
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONVERGENCE ANALYSIS OF ADAPTIVE GRADIENT
METHODS UNDER REFINED SMOOTHNESS AND NOISE
ASSUMPTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Adaptive gradient methods, such as AdaGrad, are among the most successful opti-
mization algorithms for neural network training. While these methods are known
to achieve better dimensional dependence than stochastic gradient descent (SGD)
under favorable geometry for stochastic convex optimization, the theoretical justi-
fication for their success in stochastic non-convex optimization remains elusive. In
fact, under standard assumptions of Lipschitz gradients and bounded noise vari-
ance, it is known that SGD is worst-case optimal (up to absolute constants) in
terms of finding a near-stationary point with respect to the ℓ2-norm, making fur-
ther improvements impossible. Motivated by this limitation, we introduce refined
assumptions on the smoothness structure of the objective and the gradient noise
variance, which better suit the coordinate-wise nature of adaptive gradient meth-
ods. Moreover, we adopt the ℓ1-norm of the gradient as the stationarity measure,
as opposed to the standard ℓ2-norm, to align with the coordinate-wise analysis
and obtain tighter convergence guarantees for AdaGrad. Under these new as-
sumptions and the ℓ1-norm stationarity measure, we establish an upper bound on
the convergence rate of AdaGrad and a corresponding lower bound for SGD. In
particular, for certain configurations of problem parameters, we show that the it-
eration complexity of AdaGrad outperforms SGD by a factor of d. To the best of
our knowledge, this is the first result to demonstrate a provable gain of adaptive
gradient methods over SGD in a non-convex setting. We also present supporting
lower bounds, including one specific to AdaGrad and one applicable to general
deterministic first-order methods, showing that our upper bound for AdaGrad is
tight and unimprovable up to a logarithmic factor under certain conditions.

1 INTRODUCTION

Adaptive gradient methods, including variants like AdaGrad (McMahan & Streeter, 2010; Duchi
et al., 2011) and Adam (Kingma & Ba, 2015), have become essential for training large-scale
neural networks and language models. Their popularity over classic stochastic gradient descent
(SGD) (Robbins & Monro, 1951) stems from two key features: (i) adaptive step sizes based on past
gradients, eliminating the need for problem-specific parameters like the gradient’s Lipschitz con-
stant or stochastic gradient variance, and (ii) the use of coordinate-wise step sizes, allowing better
exploitation of the objective’s geometry compared to SGD’s uniform step size.

Their empirical success has motivated exploring theoretical guarantees that show a provable gain
for this class of methods over the traditional SGD method. To pursue this goal, adaptive gradient
methods were initially examined in the context of online convex optimization. In particular, it was
shown by Duchi et al. (2011) that depending on the geometry of the feasible set and the sparsity
of the gradients, AdaGrad’s regret bound could be either better or worse than that of SGD by a
factor of

√
d, where d represents the problem’s dimension. For further details, we refer readers

to (Hazan, 2016; Orabona, 2019). Moreover, using the classical online-to-batch conversion (Cesa-
Bianchi et al., 2004; Shalev-Shwartz, 2012), these regret bounds directly translate into convergence
rate guarantees in stochastic convex optimization.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In the non-convex setting, although significant work has been done to characterize the convergence
of adaptive methods under various assumptions (more details in the related work section), no prov-
able gain has been established for adaptive methods over SGD, and demonstrating such a gain for
AdaGrad in the non-convex setting remains an open problem, see (Chen & Hazan, 2024).

Note that when the objective function is smooth and the stochastic gradients are unbiased with
bounded variance, SGD can, after T iterations, find a point where the expected gradient ℓ2-norm is
bounded by O(1

T 1/4
) (Ghadimi & Lan, 2013; Bottou et al., 2018). This convergence rate is known to

be optimal for any method relying on first-order oracles under the discussed assumptions (Arjevani
et al., 2023). Consequently, to demonstrate a provable gain for adaptive methods over SGD in the
non-convex setting, we must move beyond the classic setup. In particular, as we will discuss in
detail, we argue that modifying both the assumptions and the measure of stationarity is necessary to
better account for the coordinate-wise nature of adaptive methods.

Contributions. Motivated by the coordinate-wise structure of AdaGrad, we present refined as-
sumptions on the smoothness and the noise variance by associating each coordinate with a Lipschitz
constant Li and a gradient noise variance σ2

i for i = 1, 2, . . . , d (see Assumptions 2.3b and 2.4b).
However, even under these refined assumptions, we show that SGD is still worst-case optimal in the
noiseless setting when the ℓ2-norm is the measure of stationarity (Theorem 2.1). Thus, we change
the measure of stationarity to the ℓ1-norm and demonstrate that, with these new assumptions and the
revised stationarity measure, it is possible to prove that AdaGrad achieves an upper bound complex-
ity that outperforms the lower bound complexity for SGD. Our main contributions are summarized
below:

• Upper bound for AdaGrad: Let L = [L1, . . . , Ld] ∈ Rd and σ = [σ1, . . . , σd] ∈ Rd de-
note the Lipschitz constant vector and the noise variance vector, respectively. We establish

that AdaGrad achieves a rate of O
(√

∥L∥1 log h(T)
T +(

∥σ∥2
1∥L∥1 log h(T)

T)1/4+
∥σ∥1

√
log h(T)

T 1/4

)
in terms of the ℓ1-norm, where h(T) is a polynomial function of T and d (Theorem 3.1).
Notably, this rate depends on d only implicitly through L and σ.

• Lower bound for SGD: Under the same assumptions and using the ℓ1-norm as the sta-
tionarity measure, we show that the convergence rate of SGD with a constant step size is

lower bounded by Ω
(√

d∥L∥∞
T +

d1/4(
∑d

i=1 σi

√
Li)

1/2

T 1/4

)
when the number of iterations T

is sufficiently large (Theorem 4.1).

• Provable gain for AdaGrad over SGD: By comparing AdaGrad’s upper bound with
SGD’s lower bound, we show that when the parameters L and σ are both sparse and aligned
in a certain way, AdaGrad’s complexity can be d times better than the one for SGD.

• Lower bounds for AdaGrad: We establish a complexity lower bound for AdaGrad,
matching the first term in our upper bound up to absolute constants (including the log T
factor), as well as the second term under certain conditions on L and σ (Theorem 2.1). We

also provide a lower bound of Ω
(√

∥L∥1

T

)
for all deterministic first-order methods in the

noiseless case, showing the first term is unimprovable up to log factors (Theorem 3.3).

