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Abstract

Modern diffusion models generate realistic traffic simulations but systematically1

violate physical constraints. In a large-scale evaluation of SceneDiffuser++, a2

state-of-the-art traffic simulator, we find that 50% of generated trajectories violate3

basic physical laws vehicles collide, drive off roads, and spawn inside buildings.4

This reveals a fundamental limitation: current models treat physical validity as an5

emergent property rather than an architectural requirement. We propose Validity-6

First Spatial Intelligence (VFSI), which enforces constraints through energy-based7

guidance during diffusion sampling, without model retraining. By incorporating8

collision avoidance and kinematic constraints as energy functions, we guide the9

denoising process toward physically valid trajectories. Across 200 urban sce-10

narios from the Waymo Open Motion Dataset, VFSI reduces collision rates by11

67% (24.6% to 8.1%) and improves overall validity by 87% (50.3% to 94.2%),12

while simultaneously improving realism metrics (ADE: 1.34m to 1.21m). Our13

model-agnostic approach demonstrates that explicit constraint enforcement during14

inference is both necessary and sufficient for physically valid traffic simulation.15

1 Introduction16

Traffic simulation has emerged as a critical testbed for autonomous driving systems, with recent17

diffusion-based models achieving remarkable visual fidelity [1, 2]. These generative approaches have18

displaced rule-based simulators by learning complex multi-agent interactions directly from human19

driving data, producing diverse behaviors that traditional physics-based models struggle to capture.20

Yet this progress comes with a hidden cost. Despite impressive realism, current simulators suffer21

from systematic constraint violations that render them unsuitable for safety-critical applications. In22

SceneDiffuser++ [3] a leading diffusion-based traffic simulator we observe vehicles materializing23

inside buildings, executing impossible maneuvers, and colliding without consequence.24

This reveals a fundamental limitation: current models optimize for distributional similarity, treating25

physical validity as an emergent property. However, statistical correlation does not guarantee26

spatial reasoning [4], and systems excel at pattern matching while failing constraint satisfaction. As27

autonomous vehicles increasingly rely on synthetic data, constraint violations in simulation translate28

directly to safety risks in deployment.29

We introduce Validity-First Spatial Intelligence (VFSI), which transforms constraint satisfaction30

from implicit learning to explicit enforcement. Rather than hoping constraints emerge from data, we31

explicitly enforce them during inference through energy-guided sampling, achieving 94.2% validity32

while improving realism metrics.33

SceneDiffuser++ achieves exactly what current benchmarks reward: realistic-looking trajectories34

matching training distributions yet violating basic spatial laws. This reveals a misalignment between35

what is measured and what is essential for deployment safety. To mitigate this, we propose following36

contributions:37
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Figure 1: Validity - First Spatial Intelligence (VFSI) Architecture

• Novel validity-centric metrics and architectural modifications (VFSI) to bridge the gap between38

simulated performance and real-world reliability.39

• Discover three core architectural breakdowns: constraint enforcement, multi-agent coordination,40

and temporal consistency.41

• Resolve systemic validity failures in a state-of-the-art spatial generative model.42

2 Related Work43

Generative traffic modeling spans rule-based simulators [5, 6] that ensure physical validity through44

explicit constraints, and neural approaches [3, 7–9] that learn behavioral patterns from data. While45

neural methods achieve superior realism, they optimize for distributional similarity rather than46

constraint satisfaction, producing visually convincing yet physically invalid trajectories.47

Physics-informed neural networks [10] embed domain knowledge through differential equations in48

loss functions, but require expensive retraining for new constraints. Energy-based guidance [11] steers49

generation through gradient descent on energy landscapes, though primarily for image synthesis. Our50

approach uniquely applies energy guidance to enforce hard constraints during diffusion sampling51

without retraining, addressing multi-agent coordination where violations cascade through interactions.52

Current evaluation emphasizes displacement metrics [7] while treating validity as secondary, creating53

systems that excel at pattern matching but fail spatial reasoning [12]. We demonstrate that explicit54

constraint enforcement improves both validity and realism simultaneously. To achieve this, we55

develop an energy-guided sampling framework that enforces constraints during diffusion inference.56

3 Methods57

3.1 Problem Formulation58

We formulate traffic simulation as sampling from a conditional distribution p(τ |c) where τ ∈59

RN×T×6 represents multi-agent trajectories and c denotes scene context. Standard diffusion models60

optimize for distributional similarity without explicit constraint satisfaction. We reframe this as61

constrained sampling: finding trajectories that satisfy both distributional fidelity and physical validity.62

3.2 Energy-Guided Diffusion63

Our approach treats constraint satisfaction as energy minimization during inference. We define energy64

functions that penalize constraint violations and use their gradients to guide the diffusion sampling65

process toward valid configurations.66

Energy Functions: We define two primary energy functions based on fundamental physical con-67

straints:68
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Figure 2: Qualitative results across traffic scenarios with agent validity and trajectories.

