of the total.!® This suggests knowledge is stored not in individual layers but in a
complex manner, akin to a safe with combination locks, where removing one layer may eliminate
much more than % of the total knowledge.

!6This experiment, deemed not particularly interesting, was omitted from the paper. The probing technique
used is Q-probing from Allen-Zhu & Li (2024).
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APPENDIX II: MISSING DETAILS

D MORE ON GPT2 SCALING LAWS

In this paper, our primary focus is on bioS(/N) for N ranging between 10K and 20M. Notably,
bioS(20M) encompasses approximately 1B bits of knowledge (refer to Theorem 3.1).

GPT2 model. As elaborated in Section 2, we refer to the original GPT2 model (Radford et al.,
2019) as GPT2, after substituting its positional embedding with rotary embedding (Su et al., 2021;
Black et al., 2022) and removing its dropout layer (Touvron et al., 2023b). These modifications
are widely recognized for enhancing performance in language modeling tasks (see also (Allen-Zhu
& Li, 2023a) for a controlled experiment comparing that). We explore various GPT2 model sizes,
maintaining a dimension-per-head of 64. The notation GPT2-/-h represents the (modified) GPT2
architecture with ¢ layers, h heads, and 64h dimensions. The context length is set to 512.

Details on our specifications of LLaMA, Mistral, and other architectures will be provided in
Appendix E as needed.

Model sizes. In this study, we calculate model sizes after excluding all unused tokens in the embed-
ding layer. For example, while the GPT2 embedding layer typically has 50256 x (64h) parameters,
our bioS(NV) data utilizes only 3275 tokens (after applying GPT2’s tokenizer), reducing the effective
embedding layer size to 3275 x (64h). This adjustment explains why, for bioS data, GPT2small,
typically known to have 124M parameters, is counted as having only 88M parameters in this paper.

We have selected a broad range of GPT2-/-h models with practical ¢ and h values, excluding those
with similar model sizes. Their selection is detailed in Figure 1, encompassing both wide and shal-
low transformers (e.g., GPT2-2-20, GPT2-3-20, GPT2-4-20) and skinny and deep transformers (e.g.,
GPT2-16-4, GPT2-16-8, GPT2-28-20). For reference, GPT2 small/med/large correspond to GPT2-
12-12, GPT2-24-16, GPT2-36-20, respectively.

We primarily focus on models with ¢ > 2, as 1-layer transformers may demonstrate slightly lower
capacity ratios. (For those interested, 1-layer transformers are included in Figure 6, which is identi-
cal to Figure 1 but includes these models.)

Model sizes for datasets bioS(INV) with NV > 2M. In the 1000-exposure setting, to conserve
computational resources, when exploring scaling laws for N = 2M,5M,10M,20M, we concen-
trate on one model size per dataset — specifically GPT2-16-8, GPT2-6-20, GPT2-20-16, GPT2-25-
20 — as they approach the 2bit/param threshold (i.e., they satisfy R™*(F') ~ 2). In this context,
our key finding is the validation of the 2bit/param capacity ratio, thus examining a limited selection
of model sizes is adequate.

For the 100-exposure setting, we evaluate a broader range of model sizes per dataset. This approach
is not only due to the tenfold reduction in training time compared to the 1000-exposure setting but

—— 2bit/param
—— 1bit/param
—— 0.5 bit/ param
—— 0.25 bit / param

—— 2 bit/param
—— 1bit/param
—— 0.5 bit/ param
—— 0.25 bit / param

e N=20000000
N=10000000

¢ N=5000000
N=2000000

N=10000000
®  N=5000000
N=2000000
®  N=1000000
®  N=500000
N=200000
N=100000
N=50000
®  N=20000
® N=10000

* N=1000000
® N=500000
N=200000

learned knowledge (bits)
learned knowledge (bits)

N=100000
N=50000

10° 107 108 10° 107 10°
model size (#params) model size (#params)

(a) bioS(V) data — 1000 exposure — peak R(F') > (b) bioS(V) data— 100 exposure — peak R(F') > 1
2

Figure 6: Scaling laws for GPT2 pretrained on bioS(V) data with fp16 (mixed-precision) for 1000/100 expo-
sures, now including 1-layer transformers comparing to Figure 1. Conclusion: 1-layer transform-
ers show a minor capacity ratio deficiency, especially in the 100-exposure setting.
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also to facilitate a detailed comparison of model architectures in the 100-exposure setting, aiming
for precision at higher model sizes.

Training parameters. We employ the AdamW optimizer with a cosine learning rate scheduler.
This includes 1K steps of warmup, followed by a cosine decay of the learning rate from 1 to 0.1
times the reference rate. We use mixed-precision fp16 training unless otherwise stated.

D.1 BASE SCALING LAWS

Our base scaling laws for the 1000-exposure and 100-exposure bioS(/V) data are presented in Fig-
ures 1(a) and 1(b), respectively.

For the 1000-exposure setting, the model’s final performance is not very sensitive to learning rate
choices due to sufficient training. The following parameters were chosen for generating Figure 1(a):

Parameter 1 (Figure 1(a)). In the 1000-exposure setting for GPT2 models on bioS(V) data:

For N = 10K, we use wd = 0.02, Ir = 0.001, and batch size 24 (about 140K training steps);

For N = 20K, we use wd = 0.02, Ir = 0.001, and batch size 48 (about 140K training steps);

For N = 50K, we use wd = 0.02, Ir = 0.001, and batch size 96 (about 175K training steps);

For N = 100K, 200K, we use wd = 0.02, Ir = 0.001, batch size 192 (about 175K, 349K training steps);
For N = 500K, 1M, we use wd = 0.01, Ir = 0.0005, batch size 192 (about 435K, 870K training steps);
For N = 2M, we use wd = 0.005, Ir = 0.0003, and batch size 1536 (about 220K training steps);

For N = 5M, we use wd = 0.002, Ir = 0.0003, and batch size 1536 (about 540K training steps);

For N = 10M, we use wd = 0.001, I = 0.0003, and batch size 1536 (about 1M training steps).

Remark D.1 (fp16 vs bf16). Training on GPT2 is conducted using mixed-precision fp16. We also
tried bf16 and the results are nearly identical.

Remark D.2 (parameters). These optimization parameters are very natural, as it is generally impos-
sible to have a fixed set of parameters for model sizes across a large multiplicative range. Notably:

» Larger model sizes naturally require smaller learning rates.

» Language models typically need at least S0K training steps regardless of batch size. Thus, for
small N, we reduce the batch size to ensure the total number of training steps exceeds this
threshold. For very large models, a larger batch size is preferred to enable GPU parallelism.

e When Ir remains constant, wd should be relatively reduced as the number of training steps

increases. Mathematically, the model weights should be “halved” for every @(m) training

steps. Therefore, it’s advisable to reduce the wd parameter when training for longer periods.
Remark D.3 (# GPUs). In this paper, we do not specify the number of GPUs as it is irrelevant. The
results remain the same whether using 64 GPUs each with a batch size of 24, 48 GPUs each with a
batch size of 32, or 1536 GPUs each with a batch size of 1.