1.1 RELATED WORK

AdaGrad-Norm. Several prior works have established that AdaGrad-Norm achieves a convergence
rate similar to that of SGD, but under stronger assumptions, such as bounded gradients (Ward et al.,
2020; Kavis et al., 2022; Gadat & Gavra, 2022), the step-size being (conditionally) independent of
the stochastic gradient (Li & Orabona, 2019; 2020), or sub-Gaussian noise (Li & Orabona, 2020;
Kavis et al., 2022). Faw et al. (2022) addressed this issue and showed that under standard assump-
tions—Lipschitz gradients and bounded variance—AdaGrad-Norm achieves the same complexity
as SGD in terms of gradient’s ℓ2-norm (up to a logarithmic factor). They further explored the set-
ting where the stochastic gradient has affine variance. In addition, several works (Attia & Koren,
2023; Liu et al., 2023) provided high-probability convergence guarantees for AdaGrad-Norm under
sub-Gaussian noise assumptions. The extension to the generalized smoothness setting (Zhang et al.,
2020) was developed in Faw et al. (2023); Wang et al. (2023). However, as mentioned earlier, these
results do not demonstrate any improvement over SGD in terms of convergence rate.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

AdaGrad and its variants. Most works on AdaGrad and its variants, such as RMSProp (Tieleman
& Hinton, 2012), Adam (Kingma & Ba, 2015) and AMSGrad (Reddi et al., 2018), employed the
gradient ℓ2-norm as the stationarity measure. Under the assumption of bounded gradients, Chen
et al. (2019); Alacaoglu et al. (2020); Défossez et al. (2022) established a rate of O(1

T 1/4
), but with

an explicit dimension dependence of at least Ω(d1/4). Thus, these convergence results could be
worse than the dimensional-free rate of SGD. Recently, several papers have studied the convergence
of adaptive methods with respect to the gradient’s ℓ1-norm, closely related to our work. Under the
assumption of coordinate-wise subgaussian noise, Liu et al. (2023) provided a high-probability rate
for AdaGrad of Õ

(
d√
T
+ d

T 1/4

)
, which is worse than our worst-case rate by a factor of

√
d. Li

& Lin (2024) analyzed RMSProp under the standard smoothness assumption and a coordinate-wise
bounded noise variance assumption and showed a convergence rate of Õ(

√
d√
T
+

√
d

T 1/4), which matches
our worst-case bound. However, their convergence result only showed the possibility of matching
the convergence rate of SGD instead of surpassing it, and thus it did not fully explain the advantage
of adaptive gradient methods. Along a different line of research, Crawshaw et al. (2022) proposed a
generalized SignSGD algorithm and analyzed its rate in terms of the gradient’s ℓ1-norm, under their
proposed coordinate-wise generalized smoothness and subgaussian noise assumptions. However,
their results are not directly comparable to ours due to the different assumptions and algorithms.
Lower bounds. Several works have studied the complexity of finding an ϵ-stationary point of a
smooth non-convex optimization with exact or noisy gradient oracles. However, to the best of our
knowledge, they all use the ℓ2-norm of the gradient as the stationarity measure. In the noiseless set-
ting, Carmon et al. (2020) showed that all first-order methods require at least Ω(1

ϵ2) gradient queries
for finding a point x with ∥∇f(x)∥2 ≤ ϵ. Building on similar techniques, Arjevani et al. (2023)
extended it to non-convex stochastic optimization and showed a lower bound of Ω(1

ϵ4) for finding a
point x with E[∥∇f(x)∥2] ≤ ϵ. In addition to the use of ℓ2-norm, these works focus on establishing
dimensional-free lower bounds and the constructed worst-case instance has a dimension that grows
with 1/ϵ. As a result, their techniques are unfit for studying lower bounds in a given dimension,
which is our focus here. Along a different line of work, people have studied the complexity of find-
ing ϵ-stationary points of a function in a small dimension (Vavasis, 1993; Cartis et al., 2010; Chewi
et al., 2023). In particular, Chewi et al. (2023) showed that any deterministic first-order method
would require Ω(1

ϵ2) to find the ϵ-stationary point of a one-dimensional smooth non-convex func-
tion. To the best of our knowledge, our result is the first to establish a lower bound in terms of the
ℓ1-norm and highlight the dimensional dependence in the convergence rate.
Concurrent work. The concurrent work by Liu et al. (2024), which appeared online two weeks
after our initial paper, also examined AdaGrad’s convergence under anisotropic smoothness and
noise assumptions, similar to our refined Assumptions 2.3b and 2.4b. They proved an upper bound
on AdaGrad’s convergence rate in terms of the gradient’s ℓ1-norm, comparable to our result in
Theorem 3.1, and compared it with the classical upper bound for SGD in terms of the ℓ2-norm.
In contrast, our approach focuses on establishing a lower bound for SGD, allowing us to directly
compare AdaGrad’s upper bound with SGD’s lower bound to demonstrate a clear advantage for
AdaGrad. Moreover, we further validate the tightness of our AdaGrad upper bound through two
lower bounds, one specific to AdaGrad and another for deterministic first-order methods.

2 PRELIMINARIES

Notation. We use boldface letters for vectors and normal font letters for scalars. The Euclidean
or ℓ2-norm of a vector w is denoted by ∥w∥2 and its ℓ1 norm is indicated by ∥w∥1. For a vector
w ∈ Rd, we denote its i-th coordinate by wi. We use [n] to denote the set {1, 2, . . . , n}. Further, Ft

denotes the σ-algebra generated after time index t. In our case, Ft contains all iterates w0, . . . ,wt+1

and all stochastic gradients g0, . . . , gt. Finally, the notation Õ suppresses logarithmic dependencies.

In this paper, our objective is to identify an approximate stationary point of a smooth, non-convex
function F : Rd → R over the unbounded domain Rd. The most commonly analyzed AdaGrad-
type method in the literature is AdaGrad-Norm, which was first considered in McMahan & Streeter
(2010). Specifically, AdaGrad-Norm updates the iterates wt according to the following update rule:

wt+1 = wt −
η

bt + δ
gt, where bt =

√√√√ t∑
s=1

∥gs∥2, (AdaGrad-Norm)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where gt is the stochastic gradient of F at wt, the scalar η is a scaling parameter, δ > 0 is a small
constant to ensure numerical stability. However, as mentioned in the introduction, most prior works
demonstrated convergence similar to the guarantees obtained by SGD. In this paper, we focus on the
coordinate-wise variant of AdaGrad, whose updates are given by

wt+1,i = wt,i − η
gt,i

bt,i + δ
, where bt,i =

√√√√ t∑
s=1

g2s,i ∀i ∈ [d], (AdaGrad)

where constant δ is introduced to ensure numerical stability. Some literature refers to this algorithm
as “diagonal AdaGrad” or “coordinate-wise AdaGrad”, while reserving the name AdaGrad for the
variant involving full matrix inversion. In this work, we refer to the diagonal version as AdaGrad,
as it is the most widely used in practice.

2.1 ASSUMPTIONS AND MEASURE OF STATIONARITY

In this section, we outline the assumptions required to characterize the complexity of AdaGrad.
To provide motivation, we first revisit the standard assumptions on the objective function F and
its stochastic gradient, which are commonly used in the analysis of stochastic first-order meth-
ods (Ghadimi & Lan, 2013; Bottou et al., 2018).
Assumption 2.1. The function F (·) is bounded from below, i.e., infw∈Rd F (w) = F ∗ > −∞.
Assumption 2.2. The stochastic gradient gt is unbiased, i.e., E[gt | Ft−1] = ∇F (wt).
Assumption 2.3a. The stochastic gradient gt has a bounded variance, i.e., E[∥gt −∇F (wt)∥2] ≤
σ2 for some non-negative constant σ.
Assumption 2.4a. The function F (·) is smooth, i.e., for any vectors x,y ∈ Rd, we have |F (x) −
F (y)−⟨∇F (x),x−y⟩| ≤ L

2 ∥x−y∥2, where L ≥ 0 is the Lipschitz constant of the gradient of F .

Under Assumptions 2.1-2.4a, it is known that SGD, with an appropriately chosen step size, can
find a point ŵ such that E

[
∥∇F (ŵ)∥22

]
≤ ϵ2 after at most O

(
L(F (w1)−F∗)σ2

ϵ4 + (F (w1)−F∗)L
ϵ2

)
iterations (Ghadimi & Lan, 2013; Bottou et al., 2018). Moreover, this complexity matches the lower
bound for any first-order method up to an absolute constant, as shown by Arjevani et al. (2023).

