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ABSTRACT

Adaptive gradient methods, such as AdaGrad, are among the most successful opti-
mization algorithms for neural network training. While these methods are known
to achieve better dimensional dependence than stochastic gradient descent (SGD)
under favorable geometry for stochastic convex optimization, the theoretical justi-
fication for their success in stochastic non-convex optimization remains elusive. In
fact, under standard assumptions of Lipschitz gradients and bounded noise vari-
ance, it is known that SGD is worst-case optimal (up to absolute constants) in
terms of finding a near-stationary point with respect to the {5-norm, making fur-
ther improvements impossible. Motivated by this limitation, we introduce refined
assumptions on the smoothness structure of the objective and the gradient noise
variance, which better suit the coordinate-wise nature of adaptive gradient meth-
ods. Moreover, we adopt the ¢;-norm of the gradient as the stationarity measure,
as opposed to the standard ¢5-norm, to align with the coordinate-wise analysis
and obtain tighter convergence guarantees for AdaGrad. Under these new as-
sumptions and the /;-norm stationarity measure, we establish an upper bound on
the convergence rate of AdaGrad and a corresponding lower bound for SGD. In
particular, for certain configurations of problem parameters, we show that the it-
eration complexity of AdaGrad outperforms SGD by a factor of d. To the best of
our knowledge, this is the first result to demonstrate a provable gain of adaptive
gradient methods over SGD in a non-convex setting. We also present supporting
lower bounds, including one specific to AdaGrad and one applicable to general
deterministic first-order methods, showing that our upper bound for AdaGrad is
tight and unimprovable up to a logarithmic factor under certain conditions.

1 INTRODUCTION

Adaptive gradient methods, including variants like AdaGrad (McMahan & Streeter] |2010; |Duchi
et all 2011) and Adam (Kingma & Bal 2015)), have become essential for training large-scale
neural networks and language models. Their popularity over classic stochastic gradient descent
(SGD) (Robbins & Monro) [1951)) stems from two key features: (i) adaptive step sizes based on past
gradients, eliminating the need for problem-specific parameters like the gradient’s Lipschitz con-
stant or stochastic gradient variance, and (ii) the use of coordinate-wise step sizes, allowing better
exploitation of the objective’s geometry compared to SGD’s uniform step size.

Their empirical success has motivated exploring theoretical guarantees that show a provable gain
for this class of methods over the traditional SGD method. To pursue this goal, adaptive gradient
methods were initially examined in the context of online convex optimization. In particular, it was
shown by Duchi et al.| (2011) that depending on the geometry of the feasible set and the sparsity
of the gradients, AdaGrad’s regret bound could be either better or worse than that of SGD by a
factor of \/Zi, where d represents the problem’s dimension. For further details, we refer readers
to (Hazan| 2016} |Orabona, 2019). Moreover, using the classical online-to-batch conversion (Cesa-
Bianchi et al., |2004; |Shalev-Shwartz, [2012), these regret bounds directly translate into convergence
rate guarantees in stochastic convex optimization.
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In the non-convex setting, although significant work has been done to characterize the convergence
of adaptive methods under various assumptions (more details in the related work section), no prov-
able gain has been established for adaptive methods over SGD, and demonstrating such a gain for
AdaGrad in the non-convex setting remains an open problem, see (Chen & Hazan| |[2024).

Note that when the objective function is smooth and the stochastic gradients are unbiased with
bounded variance, SGD can, after 7" iterations, find a point where the expected gradient ¢5-norm is
bounded by O(ﬁ) (Ghadimi & Lan,[2013;|Bottou et al.,2018)). This convergence rate is known to
be optimal for any method relying on first-order oracles under the discussed assumptions (Arjevani
et al.| [2023). Consequently, to demonstrate a provable gain for adaptive methods over SGD in the
non-convex setting, we must move beyond the classic setup. In particular, as we will discuss in
detail, we argue that modifying both the assumptions and the measure of stationarity is necessary to

better account for the coordinate-wise nature of adaptive methods.

Contributions. Motivated by the coordinate-wise structure of AdaGrad, we present refined as-
sumptions on the smoothness and the noise variance by associating each coordinate with a Lipschitz
constant L; and a gradient noise variance o7 fori = 1,2,...,d (see Assumptions and .
However, even under these refined assumptions, we show that SGD is still worst-case optimal in the
noiseless setting when the 5-norm is the measure of stationarity (Theorem [2.I). Thus, we change
the measure of stationarity to the /;-norm and demonstrate that, with these new assumptions and the
revised stationarity measure, it is possible to prove that AdaGrad achieves an upper bound complex-
ity that outperforms the lower bound complexity for SGD. Our main contributions are summarized
below:

+ Upper bound for AdaGrad: Let L = [Ly,...,Ly] € R?and o = [04,...,04] € R? de-
note the Lipschitz constant vector and the noise variance vector, respectively. We establish

that AdaGrad achieves a rate ofo( ”L”“;gh(T) JF(HGH%HLqu“logh(T))l/‘l% ol log h(T)
3.1).

T4
in terms of the ¢1-norm, where h(T') is a polynomial function of T" and d (Theorem
Notably, this rate depends on d only implicitly through L and o.

* Lower bound for SGD: Under the same assumptions and using the ¢;-norm as the sta-
tionarity measure, we show that the convergence rate of SGD with a constant step size is

1/4 d o -\1/2
lower bounded by (\/ d”I%H“ 42 ( T VL) ) when the number of iterations T
is sufficiently large (Theorem [4.1).

* Provable gain for AdaGrad over SGD: By comparing AdaGrad’s upper bound with
SGD’s lower bound, we show that when the parameters L and o are both sparse and aligned
in a certain way, AdaGrad’s complexity can be d times better than the one for SGD.

* Lower bounds for AdaGrad: We establish a complexity lower bound for AdaGrad,
matching the first term in our upper bound up to absolute constants (including the log T’
factor), as well as the second term under certain conditions on L and o (Theorem[2.T)). We

also provide a lower bound of {2 (\/ %) for all deterministic first-order methods in the
noiseless case, showing the first term is unimprovable up to log factors (Theorem [3.3).

1.1 RELATED WORK

AdaGrad-Norm. Several prior works have established that AdaGrad-Norm achieves a convergence
rate similar to that of SGD, but under stronger assumptions, such as bounded gradients (Ward et al.,
2020; [Kavis et al., 2022; |Gadat & Gavral 2022), the step-size being (conditionally) independent of
the stochastic gradient (Li & Orabona) 2019} 2020), or sub-Gaussian noise (Li & Orabona), 2020;
Kavis et al.,|2022). [Faw et al.| (2022) addressed this issue and showed that under standard assump-
tions—Lipschitz gradients and bounded variance—AdaGrad-Norm achieves the same complexity
as SGD in terms of gradient’s /5-norm (up to a logarithmic factor). They further explored the set-
ting where the stochastic gradient has affine variance. In addition, several works (Attia & Koren,
2023; |Liu et al., [2023)) provided high-probability convergence guarantees for AdaGrad-Norm under
sub-Gaussian noise assumptions. The extension to the generalized smoothness setting (Zhang et al.,
2020) was developed in [Faw et al.|(2023)); /Wang et al.| (2023)). However, as mentioned earlier, these
results do not demonstrate any improvement over SGD in terms of convergence rate.
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AdaGrad and its variants. Most works on AdaGrad and its variants, such as RMSProp (Tieleman
& Hinton, 2012), Adam (Kingma & Bal 2015) and AMSGrad (Reddi et al., 2018), employed the
gradient £5-norm as the stationarity measure. Under the assumption of bounded gradients, Chen

et al. (2019); Alacaoglu et al|(2020); Défossez et al. (2022) established a rate of O(ﬁ), but with

an explicit dimension dependence of at least Q(d"/*). Thus, these convergence results could be
worse than the dimensional-free rate of SGD. Recently, several papers have studied the convergence
of adaptive methods with respect to the gradient’s £1-norm, closely related to our work. Under the
assumption of coordinate-wise subgaussian noise, Liu et al.|(2023) provided a high-probability rate

for AdaGrad of O (% + ﬁ

& Lin|(2024) analyzed RMSProp under the standard smoothness assumption and a coordinate-wise

bounded noise variance assumption and showed a convergence rate of (’N)(\/—‘/% + Tl—‘//i), which matches

our worst-case bound. However, their convergence result only showed the possibility of matching
the convergence rate of SGD instead of surpassing it, and thus it did not fully explain the advantage
of adaptive gradient methods. Along a different line of research, (Crawshaw et al.[(2022) proposed a
generalized SignSGD algorithm and analyzed its rate in terms of the gradient’s ¢;-norm, under their
proposed coordinate-wise generalized smoothness and subgaussian noise assumptions. However,
their results are not directly comparable to ours due to the different assumptions and algorithms.

), which is worse than our worst-case rate by a factor of Vd. ILi

Lower bounds. Several works have studied the complexity of finding an e-stationary point of a
smooth non-convex optimization with exact or noisy gradient oracles. However, to the best of our
knowledge, they all use the ¢>-norm of the gradient as the stationarity measure. In the noiseless set-
ting,|Carmon et al. (2020) showed that all first-order methods require at least (=) gradient queries
for finding a point z with |V f(z)||2 < e. Building on similar techniques, Arjevani et al.|(2023)
extended it to non-convex stochastic optimization and showed a lower bound of () for finding a
point z with E[||V f(x)]|2] < e. In addition to the use of £2-norm, these works focus on establishing
dimensional-free lower bounds and the constructed worst-case instance has a dimension that grows
with 1/e. As a result, their techniques are unfit for studying lower bounds in a given dimension,
which is our focus here. Along a different line of work, people have studied the complexity of find-
ing e-stationary points of a function in a small dimension (Vavasis} [1993; |Cartis et al.,|2010; |Chew1
et al., [2023). In particular, Chew1 et al.| (2023) showed that any deterministic first-order method
would require Q(E%) to find the e-stationary point of a one-dimensional smooth non-convex func-
tion. To the best of our knowledge, our result is the first to establish a lower bound in terms of the
£1-norm and highlight the dimensional dependence in the convergence rate.