For the 100-exposure setting, careful tuning of learning rates is required. The following parameters
were chosen for generating Figure 1(b): (Note: N = 10K,20K are not considered for the 100-
exposure setting due to the excessively short training process.)

Parameter 2 (Figure 1(b)). In the 100-exposure setting for GPT2 models on bioS(N) data:

e For N = 50K, we use wd = 0.01, Ir = 0.001, and batch size 12;

e For N = 100K, we use wd = 0.01, Ir = 0.001, and batch size 24;

e For N = 200K, we use wd = 0.01, Ir = 0.001, and batch size 48; (except for GPT2-2-20, where
Ir = 0.0005 is used)

For N = 500K, we use wd = 0.01, I = 0.0005, and batch size 96;

For N = 1M, we use wd = 0.01, Ir = 0.0005, and batch size 192;

For N = 2M, we use wd = 0.01, lr = 0.0003/0.0005/0.001, and batch size 384;

For N = 5M, we use wd = 0.01, {r = 0.0003/0.0005, and batch size 768;

For N = 10M, we use wd = 0.01, [r = 0.0002/0.0003/0.0005, and batch size 1024;

* For N = 20M, we use wd = 0.002, Ir = 0.0002,/0.0003/0.0005, and batch size 1536."

e o o o o

D.2 KNOWLEDGE MEMORIZATION VS. EXTRACTION

It was recently discovered by Allen-Zhu & Li (2024) that although models memorize knowledge,
this knowledge may not be extractable (e.g., via fine-tuning) for application in downstream tasks. It

"Except for GPT2-28-20 we run out of GPU memory so reduce to batch size 1280.
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Figure 7: Our scaling laws from Figure 1 also apply to extractable knowledge (see definitions in Section D.2).

is

This figure is for the bioS(V) datasets using GPT2 models.

Remarks. Recall from Remark 3.5 that each person’s biography contains over 47.6 bits of knowledge
(excluding names), explaining why the y-axis in this figure is ~ 50 times smaller than in Figure 1.

essential to verify that the “2 bit/param” knowledge learned by models is indeed extractable. This

verification is achieved by applying a fine-tuning task (e.g., “What is Anya’s birthday? Answer:
October 2, 1996”) to half of the individuals and then testing its performance on the remainder.

Specifically, on the original bioS(N) data, we compute two quantities for each model:

¢ MEMORIZABLE KNOWLEDGE ACCURACY (# OF PEOPLE).

We apply the model to the original training data, such as “Anya Briar Forger was born on”
and check if it can correctly generate “October 2, 1996”. For each person, we evaluate all
five attributes and compute their average accuracy.'® We then sum this accuracy up over all N
people. (Ideally, a perfect model would have this “accuracy” equal to N.)

e EXTRACTABLE KNOWLEDGE ACCURACY (# OF PEOPLE).

Following the pretrain-finetune framework of (Allen-Zhu & Li, 2024), we fine-tune any given
pretrained model on half of the individuals using LoRA (Hu et al., 2021) with question-
answering texts like “What is the birthday of Anya Briar Forger? Answer: October 2, 1996.”
We then test its generation accuracy on the remaining half of the individuals. High accuracy
indicates that the knowledge is not only memorized but can also be flexibly extracted for down-
stream tasks. Again, for each person, we evaluate all five attributes and compute their average
accuracy. We then sum this across all N/2 people and multiply by 2. (Once again, a perfect
model would have this equal to IV.)

8We exclude the company city attribute because it can be uniquely determined by the employer name, thus

providing no additional knowledge.
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Figure 8: Scaling laws for the bioS*™* and bioR data with 1000 exposures.

Our results are presented in Figure 7. By comparing, for instance, Figure 7(a) against Figure 7(b),
it is evident that our scaling laws apply not only to memorizable knowledge but also largely to
extractable knowledge. Only for models precisely at the capacity ratio boundary is there a 1.2x
decrease in total accuracy.'’

Parameter 3 (Figure 7). When dealing with models of significantly different sizes for LoRA
finetuning, it’s necessary to adjust the LoRA rank sizes. In (Allen-Zhu & Li, 2024),
the authors primarily used a rank ' = 128 update for the embedding layer and ranks
r = 8 or 16 for the query/value matrices, with their base model being either GPT2-12-
12 or GPT2-12-20. In this paper, we explore a broader range of rank choices: (r',r) €
{(8,2), 816, 2),(8,4),(32,4),(8,8),(32,8), (128, 8), (32,16), (128, 16) }, presenting only the best
results.

We disable learning rate warmup, set the batch size to 96, the learning rate to 0.001 (with linear
decay down to 0), weight decay at 0.1, and finetune for 75,000 steps.

D.3 OTHER BIOGRAPHY DATASETS

We also examine the bioS*™'®( V) datasets, which are identical to bioS(IN) except that each in-
dividual’s knowledge is stored in a fixed ordering of six fixed sentences (see Section 2). Allen-
Zhu & Li (2024) found that in such cases, the knowledge data are memorizable but nearly 0%
extractable. As shown in Figure 8(a), in these instances, the capacity ratio slightly decreases com-
pared to Figure 1(a). This implies, in this ideal setting, adding data diversity — by rewriting the
same knowledge multiple times using different writing templates — not only enhances the model’s
ability to extract knowledge, as noted by (Allen-Zhu & Li, 2024), but also, surprisingly, increases
the model’s capacity, as observed in this study.

Moreover, we explore the semi-real dataset bioR(V), which resembles bioS(V) but with the biog-
raphy paragraph generated by LLaMA2, and each individual is generated 40 times (using random
seeds and prompts to encourage LLaMA?2 to generate as diverse paragraphs as possible for each
person). This results in a total of 22GB of text, comparable to the size of Wikipedia data.

The scaling law for the bioR(V) data is presented in Figure 8(b), indicating that the capacity ratio
slightly decreases for larger models. This trend is expected, as LLaMA?2 introduces numerous ir-
relevant details into the human biographies — usually different irrelevant details for each LLaMA2
generation — thereby consuming more model capacity. The decrease is more significant for smaller
models, which may have greater difficulty comprehending the diverse English sentences in the data.

Parameter 4 (Figure 8). In both experiments, we adhere to the same set of optimizer parameters
used in Figure 1(a), as detailed in Parameter 1.

This decrease is in accuracy, not bits; a model may have a large amount of extractable knowledge in bits
but not in accuracy. One can also compute knowledge bits in the extractable setting, but we omit such results
for brevity.

2Selecting the best LoRA option is justified as our aim is to determine the maximum extractable knowledge
bits, and thus, any LoRA option demonstrating high test-set accuracy fulfills our objective.
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D.4 MORE ON PARAMETERIZED SCALING LAWS

In the parameterized scaling laws, we utilize the bioD(N, K, C, D, L, T') dataset from Def 2.2.

Parameter 5 (Figure 4, 9, 10). For GPT2 models on the bioD dataset, we focus on the 1000-exposure case,
with wd = 0.01, {r = 0.0005, and a batch size of 192.