According to this classical convergence theory, SGD is the optimal first-order method in this set-
ting in the worst-case sense, leaving no room for further improvement. However, coordinate-wise
adaptive methods, such as AdaGrad, are often observed to converge significantly faster than SGD
in practice. Intuitively, the main advantage of AdaGrad over SGD is that each coordinate employs a
different step size that adapts to the gradients of each respective coordinate. In contrast, SGD uses
the same step size across all coordinates, and thus its step size is constrained by the most “difficult”
coordinate, impeding progress in other coordinates that could allow a larger step size. Consequently,
we expect AdaGrad to outperform SGD when the coordinates exhibit imbalance. To better capture
how coordinate-wise AdaGrad exploits structural features, we propose replacing Assumptions 2.3a
and 2.4a with their coordinate-wise refined counterparts, inspired by Bernstein et al. (2018).
Assumption 2.3b. The stochastic gradient gt with elements [gt,1, . . . , gt,d] has a coordinate-wise
bounded variance. That is, for all i ∈ [d], we have E[|gt,i − ∇iF (wt)|2 | Ft−1] ≤ σ2

i , where σi

is a non-negative constant and ∇iF (wt) represents the i-th coordinate of the gradient ∇F (wt).
Moreover, we define the vector σ as σ = [σ1, σ2, .., σd] ∈ Rd.

The above condition on the variance of the stochastic gradient is a more fine-grained assumption
compared to the standard assumption. Indeed, our considered assumption implies Assumption 2.3a
when we consider σ2 =

∑d
i=1 σ

2
i . As discussed earlier, since we aim to study an algorithm with a

coordinate-specific update, the above assumption better captures its convergence behavior.
Assumption 2.4b. The function F (·) is coordinate-wise smooth, i.e., ∀x,y ∈ Rd, |F (y)−F (x)−
⟨∇F (x),y − x⟩| ≤

∑d
i=1

Li

2 |xi − yi|2, where the constant Li > 0 is the Lipschitz constant
associated with the i-th coordinate. Moreover, we define the vector L as L = [L1, L2, .., Ld] ∈ Rd.

Assumption 2.4b is similar to the fine-grained assumptions made in the literature for coordinate-wise
analysis of algorithms Richtárik & Takáč (2011); Bernstein et al. (2018). We recover the standard
smoothness in Assumption 2.4a by considering the Lipschitz constant as L := maxi Li = ∥L∥∞.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Besides the assumptions, the choice of stationarity measure is crucial in characterizing an algo-
rithm’s complexity. In non-convex optimization, the standard choice is the Euclidean ℓ2-norm of the
gradient. However, this choice may be inadequate to demonstrate the advantage of AdaGrad over
SGD. To illustrate this, consider the noiseless setting where σi = 0 for all i ∈ [d] and thus SGD
reduces to gradient descent. Under Assumption 2.4b, the gradient of F is ∥L∥∞-Lipschitz, and stan-
dard analysis shows that gradient descent with step size η = 1/∥L∥∞ can find a point ŵ such that
∥∇F (ŵ)∥2 ≤ ϵ after at most 2∥L∥∞(F (w1)−F∗)

ϵ2 iterations. The following theorem shows that if the
ℓ2-norm of the gradient is used as the stationarity measure, no deterministic first-order method can
outperform gradient descent by more than a factor of two, even under the refined Assumption 2.4b.

Theorem 2.1. Consider any deterministic algorithm A with only access to the first-order oracle
with an initial point x1 ∈ Rd. For any positive vector L = [L1, . . . , Ld] and any ∆f > 0, there
exists a function f : Rd → R such that: (i) f satisfies Assumption 2.4b and f(x1) − inf f ≤ ∆f ;
(ii) Algorithm A requires more than ∥L∥∞∆f

ϵ2 gradient queries to find a point x̂ with ∥∇f(x̂)∥2 < ϵ.

Proof sketch. Inspired by similar arguments in Chewi et al. (2023), we employ the concept of a “re-
sisting oracle” (Nemirovski & Yudin, 1983; Nesterov, 2018) in our proof. Specifically, consider any
deterministic method A that has access only to a first-order oracle, and let T be an integer satisfying
T ≤ ∥L∥∞∆f

ϵ2 . We will adversarially construct a function f that satisfies the stated requirements and
ensures that ∇f(xt) = [ϵ, 0, 0, . . . , 0] ∈ Rd for any t ∈ [T], where {xt}Tt=1 are the queries made by
A. Crucially, the function f is not fixed in advance but is built based on the points x1,x2, . . . ,xT

queried by A. This is possible due to the deterministic nature of A, which allows us to “simulate”
the algorithm using the known responses from the first-order oracle. Hence, we only need to show
that there exists a function f that satisfies the stated properties and is consistent with the output
provided by the resisting oracle.

Without loss of generality, assume L1 = ∥L∥∞. We construct the adversarial function in the form
of f(x) = ∆fp(

√
L1/∆fx(1)), where x(1) is the first coordinate of x and p : R → R is a function

of one dimension to be determined. Let {x(1)
t }Tt=1 be the first coordinate of the queries {xt}Tt=1.

Since T ≤ ∥L∥∞∆f

ϵ2 , by invoking Lemma C.1 in Appendix C.1, we show the existence of a function

p satisfying the following conditions: (i) its gradient p′ is 1-Lipschitz; (ii) p(
√

L1

∆f
x
(1)
1)− inf p ≤ 1;

(iii) p′(
√

L1

∆f
x
(1)
t) = ϵ√

L1∆f

for any t ∈ [T]. It is easy to verify that f meets all the required

assumptions, and ∀t ∈ [T], ∥∇f(xt)∥2 = |
√
L1∆fp

′(
√

L1

∆f
x
(1)
t)| = ϵ. The proof is complete.

The lower bound in Theorem 2.1 matches the upper bound of SGD (up to a constant factor of 2),
which certifies the optimality of SGD with respect to the gradient ℓ2-norm. To provide some intuition
for this result, note that in the proof of Theorem 2.1, the worst-case function for any deterministic
first-order method can be realized by a function f that is effectively one-dimensional. As such, the
complexity bound does not reflect the imbalance between different coordinates. This observation
motivates the use of an alternative stationarity measure. As we will demonstrate in the next section,
the convergence analysis suggests that the gradient ℓ1-norm is a more suitable choice for AdaGrad.

3 ℓ1-NORM CONVERGENCE OF ADAGRAD: UPPER AND LOWER BOUNDS

In this section, we present our main convergence results for AdaGrad. In Section 3.1, we derive an
upper bound on the number of iterations required to find a near-stationary point in terms of the ℓ1-
norm, instead of the conventional ℓ2-norm. As discussed earlier, this stationarity measure is more
suitable given the coordinate-specific structure of AdaGrad and better highlights the advantages
compared to SGD and AdaGrad-Norm, as we will demonstrate. Then in Section 3.2, we provide
supporting lower bounds to demonstrate that our upper bounds are tight under specific settings.

3.1 UPPER BOUND

In this section, we first state our main convergence result for AdaGrad in terms of the expected
average ℓ1-norm of the gradient. Due to space limitations, we provide a proof sketch below and the
complete proof can be found in Appendix B.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Theorem 3.1. Let {wt}Tt=1 be the iterates generated by AdaGrad with δ < 1
d and suppose that

Assumptions 2.1, 2.2, 2.3b, and 2.4b hold. Then E
[
1
T

∑T
t=1 ∥∇F (wt)∥1

]
is upper bounded by

O
(

∆F

η
√
T
+
η∥L∥1 log h(T)√

T
+

√
∥σ∥1∆F
√
ηT

1
4

+

√
η∥σ∥1∥L∥1 log h(T)

T
1
4

+
∥σ∥1

√
log h(T)

T
1
4

)
, (1)

where ∆F = F (w1)− F ∗ and h(T) = O
(

T∥σ∥2
∞+T∥∇F (w1)∥2

∞+η2∥L∥∞∥L∥1T
3

δ2

)
.