Concurrent work. The concurrent work by |Liu et al. (2024), which appeared online two weeks
after our initial paper, also examined AdaGrad’s convergence under anisotropic smoothness and
noise assumptions, similar to our refined Assumptions [2.3bJand [2.4b] They proved an upper bound
on AdaGrad’s convergence rate in terms of the gradient’s ¢;-norm, comparable to our result in
Theorem and compared it with the classical upper bound for SGD in terms of the ¢5-norm.
In contrast, our approach focuses on establishing a lower bound for SGD, allowing us to directly
compare AdaGrad’s upper bound with SGD’s lower bound to demonstrate a clear advantage for
AdaGrad. Moreover, we further validate the tightness of our AdaGrad upper bound through two
lower bounds, one specific to AdaGrad and another for deterministic first-order methods.

2 PRELIMINARIES

Notation. We use boldface letters for vectors and normal font letters for scalars. The Euclidean
or {o-norm of a vector w is denoted by ||w||2 and its ¢; norm is indicated by ||w]||;. For a vector
w € R?, we denote its i-th coordinate by w;. We use [n] to denote the set {1,2, ..., n}. Further, F;
denotes the o-algebra generated after time index ¢. In our case, F; contains all iterates wy, . . ., W¢41
and all stochastic gradients go, . . . , g;. Finally, the notation O suppresses logarithmic dependencies.

In this paper, our objective is to identify an approximate stationary point of a smooth, non-convex
function F' : R? — R over the unbounded domain R¢. The most commonly analyzed AdaGrad-
type method in the literature is AdaGrad-Norm, which was first considered in McMahan & Streeter
(2010). Specifically, AdaGrad-Norm updates the iterates w; according to the following update rule:

Wiy = Wy — _ g;, Wwhere b =

¢
Z lgsl?, (AdaGrad-Norm)
by + 6 —~
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where g; is the stochastic gradient of F' at wy, the scalar 7 is a scaling parameter, 0 > 0 is a small
constant to ensure numerical stability. However, as mentioned in the introduction, most prior works
demonstrated convergence similar to the guarantees obtained by SGD. In this paper, we focus on the
coordinate-wise variant of AdaGrad, whose updates are given by

Gt
bt,,‘ +6’

t
Wil = Wi — 1) where b, ; = Zgii Vi € [d], (AdaGrad)
s=1

where constant § is introduced to ensure numerical stability. Some literature refers to this algorithm
as “diagonal AdaGrad” or “coordinate-wise AdaGrad”, while reserving the name AdaGrad for the
variant involving full matrix inversion. In this work, we refer to the diagonal version as AdaGrad,
as it is the most widely used in practice.

2.1 ASSUMPTIONS AND MEASURE OF STATIONARITY

In this section, we outline the assumptions required to characterize the complexity of
To provide motivation, we first revisit the standard assumptions on the objective function F' and
its stochastic gradient, which are commonly used in the analysis of stochastic first-order meth-
ods (Ghadimi & Lan, 2013} Bottou et al., [2018)).

Assumption 2.1. The function F(-) is bounded from below, i.e., inf ,cgra F(w) = F* > —c0.
Assumption 2.2. The stochastic gradient g; is unbiased, i.e., E[g: | Fi—1] = VF(wy).
Assumption 2.3a. The stochastic gradient g; has a bounded variance, i.e., E[||g; — VF (w;)|?] <
o2 for some non-negative constant o.

Assumption 2.4a. The function F(-) is smooth, i.e., for any vectors z,y € R% we have |F(z) —
F(y)— (VF(z),z—y)| < L|lx —y||% where L > 0 is the Lipschitz constant of the gradient of F.

Under Assumptions [2.1H2.4a} it is known that SGD, with an appropriately chosen step size, can
* 2 *
find a point w such that E [|[VF(w)||3] < €? after at most O LFCw)—F)o” | (Flwy) - FT)L

et €2
iterations (Ghadimi & Lanl|[2013[;|Bottou et al.,|2018)). Moreover, this complexity matches the lower
bound for any first-order method up to an absolute constant, as shown by |Arjevani et al.| (2023)).

According to this classical convergence theory, SGD is the optimal first-order method in this set-
ting in the worst-case sense, leaving no room for further improvement. However, coordinate-wise
adaptive methods, such as are often observed to converge significantly faster than SGD
in practice. Intuitively, the main advantage of over SGD is that each coordinate employs a
different step size that adapts to the gradients of each respective coordinate. In contrast, SGD uses
the same step size across all coordinates, and thus its step size is constrained by the most “difficult”
coordinate, impeding progress in other coordinates that could allow a larger step size. Consequently,
we expect [AdaGradto outperform SGD when the coordinates exhibit imbalance. To better capture
how coordinate-wise AdaGrad exploits structural features, we propose replacing Assumptions
and [2.4a] with their coordinate-wise refined counterparts, inspired by Bernstein et al.| (2018).
Assumption 2.3b. The stochastic gradient g, with elements [g¢ 1, . . ., gt.4) has a coordinate-wise
bounded variance. That is, for all i € [d], we have E[|g:; — V;F(wy)|* | Fi—1] < 02, where o;
is a non-negative constant and V;F (w;) represents the i-th coordinate of the gradient V F (w;).
Moreover, we define the vector o as @ = |01, 09, .., 4] € R%

The above condition on the variance of the stochastic gradient is a more fine-grained assumption
compared to the standard assumption. Indeed, our considered assumption implies Assumption [2.3a]
when we consider 0% = Zle o?. As discussed earlier, since we aim to study an algorithm with a
coordinate-specific update, the above assumption better captures its convergence behavior.

Assumption 2.4b. The function F(-) is coordinate-wise smooth, i.e., Vz,y € R, |F(y) — F(z) —
(VF(z),y — )| < Zle Li|z; — y;|? where the constant L; > 0 is the Lipschitz constant

associated with the i-th coordinate. Moreover, we define the vector L as L = [Ly, Lo, .., Lg] € RY.

Assumption[2.4b|is similar to the fine-grained assumptions made in the literature for coordinate-wise
analysis of algorithms Richtarik & Takac|(2011); Bernstein et al. (2018)). We recover the standard
smoothness in Assumption [2.4a]by considering the Lipschitz constant as L := max; L; = || L||.
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Besides the assumptions, the choice of stationarity measure is crucial in characterizing an algo-
rithm’s complexity. In non-convex optimization, the standard choice is the Euclidean ¢2-norm of the
gradient. However, this choice may be inadequate to demonstrate the advantage of over
SGD. To illustrate this, consider the noiseless setting where o; = 0 for all ¢ € [d] and thus SGD
reduces to gradient descent. Under Assumption[2.4b] the gradient of F is || L||oo-Lipschitz, and stan-
dard analysis shows that gradient descent with step size = 1/||L|| can find a point @ such that

I[VF(w)l||2 < e after at most w iterations. The following theorem shows that if the
£o-norm of the gradient is used as the stationarity measure, no deterministic first-order method can
outperform gradient descent by more than a factor of two, even under the refined Assumption [2.4b]

Theorem 2.1. Consider any deterministic algorithm A with only access to the first-order oracle

with an initial point €1 € R%. For any positive vector L = [Ly, ..., Ly] and any Ay > 0, there
exists a function f : R* — R such that: (i) f satisfies Assumption and f(x1) —inf f < Ay

(ii) Algorithm A requires more than

HL”ﬁiﬁAf gradient queries to find a point X with ||V f(X)||2 < e.

Proof sketch. Inspired by similar arguments in|(Chewi et al. (2023)), we employ the concept of a “re-
sisting oracle” (Nemirovski & Yudin, |1983; Nesterov, 2018)) in our proof. Specifically, consider any
deterministic method .4 that has access only to a first-order oracle, and let T" be an integer satisfying
T< M . We will adversarially construct a function f that satisfies the stated requirements and
ensures that Vf(z:) = [¢,0,0,...,0] € R forany t € [T], where {x;}]_, are the queries made by
A. Crucially, the function f is not fixed in advance but is built based on the points &1, o, ...,z
queried by A. This is possible due to the deterministic nature of .4, which allows us to “simulate”
the algorithm using the known responses from the first-order oracle. Hence, we only need to show
that there exists a function f that satisfies the stated properties and is consistent with the output
provided by the resisting oracle.

Without loss of generality, assume L; = || L||,. We construct the adversarial function in the form
of f(x) = App(y/ 1/A,:v(1 where (1) is the first coordinate of & and p : R — R is a function

of one d1men510n to be determined. Let x(l)}thl be the first coordinate of the queries {z;}7_;.
Since T’ < M , by invoking Lemma in Appendix L we show the existence of a function

p satisfying the following conditions: (i) its gradient p’ is 1-Lipschitz; (ii) p(1 [ g )) —infp < 1;

N 1) . . . :
(ii) p'(,/ % ey ) = Jia for any t € [T]. It is easy to verify that f meets all the required
assumptions, and Vt € [T, ||V f(z¢)||2 = [\/L1Ap' (/%% (1))| = €. The proof is complete. [J

The lower bound in Theorem [2.1] matches the upper bound of SGD (up to a constant factor of 2),
which certifies the optimality of SGD with respect to the gradient ¢5-norm. To provide some intuition
for this result, note that in the proof of Theorem [2.1] the worst-case function for any deterministic
first-order method can be realized by a function f that is effectively one-dimensional. As such, the
complexity bound does not reflect the imbalance between different coordinates. This observation
motivates the use of an alternative stationarity measure. As we will demonstrate in the next section,
the convergence analysis suggests that the gradient ¢1-norm is a more suitable choice for[AdaGrad]

3 (;-NORM CONVERGENCE OF ADAGRAD: UPPER AND LOWER BOUNDS

In this section, we present our main convergence results for[AdaGrad] In Section[3.1] we derive an
upper bound on the number of iterations required to find a near-stationary point in terms of the ¢;-
norm, instead of the conventional /5-norm. As discussed earlier, this stationarity measure is more
suitable given the coordinate-specific structure of and better highlights the advantages
compared to SGD and as we will demonstrate. Then in Section we provide
supporting lower bounds to demonstrate that our upper bounds are tight under specific settings.

3.1 UPPER BOUND

In this section, we first state our main convergence result for in terms of the expected
average ¢1-norm of the gradient. Due to space limitations, we provide a proof sketch below and the
complete proof can be found in Appendix
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Theorem 3.1. Let {w;}}_, be the iterates generated by with 6 < % and suppose that
Assumptions 2.3b| and|2.4b|hold. Then E [% Zthl IV F(w)]| 1] is upper bounded by

(AF +77||L||110gh(T)+\/HU”lAF Vnlle|1]| L log h(T L el \/logh > "
T VT \/ﬁT% T3 ’

where Ap = F(w1) — F* and h(T) = O (T”G‘Ii+T|WF(TU13;”§°+772HLH°°‘ILHlTS).