Remark D.4 (parameters). Contrary to Parameter 1, it is not necessary to vary the training param-
eters, as our experiments with GPT2 models span a much narrower range of model sizes. We have
adjusted the choice of IV to ensure that the optimal 2bit/param models are within a factor of 20 of
each other in terms of model sizes.

Our results are presented in Figure 4 (in the main body, limited to models with accuracy < 50% for
clarity) and in Figure 9 (including all models).
Furthermore, from the bit complexity lower bound (see Def 3.2)

No D¢ TE
N10g26?+NK10g26?+KD10g2m (D.1)

name value diversity

we also dissect how the three components contribute to this overall lower bound. As shown in
Figure 10, although the “value” component typically dominates, for certain hyperparameter settings,
the “name” or “diversity” components can also be significant. This underscores the importance of
proving our Theorem 3.1 lower bound, which is a sum of all three terms.
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Figure 9: Same as Figure 4, but including models with accuracies below 50% (which may overlap with higher-
accuracy models). The peak capacity ratios consistently exceed R(F') > 2.
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Figure 10: Breakdown of knowledge components in the parameterized bioD scaling law experiments, as shown
in Figure 4. Refer to Equation (D.1) and the accompanying text.
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E MORE ON MODEL ARCHITECTURES

We explore alternative architectural choices for language models.

LLaMA/Mistral. Notably, as of the writing of this paper, LLaMA (Touvron et al., 2023a;b) and
Mistral (Jiang et al., 2023) stand out as popular, publicly-available large language models. We high-
light their key architecture differences from GPT2 — which we define as having rotary embedding
and no dropout.

1. LLaMA and Mistral employ MLP layers with gated activation, using V' (o(W;z) - (Wax)) in-
stead of Vo (Wx). Shazeer (2020) noted that gated activation appears to yield slightly better
performance.

2. Unlike GPT2, which ties the weights of the embedding layer and the output (LMHead) layer,
LLaMA and Mistral do not.

3. For a hidden dimension d, GPT2/LLaMA have 4d? parameters in the attention layer and 8d? in
the MLP layer, whereas Mistral allocates a larger 10.5d? for its MLP layer.

4. Mistral promotes group-query attention (e.g., using 4 groups, thus reducing the K/V matrices
to d?/4 in size), unlike GPT2. LLaMA does not favor multi-query attention unless in its very
large models, such as the 70B variant.

5. LLaMA and Mistral utilize different tokenizers compared to GPT2, with Mistral’s tokenizer
being nearly identical to LLaMA’s.

6. GPT2 employs o = gelu, while LLaMA/Mistral use o = silu.
7. GPT2 incorporates layer normalization with trainable bias, which LLaMA/Mistral do not.

Given these distinctions, for LLaMA models, we use the notation LLaMA-/-h for £ layers, h heads,
and 64h hidden dimensions; we omit group-query attention as LLaMA recommends it only for its
70B model. For Mistral, denoted as Mistral-¢-h, we enable group-query attention with 4 groups if
h =0 (mod 4), 1 group for odd h, or 2 groups otherwise.

GPT2 with Smaller MLP. Mistral has a larger MLP layer, and it is often believed that the MLP
layer serves primarily for storing knowledge, in contrast to the Attention layer. But is this truly the
case?

To delve into this, we examine GPT2; /4> which is GPT2 with its MLP layer reduced from d —
4d — dtod — d — d (thus, 1/4 of its original size), and GPT2, which is GPT2 but without any
MLP layer.

Experimental setups. Throughout this section, when presenting positive result (such as for GPT2)
we try to stick to one fixed set of learning rate choices; but when presenting a negative result (such
as for the LLaMA architecture), we present the best among three learning rate choices.

E.1 1000-EXPOSURE SETTING

In the 1000-exposure setting, we observe that the model architecture choices have a negligible im-
pact on the scaling laws. The results for LLaMA, Mistral, GPT2, and GPT2, ;4 architectures are
presented in Figure 11, with their parameter choices discussed below.

Parameter 6 (Figure 11). In the 1000-exposure setting, for LLaMA/Mistral models we use similar param-
eters as specified in Parameter 1, but we select the best of three learning rates to better demonstrate that GPT2
performs no worse than even the best tuned LLaMA/Mistral models:

» For N = 10K, we use wd = 0.02, ir = 0.0005/0.001/0.002, and batch size 24 with fp16;

e For N = 20K, we use wd = 0.02, Ir = 0.0005/0.001/0.002, and batch size 48 with fp16;

e For N = 50K, we use wd = 0.02, Ir = 0.0005/0.001/0.002, and batch size 96 with fp16;

» For N = 100K, 200K, we use wd = 0.02, Ir = 0.0005/0.001/0.002, and batch size 192 with fp16;
e For N = 500K, 1M, we use wd = 0.01, Ir = 0.0002/0.0003/0.0005, and batch size 192 with fp16;
» For N = 2M, we use wd = 0.005, Ir = 0.0003/0.0005/0.001, and batch size 1536 with bf16;

* For N = 5M, we use wd = 0.002, Ir = 0.0003/0.0005/0.001, and batch size 1536 with bf16;

» For N = 10M, we use wd = 0.001, Ir = 0.0003/0.0005,/0.001, and batch size 1536 with bf16.
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Figure 11: Scaling laws for other model architectures on the bioS(V) data with 1000 exposures.

Conclusion. In the 1000-exposure setting, all model architectures closely follow GPT2’s scaling
law — including LLaMA/Mistral or even removing the MLP layer completely. The only very
minor difference is observed in tiny models, where tying the model’s (embedding + output layer)
weights enhances its capacity, evident from comparing Figure 11(c) with Figure 11(b).

For GPT2( and GPT2, /4, we use the same learning rates as specified in Parameter 1.

Remark E.1 (bf16 on gated MLP). As discussed in Section E.2, the training of LLaMA and Mistral
architectures is less stable due to the use of GatedMLP, leading to the necessity of switching to
(mixed-precision) bf16 training when required.

From Figure 11, it is evident that, except for tiny models, LLaMA, Mistral, GPT2,, and GPT2, /4
architectures closely follow GPT2’s scaling law over 1000 exposures. For tiny models with < 100
parameters, tying model weights increases their capacity (refer to Figure 11(c)). This indicates
that the 2bit/param capacity ratio is a relatively universal law among most typical (decoder-only)
language model architectures.

E.2 100-EXPOSURE SETTING

The 100-exposure setting reveals more intriguing comparisons. We contrast GPT2 with various
model architectures in Figure 2 and offer a detailed comparison between LLaMA and GPT?2 archi-
tectures in Figure 5.

Figure 2(b) shows that the LLaMA architecture may lag behind GPT2’s scaling law by a factor of
1.3x, even for larger models.

We delve into the reasons behind this. By adjusting LLaMA’s architecture (e.g., switching Gat-
edMLP back to normal MLP), as shown in Figure 5, we find that replacing LLaMA’s GatedMLP
with a standard MLP is necessary to match GPT2’s scaling law. Notably, for a strong comparison,
when using GatedMLP we select the best result from three learning rates, whereas for a standard
MLP, akin to GPT2, we use a single learning rate. For smaller models, matching GPT?2 requires
tying model weights and adopting GPT2’s tokenizer, though this is less significant.?!

