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Abstract

Modern diffusion models generate realistic traffic simulations but systematically
violate physical constraints. In a large-scale evaluation of SceneDiffuser++, a
state-of-the-art traffic simulator, we find that 50% of generated trajectories violate
basic physical laws vehicles collide, drive off roads, and spawn inside buildings.
This reveals a fundamental limitation: current models treat physical validity as an
emergent property rather than an architectural requirement. We propose Validity-
First Spatial Intelligence (VFSI), which enforces constraints through energy-based
guidance during diffusion sampling, without model retraining. By incorporating
collision avoidance and kinematic constraints as energy functions, we guide the
denoising process toward physically valid trajectories. Across 200 urban sce-
narios from the Waymo Open Motion Dataset, VFSI reduces collision rates by
67% (24.6% to 8.1%) and improves overall validity by 87% (50.3% to 94.2%),
while simultaneously improving realism metrics (ADE: 1.34m to 1.21m). Our
model-agnostic approach demonstrates that explicit constraint enforcement during
inference is both necessary and sufficient for physically valid traffic simulation.

1 Introduction

Traffic simulation has emerged as a critical testbed for autonomous driving systems, with recent
diffusion-based models achieving remarkable visual fidelity [1}2]. These generative approaches have
displaced rule-based simulators by learning complex multi-agent interactions directly from human
driving data, producing diverse behaviors that traditional physics-based models struggle to capture.

Yet this progress comes with a hidden cost. Despite impressive realism, current simulators suffer
from systematic constraint violations that render them unsuitable for safety-critical applications. In
SceneDiffuser++ [3] a leading diffusion-based traffic simulator we observe vehicles materializing
inside buildings, executing impossible maneuvers, and colliding without consequence.

This reveals a fundamental limitation: current models optimize for distributional similarity, treating
physical validity as an emergent property. However, statistical correlation does not guarantee
spatial reasoning [4]], and systems excel at pattern matching while failing constraint satisfaction. As
autonomous vehicles increasingly rely on synthetic data, constraint violations in simulation translate
directly to safety risks in deployment.

We introduce Validity-First Spatial Intelligence (VFSI), which transforms constraint satisfaction
from implicit learning to explicit enforcement. Rather than hoping constraints emerge from data, we
explicitly enforce them during inference through energy-guided sampling, achieving 94.2% validity
while improving realism metrics.

SceneDiffuser++ achieves exactly what current benchmarks reward: realistic-looking trajectories
matching training distributions yet violating basic spatial laws. This reveals a misalignment between
what is measured and what is essential for deployment safety. To mitigate this, we propose following
contributions:
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Validity - First Spatial Intelligence (VFSI) Architecture
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Figure 1: Validity - First Spatial Intelligence (VFSI) Architecture

* Novel validity-centric metrics and architectural modifications (VFSI) to bridge the gap between
simulated performance and real-world reliability.

* Discover three core architectural breakdowns: constraint enforcement, multi-agent coordination,
and temporal consistency.

* Resolve systemic validity failures in a state-of-the-art spatial generative model.

2 Related Work

Generative traffic modeling spans rule-based simulators [} 6] that ensure physical validity through
explicit constraints, and neural approaches [3, [7H9] that learn behavioral patterns from data. While
neural methods achieve superior realism, they optimize for distributional similarity rather than
constraint satisfaction, producing visually convincing yet physically invalid trajectories.

Physics-informed neural networks [[10] embed domain knowledge through differential equations in
loss functions, but require expensive retraining for new constraints. Energy-based guidance [[11] steers
generation through gradient descent on energy landscapes, though primarily for image synthesis. Our
approach uniquely applies energy guidance to enforce hard constraints during diffusion sampling
without retraining, addressing multi-agent coordination where violations cascade through interactions.
Current evaluation emphasizes displacement metrics [7] while treating validity as secondary, creating
systems that excel at pattern matching but fail spatial reasoning [12]. We demonstrate that explicit
constraint enforcement improves both validity and realism simultaneously. To achieve this, we
develop an energy-guided sampling framework that enforces constraints during diffusion inference.

3 Methods

3.1 Problem Formulation

We formulate traffic simulation as sampling from a conditional distribution p(7|c) where 7 €
RN *Tx6 represents multi-agent trajectories and ¢ denotes scene context. Standard diffusion models
optimize for distributional similarity without explicit constraint satisfaction. We reframe this as
constrained sampling: finding trajectories that satisfy both distributional fidelity and physical validity.

3.2 Energy-Guided Diffusion

Our approach treats constraint satisfaction as energy minimization during inference. We define energy
functions that penalize constraint violations and use their gradients to guide the diffusion sampling
process toward valid configurations.

Energy Functions: We define two primary energy functions based on fundamental physical con-
straints:
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Figure 2: Qualitative results across trafﬁc scenarios w1th agent validity and trajectories.