Proof Sketch. Our proof consists of the following steps.

Step 1: Define 7;; = ;-1 and rewrite as Wiy1; = Wgi — NiiGri- By apply-
ing Assumption [2.4b] to two consecutive iterates w; and w41, we obtain the descent inequality
F(wii1) < F(wy) — ijl Mg ViF (we) + ijl %nfzgfz Note that 7, ; and g¢ ; are corre-
lated and thus E [n;;9¢.; | Fe—1] 7# neiE [ge.i | Fr—1], which is one of the main challenges of ana-
lyzing adaptive gradient methods. To address this, following (Ward et al., [2020; [Faw et al., |2022),
we introduce a “decorrelated step size” as:

Ui
\/bt Lot 0P+ Vi (w)? + 6

2

Compared to the definition 7, ; = the stochastic gradient g2, is replaced with

b7 1, L+gf L+6
V. F ('w,g)2 + af in || and as a result 7); ; and g; ; are independent conditioned on F;_;. Using
the decorrelated step size, we obtain the following key inequality (see Corollary [B.3):

2
where h(T) = 1+ THUHOo + T(||VF(w1)HOQ+g]2\/HLHOOHLHlT) )

: PILI;
< Flw) - F*+ (2no s + T2 ) logh(T), )

Step 2: In light of , it remains to establish lower bounds on the step sizes 7); ;. Since each
coordinate is updated independently, we study each coordinate and construct a uniform lower bound
on 7j; for t € [T]. Specifically, for each i € [d], we define a new auxiliary step size 7 ; as

U
T,i — .
\/Zzlgtz+2t 1 ViF (wy)? +01'2+5

From and b1, = 23;1 gs,i in |AdaGrad| it can be shown that 7}, ; > 7, for all ¢ € [T].
Moreover, we separate the step sizes from the gradients as follows:

1 “4)

~ T

o, Z wt2‘|2E

E

T .
> ; Vi F(w;)?
t=1

where we used that E {X—ﬂ > E]E[[);]]Q for any two positive random variables X and Y. Hence, we

] (see Lemma i

E {} oiN2T 46 \/§]E{ Zthl ViF('wt)Q} .
nril n Ui

proceed to establish an upper bound on E [

(6)

Step 3: Note that the upper bound in (H) depends on the sum E Zt 1 ViF(w,)? ] which also
appears on the right hand side of (5)). By combining (3)), (5) and

<24, \/MQ + 2\/"”1%17 )
n n n

, we arrive at (see Lemma [B.5):
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where () denotes the right-hand side of (3). The last step is to relate the left-hand side of the
inequality in (7)) to the /1-norm of the gradients. Specifically, we can write:

d T
1
TZHVFwt ||1_TZZ|VFwt z::z:: V, F(w;) Sﬁ; ;\ViF(wt)p

t=1 i=1

where we switched the order of the two summations in the second equality and used the Cauchy-
Schwarz inequality in the last inequality. This leads to our main theorem. O

Remark 3.1. We observe that the {1-norm of the gradient naturally emerges as the convergence
measure, as it provides the tightest bound derivable from the inequality in Lemma [B.5] Indeed,
the £1-norm is always an upper bound on the {o-norm, and thus the above bound also immedi-

ately implies an upper bound on Zle |\VF(w)||,. However, this relaxation will undermine the

advantage of| when compared to SGD or[AdaGrad-Norm)

A few remarks on Theorem [3.1] are in order. First, a key feature of the upper bound in (I) is
that, apart from the logarithmic term log h(T'), it does not explicitly depend on the dimension d.
Instead, the dependence is implicit via the variance vector o and the Lipschitz vector L defined in
Assumptions [2.3b|and [2.4b] In contrast, as shown later in Section[d] SGD unavoidably will incur an
explicit dependence on the dimension d in its convergence bound. Moreover, if we select the scaling
parameter 7 in to achieve the best convergence bound, then (IJ) will become

o IELA- D) | (IolHIEhAr oghtr ) . llollyv/log h(T) Loy BERT
1/4

T T
This bound is adaptive to the noise level: when the noise level in the stochastic gradient is relatively

small, i.e., [|o]? < “LH%, then|AdaGrad| will achieve a faster rate of O(4/ w). As

shown in the next section, this rate matches our lower bound in the noiseless case, up to a log factor.

To aid our discussions and comparisons with existing results, we rewrite our bound in terms of the
gradient’s Lipschitz constants and the gradient noise varlance as in Assumptions[2.3aland[2.4a] com-
monly used in the literature. Specifically, Assumption [2.3b|implies that E [|lg; — VF(wy) || 2] <

Y% 02 =|o|2and Assumptionimplies that the function F is || L||»o-Lipschitz. Thus, when
we translate our bounds to the standard assumptions that are not tailored for coordinate-wise analy-
sis, the ratios of % and % appear in the upper bound. Given the behavior of these ratios, the
dependence of our final bound on d could change, as described in the following cases:

» Worst case: In this case, we have H”LLHH; = O(d) and Cd O(v/d). Then the bound

llell2

~ 1/4
n (8) reduces to O(\/ M +Vd (M) \/;‘1‘/74“2) Focusing on the

dependence on the dimension d, we obtain the rate of (’)( vd 4 vd ).

T4
* Well-structured case: In this case, we have HHLL”H1 =0(1 ) and HZHI = O(1).This indi-

cates that the curvature and gradient noise are heterogeneous and primarily influenced by a
few dominant coordinates. Under such circumstances, our convergence rate in (@) becomes

a dimensional-independent rate of (’j(ﬁ + Tll/4 ).

We also present a detailed comparison with the existing results for[AdaGrad|in Appendix [A]

3.2 LOWER BOUNDS

After establishing an upper bound for|AdaGrad] we move on to show a lower bound under the same
AdaGrad

conditions. For simplicity, we set = 0 in | but generalizing to 6 > 0 is straightforward.
Theorem 3.2. Consider running with § = 0 and the scaling parameter . Let L =

[L1,Lo,...,Lg), ¢ = [01,092,...,04] and Ay > 0 be given parameters. Then there exists a
function f : R¢ — R such that: (i) f satisfies Assumption and f(x1) —inf f < Ag; (ii) The
stochastic gradient gy satisfies Assumptions[2.2|and[2.3b (iit) We have E [miny<;<7 ||V f(x¢)[|1] =

/31 1/3\3 i
ILI1AflogT [ (X0, 02/PLiY3)2AflogT 4
Q(max{\/ - , = .
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Proof Sketch. We construct the function f in the form of f(x) = 2% p; (), where (") denotes
the i-th coordinate of the vector x € R% and p; : R — R is a one-dimensional function to be
specified. Since each coordinate is updated independently in[AdaGrad] this is equivalent to running
[AdaGrad|on each of the one-dimensional functions p; in parallel. Thus, this requires us to understand
the convergence lower bound for[AdaGrad]in the one-dimensional setting.

In one dimension,|AdaGrad|follows the update rule = = ——
AdaGrad P Y S N TR

stochastic gradient at time step ¢. In Corollary[C.4] we will show that there exists a one-dimensional
function pa, -7 (-) and a stochastic gradient oracle such that: (i) Its gradient is L-Lipschitz and
its initial function value gap is bounded by A; (i) The stochastic gradient oracle in unbiased with
bounded variance o'?; (iii) The iterates of after T iterations satisfy E [min; <;<7 [p'(z¢)]] =

g¢, where g; denotes the

2
Q(4/ LA;) s 1 (2 LATIOgT )*/*). Similar to the proof of Theorem [2.1| our construction is based on
the “resisting oracle” argument, which we briefly sketch below. Without loss of generality, assume
2
that |AdaGrad|is initialized with 21 = 0. For some e = Q(y/ 22008 4 (- L21aT /1) we aim

to construct a function pa 1, 7 such that p)y ; . () = —e forall t € [T with the stochastic
gradient oracle chosen as

o2 0%+ €
Pr(gy = 0]x) = 2 re and Pf(gt =- | t) —ara 9
One can verify that E[g: | 2] = —e = p (a:t) and E[|g; — p'(z0)|? | 2] = 0' . Our key observation
is that, under the stochastic gradient oracle in (9), the dynamlc of can be modeled as a

random walk in one direction and its query points can be determined in advance Specifically, let
M, denote the number of times the stochastic gradient is non-zero by time ¢. Since the non-zero
stochastic gradients all take the same value, it follows from the update rule of that

{Mt =M, 1+1, v401 =2 + ﬁ if g; # 0 (with probability 0267_‘2_52),

(10)
M, =M_1, 21 =a otherwise (with probability 2 ).

In particular, the points visited by belong to the set {22:1 % : t > 1}, which allows us
to construct the function pa, 1,57

Having defined the function pa 1,7, We then set f to be f(x) = 2?21 pi(z™), where p;(-) =
PacLionr() and 8 A; = A. Thus, it follows that

B L;A; logT cr 2L:A;logT
o 9] (55 EEEET STy

Finally, choosing A; (for i € [d]) properly to maximize the nght-hand side of (L1, we obtain the
lower bound in Theorem [3.21 O

Now let us compare our lower bound in Theorem [3.2] with the upper bound in (8), where we recall
that A(T') is a polynomial function of 7" and problem parameters. We observe that the first noiseless
term in our upper bound matches the corresponding term in our lower bound, up to an absolute
constant. Notably, our lower bound shows that the additional logarithmic term in the upper bound
is necessary, rather than being an artifact of the analysis. For the second noise-dependent term,

the upper bound and the lower bound differ only in their dependence on L and o. Moreover,

applying Holder’s inequality yields (Zf 1 02/ BLt%)3 < lle||2]|L||1, and the equality holds when

the noise variances and the Lipschitz parameters are aligned in a particular way. Hence, under
certain conditions on L and o, the second terms also match up to an absolute constant. Finally, our

lloll/log h(T)
1
T4
It is an interesting open question whether this term can be improved.

The lower bound in Theorem [3.2]is specific to In what follows, we present another lower
bound that applies to all deterministic algorithms with access only to the first-order oracle, but only
in the noiseless setting (where o; = 0 for all ¢ € [d]). This result is in the same spirit as Theorem 2.1}
but here we use the ¢;-norm of the gradient as the stationarity measure, as opposed to the ¢5-norm.
Since the proof technique is similar to the one in Theorem 2.1} we defer the proof to Appendix

upper bound contains an additional third term , which is absent from our lower bound.