For other model architectures, Mistral, GPT2,, and GPT2; /45 their scaling laws in the 100-exposure
setting are presented in Figure 2. Figure 2(c) confirms that the Mistral architecture also underper-
forms GPT2 due to its use of gated MLP. Figure 2(d) reveals that reducing GPT2,,4’s MLP layer
size by a quarter has a negligible impact on model capacity. However, removing the MLP layers

2I'The influence of the tokenizer on model capacity is noteworthy. For instance, LLaMA/Mistral tokenizers
tend to split birthday years into single-digit tokens, slightly slowing the training of smaller models, whereas the
GPT2Tokenizer uses a single token for the birth years such as 1991.
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entirely in GPT2 significantly reduces the model’s capacity, see Figure 2(e).

The 100-exposure setting represents an “insufficient training” paradigm. Thus, the comparisons are
not about one architecture being strictly worse than another (as they achieve similar capacity ratios
in a 1000-exposure setting, as shown in Figure 11). Our findings indicate that some architectures
are noticeably easier to train (thus learn knowledge faster):

* The GatedMLP architecture slows down the model’s learning speed, and we observe less stable
training with its use.?

* Removing MLP layers entirely slows down the model’s learning speed, whereas adjusting the
size of MLP layers (e.g., from 8d? to 10.5d? or down to 2d?) may not have a significant impact.

Additionally, we experimented with enabling trainable biases in LLaMA’s layernorms and switching
from silu to gelu (to more closely resemble GPT2), in a similar way as Figure 5, but found these
changes do not affect the model’s capacities. We ignore those experiments for clarity.

Below, we discuss our parameter choices for the experiments in Figure 2 and Figure 5.
Parameter 7 (Figure 2). In the 100-exposure setting,

(a) For LLaMA/Mistral models on bioS(V) data, aiming to present negative results, we select the best learn-
ing rate from three options in each data setting:

For N = 50K, we use wd = 0.01, Ir = 0.0003/0.0005/0.001, and batch size 12 with bf16;
For N = 100K, we use wd = 0.01, Ir = 0.0003/0.0005/0.001, and batch size 24 with bf16;
For N = 200K, we use wd = 0.01, Ir = 0.0003/0.0005/0.001, and batch size 48 with bf16;
For N = 500K, we use wd = 0.01, lr = 0.0002/0.0003,/0.0005, and batch size 96 with bf16;
For N = 1M, we use wd = 0.01, Ir = 0.0002,/0.0003/0.0005, and batch size 192 with bf16;
For N = 2M, we use wd = 0.01, Ir = 0.0003/0.0005/0.001, and batch size 384 with bf16;
For N = 5M, we use wd = 0.01, {r = 0.0003,/0.0005/0.001, and batch size 768 with bf16;
For N = 10M, we use wd = 0.01, {r = 0.0003,/0.0005/0.001, and batch size 1536 with bf16;
For N = 20M, we use wd = 0.002, ir = 0.0003/0.0005/0.001, and batch size 1536 with bf16.

e o o o o o o o o

(For N < 1M, we also tested the same settings with fpl6, finding similar results. However,
LLaMA/Mistral models tend to fail more often with fp16, so we primarily used bf16.)

(b) For GPT2, 4:

* For N = 50K, we use wd = 0.01, Ir = 0.0005/0.001, and batch size 12 with fp16;

* For N = 100K, we use wd = 0.01, Ir = 0.0005/0.001, and batch size 24 with fp16;
* For N = 200K, we use wd = 0.01, Ir = 0.0005/0.001, and batch size 48 with fp16;
» For N = 500K, we use wd = 0.01, ir = 0.0003/0.0005, and batch size 96 with fp16;
e For N = 1M, we use wd = 0.01, Ir = 0.0003,/0.0005, and batch size 192 with fp16.

(c) For GPT2y, to present a negative result, we use the same settings as in Parameter 2(a):

e For N = 50K, we use wd = 0.01, Ir = 0.0003/0.0005/0.001, and batch size 12 with bf16;
For N = 100K, we use wd = 0.01, Ir = 0.0003/0.0005/0.001, and batch size 24 with bf16;
For N = 200K, we use wd = 0.01, Ir = 0.0003/0.0005/0.001, and batch size 48 with bf16;
For N = 500K, we use wd = 0.01, {r = 0.0002,/0.0003/0.0005, and batch size 96 with bf16;
For N = 1M, we use wd = 0.01, Ir = 0.0002/0.0003/0.0005, and batch size 192 with bf16.

Parameter 8 (Figure 5). In the 100-exposure controlled comparison experiment,

 For presenting negative results (Figure 5(a) and Figure 5(c)), we select the best learning rate from three
options, identical to GPT2( in Parameter 2(c).

* For presenting positive results (Figure 5(b) and Figure 5(d)), we use a single set of learning rates, identical
to Parameter 2 but with fp16 replaced by bf16 for a stronger comparison.

2For example, mixed-precision fp16 training can sometimes fail for LLaMA/Mistral models smaller than
100M; hence, we use mixed-precision bf16 instead. Conversely, GPT2 models up to 1B can be trained with
fpl6.
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F MORE ON QUANTIZATION

We use the auto_gptqg package (based on (Frantar et al., 2022)) to quantize the GPT2 model
results in Figure 1 for the bioS data and the GPT2 model results in Figure 4 for the bioD data. We
simply use a small set of 1000 people’s biographies to perform the quantization task. Our results are
presented in Figure 12 for the bioS data and in Figure 13 for the bioD data.
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Figure 12: Scaling laws for GPT?2 after quantizing Figure 1 into int8 and int4.

Conclusion. Quantizing a mixed-precision fpl6 trained model into int8 shows no change, but
quantizing into int4 results in a capacity ratio loss greater than 2x.
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Figure 13: 8-bit/4-bit quantization of GPT2 models trained on bioD(N,K,C,D,L,T) data for 1000

exposures. Left: Identical to Figure 4, showing only models with accuracy > 50%; Middle: After
quantization to 8-bit; Right: After quantization to 4-bit, including models with all accuracies.

Observation: For the bioD data family, quantizing to 8-bit has negligible impact on model capaci-
ties. Quantizing to 4-bit reduces capacity by more than 2x, especially for large D and L, leading to
significantly larger reductions and explaining the missing columns in Figure 13(i)).
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Figure 14: Scaling laws for the mixture-of-experts GPT2 models with 32 experts on the bioS(V) data.

Remarks. Compared to Figure 1, using MoE with 32 experts reduces the 1000-exposure capacity
by 1.3x and the 100-exposure one by 1.5x, despite the MoE model using 11.3x fewer parameters
during inference. For the strongest result we use topk = 1, cap-factor = 2; other variants are in
Figure 15.