Collision Avoidance Energy: To prevent vehicle collisions, we penalize trajectories where vehicles
come within safety distance dg,e = 2.0 meters:

2
— 1\ iflpt — pt
Beon(r ZZ (sz Iz dsafe) if [|p; — Pjll2 < dsate M

i<j otherwise

This creates repulsive forces that grow rapidly as vehicles approach, ensuring smooth avoidance
behaviors.

Kinematic Constraint Energy: To ensure physically plausible motion, we penalize velocities exceeding
typical vehicle limits:
Ekm Z Z maX O HV ||2 'Umax) 2)

where vmax = 30 m/s represents highway speed limits.

Guided Sampling During each denoising step, we incorporate energy gradients into the standard
diffusion process:

77 = (7, t) + e — A(t)V e B(7Y) 3)

where E(7) = Eeon(T) + AinFkin(T) combines our constraints, and A(t) = \o(t/7)? provides
stronger guidance in early denoising steps when trajectory structure forms. The gradients V.« E(7")
are computed analytically for computational efficiency.

4 Experiments and Results

4.1 Experimental Setup

We evaluate VFSI on 200 diverse urban traffic scenarios from WOMD [[1]], including intersections,
highway merges, and roundabouts. Each scenario tracks up to 128 agents for 9 seconds at 10Hz,
yielding 230K trajectories. We compare against SceneDiffuser++ [3]] (baseline diffusion), SD++reject
(rejection sampling), TrafficSim [8] (LSTM-based), and BITS (rule-based). Results averaged over 5
seeds with paired t-tests for significance.

4.2 Main Results

Table 1: Performance comparison on WOMD test set (200 scenarios, 230K trajectories)

Method Validity (%) Collision (%) ADE (m) FDE (m) Time (ms)
SceneDiffuser++ 50.3£2.3 24.6x1.6 1.3440.02 2.41+0.03 82
SD++reject 85.2+1.5 10.3£0.9 1.35+0.02 2.43+0.03 312
TrafficSim 61.242.1 18.3x1.4 1.45+0.03 2.67+0.05 65
BITS 72.4+1.8 14.241.2 1.3840.02 2.52+0.04 73
VFSI (Ours) 94.2+0.8%* 8.1+0.6* 1.21+0.02%  2.18+0.03* 94
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Figure 3: Collision analysis shows 67% reduction and improved safety distributions. Heatmaps reveal VFSI
eliminates high-risk zones at intersections, while temporal analysis demonstrates sustained safety across the
9-second horizon.

VESI achieves 94.2% validity (+87%) and reduces collisions by 67% (24.6%—8.1%) while improving
realism (ADE: 1.21m). Cross-dataset validation and physics-informed baseline comparisons confirm
generalization (Appendix I).

4.3 Analysis

Systematic ablation studies (Appendix D.2) confirm collision avoidance energy provides the largest
validity gain (31.4pp), followed by kinematic constraints (18.2pp), consistent with findings in
physics-informed neural networks [13]. Figure[2] demonstrates that baseline methods generate
realistic-looking trajectories with systematic constraint violations (vehicles in buildings, impossible
maneuvers) [14] [15], while VFSI maintains natural traffic flow with physical validity. Collision
density analysis (Figure[3) shows VFSI eliminates high-risk zones at intersections and merge points
[16, [17], maintaining collision rates below 10% across the 9-second horizon.

Performance varies by scenario: highway merges achieve highest validity (95.1%) due to structured
interactions [[18], [T9]], while intersections are most challenging (92.8%) due to complex cross-traffic
interactions [20}, 21]]. VFSI adds modest overhead while delivering substantial safety improvements,
with analytical gradients ensuring computational efficiency [11} 22]]. The energy-guided sampling
approach aligns with recent advances in controllable generation and constraint satisfaction

techniques[23], 26].

These results demonstrate that explicit constraint enforcement bridges the gap between distributional
similarity and physical validity [27], establishing a new paradigm for safety-critical generative
modeling [28] 29] where constraints enhance rather than degrade behavioral realism [30, [31].

5 Discussion and Conclusion

Our approach reveals a fundamental limitation in current spatial Al: models excel at pattern recogni-
tion but struggle with hard constraint satisfaction. VFSI’s model-agnostic nature enables enhancement
of any diffusion-based trajectory generator without retraining, representing a paradigm shift from
implicit learning to explicit inference-time enforcement.

The 67% collision reduction and 87% validity improvement demonstrate that inference-time guidance
bridges the gap between realistic generation and physical plausibility. The counterintuitive finding
that explicit constraints enhance rather than degrade realism suggests constraint violations in baseline
models represent noise rather than meaningful behavioral diversity.

We introduced VFSI, which enforces physical constraints through inference-time guidance, achieving
94.2% constraint satisfaction and 67% collision reduction without model retraining on challenging
urban traffic scenarios.
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