Under review as a conference paper at ICLR 2025

Theorem 3.3. Consider any deterministic algorithm A that only has access to the first-order oracle
with an initial point x1 € RY. For any positive vector L = [L1, Lo, ..., Lq] and Ay > 0, there
exists a function f : R* — R such that: ( i) f satisfies Assumption|2.4b|and f(x1) —inf f < Ayg;

(ii) Algorithm A requires more than (LIEEYS ”

Note that in the noiseless setting, our upper bound in (8)) simplifies to O \ / “LHlAF log h(T) ) which

is equivalent to (’N)(”L‘L#) and matches the lower bound in Theorem 3 3} up to logarithmic terms.

L gradient queries to find a point X with |V f(X)|l1 < e

4 {{-NORM CONVERGENCE OF SGD: A LOWER BOUND

Having established the convergence of in terms of the gradient ¢;-norm in the previous
section, we now seek to compare it with the convergence rate of SGD. However, the existing con-
vergence bounds for SGD use the /5-norm of the gradient as the stationarity measure, making they
are not directly comparable to our result in Theorem [3.1} To facilitate a rigorous comparison, our
goal in this section is to provide a lower complexity bound for SGD with respect to the ¢;-norm,
which is shown in the following theorem.

Theorem 4.1. Consider running SGD with update rule x;+1 = X3 — ng: on a smooth function f
with a constant step size 1. For any given positive vector L = [L1, Lo, . . ., L), non-negative vector
o = [01,02,...,04] and Ay > 0, there exists a function f : R¢ —> R such that: (i) f sansﬁes
Assumptionlﬂ'and f(x1) —inf f < Ay; (ii) The stochastic gradient g, satisfies Assumptznns

1/4 A1/4 . 1/2
and [2.3b} (iii) We have E [mini<;<7 ||V f(x:)|1] = Q(\/ d“LHT‘”Af TR, (ZTﬁ/i /T )
when T is sufficiently large.

Proof Sketch. We follow a similar approach as in Theorem The function f is constructed in
the form of f(@) = ., pi(x®), where () denotes the i-th coordinate of the vector & € R?
and p; : R — R is a one-dimensional function to be determined. Similar to our key
observation is that running SGD on f is equivalent to running SGD with the same step size 7 for each
of the one-dimensional function p; in parallel, and thus it is sufficient to characterize the complexity
lower bound in the one-dimensional setting.

Extending the construction in (Abbaszadehpeivasti et al.l [2022] Proposition 4) to the stochas-
tic setting, we show that there exists a one-dimensional function pa 1., 7(-) and an associated
stochastic oracle such that: (i) Its gradient is L- Lipschitz and the initial function value gap is
bounded by A; (ii) The stochastic gradient oracle is unbiased with bounded variance o2; (iii)
The iterates of SGD with step size n satisfy E [mini<,<7 [p'(z¢)|]] > V2LA if n > 2, and

E [miny << [P/ (24)]] > max{%1 /ﬁ, min{o %, v 2LA}} otherwise. Given this result,

we then set f(z) = 3¢, p%,LWi,Tm(x(i)), where 2(*) denotes the i-th coordinate of «. By con-
sidering different choices of the step size 7 and establishing a lower bound in each case, we arrive
at the final result. O

From Theorem [4.1] we observe that the convergence rate of SGD exhibits a similar dependence on
the number of 1terat10ns T as - However, a key distinction lies in the explicit dependence
on the dimension d. In the next section, we provide a detailed comparison between the lower bound
of SGD with the upper bound of

5 COMPARISON BETWEEN [ADAGRAD|AND SGD

In this section, we compare the rate obtained in Theorem [3.1] - for |[AdaGrad| with the convergence
lower bound of SGD in Theorem4.1] Insplred by the analysis in/Bernstein et al. (2018) we introduce
two density functions for this comparison. We define the density functions ¢ : RY — [0,1] as
follows:

d(v) = H'UH? c 1 1 and (&(’U) — vl c l 1 (12)
=l =l < [
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Specifically, a larger value of ¢(v) or ¢(v) indicates that the vector v is denser. Using this notation,

we can write ||o2||3 = clt‘g(E) and ||L| s = (yq{‘(ll), and the lower bound in Theorem [4.1|for SGD
becomes
1
, LI AR <R2|0|§||L||1AF)4
min El[||VF(w =0 = + , 13
min, B[V, ( S s (13)
where 4
> i1 0V Li

R===1_"_¢10,1] (14)
[=4|PRvAIP A

is the cosine similarity between the two vectors [0y, ...,04] € R? and [\/L1,...,v/L4] € RL To
facilitate the comparison, we first translate the convergence rates of in (8) and SGD in (I3)
into equivalent iteration complexity bounds. Specifically, to find an e-stationary point in terms of

the ¢1-norm, we observe that the required number of iterations is

- /LI A 2|L|, A h
o (1Ehor  IoltIEhAr 1ot o g as)
€ € €
L|1Ar  R?|o|?|L|A
and Q<”~”1 F+ el z!L|1 F) for SGD. (16)
¢(L)e? P(o)e

4
Except for the additional term % in li we observe that the two bounds in and ll are

similar. If we assume that the noise is relatively small, i.e., ||o||1 < /|| L||1AF, the first two terms
dominate. We can make the following observations:

 Since &(L) € [é, 1], for the first noiseless term in and , is never worse

than SGD and outperforms SGD by a factor of ¢(L). In particular, in the extreme case
where ¢(L) = L je., the vector L is sparse, reduces the bound of SGD by a

a’
factor of d.
* Since R € [0,1] and ¢(o) € [%,1], the second noise-dependent term in [AdaGrad| can
be either improve or worsen compared to SGD. In the extreme case where & = 1 and

¢(o) = 1, ie. the two vectors [o1,...,04] and [\/Ly,...,/Ly] are aligned and the
vector o is sparse, then similarly reduces the bound of SGD by a factor of d.

To our knowledge, our results provide the first problem setting where provably achieves
a better dimensional dependence than SGD in the non-convex setting. We note that our discus-
sions here mirror the comparison between AdaGrad and Online Gradient Descent in (McMahan &
Streeter, |2010; |[Duchi et al.l |2011) regarding online convex optimization problems. Similarly, de-
pending on the geometry of the feasible set and the density of the gradient vectors, it is shown that
the rate of AdaGrad can be better or worse by a factor of v/d. In this sense, our result complements
this classical result and demonstrates that a similar phenomenon also occurs in the non-convex set-
ting.

6 CONCLUSION

In this paper, we provided a theoretical justification for the advantage of AdaGrad over SGD in
stochastic non-convex optimization. We first discussed the impossibility of showing any con-
vergence rate improvement over SGD under the standard assumptions of Lipschitz gradients and
bounded variance, as well as using the gradient’s ¢5-norm as the stationarity measure. Motivated
by this observation, we introduced two refined assumptions on the Lipschitz constants and gradient
noise of the objective (Assumptions and and proposed using the gradient /;-norm as the
stationarity measure, which better suit the coordinate-wise nature of adaptive gradient methods. Un-
der these refined assumptions, We established a convergence rate for AdaGrad (Theorem and
a complexity lower bound for SGD (Theorem [4.1)) in terms of the gradient’s ¢;-norm. Notably, by
comparing AdaGrad’s upper bound with SGD’s lower bound, we demonstrated that the complexity
of AdaGrad can be better than that of SGD by a factor of d. To our knowledge, this is the first result
showing a provable advantage of adaptive gradient methods over SGD in non-convex optimization.
In addition, by presenting two lower bounds, we established that the noiseless term in our upper
bound for AdaGrad is unimprovable up to a logarithmic factor (Theorems and[3.3).

10
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APPENDIX

A COMPARISON WITH EXISTING RESULTS ON[ADAGRAD!

Most of the existing works use the />-norm as a measure of convergence (Shen et al., 2023}, Défossez
et al., [2022; [Wang et al., 2023} Hong & Lin, 2024} Zhou et al. 2024). The state-of-the-art result
is [Zhou et al.| (2024): with a fine-tuned step size, the authors show that, with high probability,

AdaGradlsatisfies = 3°/_, [VF(w,)|5 = O (% + :‘,{11//22 ) . If we use this result to show a bound for
the ¢1-norm, since ||VF(w,)||; = ©(Vd||VF(w)]||2) in the worst case, the upper bound becomes

. 3/4
ming_y,...r | VF(wo)l, = O (& + £57%),
d'*.

which is worse than our bound by at least a factor of

Also, in[Liu et al.| (2023)), the authors considered the case that that the function is L-smooth and the
noise of gradient is coordinate-wise subgaussian, i.c., E [exp(A?(g:,; — ViF(wy))?)] < exp(A?0?)
for all A such that || < 0% Note that the subgaussian noise assumption is stronger than the
bounded variance assumption in Assumption[2.3b] Under these assumptions, they characterized the
convergence rate of [AdaGrad|in terms of the averaged ¢;-norm of the gradient and their result is no
dr | VArlelh | vd VL]
better than O(\ﬁ TF + Y : T‘llﬂ”l + Y 1)
we observe that their term \fT‘ll‘/TJI
Moreover, in the worst case where ”Llll = O(d) and ol = O(V/d), their overall bound is worse

(12 el
than ours by a factor of v/d.

. Compared to our bounds in ,

is worse than the corresponding term in ours by a factor of v/d.

B PROOF OF THEOREM [3_1]

In this section, we prove Theorem Recall that we define 7, ; = bt/ﬁﬁ and thus|AdaGrad|can be

rewritten as w41, = Wy; — Mg, for i € [d]. Our starting point is applying Assumption
w; and w1, yielding:

d
F(wii1) < Fwy) + (VE(wy), w1 —wy) + Z \wt+1 i — wi il
B (17)

Znt’LVFwt gtl+zintlgtl

If the step size 7 ; were condmonally 1ndependent of the stochastlc gradient g, ;, then by taking the
conditional expectation with respect to F;_1, the second term in the right- hand side of (17) would re-
sultin —n; ;V; F(wy)E [g¢; | Fio1] = =i Vi F (wy)? by Assumptlon However, as mennoned
in the proof sketch, the difficulty is that the step size 7, ; is computed using the stochastic gradient
at the current iterate wy, and consequently E [1; ;g;.; | Fi—1] # 1¢,:E [g¢,: | Fi—1] in general.