G MORE ON MIXTURE OF EXPERTS

We utilize the tutel package for implementing Mixture-of-Experts (MoE) on GPT2 mod-
els (Hwang et al., 2022). In MoE, the parameter topk determines the number of experts each token
is routed to. It is recommended by some practitioners to use topk = 2 during training and topk = 1
during testing. Additionally, the cap_factor parameter ensures that, given M experts, each expert
receives no more than C“p’f+m fraction of the data.

Using topk = 1 and cap_factor = 1 is generally not advisable. Thus, to provide the strongest
result, we set topk = 1,cap_factor = 2 for the 1000/100-exposure scaling laws in Figure 14.
(During testing, we increase the capacity factor to cap_factor = 8.)

For the 100-exposure scaling law, we additionally compare three configurations:
(topk, cap_factor) = (1,2),(2,1),(2,2), finding minimal differences among them as shown
in Figure 15. Remember from Section 6 that differences in model architecture usually become
apparent in the insufficient training regime; this is why we opt for 100-exposure instead of
1000-exposure. Notably, (topk,cap_factor) = (2,2) performs best (among the three) for deep
models, such as GPT2-16-4 with 32 experts.

Due to their sparsity, MoE models often require higher learning rates compared to dense models.
Consequently, we adjust the optimizer parameters as follows:

Parameter 9 (Figure 14, Figure 15). In the 1000-exposure setting for GPT2-MoE models with 32 experts,
we slightly increase the learning rates while keeping other parameters nearly identical to Parameter 1:

For N = 10K, we use wd = 0.02, Ir = 0.001/0.002, and batch size 24 with fp16;

For N = 20K, we use wd = 0.02, Ir = 0.001/0.002, and batch size 48 with fp16;

For N = 50K, we use wd = 0.02, Ir = 0.001/0.002, and batch size 96 with fp16;

For N = 100K, 200K, we use wd = 0.02, {r = 0.001,/0.002, batch size 192 with fp16;
For N = 500K, 1M, we use wd = 0.01, Ir = 0.0005/0.001, batch size 192 with fp16;
For N = 2M, we use wd = 0.005, lr = 0.002, and batch size 1536 with fp16;

For N = 5M, we use wd = 0.002, [r = 0.0005, and batch size 1536 with fp16;

For N = 10M, we use wd = 0.001, Ir = 0.0005, and batch size 1536 with fp16.

In the 100-exposure setting, we also use higher learning rates compared to Parameter 2:

For N = 50K, we use wd = 0.01, Ir = 0.001/0.002/0.005, and batch size 12 with fp16;
For N = 100K, we use wd = 0.01, Ir = 0.001/0.002/0.005, and batch size 24 with fp16;
For N = 200K, we use wd = 0.01, Ir = 0.001/0.002/0.005, and batch size 48 with fp16;
For N = 500K, we use wd = 0.01, Ir = 0.001/0.002, and batch size 96 with fp16;

For N = 1M, we use wd = 0.01, Ir = 0.0005/0.001/0.002, and batch size 192 with fp16;
For N = 2M, we use wd = 0.005, {r = 0.0005/0.001, and batch size 192 with fp16;

For N = 5M, we use wd = 0.005, Ir = 0.0003/0.0005/0.001, and batch size 384 with fp16.
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Figure 15: Scaling laws for the GPT2 MoE models with 32 experts on the bioS(V) data for 100 exposures.
This figure complements Figure 14 by comparing the effects of varying topk and cap_factor in the
100-exposure insufficiently-trained regime. Conclusion: minimal differences are observed across
these settings, though deeper models (e.g., GPT2-16-4 with 32 experts) seem easier to train with
topk = cap_factor = 2.

H MORE ON JUNK DATA VS. SCALING LAWS

Recall from Section 9 that our dataset is a mixture, with 1/8 of the tokens coming from bioS(V) for
various N (referred to as “useful data”), and the remaining 7/8 from “junk data.” We explored three
scenarios:

(a) Junk data being bioS(N') for N’ = 100M, representing completely random junk;

(b) Junk data being bioS(N’) for N’ = 1K, representing highly repetitive data; and

(c) Junk data being bioS(N’) for N’ = 100M, but with a special token appended to the front of
each piece of useful data.”

For simplicity, within each 512-token context window, we either include only useful data or only
junk data (separated by <EOS> tokens). The outcomes are similar when mixing useful and junk
data in the same context window. In all three cases, we initially consider a 100-exposure training
setting where the useful data receive 100 exposures each during pretraining — thus, the total number
of training tokens is approximately 8 times more than in Figure 1(b) (our scaling law for the 100-
exposure case without junk data).

In case (A), presenting a negative result, we also explore 300-exposure, 600-exposure, and 1000-
exposure training settings. Given that the 1000-exposure setting requires 48x more training to-
kens compared to Figure 1(b), or 4.8x more compared to Figure 1(a), we limited experiments to
bioS(N) with N < 200K to conserve computational resources. Similarly, for 300-exposure and
600-exposure, we only considered N < 500K.

In case (B), presenting a positive result, we limited our consideration to 100-exposure with N <
1M.

In case (C), presenting a moderately positive result, we explored both 100-exposure and 300-
exposure settings, where, in the 300-exposure setting, we again limited to N < 500K.

Overall, due to the significantly different training durations (i.e., number of training tokens) across
the 100-, 300-, 600-, and 1000-exposure settings, we had to adjust their batch sizes, weight decay,
and learning rates accordingly. These adjustments are discussed below.

Parameter 10 (Figure 3). We adhere to the general advice provided in Remark D.2 for selecting parameters
in all experiments shown in Figure 3. For negative results (e.g., Figure 3(b), 3(c)), we opted for a smaller batch
size to increase the number of trainable steps and explored a wider range of learning rate options. Conversely,
for positive results (e.g., Figure 3(f), 3(e)), we sometimes chose a larger batch size to benefit from faster, GPU-
accelerated training times and considered a narrower set of learning rate choices. Overall, we have meticulously
selected parameters to strengthen negative results as much as possible while intentionally not optimizing posi-
tive results to the same extent. This approach ensures a stronger comparison and effectively communicates the
key message of this section. Specifically,

* For Figure 3(b) which is Case (a) of 100-exposure:

BThis is akin to adding a domain name like wikipedia.org at the beginning of the data; the model lacks prior
knowledge that these special token data signify high-quality, useful data. It’s up to the model and the training
process to autonomously discover this.
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— For N = 50K, we use wd = 0.01, Ir = 0.0003/0.0005/0.001, and batch size 12;

— For N = 100K, we use wd = 0.01, Ir = 0.0003/0.0005/0.001, and batch size 24;

For N = 200K, we use wd = 0.01, Ir = 0.0003/0.0005/0.001, and batch size 48;

For N = 500K, we use wd = 0.005, Ir = 0.00005/0.0001,/0.0002/0.0003/0.0005, and batch size

192;

— For N = 1M, we use wd = 0.005, Ir = 0.00005/0.0001/0.0002/0.0003/0.0005, and batch size
192.