Proof Sketch. Our proof consists of the following steps.

Step 1: Define ηt,i = η
bt,i+δ and rewrite AdaGrad as wt+1,i = wt,i − ηt,igt,i. By apply-

ing Assumption 2.4b to two consecutive iterates wt and wt+1, we obtain the descent inequality
F (wt+1) ≤ F (wt) −

∑d
i=1 ηt,igt,i∇iF (wt) +

∑d
i=1

Li

2 η2t,ig
2
t,i. Note that ηt,i and gt,i are corre-

lated and thus E [ηt,igt,i | Ft−1] ̸= ηt,iE [gt,i | Ft−1], which is one of the main challenges of ana-
lyzing adaptive gradient methods. To address this, following (Ward et al., 2020; Faw et al., 2022),
we introduce a “decorrelated step size” as:

η̂t,i =
η√

b2t−1,i + σ2
i +∇iF (wt)2 + δ

. (2)

Compared to the definition ηt,i = η√
b2t−1,i+g2

t,i+δ
, the stochastic gradient g2t,i is replaced with

∇iF (wt)
2 + σ2

i in (2) and as a result η̂t,i and gt,i are independent conditioned on Ft−1. Using
the decorrelated step size, we obtain the following key inequality (see Corollary B.3):

E

[
T∑

t=1

d∑
i=1

η̂t,i
2

∇iF (wt)
2

]
≤ F (w1)− F ∗ +

(
2η∥σ∥1 +

η2∥L∥1
2

)
log h(T), (3)

where h(T) = 1 +
T∥σ∥2

∞
δ2 +

T (∥∇F (w1)∥∞+η
√

∥L∥∞∥L∥1T)2

δ2 .

Step 2: In light of (3), it remains to establish lower bounds on the step sizes η̂t,i. Since each
coordinate is updated independently, we study each coordinate and construct a uniform lower bound
on η̂t,i for t ∈ [T]. Specifically, for each i ∈ [d], we define a new auxiliary step size η̃T,i as

η̃T,i =
η√∑T−1

i=1 g2t,i +
∑T

t=1 ∇iF (wt)2 + σ2
i + δ

. (4)

From (2) and bt−1,i =
∑t−1

s=1 g
2
s,i in AdaGrad, it can be shown that η̂t,i ≥ η̃T,i for all t ∈ [T].

Moreover, we separate the step sizes from the gradients as follows:

E

[
T∑

t=1

η̂t,i
2

∇iF (wt)
2

]
≥ E

[
η̃T,i

2

T∑
t=1

∇iF (wt)
2

]
≥ E


√√√√ T∑

t=1

∇iF (wt)2

2

× 1

E
[

2
η̃T,i

] , (5)

where we used that E
[
X2

Y

]
≥ E[X]2

E[Y] for any two positive random variables X and Y . Hence, we

proceed to establish an upper bound on E
[

1
η̃T,i

]
(see Lemma B.4):

E
[

1

η̃T,i

]
≤ σi

√
2T + δ

η
+

√
3E
[√∑T

t=1 ∇iF (wt)2
]

η
. (6)

Step 3: Note that the upper bound in (6) depends on the sum E
[√∑T

t=1 ∇iF (wt)2
]
, which also

appears on the right hand side of (5). By combining (3), (5) and (6), we arrive at (see Lemma B.5):

E

 d∑
i=1

√√√√ T∑
t=1

∇iF (wt)2

 ≤ 2
√
3

η
Q+

√
2dδQ

η
+ 2

√
∥σ∥1Q

η
T

1
4 , (7)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where Q denotes the right-hand side of (3). The last step is to relate the left-hand side of the
inequality in (7) to the ℓ1-norm of the gradients. Specifically, we can write:

1

T

T∑
t=1

∥∇F (wt)∥1=
1

T

T∑
t=1

d∑
i=1

|∇iF (wt)|=
1

T

d∑
i=1

T∑
t=1

|∇iF (wt)|≤
1√
T

d∑
i=1

√√√√ T∑
t=1

|∇iF (wt)|2,

where we switched the order of the two summations in the second equality and used the Cauchy-
Schwarz inequality in the last inequality. This leads to our main theorem.

Remark 3.1. We observe that the ℓ1-norm of the gradient naturally emerges as the convergence
measure, as it provides the tightest bound derivable from the inequality in Lemma B.5. Indeed,
the ℓ1-norm is always an upper bound on the ℓ2-norm, and thus the above bound also immedi-
ately implies an upper bound on 1

T

∑T
t=1 ∥∇F (wt)∥2. However, this relaxation will undermine the

advantage of AdaGrad when compared to SGD or AdaGrad-Norm.

A few remarks on Theorem 3.1 are in order. First, a key feature of the upper bound in (1) is
that, apart from the logarithmic term log h(T), it does not explicitly depend on the dimension d.
Instead, the dependence is implicit via the variance vector σ and the Lipschitz vector L defined in
Assumptions 2.3b and 2.4b. In contrast, as shown later in Section 4, SGD unavoidably will incur an
explicit dependence on the dimension d in its convergence bound. Moreover, if we select the scaling
parameter η in AdaGrad to achieve the best convergence bound, then (1) will become

O
(√

∥L∥1∆F log h(T)

T
+

(
∥σ∥21∥L∥1∆F log h(T)

T

)1/4

+
∥σ∥1

√
log h(T)

T 1/4

)
. (8)

This bound is adaptive to the noise level: when the noise level in the stochastic gradient is relatively

small, i.e., ∥σ∥21 ≪ ∥L∥1∆F

T , then AdaGrad will achieve a faster rate of O(
√

∥L∥1∆F log h(T)
T). As

shown in the next section, this rate matches our lower bound in the noiseless case, up to a log factor.

To aid our discussions and comparisons with existing results, we rewrite our bound in terms of the
gradient’s Lipschitz constants and the gradient noise variance as in Assumptions 2.3a and 2.4a, com-
monly used in the literature. Specifically, Assumption 2.3b implies that E

[
∥gt −∇F (wt)∥22

]
≤∑d

i=1 σ
2
i = ∥σ∥22 and Assumption 2.4b implies that the function F is ∥L∥∞-Lipschitz. Thus, when

we translate our bounds to the standard assumptions that are not tailored for coordinate-wise analy-
sis, the ratios of ∥L∥1

∥L∥∞
and ∥σ∥1

∥σ∥2
appear in the upper bound. Given the behavior of these ratios, the

dependence of our final bound on d could change, as described in the following cases:

• Worst case: In this case, we have ∥L∥1

∥L∥∞
= Θ(d) and ∥σ∥1

∥σ∥2
= Θ(

√
d). Then the bound

in (8) reduces to Õ
(√

d∥L∥∞∆F

T +
√
d
(

∥σ∥2
2∥L∥∞∆F

T

)1/4

+
√
d∥σ∥2

T 1/4

)
. Focusing on the

dependence on the dimension d, we obtain the rate of Õ(
√
d√
T
+

√
d

T 1/4
).

• Well-structured case: In this case, we have ∥L∥1

∥L∥∞
= O(1) and ∥σ∥1

∥σ∥2
= O(1).This indi-

cates that the curvature and gradient noise are heterogeneous and primarily influenced by a
few dominant coordinates. Under such circumstances, our convergence rate in (8) becomes
a dimensional-independent rate of Õ(1√

T
+ 1

T 1/4
).

We also present a detailed comparison with the existing results for AdaGrad in Appendix A.