Following [Ward et al.| (2020); |[Faw et al.| (2022)), we tackle this challenge by introducing the decor-
related step size 7, ; in (2), which serves as a “proxy” of the step size that is decorrelated from g;.
Specifically, note that 7, ; belongs to the filtration F;_q and thus E [7, ;V, F(w:) g | Fim1] =
i ViF (we)?, leading to the desired squared gradient that we aim to bound. Equipped with the
decorrelated step size, in the following lemma we prove an upper bound on a (weighted) gradient
square norm at the current iterate w;.

Lemma B.1. Suppose Assumptions [2.2] and hold. Consider the update rule in and
recall the decorrelated step sizes defined in ([2)). Then we have

d d
D Vi (w)? < F(w;) = E[F(we) | Fooal + > B (e — 00 ViF (wi)ges | Fiol
i=1 i=1
d L.
+D S E gt | Fiea] . (18)

i=1

14
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Proof. Taking the expectation with respect to F;_; in (T7)), we obtain:
d
L;
E[F(wit1) | Fio1] = F(we) = — Z(E 1, ViF (W) gt | ]—‘t_l]+3]E (7924 | ft—ﬂ) (19)
i=1

Since f7);; is independent from g;; conditioned on F;_1, it follows from Assumption @ that
E [0, ViF(we)gei | Fe—1) = 1, ViF (wi)E [ge,; | Fi—1] = M, Vi F (wy)?. Hence, we get

E [ ViF (wi)ge,i | Froa] = E [0 Vil (wi)gei | Foor] + E (0 — 0ea) ViF (wi)gei | Fia]

=i ViF (we)* + E (060 = 1) ViF (wi)gei | Froa]-

Combining this with (I9), this further implies that

d
E [F(wit1) | Fe1] — F(wy) < Z(*ﬁt,iviF(th —E [ — 1) ViF (wi)gei | Fi-1]

L;
+ ?E [ntz,igtz,i | ]:t—l])-

Rearranging the above inequality leads to (T8). O

In Lemma [B.1] the left-hand side is a weighted version of the squared gradient norm at w;, where
the weights for each coordinate are given by the decorrelated step sizes 7); ;. Note that this is the key

difference compared to the analysis of [AdaGrad-Norm| in [Faw et al| (2022). Indeed, for[AdaGrad-|
the left-hand side will become 7 ||V F'(w)]||*, and thus the squared ¢>-norm of the gradient
naturally arises from the analysis. On the other hand, as we shall see later, in our case ¢5-norm is
not the best choice of the norm and instead we will relate the left-hand side in to the /;-norm
of the gradient.

In light of Lemma we need to manage the bias term 2?21 E [(7i,s — ) ViF (we)gei | Fr—1)s
which is due to the difference between the step size 7, ; and its decorrelated version #j; ;, and a

quadratic term Zl L E[n7 ;92 ;1. which comes from Assumption The following lemma ad-
dresses these two terms and the proofs for these two results are presented in Appendix [B.I]

Lemma B.2. Consider the update rule in[AdaGrad| For any t € [T and i € [d], we have

E (¢, — nt,i) ViF (wy)ge,i

Moreover, we have

Nt,i 20;
1) < BV P (w)? + SElRGE Fa] @0

T
E [Z n?,z-g?,i} < n’log h(T), 1)

t=1

2
where h(T) = 1 + Tl | TUVR@) e oI TELT)?

The first result in Lemma shows that for each coordinate ¢ € [d], we can upper bound the
bias term in terms of the squared gradient 5V, F'(w;)? and the quadratic term E [nf’i 9152,1']- The
second result in the above lemma shows that the accumulation of the quadratic terms 77 g7, over

T iterations can be bounded in expectation by O(n?log(7/§)). By combining Lemma with
Lemma B.T] we obtain the following key corollary.

Corollary B.3. Recall the definition of h(T) in Lemmal|B.2| For[AdaGrad| we have

T

d .
E (Y HEViF (w)?

t=1 i=1

1Ll
< Flw) - 7+ (2l + T Yogner). e

Proof. By applying (20) to (I8) in Lemma[B.I] we obtain that

d d
> i iViF(w,)? < F(w) — E [F(wiy) | Fioi] Z”

=1

d

. 2 i
+ Z < L > E [77?,193,1 | ft—l] .
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By merging terms and taking the expectation of both sides of the inequality, we further have

d . 4
E [Z n;’ZViF(wt)Ql < E[F(w) - Fwr)] + ) < = ) E [m:9%:] -

i=1

Now we sum the above the inequality overt = 1,...,7 to get
T i d T
E LU F(wy)?| < F(w:) — E[F(w + (2@—&— )IE 292,
;; 5 0)°| < Flwi) —E[F(wry1)] ; n ;m,gt
d Lin?
< F(wy)— F* + Zl (277@ + ;) log h(T)
L 2
= Flwn) ~ £+ (2]l + L) og (r),
where we used Assumption [2.1]and (21) in the second inequality. This completes the proof. O

To simplify the notation, let us denote the right-hand side of by Q. This implies that, if we
ignore the logarithmic term, we have Q@ = O (F(w1) — F* + n||o|l1 + n?||L||1). Corollary
shows that the sum of weighted squared gradient norms is bounded by a constant depending on
problem parameters, up to log factors. Hence, the remaining task is to establish lower bounds on
the step sizes 1), ;. For instance, if we were able to show that all the step sizes 7 ; are uniformly

lower bounded by €( \IF) then Corollary would immediately imply a rate of O (7 Z177) in terms
of the gradient {y-norm ||V F(w;)||2. However, there are several challenges: (i) The step sizes 7); ;

are determined by the observed stochastic gradient rather than specified by the user. (ii) To further
complicate the issue, due to correlation between the step size ) ; and the iterate wy, this implies that
E [9:,:ViF(w;)?] # E [f);] E [V;F(w;)?] and hence a lower bound on E [f}; ;] would not suffice.
(ii1) Finally, since the step sizes for each coordinate are updated independently, it is unclear how to
construct a uniform lower bound across all the coordinates.

As mentioned in the proof sketch, to address the last challenge, we study each coordinate and con-
struct a uniform lower bound on 7, ; for ¢ € [T]. Specifically, for each coordinate 7 € [d], we define

a new auxiliary step size 7j7; as in @) From 1| and by, = 22;11 gii in (AdaGrad), we have
M > fir; for all ¢ € [T]. To address the second issue, we separate the step sizes from the gradients
as follows:

B |V/EL, viF<wt>2r

LTQ } |
N T3
E[X]?

where we used the elementary inequality that E {X—z} > Y] for any two positive random variables

> (23)

[

~ T
L7, F (wy 2] >E [77; Z:ViF(wt)Q

X and Y. Hence, in the following lemma, we will establish an upper bound on E [ o } instead of
directly lower bounding E [7r ;].
Lemma B.4. Consider the step size 1t ; defined in (E]) For any i € [d], we have

IE{ ] o2+ V3g V,F(w;)?
nTz n n

Proof. From the definition of 77,; and using b7, ; = Sl 2. < <> te? ;> we have

T T
E [ﬁ } <SE || g2i+02+> ViF(w)?+6

t=1 t=1

16
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We then can use the upper bound of g7 ; < 2((g:,; — ViF (w;))* + ViF(w;)?):

i T
E |:ﬁn ] < E Z 2((92571' — VlF(wt))z + ViF(wt)Q) + 02'2 + Z vlF(th +9
Tyt t=1 t=1
[ 71 T
=E |2 (g0i — ViF(w,)2 +3Y_ ViF(w)2 + 07 +6
t=1 t=1
[ 71
<E |2 (g0 — ViF(w))? + o?
t=1

Rearranging the terms immediately leads to the stated lemma. O

Lemma establishes an upper bound on E [ﬁ; } in terms of the sum E |4/ 23:1 ViF(w)?|,
J E},

which also appears on the right hand side of (3)). By combining Corollary [B.3] (5) and Lemma
we arrive at the following lemma.

Lemma B.5. Consider the update in[AdaGrad|and recall that () denotes the right-hand side in (3).
It holds that

T
SOViF@w)?| < 2\77/§Q+ \/stQ 4 2\/"'7"1%31. (24)

ﬁt,i 2 2 :|
<E Vi F(w E |- .
<z |2
Using the result from Lemma[B.4] we get a quadratic inequality as follows:
T . 9
E <,|E SV F (wy)? ]EL }
; 2 () nr,i
5 T . T
< \[7 E [Z 77;’ viF(th] (0iV2T +6) + V3E || Y ViF(w;)?
t=1 t=1

17
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Combining the bounds from all the coordinates and using the Cauchy-Schwartz inequality for the
second term:

E Zd: D> ViF(w)?| < Q—ﬁ]E iz i F(wy)
i=1 ' t B N i=1 t=1 2 ' f
5 d d ~
+ \f > oV2T +ds,|E lzz ”gzv F(wt)zl (29)
i=1 =1 t=1

(w0 + (2atol+ L Y rog i )

2 2| L
/e veT + d6>\/F<w1> ~ et (2ol T ) loghir
where h(T) is defined in Lemma|[B.2] This completes the proof. O

Finally, we relate the left-hand side of to the ¢1-norm of the gradients. Specifically, we can
write:

T d 1 d T 1 d T
TZ”VF’wt”l:fZZVF’wt % PMLACIHESEDINDD

t=1

which implies that

& 2[@ 2d6Q Q 1
fg IV F @l < 5725 + lehe

Since Q = O (F(wy) — F* + (nl|e|ly + 7*||L|l1) log h(T)) and § < %, we obtain the result in
Theorem [3.11

B.1 PROOF OF LEMMA[B.7Z]

Before we prove Lemma[B.2] we first present two helper lemmas.