» For Figure 3(c) which is Case (a) of 300-exposure:

— For N = 50K, we use wd = 0.01, I = 0.0003/0.0005,/0.001, and batch size 96;

- For N = 100K, we use wd = 0.01, Ir = 0.0003/0.0005/0.001, and batch size 192;
— For N = 200K, we use wd = 0.01, Ir = 0.0003/0.0005/0.001, and batch size 192;
- For N = 500K, we use wd = 0.01, Ir = 0.0003/0.0005/0.001, and batch size 192.

» For Figure 3(d) which is Case (a) of 600-exposure:

- For N = 50K, we use wd = 0.01, Ir = 0.0003/0.0005/0.001, and batch size 384;

— For N = 100K, we use wd = 0.01, Ir = 0.0003/0.0005/0.001, and batch size 384;
— For N = 200K, we use wd = 0.01, Ir = 0.0003/0.0005/0.001, and batch size 384;
- For N = 500K, we use wd = 0.002, Ir = 0.0003/0.0005/0.001, and batch size 768.

* For Figure 3(e) which is Case (a) of 1000-exposure:

— For N = 50K, we use wd = 0.01, ir = 0.0005/0.001, and batch size 384;
— For N = 100K, we use wd = 0.01, Ir = 0.0005/0.001, and batch size 768;
— For N = 200K, we use wd = 0.01, Ir = 0.0005/0.001, and batch size 1536.

» For Figure 3(f) which is Case (b) of 100-exposure:

- For N = 50K, we use wd = 0.01, lr = 0.0003/0.0005, and batch size 12;

— For N = 100K, we use wd = 0.01, Ir = 0.0003/0.0005, and batch size 24;

- For N = 200K, we use wd = 0.01, Ir = 0.0003/0.0005/0.001, and batch size 96;
— For N = 500K, we use wd = 0.01, Ir = 0.0003/0.0005, and batch size 192;

— For N = 1M, we use wd = 0.01, Ir = 0.0003, and batch size 192.

» For Figure 3(g) which is Case (c) of 100-exposure:

- For N = 50K, we use wd = 0.01, lr = 0.0003/0.0005/0.001, and batch size 12;

— For N = 100K, we use wd = 0.01, Ir = 0.0003/0.0005/0.001, and batch size 24;

For N = 200K, we use wd = 0.01, {r = 0.0002,/0.0003/0.0005/0.001, and batch size 96;
For N = 500K, we use wd = 0.005, Ir = 0.0002/0.0003/0.0005, and batch size 192;

- For N = 1M, we use wd = 0.005, Ir = 0.0002/0.0003,/0.0005, and batch size 192.

 For Figure 3(h) which is Case (c) of 300-exposure:

For N = 50K, we use wd = 0.01, Ir = 0.0003/0.0005/0.001, and batch size 96;
For N = 100K, we use wd = 0.01, Ir = 0.0003/0.0005/0.001, and batch size 192;
For N = 200K, we use wd = 0.01, Ir = 0.0003/0.0005/0.001, and batch size 192;
For N = 500K, we use wd = 0.005, Ir = 0.0003/0.0005/0.001, and batch size 384.

I PROOF OF THEOREM 3.1

When assessing the knowledge stored in a model, we cannot simply rely on the average, word-by-
word cross-entropy loss. For example, the phrase “received mentorship and guidance from faculty
members” in (2.1) does not constitute useful knowledge. We should instead focus on the sum of the
loss for exactly the knowledge tokens.

Consider a model F' with weight parameters W & W. Assume F' is trained on a
bioD(N, K,C, D, L,T) dataset Z as defined in Def 2.2 using any optimizer; this process is rep-
resented as W = W(Z) (the model’s weight is trained as a function of the training dataset Z).
During the evaluation phase, we express F through two functions: F'T (W, R), which generates
names, and F- (W, n, a, R), which generates values given (7, a), where R denotes the randomness
used in generation. Let Fi-(W(Z2),n,a, R) represent the first chunk of F-(W(Z),n,a, R). We
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evaluate F by calculating the following three cross-entropy losses:**

losspame(Z) 1= néENflog l?%r [FT(W(Z),R) =n|

lossyaiue1 (Z) := nGNEaeA_ log l?%r [FlT(W(Z),n, a, R) = vi(n,a)]
L _ 1 .
lossyaiue(Z) := neNEaeA log %r [F-(W(Z),n,a,R) = v*(n,a)]

We shall explain in Appendix I that these quantities are easy to be derived from the auto-regressive
entropy-loss using examples, and below we quickly state our bit-complexity lower bound theorem:

Theorem I.1 (bit complexity lower bound). Suppose N > Q(D log N'). We have

No— N D¢ Tt - D
logs WI 2 & | Nlog, oy + NE logs Gz + K D082 [imaiyions, @~ OKD)
No — N D¢ Tt —D
= N1og2 oo T VK082 G KD o8: i e @~ 0K D)

Remark 1.2. For a language model, such quantities can be computed from its auto-regressive cross-
entropy loss. For instance, when evaluating the model on the sentence “Anya Briar Forger’s
ID 7is v71,...,v7,c,” summing up (not averaging!) the loss over the tokens in “Anya Briar
Forger” yields exactly —logPrg [FT(W(Z),R) = n] for n = “Anya Briar Forger™; sum-
ming up the loss over the token v7; results in —logPrp [F;(W(Z),n,a,R) = U7,1] for
this n and a = “ID 7”; and summing up the loss over the entire sequence v7 1,...,v7,c gives
—log Prg [FT(W(Z), n,a,R) =vr1,... ,v7,c]. This holds regardless of the tokenizer or value
length.

Theorem 3.1 (bit complexity lower bound). Suppose N > Q(Dlog N). We have

log, W] > E [N log, —0 =& +NK1 e + KD1 T - D KD
0gy Wl = Z { 082 elossname(Z) 082 elossyaiue(2) 082 De(1+o(1))lossyaiue1 (2) o )
No— N D¢ 7L — D
= N1o82 S tome e VK08 o o T KPP 8 B e KD

The goal of the paper is to study how the number of model parameters competes with this bound.

Corollary 1.3 (no-error case). In the ideal case, if for every data Z, F can generate a name from
N with exact 1/N probability each, then 108S,4me(Z) = log N, and if F' can 100% accurately
generate values given (n, a) pairs, then 108syq1ue(Z2) = 108Syaiue1 (£) = 0. In such a case,

L

No— N T - D
log, [W| > N log, OT + NKClog, D + KDlog, ——— — o(KD)

asymptotically matching the upper bound Proposition 2.3.

Remark 1.4 (why “sum of 3”). It is essential to obtain a lower bound that is the sum of the three
components; neglecting any may result in a suboptimal bound (see examples in Appendix D.4).

Remark 1.5 (why “random data”). Studying a lower bound for a fixed dataset Z is impossible — a
model could hard-code Z into its architecture even without any trainable parameter. Therefore, it is
necessary to consider a lower bound with respect to a distribution over datasets.