3.2 LOWER BOUNDS

After establishing an upper bound for AdaGrad, we move on to show a lower bound under the same
conditions. For simplicity, we set δ = 0 in AdaGrad, but generalizing to δ > 0 is straightforward.
Theorem 3.2. Consider running AdaGrad with δ = 0 and the scaling parameter η. Let L =
[L1, L2, . . . , Ld], σ = [σ1, σ2, . . . , σd] and ∆f > 0 be given parameters. Then there exists a
function f : Rd → R such that: (i) f satisfies Assumption 2.4b and f(x1) − inf f ≤ ∆f ; (ii) The
stochastic gradient gt satisfies Assumptions 2.2 and 2.3b; (iii) We have E [min1≤t≤T ∥∇f(xt)∥1] =

Ω
(
max

{√
∥L∥1∆f log T

T ,
(

(
∑d

i=1 σ
2/3
i Li

1/3)3∆f log T

T

) 1
4
})

.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Proof Sketch. We construct the function f in the form of f(x) =
∑d

i=1 pi(x
(i)), where x(i) denotes

the i-th coordinate of the vector x ∈ Rd and pi : R → R is a one-dimensional function to be
specified. Since each coordinate is updated independently in AdaGrad, this is equivalent to running
AdaGrad on each of the one-dimensional functions pi in parallel. Thus, this requires us to understand
the convergence lower bound for AdaGrad in the one-dimensional setting.

In one dimension, AdaGrad follows the update rule xt+1 = xt− η√∑t
s=1 |gs|2

gt, where gt denotes the

stochastic gradient at time step t. In Corollary C.4, we will show that there exists a one-dimensional
function p∆,L,σ,T (·) and a stochastic gradient oracle such that: (i) Its gradient is L-Lipschitz and
its initial function value gap is bounded by ∆; (ii) The stochastic gradient oracle in unbiased with
bounded variance σ2; (iii) The iterates of AdaGrad after T iterations satisfy E [min1≤t≤T |p′(xt)|] =
Ω(
√

L∆ log T
T + (σ

2L∆ log T
T)1/4). Similar to the proof of Theorem 2.1, our construction is based on

the “resisting oracle” argument, which we briefly sketch below. Without loss of generality, assume

that AdaGrad is initialized with x1 = 0. For some ϵ = Ω(
√

L∆ log T
T + (σ

2L∆ log T
T)1/4), we aim

to construct a function p∆,L,σ,T such that p′∆,L,σ,T (xt) = −ϵ for all t ∈ [T] with the stochastic
gradient oracle chosen as

Pr(gt = 0 | xt) =
σ2

σ2 + ϵ2
and Pr

(
gt = −σ2 + ϵ2

ϵ
| xt

)
=

ϵ2

σ2 + ϵ2
. (9)

One can verify that E[gt | xt] = −ϵ = p′(xt) and E[|gt − p′(xt)|2 | xt] = σ2. Our key observation
is that, under the stochastic gradient oracle in (9), the dynamic of AdaGrad can be modeled as a
random walk in one direction and its query points can be determined in advance. Specifically, let
Mt denote the number of times the stochastic gradient is non-zero by time t. Since the non-zero
stochastic gradients all take the same value, it follows from the update rule of AdaGrad that{

Mt = Mt−1 + 1, xt+1 = xt +
η√
Mt

if gt ̸= 0 (with probability ϵ2

σ2+ϵ2);

Mt = Mt−1, xt+1 = xt otherwise (with probability σ2

σ2+ϵ2).
(10)

In particular, the points visited by AdaGrad belong to the set {
∑t

s=1
η√
s
: t ≥ 1}, which allows us

to construct the function p∆,L,σ,T .

Having defined the function p∆,L,σ,T , we then set f to be f(x) =
∑d

i=1 pi(x
(i)), where pi(·) =

p∆i,Li,σi,T (·) and
∑d

i=1 ∆i = ∆. Thus, it follows that

E
[

min
1≤t≤T+1

∥∇f(xt)∥1
]
= Ω

(d∑
i=1

√
Li∆i log T

T
+

d∑
i=1

(σ2
iLi∆i log T

T

) 1
4
)
. (11)

Finally, choosing ∆i (for i ∈ [d]) properly to maximize the right-hand side of (11), we obtain the
lower bound in Theorem 3.2.

Now let us compare our lower bound in Theorem 3.2 with the upper bound in (8), where we recall
that h(T) is a polynomial function of T and problem parameters. We observe that the first noiseless
term in our upper bound matches the corresponding term in our lower bound, up to an absolute
constant. Notably, our lower bound shows that the additional logarithmic term in the upper bound
is necessary, rather than being an artifact of the analysis. For the second noise-dependent term,
the upper bound and the lower bound differ only in their dependence on L and σ. Moreover,
applying Hölder’s inequality yields (

∑d
i=1 σ

2/3
i Li

1/3)3 ≤ ∥σ∥21∥L∥1, and the equality holds when
the noise variances and the Lipschitz parameters are aligned in a particular way. Hence, under
certain conditions on L and σ, the second terms also match up to an absolute constant. Finally, our

upper bound contains an additional third term ∥σ∥1

√
log h(T)

T
1
4

, which is absent from our lower bound.
It is an interesting open question whether this term can be improved.

The lower bound in Theorem 3.2 is specific to AdaGrad. In what follows, we present another lower
bound that applies to all deterministic algorithms with access only to the first-order oracle, but only
in the noiseless setting (where σi = 0 for all i ∈ [d]). This result is in the same spirit as Theorem 2.1,
but here we use the ℓ1-norm of the gradient as the stationarity measure, as opposed to the ℓ2-norm.
Since the proof technique is similar to the one in Theorem 2.1, we defer the proof to Appendix C.3.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Theorem 3.3. Consider any deterministic algorithm A that only has access to the first-order oracle
with an initial point x1 ∈ Rd. For any positive vector L = [L1, L2, . . . , Ld] and ∆f > 0, there
exists a function f : Rd → R such that: (i) f satisfies Assumption 2.4b and f(x1) − inf f ≤ ∆f ;
(ii) Algorithm A requires more than ∥L∥1∆f

ϵ2 gradient queries to find a point x̂ with ∥∇f(x̂)∥1 < ϵ.

Note that in the noiseless setting, our upper bound in (8) simplifies to O
(√

∥L∥1∆F log h(T)
T

)
, which

is equivalent to Õ(∥L∥1∆F

ϵ2) and matches the lower bound in Theorem 3.3, up to logarithmic terms.

4 ℓ1-NORM CONVERGENCE OF SGD: A LOWER BOUND

Having established the convergence of AdaGrad in terms of the gradient ℓ1-norm in the previous
section, we now seek to compare it with the convergence rate of SGD. However, the existing con-
vergence bounds for SGD use the ℓ2-norm of the gradient as the stationarity measure, making they
are not directly comparable to our result in Theorem 3.1. To facilitate a rigorous comparison, our
goal in this section is to provide a lower complexity bound for SGD with respect to the ℓ1-norm,
which is shown in the following theorem.
Theorem 4.1. Consider running SGD with update rule xt+1 = xt − ηgt on a smooth function f
with a constant step size η. For any given positive vector L = [L1, L2, . . . , Ld], non-negative vector
σ = [σ1, σ2, . . . , σd] and ∆f > 0, there exists a function f : Rd → R such that: (i) f satisfies
Assumption 2.4b and f(x1)− inf f ≤ ∆f ; (ii) The stochastic gradient gt satisfies Assumptions 2.2

and 2.3b; (iii) We have E [min1≤t≤T ∥∇f(xt)∥1] = Ω
(√

d∥L∥∞∆f

T +
d1/4∆

1/4
f (

∑d
i=1 σi

√
Li)

1/2

T 1/4

)
when T is sufficiently large.