Lemma B.6. Let {a,}32, be any sequence such that a; > 0 for all s. Moreover, define Ay =
A;_1 + ay, where Ag = 0. Then we have

A
Z A 52 < log ( 52T> (26)

Proof. The proof is similar to (Faw et al., 2022, Lemma 15) and we repeat here for completeness.
Note that for any ¢ > 1, we have

ag 1 At—1+52§10 (At+52>

A, +02 0 A +o2 A, + 02

The last step follows from = < —log(1 — z). Summing the above inequalities from¢t = 1tot = T,

we obtain that
T
¢ AT =+ 52 AT
— <1 — ) =1 1+—=].
;At+52—og(Ao+52> Og( T
This completes the proof. O

18
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Lemma B.7. Suppose that Assumption holds and consider the update rule in Then
for any coordinate i € [d] and iteration t > 0, we have
Vi (weg1) — ViF (we)| < 0/ Li|| L1 27

As a corollary, this implies that

Vi (wy)| < [ViF (w1)| + 0y Li|| L1t < [VF(w1)]loo + 0V I Ll L1 2. (28)

Proof. To begin with, we prove that if Assumption holds, then for any vectors z, y € R?,

d

d
1
> 7 IViF(x) = ViF(y)]* <) Lilwi — il (29)
‘ i=1

i=1

To see this, define the weighted Euclidean norm || - ||z, as ||| L := \/Zf_l L;x? and correspond-

ingly its dual norm is given by ||| L . := \/Zf 1 L x2. Thus, we can rewrite Assumption [2.4b|as

|F(y) — F(z) — (VF(z),y — z)| < i|ly — z|%. Th1s is equivalent to the fact that the gradient
VF(x) is 1-Lipschitz with respect to the norm || - ||, i.e., [VF(z) — VF(y)||L.« < ||z — y||L.
Squaring both sides of the inequality leads to

Applying l| to the two consecutive iterates w1 and w;, we obtain that Zle +|ViF(wiy1) —

ViF(w)]? < 2;1:1 Li|wiy1,: — wt7i|2. Moreover, note that from the update rule of |AdaGrad it
holds that

|wt+1,i - wt7i| =

9t,i ‘ Gt,i

f; ‘<77.
btl+ b%lz+gtz+5

Hence, we further have Z?:l L%|ViF(wt+1) — V.F(wy)|* < 7721’:1 L; = n|L||;, which im-
plies (27).

Applying the triangle inequality, we have:

-1
IViF(wy)] < |ViF(w1)| + > [ViF(wei1) — ViF(w,)| < [ViF(w1)| +nv/L|| L] 1.
s=1
Since |V; F(w1)| < ||[VF(w1)]|s and L; < || L for any i € [d], we obtain (28). O

Now we are ready to prove Lemma[B:2] Recall from the definition of [AdaGrad]that
n n

Nti = .
\/bt2—1,z‘+9t2,i+5 \/bt 1i +ViF(w)? 407 +6

Leta = b7, ;+g7;andb=0b7 | ; + V,F(w;)* + o7. Then

and 7 = (30)

A b—a
|77t,i - 77t,i| =7

1 1
‘\/a+§ - \/5+6’ ‘(f+6)(\/+6)(f+\/)
(w) U _gtz
(W+Mf+wf+f>
nIViF (w:)? — gt,i| +no?
T (Va+0)(Vo+0)(va+vb)
Since v/a > [gril. Vb > max{|V,F(w;)|,0:}, we have |V;F(w;)? — g7,| < |ViF(w;) —
91.i|(IViF(we)| + |ge.]) < |ViF(wt) — g1.i|(v/a+ Vb) and 0? < o;(v/a + v/b). Therefore,

N\ViF(w;) — giil +mo; 1 .
2 = — (|ViF(wy) — gii| + 03) ne,iMei,
(Jat )b+ 0) 77(| (wi) = gu.il ) Me,iTe

e, — e, <

19
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where we used 7 ; = ﬁ and 7 ; = \/ 5 in the last inequality. Hence we have,

) 1
|(Me,i = M) Vi (W) gei| < Ent,int,i(‘viF(wt) = 9| +0i)|ViF (W) gy
ifei Nt i i
= LT (wn) = gl [V (w)gua] + 7 T (i)

Using the Cauchy-Schwartz inequality, we further have
E 04,00, ViF (we) — geil - Vi (we)geil | Fe-1]
< i [ Vi F (w) |\ JE[[ViF (wr) = guaf? | Foa) E [0,07, | o]

< Uiﬁt7i|viF(wt)|\/E (07,97 | Fio1]

where the last step follows from the bounded variance in Assumption 2.3b] We proceed to bound
the second term in a similar manner:

E [oine,iflei| ViF (we)geil | Feo1] < ol 2ol Fial.

Combining the results, the term E [|(n;; — 7¢,i) Vi F'(w¢)ge.i| | Fi—1] is bounded as follows:

2017?,5,2|V1F(wt)\
n

E |, — 70,0) Vi F (wi)ges| | Fooa] < VE 7362 | Foi]

277t ZO’

1
Sl ViF (w)]* +

IN

ZE[ntzgtz|ft 1] (31)

where we used Young’s inequality in 1i in the last inequality. Finally, since 7;; < -, we further
have 2t 1”1 < % and this proves the inequality in
Next, we prove @) in Lemma[B.2] From the definition of the step size in (30), we have:

T T 2
2 2| _ 2 9t 2 gtz

t=1 =1 (\/bg—u"‘gg,i‘"(s)z t—1,
Using Lemma[B.6] we can bound the summation with a log term as follows,
2 2
2 gt i by ; 2 E [bT i]
E 1 1 : <n°l 1 -
lzb2 +gtz+62 0g< +52>‘|_77 og< + 52 )

t—1,%
where we apply Jensen’s Inequality to the concave log function in the last inequality. Moreover,
since b7, ; = S g7 ;> by using Assumptions Eand

<n’E

we have

E[b%,] = ZE <Y (o} +E[ViF(wy)?]) < Tlo|%, + ) _E[ViF(w)?],

where we used the fact that 0; < |/o||o for any i € [d]. Using the result from Lemma[B.7] for any
t € [T, we further have

2 2
ViF(w)? < (IVF(w1)lo +nv/IZTTElit) < (IVF (1)l + 1/ EI<IZRT)

Combining all the inequalities above, we obtain that

Z 92 < toe (14 Tlolie , TUVE @)l + 0y/[E1<EIT)*
b2y +gii+ 02 =es 62

2
t—1,1 4

n’E

Hence, we have proved the bound in (ZT)) of Lemma[B.2] This completes the proof of the results in
Lemma
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C LOWER BOUND RESULTS

C.1 PROOF OF THEOREM [2.]]
To finish the proof of Theorem [2.1} it remains to show that the function p can be constructed satis-
fying those three conditions. This is achieved by applying the following lemma.

Lemma C.1. For any given ¢ € (0,+/2], let N be an positive integer such that N < 6% + % Then

for any N points {x:}I¥, in R, there exists a function p : R — R of one dimension such that: (i) its
gradient is 1-Lipschitz; (ii) p(x1) — inf p < 1; (iii) p’(x¢) = —€ for any t € [N].

[Llloo Ay
€2

Specifically, since T' < | = L withé = ——5— | the existence of p follows from applyin
p y = P € T2, p pplying

Lemmato the T points {/ Ll/Afxgl) VL
Proof of Lemma We divide the proof into two cases.

Case I: The point x; is the largest among the N points {x;}¥ |, i.e., ; < 21 forany ¢ € [N]. In
this case, we define the function p : R — R as follows;

—e(x — x1), x € (—o0,21;
p(z) = 1( _ 2 _ _
s(x—x1)? —e(x — 1), € (11,+00).
By direct calculation, we have p’(x) = —e when z € (—oo,z1] and p’(x) = x — 1 — € when
x € (x1,+00). Hence, it is straightforward to verify that p’ is 1-Lipschitz. Moreover, the minimum
of p is achieved at = x1 + ¢, with inf p = —1€®. Thus, we have p(z1) — infp = € < 1 since

¢ < /2. Finally, since p/(x) = —e¢ for all # < x;, we conclude that p/(z;) = —e for all t € [N].
Hence, the function p satisfies all the three conditions in Lemma|C. 1

Case II: There are k points to the right of z; among the N points {x;}Y ;, where 1 < k < N — 1.

Since the statement in Lemmais independent of the ordering of {xo, ..., zy}, without loss of
generality, we may assume that these k points are zo, ..., Tpy1-

We begin by defining an auxiliary function ¢, 4 (x) over a given interval [a, b], which is contin-
uous, piecewise quadratic and will serve as the basic building block of our worst-case function.
Specifically,

Lx—a)? —e(z—a), T € [a, 4]
Pape(w) = 1 2 1 2 (b—a)? a+b2 (32)
—5(@—=b)° —elx—b)+ 5= —(b—a)e, xc (%520
Direct computation shows that ¢/, , (1) =2 —a—efora <z < % and ), (v) = —z+b—e
for “T“’ < x < b. Therefore, it is straightforward to verify that:
_ _ (b—a)?® .
* dapela) =0and g pc(b) =~ — (b—a)e
* ¢,p.is 1-Lipschitz and ¢, , (a) = ¢, , (b) = —¢€;
* infze[a,b] d)a,b,e(z) = min{,%EQ’ ¢a,b,e(b)}~
Having defined the function ¢, 3 ., we now construct the function p : R — R as follows:
—e(x — x1), x € (—o0,21];
P(T) = S Gapwrsr,e(T) + Drs z € (ze,xe41] (1<t <k); (33)

3@ —2k41)” —€(x — zpy1) F pry1, T € (Thpr, +00).

Note that p(x;) = p; and the values {p;}**] are chosen such that the function p is continuous.
Specifically, this requires that ¢4, 4, , (Tt+1) + Pt = pis+1. By induction, this condition leads to

t—1

1
p=0,p =) <4($i+1 —a)? = (i1 — xi)ﬁ) : (34)

i=1
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Now we verify that p satisfies all the three conditions in Lemma|C.1} First, since p’ is 1-Lipschitz
on each interval and p’ is continuous, it follows that p’ is 1-Lipschitz over the entire real line R.
Moreover, by construction, it is straightforward to verify that p'(z;) = —e forall t € [k + 1],
and p'(x) = —e for all z < x;. Combining these two facts, we obtain that the third condition in
Lemmais also satisfied. To verify the second condition, note that p(x1) = 0. Moreover, from
the definition of p in @ and the properties of ¢, 3 ., we have

0, T € (_Oowrl];
p(z) > S min{p; — 3€%,pip1}, € (T, x41) (1 <t < k);
D41 — %627 T € (Tg41,+00).
Hence, this shows that
1, ) 1,
infp> min (p; — =€y = min p; — —€”. 35)
te[k+1] 2 te[k+1] 2

Next, we provide a lower bound for p;. By using Jensen’s inequality, we have

t—1 t—1

bt = Z <jl($i+1 —x)? — (241 — xl)e> = iz(xiﬂ —2)? — e(zy — 1)

i=1 i=1

2D t—1 (Z:vm > — ez — 71)

1 2
:4(t_1)(xt—x1) —e(xy — 1)

> —(t—1)é?