Proof difficulties. If names are fixed (V' = A) and there are N pieces of knowledge, each
uniformly chosen from a fixed set [T, it is straightforward that any model F'(W), capable of learning
such knowledge perfectly, must satisfy log, |[W| > Nlog, T. To relate this to Theorem 3.1, we
encounter three main challenges. First, the model F' may only learn the knowledge with a certain
degree of accuracy, as defined by the cross-entropy loss. Second, N' # Ay so names need to be
learned — even a perfect model cannot achieve zero cross-entropy loss when generating names.
Third, there is a dependency between knowledge pieces — the value depends on the name and the
choice of the diversity set (i.e., D,). The proof of Theorem 3.1 is deferred to Appendix L.

2We use E,, or E, o to denote uniform random selection of n € N, a € A.
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I.1 A USEFUL LEMMA
We present a crucial lemma that establishes the bit complexity required to encode random variables
based on the probability that these variables match specific reference values.

Lemmal.6. Let Oy, ..., Qy be fixed sets (we call domains), and assume that for each i € [k], Q; is
independently and randomly chosen from its corresponding domain Q;. Denote Q = (Q1, ..., Q%)
and view @ as the training data.

Assume there exists a function W (Q) € W, which we regard as the parameters of a model computed
(i.e., trained) from the training data Q).

Furthermore, consider an evaluation function F; that predicts

Vi € [k] P’L:FZ(W(Q)7Q17Q2) aQith) with pz(Q) = I})%I‘[PZZQl ‘Q] .
Here, F is parameterized by W (Q) and may rely on previous data Q1, . . ., Q;—1, and new random-
ness R. Then, it follows that

log W] = 3 log (Elp(Q)] x i) = E[ Y log ((Q) x Q)] - (LD)
i€[k] i€ (k]

Proof of Lemma 1.6. Since the second inequality of (I.1) trivially comes from Jensen’s inequality,
we only prove the first one.

When ¢ = 1, we have P; = F;(W(Q), R) and one can prove the lemma by a simple counting
argument, using the property that VR, P, = F1 (W (Q), R) has at most |W| choices of values.

When ¢ > 2, we can merge data points 1, Q2 to be a new data point (' with domain Q' =
Q1 X Qo. We can construct P’ = (Py, P;) from function Fy, F5 by sampling R; to generate
P, = FF(W(Q), R), and then sample independent Rs to generate P, = F»(W(Q),Q1, R). We

know that Prg, g,[P' = Q" | Q] = Prg,[P1 = Q1 | Q] Prg,[P2 = Q2 | Q] = p1(Q) - p2(Q).
The lemma now follows using the following identity:

log(p1(Q)|Q1]) + log(p2(Q)Qz2]) = log(p1(Q)p2(Q)|Q1]|Qz]) - [

1.2 WARMUP EXAMPLES

Let us first see two warmup applications of Lemma 1.6.

Value-only. Let g1,...,9n € [T], where each g; is i.i.d. uniformly chosen at random from
[T]. Think of these as values. Suppose a model, parameterized by W, is trained on the training
data Z = (gl, e gN). Assume this model, for a given index ¢ € [N], can generate a random
prediction f; corresponding to g;. We can represent this model as f;(W(Z), R), where R denotes
the randomness. The cross-entropy loss for this scenario (averaged over all possible training data) is
expressed as

1
loss := ]g[loss(g)] :z]gl [N E —logf;r[fi =gi]| 20
i€[N] ‘

Now we apply Lemma 1.6 by setting Q1 = ...Qn = [T, Q; = ¢, and P; = f;. We have

T
log|W| 2 E [z[;v] logl;ir[fi =g + logT} = NlogT — NEloss(g) = ENlog - .
1€

Changing the base immediately yields a bit complexity lower bound of log, [W| > N log, eg—ss As
the loss approaches zero, this matches the bit complexity upper bound.

Name-only. Let g1,...,9n € [INo] be N distinct elements from [Ny, sampled uniformly at
random without replacement, and considered as names. Suppose a model f, parameterized by W, is
trained on the dataset Z = (g1,...,gn) to predict a name. We denote this as f(W(Z), R), where
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R represents randomness. The cross-entropy loss for this scenario is defined as

1
loss := IgE[loss(g)] = IgE [N g —log P;I‘[f = gi]} >0
1€[N]

To apply Lemma 1.6, we define Q1 = [Ng], Q2 = [Np — 1], and continue until Qn = [Ny — N +1].
After uniformly randomly generating @1, ..., Qn from Qs,..., Qy, we construct (g1,...,gn) €
[N]V as follows: set g1 = Q1; for go, set it to Qo if Q2 < @1, otherwise go = Q2 + 1; and in
general, define g; as the @;-th smallest element in [Ng] \ {¢1,...,9i—1}. This method provides
an alternative way to generate Z = (g1, ..., gn), denoted as Z(Q). For each ¢ € [N], we define
P; as follows: first, generate f = f(W(Z), R;) using fresh randomness R;. Set P; := s if f is
the s-th smallest element in [No] \ {g1,...,9i—1}, or a special symbol such as & if f is among
{91,-..,9i—1}. (Note importantly, this definition of P; necessitates knowledge of ¢1,...,¢g;—1;
however, this is permissible as Lemma 1.6 allows P; to depend on )1, ...,Q;_1.) For every fixed
@ (and thus fixed g),

Z log (PZ(Q)) = Z log (];ll”[Pz = Qz]) = Z log (%f[f(W(ZLRi) = gz]) = —Nloss(g)
i€[N] i€[N] i€[N]
Applying Lemma 1.6 we have

N

‘ No— N7 No —
1€

Ideally, if the model f can perfectly memorize the entire training set {Z} = (¢g1,...,9n), its best
possible loss loss(g) = log N is achieved. Thus, if the model can perfectly learn this training

?\e[t’ th?V bit complexity lower bound satisfies log [W| > N log o= > (1 — (1)) N log 4¢ when
< No.

1.3 MAIN PROOF

We recommend that readers first review the warmup examples in Section 1.2 before proceeding with
this proof.

Proof of Theorem 3.1. Let us first construct the domains Q;’s in Lemma 1.6.
1. LetQ1 :[No],QQZ [NQ*I]QN:[N()*Nﬁ*l]
2. Let (Qn+jp+1,--- Qnijpin) = ([TF], [T -1],...,[T*—D+1)) forevery j = 0,..., K—
1.

3. Let Onvixpi1 == Qnikpink = [DE].

Recall that each @); is independently and uniformly generated at random from Q;. We now present
an alternative method for generating the training dataset Z(Q).

1. Construct N' = (nq,...,ny) as follows: Let ny be the Q1-th name from Np; for i > 1, let n;
be the @Q;-th name from Ny \ {n1,...,n;_1}.

2. For each a’ € [K], let a be the a'-th attribute in .A. Construct D, = (w1, ..., wp) as follows:
Let wy be the Qn(a'—1)p+1-th element in TL: fori > 1, let w; be the QN+(a'—1)D+i-th
elementin 72\ {wi,...,w;_1}.

3. For the n’-th name n and the a/-th attribute a, assign its value v*(n, a) = (v1,...,v¢) € (Dg)¢
by setting each v; as the s;-th element in D,, where the integer sequence (s1,...,S¢) =

QN+KD+(n'—1)K+ar € [DO].