Proof Sketch. We follow a similar approach as in Theorem 3.2. The function f is constructed in
the form of f(x) =

∑d
i=1 pi(x

(i)), where x(i) denotes the i-th coordinate of the vector x ∈ Rd

and pi : R → R is a one-dimensional function to be determined. Similar to AdaGrad, our key
observation is that running SGD on f is equivalent to running SGD with the same step size η for each
of the one-dimensional function pi in parallel, and thus it is sufficient to characterize the complexity
lower bound in the one-dimensional setting.

Extending the construction in (Abbaszadehpeivasti et al., 2022, Proposition 4) to the stochas-
tic setting, we show that there exists a one-dimensional function p∆,L,σ,η,T (·) and an associated
stochastic oracle such that: (i) Its gradient is L-Lipschitz and the initial function value gap is
bounded by ∆; (ii) The stochastic gradient oracle is unbiased with bounded variance σ2; (iii)
The iterates of SGD with step size η satisfy E [min1≤t≤T |p′(xt)|] ≥

√
2L∆ if η ≥ 2

L , and

E [min1≤t≤T |p′(xt)|] ≥ max
{

1
2

√
∆

2ηT+ 1
2L

,min
{
σ
√

Lη
2 ,

√
2L∆

}}
otherwise. Given this result,

we then set f(x) =
∑d

i=1 p∆
d ,Li,σi,T,η(x

(i)), where x(i) denotes the i-th coordinate of x. By con-
sidering different choices of the step size η and establishing a lower bound in each case, we arrive
at the final result.

From Theorem 4.1, we observe that the convergence rate of SGD exhibits a similar dependence on
the number of iterations T as AdaGrad. However, a key distinction lies in the explicit dependence
on the dimension d. In the next section, we provide a detailed comparison between the lower bound
of SGD with the upper bound of AdaGrad.

5 COMPARISON BETWEEN ADAGRAD AND SGD

In this section, we compare the rate obtained in Theorem 3.1 for AdaGrad with the convergence
lower bound of SGD in Theorem 4.1. Inspired by the analysis in Bernstein et al. (2018), we introduce
two density functions for this comparison. We define the density functions ϕ : Rd → [0, 1] as
follows:

ϕ(v) :=
∥v∥21
d ∥v∥22

∈
[
1

d
, 1

]
and ϕ̃(v) :=

∥v∥1
d∥v∥∞

∈
[
1

d
, 1

]
. (12)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Specifically, a larger value of ϕ(v) or ϕ̃(v) indicates that the vector v is denser. Using this notation,
we can write ∥σ2∥22 =

∥σ∥2
1

dϕ(σ) and ∥L∥∞ = ∥L∥1

dϕ̃(L)
, and the lower bound in Theorem 4.1 for SGD

becomes

min
t=1,...,T

E [∥∇F (wt)∥1] =Ω

(√
∥L∥1∆F

ϕ̃(L)T
+

(
R2∥σ∥21∥L∥1∆F

ϕ(σ)T

) 1
4

)
, (13)

where

R =

∑d
i=1 σi

√
Li

∥σ∥2
√
∥L∥1

∈ [0, 1] (14)

is the cosine similarity between the two vectors [σ1, . . . , σd] ∈ Rd and [
√
L1, . . . ,

√
Ld] ∈ Rd. To

facilitate the comparison, we first translate the convergence rates of AdaGrad in (8) and SGD in (13)
into equivalent iteration complexity bounds. Specifically, to find an ϵ-stationary point in terms of
the ℓ1-norm, we observe that the required number of iterations is

Õ
(
∥L∥1∆F

ϵ2
+

∥σ∥21∥L∥1∆F

ϵ4
+

∥σ∥41
ϵ4

)
for AdaGrad, (15)

and Ω

(
∥L∥1∆F

ϕ̃(L)ϵ2
+

R2∥σ∥21∥L∥1∆F

ϕ(σ)ϵ4

)
for SGD. (16)

Except for the additional term ∥σ∥4
1

ϵ4 in (15), we observe that the two bounds in (15) and (16) are
similar. If we assume that the noise is relatively small, i.e., ∥σ∥1 ≪

√
∥L∥1∆F , the first two terms

dominate. We can make the following observations:

• Since ϕ̃(L) ∈ [1d , 1], for the first noiseless term in (15) and (16), AdaGrad is never worse
than SGD and outperforms SGD by a factor of ϕ̃(L). In particular, in the extreme case
where ϕ̃(L) = 1

d , i.e., the vector L is sparse, AdaGrad reduces the bound of SGD by a
factor of d.

• Since R ∈ [0, 1] and ϕ(σ) ∈ [1d , 1], the second noise-dependent term in AdaGrad can
be either improve or worsen compared to SGD. In the extreme case where R = 1 and
ϕ(σ) = 1

d , i.e., the two vectors [σ1, . . . , σd] and [
√
L1, . . . ,

√
Ld] are aligned and the

vector σ is sparse, then AdaGrad similarly reduces the bound of SGD by a factor of d.

To our knowledge, our results provide the first problem setting where AdaGrad provably achieves
a better dimensional dependence than SGD in the non-convex setting. We note that our discus-
sions here mirror the comparison between AdaGrad and Online Gradient Descent in (McMahan &
Streeter, 2010; Duchi et al., 2011) regarding online convex optimization problems. Similarly, de-
pending on the geometry of the feasible set and the density of the gradient vectors, it is shown that
the rate of AdaGrad can be better or worse by a factor of

√
d. In this sense, our result complements

this classical result and demonstrates that a similar phenomenon also occurs in the non-convex set-
ting.

6 CONCLUSION

In this paper, we provided a theoretical justification for the advantage of AdaGrad over SGD in
stochastic non-convex optimization. We first discussed the impossibility of showing any con-
vergence rate improvement over SGD under the standard assumptions of Lipschitz gradients and
bounded variance, as well as using the gradient’s ℓ2-norm as the stationarity measure. Motivated
by this observation, we introduced two refined assumptions on the Lipschitz constants and gradient
noise of the objective (Assumptions 2.3b and 2.4b) and proposed using the gradient ℓ1-norm as the
stationarity measure, which better suit the coordinate-wise nature of adaptive gradient methods. Un-
der these refined assumptions, We established a convergence rate for AdaGrad (Theorem 3.1) and
a complexity lower bound for SGD (Theorem 4.1) in terms of the gradient’s ℓ1-norm. Notably, by
comparing AdaGrad’s upper bound with SGD’s lower bound, we demonstrated that the complexity
of AdaGrad can be better than that of SGD by a factor of d. To our knowledge, this is the first result
showing a provable advantage of adaptive gradient methods over SGD in non-convex optimization.
In addition, by presenting two lower bounds, we established that the noiseless term in our upper
bound for AdaGrad is unimprovable up to a logarithmic factor (Theorems 3.2 and 3.3).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Hadi Abbaszadehpeivasti, Etienne de Klerk, and Moslem Zamani. The exact worst-case convergence
rate of the gradient method with fixed step lengths for L-smooth functions. Optimization Letters,
16(6):1649–1661, 2022.

Ahmet Alacaoglu, Yura Malitsky, Panayotis Mertikopoulos, and Volkan Cevher. A new regret anal-
ysis for Adam-type algorithms. In International conference on machine learning, pp. 202–210.
PMLR, 2020.

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth.
Lower bounds for non-convex stochastic optimization. Mathematical Programming, 199(1):165–
214, 2023.