Since ¢t < k + 1 < N, it further follows from (33) that inf p > —(N — 1)e? — 1€ = (—N + 3)e%.
Finally, given that N < % + $ by assumption, we have p(z1) — infp < (N — 1)e? < 1. Thus, we
conclude that the function p satisfies all the conditions in Lemma[C.T] O

C.2 PROOF OF THEOREM[3.2]

We first present the following lemma, which will be used to construct the worst-case function.
Lemma C.2. For any positive integer N, suppose that € satisfies

. [nlogN 1 }
e < min + ;15 36
{ 8V N dnv' N (36)

Letx1 =0andxy =1 Zz;ll %for any 2 < t < N. Then there exists a function p : R — R of one

dimension such that: (i) its gradient is 1-Lipschitz; (ii) p(x1) — inf p < 1; (iii) p'(x¢) = —e for any
t € [N].

Proof. We follow a similar approach as in the proof of Lemma [C.T] Spemﬁcally, we construct the
function p in a similar form as based on the auxiliary function ¢, p () defined in .

—e(x — ml), x € (—o0,21);

p(x) = ¢It,lt+1,6(x) +pta T e (J;hxt—i-l] (1 S t S N — 1)a

%(z —an)? —elx —2ay) +pN, 7€ (TN,+00),

where the values {p;}¥ , are chosen to ensure that the function p is continuous. Hence, as in (34)),
we have p; = 0 and

t—1 t—1
1 2 €
Pt = E <4(l‘s+l - l‘s)2 - (xs-i-l - -’175)6) = E (ZS - \77/5) 5 vt Z 2.

s=1 s=1

Using the same arguments as in Lemma [C.I} we can verify that p has 1-Lipschitz gradient and
p'(x¢) = —eforall t € [N]. Hence, it remains to show that p(z1) — infp < 1.
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To begin with, recall from (35) that infp > min,epny pr — fe , and hence our goal is to lower
2

bound p,. Moreover, note that p;; — p; = Zt \;, which implies that p; is monotonically
2
increasing when ¢ < l- and monotonically decreasing when ¢ > lgj. It follows from this

observation that min, () p; = min{p1, px }. To lower bound py, we use the elementary inequality
that N1 L > log N and 50! 1( <2y/N —1-1 < 2v/N. This leads to

Since p; = 0, this implies that inf p > min{0, log N — 2nef } — €2 and consequently

2
> %logN— 2776\/N.

%\

1
p(z1) — inf p < max {62 2neV'N — logN + fe }

Using the condition in (36), we have 1 *E < s <1and

1
2
UN n? 1
2n6vN—ZlogN+562§2776\/N—ZlogN+§
nlog N 1 ) n? 1
<2nvN + — —logN+=-=1.
! (8\/>N myN) 4% T

Hence, we conclude that p(z1) — inf p < 1. O

Built on Lemma|C.2] we proceed to prove a complexity lower bound for[AdaGrad)in one dimension.

Lemma C.3. Consider running[AdaGrad|on a one-dimensional smooth function p with the scaling
parameter 1. For any L > 0 and A > 0, there exists a function p : R — R and a corresponding
stochastic gradient oracle such that: (i) p has L-Lipschitz gradients and p(x1) — infp < A; (ii)
the stochastic gradient g, is unbiased and has a bounded variance of o2, (iii) Given € such that

2 .
€< IVGL\ﬁ, ifT < 725 (1 + Z?) log 1527, then we have E [miny<,<r |p'(z)|] > .

Proof. We set x1 = 0. To begin with, we can assume without loss of generality that L = 1 and
A = 1. This follows from Lemma 1 in |[Chewi et al.| (2023)), which demonstrates that if a function
p : R — R has a 1-Lipschitz gradient and satisfies p(0) — inf p < 1, then the rescaled function

p(z) = Ap (, / %:1:) has an L-Lipschitz gradient and satisfies p(0) — infp < A. Furthermore,

finding a point & such that |p’(#)| < € is equivalent to finding a point Z such that [p’(Z)| <

vV LA

Now define N = 12862 log 128 ==z and we first verify that the condition in ( ) is satisfied with 2e.

log N

nlog N 1
32N +

Specifically, we will prove that 2e < ) as "o

which immediately implies (3

>
Anv N —
log N
32N

. By direct computation, we have

[log N 1og N log ﬁ + log log @ N
6’
32N log 12862 log 12%;52

1 1
16\f 128e¢

7725 1 f for any 2 < ¢t < N. According to Lemma | there exists a functionp : R — R
such that (i) its gradient is 1-Lipschitz; (ii) p(x1) — inf p < 1; (i1i) p/(z¢) = —2€ for any ¢ € [N].

where we used the fact that ¢ < —=—= > 4 = loglog 12862 > 1. Define ¢; = 0 and

Now consider running on the one-dimensional function p(x) with the stochastic gradient
oracle given by

o 4¢?
oy and Pr(gt =(1+ F) o' (x4) | xt> = il
It is straightforward to verify that Elg: | x¢] = p' (), i.e., the stochastic gradient g; is unbiased. Our
goal is to show that, if T <

Pr(g: =0]mz) = (37)
2566 (1 + %) log 712;562 = %(1 + %)N, then we have |p/(z;)| = 2¢
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for all ¢ € [T] with probability at least % If this is the case, we can also verify that the stochastic

gradient g; has variance bounded by o2, and thus our construction satisfies all the required condi-
tions.

As mentioned in the proof sketch, our key observation is the characterization of the dynamic of

in (I0). Specifically, recall that M, denote the number of times the stochastic gradient is
2

non-zero by time ¢ and My = 0. By definition, we have E[My] = T - ﬁ%a, and thus it

follows from Markov’s inequality that Pr(My > 2E[Mr]) < % This implies that, with prob-

.y 2 ..
ability at least % we have My < 2T - i< < N. Moreover, conditioned on the event that

62+4¢€2
M7 < N, we can use induction to prove that z; = 7 Z;\/Ql’l % and p’(z;) = —2e using the
property of the constructed function p. Indeed, this holds for ¢ = 1 and now suppose this holds for
t = s. By the definition in l) we have either gs = 0 or g, = —2¢(1 + %) = —2¢ — g—:
In the former case, My = M,;_; and 511 = x,. In the latter case, My = M,_; + 1 and

M,_ M .
_ no_ s—1 1 n_ s 1
Ts41 = Ts + i > i=1 j + L ) =17 Moreover, since My < Mr < N, we

have p’(x541) = —2e. Hence, in both cases, the statement holds for ¢ = s + 1. Finally, using the
law of total probability, we can lower bound

1 1
i / > — i / < = - 2e.
E |:1§mtlélT |p (xt)q > QE |:1ISI}§1§IIT |p'(z)| | M < N 5 2¢
This completes the proof. O

Lemma states the complexity lower bound for for a one-dimensional function. This
can be equivalently converted into a lower bound on the convergence rate, as stated in the following
corollary.

Corollary C.4. Consider running on a one-dimensional smooth function p with a scaling
parameter 7). Then there exists a function pa 107 : R — R such that p has L-Lipschitz gradient,

p(w1) —inf p < A, the stochastic gradient g is unbiased and has a bounded variance of 02, and

1/4
. 1 [LAlog(2T +1) 1 [o’LA TLA

/ > o L )
BLo |pA’L*"’T(xt)] max{az T ST G GRS

(38)

Proof. For a given number of iterations 7', we would like to find the largest e that satisfies the
condition in Lemma|C.3] which serves as a valid lower bound. We will rely on the following helper
lemma.

Lemma C.5. Suppose x > 0. Then fory > we have x < ylogy.

2x
log(z+1)’

A sufficient condition for the condition on 7" in Lemma[C.3]to satisfy is

LA LA LA 4T [LAlg2T 1)
= 1282 %1282 T 128¢2 < log(2T + 1) = 5127

. LAlog(2T+1) 2LAT LA ; — /LAlgT+1) _
Moreover, since T IT < \/iosar = \/ 51 DY choosing € = 10247

3%\/ %, both conditions in Lemma are satisfied. Similarly, another sufficient con-
dition is

2T

po OLA LA TLA _LPA® LA
= 10242 78 128¢2 802 — 2l 8 oiid

L2A%2  TLA TLAN\ !
= > log [ 1+

214ed = 4o2 802
o< LA ) "
€=\ our 8 802 ‘
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1/4
Similarly, we can choose € = 7 ("2‘% log ( €§§)> to satisfy both conditions. Hence, we
conclude that the lower bound in the corollary is satisfied. O

Now we are ready to prove Theorem[3.2] As mentioned in the proof sketch, we choose the function
f : R® — R of the form Zle DAL, os (™), where 2() denotes the i-th coordinate of z and

A; > 0 with Z?Zl A; = Ay. By our construction, it is straightforward to verify that the function
f satisfies both conditions in (i) and (ii). Thus, by applying Corollary to each coordinate, we
derive that

e E{ (i) }
[1r<ril<n IV f(x: |1} Z 1%§T‘pAL,LL,m,T(x )|

LzAz IOg T O'2LZAZ TL,LAZ /4
> 2
7ZCmax{\/ T ,( T 10g<1+ 02-2 )> },

LAf

where C' is an absolute constant. First, consider choosing A; = for all ¢ € [d]. It follows that

AglogT |L||1Af10gT
B | i, V76l ZCL«/HL”T oy 122 log T

2/3 1/3

Second, consider choosing A; = Ay for i € [d]. Then we have

9,
2 1
d U/SL/3

i=1"14 i

, ya
INTAIG TL*A;
E Lr<nl<n ||Vf Xy ||1:| ZC <Wl 1+ :L/s Zz . 02/3L;/3

¢ oPLBA i
:C((Zzzlgz v ) flOg(1+pT>>4,
T
L3 A .
where p = E Linin f2/3L1/3. This completes the proof.
i= 1‘71 i

C.3 PROOF OF THEOREM[3.3]

We follow a similar proof strategy as in Theorem[2.1]and use the resisting oracle argument. Consider
any deterministic method .A that has access only to a first-order oracle and let 7" be an integer such

that T' < HL”IAJ’ . We adversarially construct a function f that satisfies the stated conditions and
ensures that Vf(wt) = ‘L“ [Lie, Lae, ..., Lge) € R for any t € [T, where {x;}]_, are the

queries made by A. Note that ||V f (:ct)||1 = € by this construction. As shown in the proof of
Theorem 2.1} thanks to the deterministic nature of A, we can simulate the algorithm using the known
first-order oracle responses above and construct our function f based on the queries {z;}7_;.