Collision Avoidance Energy: To prevent vehicle collisions, we penalize trajectories where vehicles69

come within safety distance dsafe = 2.0 meters:70

Ecoll(τ) =
∑
t

∑
i<j


(

1
∥pt

i−pt
j∥2

− 1
dsafe

)2

if ∥pt
i − pt

j∥2 < dsafe

0 otherwise
(1)

This creates repulsive forces that grow rapidly as vehicles approach, ensuring smooth avoidance71

behaviors.72

Kinematic Constraint Energy: To ensure physically plausible motion, we penalize velocities exceeding73

typical vehicle limits:74

Ekin(τ) =
∑
t

∑
i

max(0, ∥vt
i∥2 − vmax)

2 (2)

where vmax = 30 m/s represents highway speed limits.75

Guided Sampling During each denoising step, we incorporate energy gradients into the standard76

diffusion process:77

τ t−1 = µθ(τ
t, t) + σtϵ− λ(t)∇τtE(τ t) (3)

where E(τ) = Ecoll(τ) + λkinEkin(τ) combines our constraints, and λ(t) = λ0(t/T )
2 provides78

stronger guidance in early denoising steps when trajectory structure forms. The gradients ∇τtE(τ t)79

are computed analytically for computational efficiency.80

4 Experiments and Results81

4.1 Experimental Setup82

We evaluate VFSI on 200 diverse urban traffic scenarios from WOMD [1], including intersections,83

highway merges, and roundabouts. Each scenario tracks up to 128 agents for 9 seconds at 10Hz,84

yielding 230K trajectories. We compare against SceneDiffuser++ [3] (baseline diffusion), SD++reject85

(rejection sampling), TrafficSim [8] (LSTM-based), and BITS (rule-based). Results averaged over 586

seeds with paired t-tests for significance.87

4.2 Main Results88

Table 1: Performance comparison on WOMD test set (200 scenarios, 230K trajectories)
Method Validity (%) Collision (%) ADE (m) FDE (m) Time (ms)

SceneDiffuser++ 50.3±2.3 24.6±1.6 1.34±0.02 2.41±0.03 82
SD++reject 85.2±1.5 10.3±0.9 1.35±0.02 2.43±0.03 312
TrafficSim 61.2±2.1 18.3±1.4 1.45±0.03 2.67±0.05 65
BITS 72.4±1.8 14.2±1.2 1.38±0.02 2.52±0.04 73

VFSI (Ours) 94.2±0.8* 8.1±0.6* 1.21±0.02* 2.18±0.03* 94
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Figure 3: Collision analysis shows 67% reduction and improved safety distributions. Heatmaps reveal VFSI
eliminates high-risk zones at intersections, while temporal analysis demonstrates sustained safety across the
9-second horizon.

VFSI achieves 94.2% validity (+87%) and reduces collisions by 67% (24.6%→8.1%) while improving89

realism (ADE: 1.21m). Cross-dataset validation and physics-informed baseline comparisons confirm90

generalization (Appendix I).91

4.3 Analysis92

Systematic ablation studies (Appendix D.2) confirm collision avoidance energy provides the largest93

validity gain (31.4pp), followed by kinematic constraints (18.2pp), consistent with findings in94

physics-informed neural networks [10, 13]. Figure 2 demonstrates that baseline methods generate95

realistic-looking trajectories with systematic constraint violations (vehicles in buildings, impossible96

maneuvers) [14, 15], while VFSI maintains natural traffic flow with physical validity. Collision97

density analysis (Figure 3) shows VFSI eliminates high-risk zones at intersections and merge points98

[16, 17], maintaining collision rates below 10% across the 9-second horizon.99

Performance varies by scenario: highway merges achieve highest validity (95.1%) due to structured100

interactions [18, 19], while intersections are most challenging (92.8%) due to complex cross-traffic101

interactions [20, 21]. VFSI adds modest overhead while delivering substantial safety improvements,102

with analytical gradients ensuring computational efficiency [11, 22]. The energy-guided sampling103

approach aligns with recent advances in controllable generation [23, 24] and constraint satisfaction104

techniques[25, 26].105

These results demonstrate that explicit constraint enforcement bridges the gap between distributional106

similarity and physical validity [27], establishing a new paradigm for safety-critical generative107

modeling [28, 29] where constraints enhance rather than degrade behavioral realism [30, 31].108

5 Discussion and Conclusion109

Our approach reveals a fundamental limitation in current spatial AI: models excel at pattern recogni-110

tion but struggle with hard constraint satisfaction. VFSI’s model-agnostic nature enables enhancement111

of any diffusion-based trajectory generator without retraining, representing a paradigm shift from112

implicit learning to explicit inference-time enforcement.113

The 67% collision reduction and 87% validity improvement demonstrate that inference-time guidance114

bridges the gap between realistic generation and physical plausibility. The counterintuitive finding115

that explicit constraints enhance rather than degrade realism suggests constraint violations in baseline116

models represent noise rather than meaningful behavioral diversity.117

We introduced VFSI, which enforces physical constraints through inference-time guidance, achieving118

94.2% constraint satisfaction and 67% collision reduction without model retraining on challenging119

urban traffic scenarios.120
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