Amit Attia and Tomer Koren. SGD with AdaGrad stepsizes: full adaptivity with high probability to
unknown parameters, unbounded gradients and affine variance. In International Conference on
Machine Learning, pp. 1147–1171. PMLR, 2023.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Anima Anandkumar. signSGD:
compressed optimisation for non-convex problems, 2018.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM review, 60(2):223–311, 2018.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
points I. Mathematical Programming, 184(1):71–120, 2020.

Coralia Cartis, Nicholas IM Gould, and Ph L Toint. On the complexity of steepest descent, Newton’s
and regularized Newton’s methods for nonconvex unconstrained optimization problems. Siam
journal on optimization, 20(6):2833–2852, 2010.

Nicolo Cesa-Bianchi, Alex Conconi, and Claudio Gentile. On the generalization ability of on-line
learning algorithms. IEEE Transactions on Information Theory, 50(9):2050–2057, 2004.

Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of Adam-type
algorithms for non-convex optimization. In 7th International Conference on Learning Represen-
tations, ICLR 2019, 2019.

Xinyi Chen and Elad Hazan. Open problem: Black-box reductions and adaptive gradient methods
for nonconvex optimization. In The Thirty Seventh Annual Conference on Learning Theory, pp.
5317–5324. PMLR, 2024.

Sinho Chewi, Sébastien Bubeck, and Adil Salim. On the complexity of finding stationary points
of smooth functions in one dimension. In International Conference on Algorithmic Learning
Theory, pp. 358–374. PMLR, 2023.

Michael Crawshaw, Mingrui Liu, Francesco Orabona, Wei Zhang, and Zhenxun Zhuang. Robustness
to unbounded smoothness of generalized signsgd. Advances in neural information processing
systems, 35:9955–9968, 2022.

Alexandre Défossez, Leon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence proof
of Adam and Adagrad. Transactions on Machine Learning Research, 2022.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011.

Matthew Faw, Isidoros Tziotis, Constantine Caramanis, Aryan Mokhtari, Sanjay Shakkottai, and
Rachel Ward. The power of adaptivity in SGD: Self-tuning step sizes with unbounded gradients
and affine variance. In Conference on Learning Theory, pp. 313–355. PMLR, 2022.

Matthew Faw, Litu Rout, Constantine Caramanis, and Sanjay Shakkottai. Beyond uniform smooth-
ness: A stopped analysis of adaptive SGD. In The Thirty Sixth Annual Conference on Learning
Theory, pp. 89–160. PMLR, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Sébastien Gadat and Ioana Gavra. Asymptotic study of stochastic adaptive algorithms in non-convex
landscape. Journal of Machine Learning Research, 23(228):1–54, 2022.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochas-
tic programming. SIAM journal on optimization, 23(4):2341–2368, 2013.

Elad Hazan. Introduction to online convex optimization. Foundations and Trends® in Optimization,
2(3-4):157–325, 2016.

Yusu Hong and Junhong Lin. Revisiting convergence of AdaGrad with relaxed assumptions. arXiv
preprint arXiv:2402.13794, 2024.

Ali Kavis, Kfir Yehuda Levy, and Volkan Cevher. High probability bounds for a class of noncon-
vex algorithms with adagrad stepsize. In International Conference on Learning Representations,
2022.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Huan Li and Zhouchen Lin. On the O(
√
d

T 1/4) convergence rate of RMSProp and its momen-
tum extension measured by ℓ1 norm: Better dependence on the dimension. arXiv preprint
arXiv:2402.00389, 2024.

Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with adaptive
stepsizes. In The 22nd international conference on artificial intelligence and statistics, pp. 983–
992. PMLR, 2019.

Xiaoyu Li and Francesco Orabona. A high probability analysis of adaptive sgd with momentum. In
Workshop on Beyond First Order Methods in ML Systems at ICML’20, 2020.

Yuxing Liu, Rui Pan, and Tong Zhang. Large batch analysis for adagrad under anisotropic smooth-
ness. arXiv preprint arXiv:2406.15244, 2024.

Zijian Liu, Ta Duy Nguyen, Thien Hang Nguyen, Alina Ene, and Huy Nguyen. High probability
convergence of stochastic gradient methods. In International Conference on Machine Learning,
pp. 21884–21914. PMLR, 2023.

H Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex opti-
mization. COLT 2010, pp. 244, 2010.

A. S. Nemirovski and D. B. Yudin. Problem complexity and method efficiency in optimization. John
Wiley & Sons, 1983.

Yurii Nesterov. Lectures on Convex Optimization. Springer International Publishing, 2018. doi:
10.1007/978-3-319-91578-4.

Francesco Orabona. A modern introduction to online learning. arXiv preprint arXiv:1912.13213,
2019.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations, 2018.

Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function, 2011.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, pp. 400–407, 1951.

Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends®
in Machine Learning, 4(2):107–194, 2012.

Li Shen, Congliang Chen, Fangyu Zou, Zequn Jie, Ju Sun, and Wei Liu. A unified analysis of
adagrad with weighted aggregation and momentum acceleration. IEEE Transactions on Neural
Networks and Learning Systems, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tijmen Tieleman and G Hinton. Divide the gradient by a running average of its recent magnitude.
coursera: Neural networks for machine learning. Technical Report, 2012.

Stephen A Vavasis. Black-box complexity of local minimization. SIAM Journal on Optimization, 3
(1):60–80, 1993.

Bohan Wang, Huishuai Zhang, Zhiming Ma, and Wei Chen. Convergence of adagrad for non-convex
objectives: Simple proofs and relaxed assumptions. In The Thirty Sixth Annual Conference on
Learning Theory, pp. 161–190. PMLR, 2023.

Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over nonconvex
landscapes. Journal of Machine Learning Research, 21(219):1–30, 2020.

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. In International Conference on Learning Rep-
resentations, 2020.

Dongruo Zhou, Jinghui Chen, Yuan Cao, Ziyan Yang, and Quanquan Gu. On the convergence
of adaptive gradient methods for nonconvex optimization. Transactions on Machine Learning
Research, 2024. ISSN 2835-8856. Featured Certification.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A COMPARISON WITH EXISTING RESULTS ON ADAGRAD

Most of the existing works use the ℓ2-norm as a measure of convergence (Shen et al., 2023; Défossez
et al., 2022; Wang et al., 2023; Hong & Lin, 2024; Zhou et al., 2024). The state-of-the-art result
is Zhou et al. (2024): with a fine-tuned step size, the authors show that, with high probability,
AdaGrad satisfies 1

T

∑T
t=1 ∥∇F (wt)∥22 = O

(
d
T + d1/2

T 1/2

)
. If we use this result to show a bound for

the ℓ1-norm, since ∥∇F (wt)∥1 = Θ(
√
d∥∇F (wt)∥2) in the worst case, the upper bound becomes

mint=1,...,T ∥∇F (wt)∥1 = O
(

d√
T
+ d3/4

T 1/4

)
, which is worse than our bound by at least a factor of

d1/4.

Also, in Liu et al. (2023), the authors considered the case that that the function is L-smooth and the
noise of gradient is coordinate-wise subgaussian, i.e., E

[
exp(λ2(gt,i −∇iF (wt))

2)
]
≤ exp(λ2σ2

i)

for all λ such that |λ| < 1
σi

. Note that the subgaussian noise assumption is stronger than the
bounded variance assumption in Assumption 2.3b. Under these assumptions, they characterized the
convergence rate of AdaGrad in terms of the averaged ℓ1-norm of the gradient and their result is no

better than Õ
(

∆1√
T
+ dL√

T
+

√
∆F ∥σ∥1

T 1/4 +
√
d∥σ∥1

T 1/4 +

√
dL∥σ∥1

T 1/4

)
. Compared to our bounds in (8),

we observe that their term
√
d∥σ∥1

T 1/4 is worse than the corresponding term in ours by a factor of
√
d.