It is easy to verify that this gives the same dataset distribution as Def 2.2. Next, consider () being
fixed (thus the dataset Z being fixed), we construct Py, P, - - - , Pn1 g p+ vk using the given model
functions F'T (W (Z), R) and F+ (W (2Z),n,a, R).

Name part. For the name part, construct P; for i € [N] following the approach from the
“value-only” warmup example. Specifically, let R; be fresh randomness, and define P; = s if
FT(W({Z}), R;) matches the s-th element in N \ {n1,...,n;_1}, or an arbitrary symbol & if it
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falls within {n,...,n;_1}.*> Adopting the analysis from the “name-only” warmup example, we
obtain

Zie[N] logPrp,[P; = Q;] = —Nloss,ame(Z) - 1.2)

Diversity Part. For the diversity component, we construct the P;’s as follows. For each
a € [K], let a denote the a’-th attribute in A. We form Py (. _1)p4; by initially cal-
culating FLEW n a,R;), where n € N is selected uniformly at random. 2° Subse-
quently, if F' ,n,a, R;) corresponds to the s-th element in 77\ {wy,...,w;_1}, then set
PN+(a/_1)D+Z = s otherwise, set PNy (a/—1)D4i = 2.7

Now, let a be the a’-th element in A. Consider @ as fixed, with randomness arising solely from the

calculation of P;’s. Note that () establishes an order of elements in D,, denoted by w1, ..., wp. We
have
Z IOg Pr [PN+(a/71)D+i = QN+(a/71)D+i] = Z 10g E Pr [[Ff(W(Z),n,a,R) = wl]}
Pyia—1)Dyi ) neN R
i€[D] i€[D]
1L .
- ; log E _Pr {[F1 (W(2),n,a,R) = w]} — &,

Let us denote by NV, , the set of n € N so that v*(n,a) = w. We have

Z logZPr Fi-(W(Z),n,a,R) = w|] — Dlog N
wEDq neN

g Z log Z Pr [Fll(W(Z),n,a,R) =w| — Dlog N
wED, nGNw a r

= Zlog

wED,

Z Pr [F{"(W(Z),n.a,R) = w] ~ Dlog N + > log [Nl
wa| neEN, weD
@

> Z > log Pr [F{"(W(Z),n.a,R) = w] ~ Dlog N + > log [Nl
weD, ‘ w5 “| NENw weD

Above, @ uses monotonicity of the log function and @ uses convexity of the log function. Using
simple Chernoff bound, one can see that as long a N > Q(D log N), with high probability [Ny, | >

(1 —o(1))% forall w € D. Thus, we know with high probability

&, > (1+0(1 Z > log Pr [F{-(W(2),n,a,R) = w] — Dlog D — o(D)
wED, ner a

= (1+4o0(1)) N Z logPr [F{*(W(2),n,a,R) =v*(n,a)] — Dlog D — o(D)
neN

Thus, summing up over all the diversity part, we have (recall we are fixing ) and thus fixing Z)

E log Pr [PNti = Qi)
N+1
i1€[K D]

>(1+ 0(1))Dﬁ Z log l?%r [F{-(W(Z2),n,a,R) = v*(n,a)] — KDlog D — o(KD)

neN,acA
—(1+ 0o(1))Dlossyqiue1(Z) — KDlog D — o(KD) . (1.3)
BImportantly, P; may depend on ni,...,n;_1; however, since LemmaL.6 permits P; to depend on

Q1,...,Qi—1, this is acceptable.

ZImportantly, Py (a'—1)p+i depends on N however, since LemmaI.6 permits P; to depend on
Q1,...,Qi—1, and since N is uniquely determined by Q1, ..., Qx, this is acceptable.

27Importantly, Py (a’—1)D+i depends on wy, ..., w;—1; however, since Lemma 1.6 permits P; to depend
ON QN4(a’—1)D+1s - - - s @N+(a’—1)D+i—1, this is acceptable.

34



Under review as a conference paper at ICLR 2025

Value part. For the value part, we construct Pxvi+xp+1,.--, PN+xkD+NK as follows. For
PN{KD+(n'~1)K+a'» letting n be the n/-th name in N and a be the a'-th attribute in A.

Let us compute F-(W(Z2),n,a,R) and find the corresponding s1,...,s¢ € [D] such that
FX(W(2),n,a,R) is the s;-th element in D, for each i € [C]. If not found, we define

PNt KD4(n'—1)K+ar = D otherwise, define Py g py(n'—1)k4a’ = (51,-..,5¢) € [DC].28

Following the same simple argument as the “value-only” warmup example, we have

E log Pr [PN+KD+i = QN+KD+i] = E Pr {FL(W(Z)/I%, a, R) = v*(n, a)
N+KD+i
i€[NK] neN,acA
= —NKlossyaiue(2)
1.4)

Summing (I.2) (I.3) and (I1.4), and applying Lemma 1.6, we have

No— N D¢ T — D
log W 2 B [N log ol + NKlog o5 + KDog iz — UK D)|
This finishes the proof of Theorem 3.1. U]

J MISSING REMARK

Remark J.1. Due to the significant overlap among textbooks, especially those designed for PreK-12
education, estimating the total amount of knowledge contained within all English-language text-
books can be challenging. However, we attempt to do so as follows.

According to a 2023 article, Pearson Education, a UK-based educational publisher, reported the
highest revenue in 2021, with Wiley and McGraw Hill being the top two US-based educational
publishers in terms of revenue.?’

 Pearson’s official website lists fewer than 2,100 textbooks.>°
* Wiley’s official website lists fewer than 69,000 textbooks.3!

e McGraw Hill lists fewer than 22,000 textbooks for PreK-12 education, many of which have
significant content overlap (as many are tailored for one of the 50 US states).?> They list fewer
than 2,000 textbooks for higher education.

Taking these figures into account, it seems reasonable to estimate that the content of all English-
language textbooks could be condensed into no more than 100,000 textbooks. Assuming an average
of 160,000 words per book (e.g., 400 pages with 400 words each), this would amount to a total of
16 billion words.

28Again, importantly, we can do so because Py x p+(n/—1)K+a’ depends on N, D, but they can be com-
puted using the values of Q1,...,QN+KD-

Phttps://wordsrated.com/education-book-publishing-companies—statistics/,
accessed March 2024.

Onttps://www.pearson.com/en-us/pearsonplus/search.html for their full list of eText-
books and http://www.mypearsonstore.com/bookstore/browse.asp for their full list of hard
copy books, both accessed March 2024.

S'https://www.wiley.com/en-us/subjects, accessed March 2024. We wrote a code to sum
up all the books in all of their subcategories; our code may double count books, so this is only a safe upper
bound. We used this number instead of the “21,000” online books mentioned on https://www.wiley.
com/learn/librarysolutions/online-books—purchase.html, accessed March 2024.

“https://www.mheducation.com/search.html?searchQuery=&page=1l&sortby=
title_descé&order=desc&bu=seg&TYPE=Products&PRODUCT_TYPE_PATH=_Student+
Materials, accessed March 2024.
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