Specifically, we construct the adversarial function f of the form

Z Li Af ”LHlx(i)
L™ Ay ’
where z(*) denotes the i-th coordmate of x and the one-dimensional functions p; : R — R for

i € [d] will be determined as follows. Fix a coordinate i € [d], let {xii)}le be the i-th coordinate
1 [ILl[1Af

of the queries {x;}7_,. Since T' < HL” = 4 with ¢ = ——S—, by invoking Lemma ,

1Ll Af

there exists a function p; satisfying the following conditions: (i) its gradient p} is 1-Lipschitz; (ii)

pi(y 52ty — infp; < 1 i) pj(\/ L5t af”) = & = g forany t € [T]. By direct

. . . . L A f _
computation, we can verify that f satisfies Assumptlonand f(x1)—inf f < ZZ L TE = Aj.
Moreover, the i-th coordinate of V f () is given by

LiAy ||LH1/ ||L||1 ORI P € _ Lie
Ll VL LAy T
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Therefore, the constructed function f is indeed consistent with our resisting oracle. In particular, this

implies that after 1B Ar gradient queries, Algorithm A fails to find a point & with |V f(Z)||1 < e.

This completes the pefoof.

C.4 PROOF OF THEOREM [4.1]

We first present a lower bound result for SGD in the one-dimensional setting. Our proof is partially
inspired by (Abbaszadehpeivasti et al., [2022, Proposition 4), which studies the convergence rate of
gradient descent in the noiseless setting.

Lemma C.6. Consider running SGD x1y1 = x; — ng; on a one-dimensional smooth function
p with a constant step size n. For any L > 0 and A > 0, there exists a function p : R —
R and a corresponding stochastic gradient oracle such that (i) p has L-Lipschitz gradients and
p(wy) — inf p < A; (ii) the stochastic gradient g; is unbiased and has a bounded variance of o*;
(iii) it holds that

> 39
- max{b /Mﬁﬁ,min{m/?,\/QLA}}, otherwise. (39
Proof. We first consider the simple case where n > % Let

B 2| < (/2
V2LA|z| - A, 7| > /228,

and set the stochastic gradient oracle as the exact gradient oracle. Moreover, we initialize SGD with

E | min |p/
Lgltng P (24)]

T = — %. It is easy to verify that both conditions (i) and (ii) are satisfied. Moreover, we can
prove by induction that the iterates z; alternate between 1 = — % and zg = — \/% +nV2LA.
Indeed, following the update rule, we have o = 1 — np/(x1) = —\/% + nV2LA. Since
n > 2, it holds that |xa] > %\/m — \/% = \/% and hence p'(x2) = V2LA. Therefore,

x3 = w9 — np'(xz2) = x1 and the repetition continues. This shows that |p’(z;)| = V2LA for all
t>1.

For the case where ) < 2, we prove the lower bound by considering the following two constructions.

(i) Construction I Set e = min{o/ %, V2L A} and without loss of generality, we initialize
SGD with x; = 1. Consider the function

L, 2 €
ST | < &

p(a&){2 1o H_é’ (40)
elz| — 5p€®, |z > 1,

with the stochastic gradient oracle g(x) given by
2

o a2\ , €
Pr(g(z) =0) = P and Pr (g(x) = (1 + 62) D (x)) = gia 41)

It is straightforward to verify that p(x) has L-Lipschitz gradients and p(z1) —inf p < % <
A. Moreover, we can compute that

Bl = o (145 ) #e) = r o)

o2 + €2 €
5100 - p0)] = g (145 ) PG =

Since |p’(x)| < € for any = € R, this further implies that E {(g(m) - p’(x))z} < o2, Thus,
the first two conditions in Lemma are satisfied. Finally, we will prove by induction
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that the iterates {z;}7_, alternate between the two points fand £+ —7 (e + ”—j) and the
gradient norm at both points is €. This is clearly true for ¢ = 1. Now suppose this holds for
t = s. We consider the following scenarios:
* Assume that x, = £, then p’(x;) = € and by the construction in (#1) we have either
2 2
gs = 0orgs = (1+ %)e = ¢ + Z. In the former case, we have .1 =z, = 7,
while in the latter case we have 541 = x5 — 7 (e + "?2) = % -7 (e + ";) Hence,
the statement holds for ¢t = s + 1.

. 2 . . . .
¢ Otherwise, assume that x, = % -n (e + "?) Since ¢ < o %, this implies that

2

2 2 .
o2 > % and thus £ — <e+ %) < ¢ — %% < —4. According to lb we have

2 ..
p'(zs) = —e and thus g; = 0 or g, = —e — 2. Similarly, we can show that the
statement continues to hold in both cases.

(ii) Construction II: Set ¢ = %, /—2— and we initialize SGD with 21 = 0. Similar to the

2\ 2nT+5%
proof of Theorem [2.1) we will construct our function based on ¢, () defined in (32).
2 2
Specifically, let N = 2T - 0;{& = = rﬁgjié QL) and define the N points as and ¢; =

(t—1)n (26 + ‘;—:) for t € [N]. Then consider the function

—2ezx, x € (—o0,0];
() = § Log, qii1,2¢/L(T) + Dt € (q,q1] (1<t <N -1);
Lz —qn)? —2¢(x —qn) + PN, T € (qn, +00),

where the values {p; }/¥_; are determined to ensure that the function p is continuous. Specif-

ically, this requires py = 0 and py 11 = pt + Ldg, q,. 1 ,2¢/0(qe+1) = Pt + %(Qt-s-l —q)? —
2¢(qt+1 — Gt ), which leads to

Ln? o2\ ?
Dt+1 = t(T (26 + 26) — 7](462 + 0'2)) Z —nt(462 + 02)-

Moreover, we set the stochastic gradient oracle as
2

2 4 2
Pr(g(z) = 0) = ﬁ and Pr (g(x) = (1 + Z@) p’(x)) = ﬁﬁzxe?' 42)

Again, it is straightforward to verify that p’ is L-Lipschitz, and due to the definition of ¢ in
(32), it holds that p’(¢q;) = —2e for all ¢ € [N]. Now we will show that p(x1) —infp < A.
To see this, note that similar to the arguments in Lemma|C. 1} one can show that

2 2
infp = trél[i]{]l]pt - 362 > —n(N —1)(4€* 4 0?) — 562 > —A.

As a result, we obtain p(z1) — inf p < A.

Finally, we will show that E [miny <;<741 [p’(2)|] > €. Our strategy is similar to the proof
of Lemma|C.3] Let M, denote the number of times the stochastic gradient is non-zero by
time ¢ and set M = 0. Then from the definition of the stochastic gradient oracle in (@I,
we have E[Mr] = %ZEZT. By Markov’s inequality, we have Pr(ﬁ\/fT > 2E[M7]) < 1.
This implies that, with probability at least % we have M < ZT% = N. Conditioned
on the event that M < N, we can use induction to prove that z; = M;_17n <2e + ‘;—:)
and p'(x¢) = —2e for all t € [T]. This is true for ¢ = 1 and suppose that this holds for

t = s. By the definition in 1i we have either g, = 0 or g5 = —2¢ — ‘;—2 In the former
case, Mg = My_jand z541 = x5, = Myn (26 + g—:) In the latter case, My = M,_1 + 1

and zs11 = x5 —ngs = (Ms—1 + 1)y (26 + g—i) = Mn (26 + g—:) Moreover, Since
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M < N, we also have p'(zs11) = —2e. Hence, in both cases, the statement continues to
hold for ¢ = s 4 1. Using the law of total probability, we can lower bound

1 1
> i e < - Z. = €.
E Lr<nm Ip/ (xt)] > 2E Lr<ntmT Ip"(x)| | M < N 5 2e=¢

This completes the proof.

Since both constructions provide a valid lower bound, we can take the maximum of the two as the
final lower bound. This leads to Lemmal[C.6l O

Now we are ready to prove Theorem Denote by pa, L,a,n,T(') the function in Lemma that
achieves the lower bound. Consider the function
d

- ZPA/demUz:m-,T(x(i))?

i=1
where z(¥) denotes the i-th coordinate of the vector z. If n > ﬁ, then it follows from the first
lower bound in Lemma that

. LB
B | i, 195Gl | = 2E=2,

< % for all 4 € [d], it follows from the second lower bound in Lemma that :

2
Itn < 1z

i (1)
E 11<m<nTHVf Ly ”1] ZELQ%QT@AMLNMT( )@

>Zmax{ A/d — ,mm{om/ /2L, }}

i1 2\ 20T + 5r;

> - = — N it i

_;4 277T+i.+;2mm{mw 5 7\/2de 43)

=1

Z mm{az\/> \/; } (44)

Now we would like to establish a lower bound that is independent of the step size 7. Let Ly, =
min;e[q) L;. We consider the following cases.

1
=1 277T+

(i) If 2nT < 57—, then the lower bound in ( is at least =+ % > 1/ TomdA.
nT+5p— 4

min

(i) If 2nT > 5 L1 % > 2Li% for some ¢ € [d], then the lower bound in is

1 2L;A 1 2LminA
atleastzg/—d > 5/ e

(iii) Finally, If 2nT >

#4) becomes

1| / dA
4 277T+2me+i§: 8\/77: 2onz\ff

Since n <

- and o; ”7 2L;4 for all i € [d], then the lower bound in

ﬁ, we can further lower bound the above inequality by % ‘717—% >

% \/ %. Moreover, by using the elementary inequality a+b > 2v/ab for any a, b > 0,
we also obtain that

1/4
S 0Bz TR
nT 2{ ’ - 4.21/4T1/4 ’
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Hence, in this case we have

1/4 x—~d 1/2
, 1 [d|L]joA dY*A (i 0ivT)
e [ o, 1970l zmax{gﬁ Rl MONLA

> L JALI=A | 107 (i o/ T
— 16 2T 8. 21/471/4

By taking the minimum of all three cases, we conclude that

1/4 d ) - 1/2
E ; : 1 [d|L]sA d1/4Af (Zizl oivV'Li) 1 /LA
min ||V f(x > — + '
[1<t1<T|| ut t)ll} - mm{lG\/T 8 . 21/471/4 1 d

Note that the second term in our lower bound is a constant independent of 7. Thus, when 7T is
sufficiently large, we obtain the result in Theorem |4.
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