Moreover, in the worst case where ∥L∥1

∥L∥∞
= Θ(d) and ∥σ∥1

∥σ∥2
= Θ(

√
d), their overall bound is worse

than ours by a factor of
√
d.

B PROOF OF THEOREM 3.1

In this section, we prove Theorem 3.1. Recall that we define ηt,i =
η

bt,i+δ and thus AdaGrad can be
rewritten as wt+1,i = wt,i − ηt,igt,i for i ∈ [d]. Our starting point is applying Assumption 2.4b to
wt and wt+1, yielding:

F (wt+1) ≤ F (wt) + ⟨∇F (wt),wt+1 −wt⟩+
d∑

i=1

Li

2
|wt+1,i − wt,i|2

= F (wt)−
d∑

i=1

ηt,i∇iF (wt)gt,i +

d∑
i=1

Li

2
η2t,ig

2
t,i.

(17)

If the step size ηt,i were conditionally independent of the stochastic gradient gt,i, then by taking the
conditional expectation with respect to Ft−1, the second term in the right-hand side of (17) would re-
sult in −ηt,i∇iF (wt)E [gt,i | Ft−1] = −ηt,i∇iF (wt)

2 by Assumption 2.2. However, as mentioned
in the proof sketch, the difficulty is that the step size ηt,i is computed using the stochastic gradient
at the current iterate wt, and consequently E [ηt,igt,i | Ft−1] ̸= ηt,iE [gt,i | Ft−1] in general.

Following Ward et al. (2020); Faw et al. (2022), we tackle this challenge by introducing the decor-
related step size η̂t,i in (2), which serves as a “proxy” of the step size that is decorrelated from gt.
Specifically, note that η̂t,i belongs to the filtration Ft−1 and thus E [η̂t,i∇iF (wt)gt,i | Ft−1] =
η̂t,i∇iF (wt)

2, leading to the desired squared gradient that we aim to bound. Equipped with the
decorrelated step size, in the following lemma we prove an upper bound on a (weighted) gradient
square norm at the current iterate wt.
Lemma B.1. Suppose Assumptions 2.2 and 2.4b hold. Consider the update rule in AdaGrad and
recall the decorrelated step sizes defined in (2). Then we have

d∑
i=1

η̂t,i∇iF (wt)
2 ≤ F (wt)− E [F (wt+1) | Ft−1] +

d∑
i=1

E [(η̂t,i − ηt,i)∇iF (wt)gt,i | Ft−1]

+

d∑
i=1

Li

2
E
[
η2t,ig

2
t,i | Ft−1

]
. (18)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Proof. Taking the expectation with respect to Ft−1 in (17), we obtain:

E [F (wt+1) | Ft−1]−F (wt) = −
d∑

i=1

(
E [ηt,i∇iF (wt)gt,i | Ft−1]+

Li

2
E
[
η2t,ig

2
t,i | Ft−1

])
. (19)

Since η̂t,i is independent from gt,i conditioned on Ft−1, it follows from Assumption 2.2 that
E [η̂t,i∇iF (wt)gt,i | Ft−1] = η̂t,i∇iF (wt)E [gt,i | Ft−1] = η̂t,i∇iF (wt)

2. Hence, we get
E [ηt,i∇iF (wt)gt,i | Ft−1] = E [η̂t,i∇iF (wt)gt,i | Ft−1] + E [(ηt,i − η̂t,i)∇iF (wt)gt,i | Ft−1]

= η̂t,i∇iF (wt)
2 + E [(ηt,i − η̂t,i)∇iF (wt)gt,i | Ft−1] .

Combining this with (19), this further implies that

E [F (wt+1) | Ft−1]− F (wt) ≤
d∑

i=1

(
−η̂t,i∇iF (wt)

2 − E [(ηt,i − η̂t,i)∇iF (wt)gt,i | Ft−1]

+
Li

2
E
[
η2t,ig

2
t,i | Ft−1

])
.

Rearranging the above inequality leads to (18).

In Lemma B.1, the left-hand side is a weighted version of the squared gradient norm at wt, where
the weights for each coordinate are given by the decorrelated step sizes η̂t,i. Note that this is the key
difference compared to the analysis of AdaGrad-Norm in Faw et al. (2022). Indeed, for AdaGrad-
Norm, the left-hand side will become η̂t∥∇F (wt)∥2, and thus the squared ℓ2-norm of the gradient
naturally arises from the analysis. On the other hand, as we shall see later, in our case ℓ2-norm is
not the best choice of the norm and instead we will relate the left-hand side in (18) to the ℓ1-norm
of the gradient.

In light of Lemma B.1, we need to manage the bias term
∑d

i=1 E [(η̂t,i − ηt,i)∇iF (wt)gt,i | Ft−1],
which is due to the difference between the step size ηt,i and its decorrelated version η̂t,i, and a
quadratic term

∑d
i=1 E[η2t,ig2t,i], which comes from Assumption 2.4b. The following lemma ad-

dresses these two terms and the proofs for these two results are presented in Appendix B.1.
Lemma B.2. Consider the update rule in AdaGrad. For any t ∈ [T] and i ∈ [d], we have

E [(η̂t,i − ηt,i)∇iF (wt)gt,i | Ft−1] ≤
η̂t,i
2

∇iF (wt)
2 +

2σi

η
E
[
η2t,ig

2
t,i | Ft−1

]
. (20)

Moreover, we have

E
[T∑

t=1

η2t,ig
2
t,i

]
≤ η2 log h(T), (21)

where h(T) = 1 +
T∥σ∥2

∞
δ2 +

T (∥∇F (w1)∥∞+η
√

∥L∥∞∥L∥1T)2

δ2 .

The first result in Lemma B.2 shows that for each coordinate i ∈ [d], we can upper bound the
bias term in terms of the squared gradient η̂t,i

2 ∇iF (wt)
2 and the quadratic term E

[
η2t,ig

2
t,i

]
. The

second result in the above lemma shows that the accumulation of the quadratic terms η2t,ig
2
t,i over

T iterations can be bounded in expectation by O(η2 log(T/δ)). By combining Lemma B.2 with
Lemma B.1, we obtain the following key corollary.
Corollary B.3. Recall the definition of h(T) in Lemma B.2. For AdaGrad, we have

E

[
T∑

t=1

d∑
i=1

η̂t,i
2

∇iF (wt)
2

]
≤ F (w1)− F ∗ +

(
2η∥σ∥1 +

η2∥L∥1
2

)
log h(T). (22)

Proof. By applying (20) to (18) in Lemma B.1, we obtain that
d∑

i=1

η̂t,i∇iF (wt)
2 ≤ F (wt)− E [F (wt+1) | Ft−1] +

d∑
i=1

η̂t,i
2

∇iF (wt)
2

+

d∑
i=1

(
Li

2
+

2σi

η

)
E
[
η2t,ig

2
t,i | Ft−1

]
.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

By merging terms and taking the expectation of both sides of the inequality, we further have

E

[
d∑

i=1

η̂t,i
2

∇iF (wt)
2

]
≤ E [F (wt)− F (wt+1)] +

d∑
i=1

(
η2Li

2
+ 2ησi

)
E
[
η2t,ig

2
t,i

]
.

Now we sum the above the inequality over t = 1, . . . , T to get

E

[
T∑

t=1

d∑
i=1

η̂t,i
2

∇iF (wt)
2

]
≤ F (w1)− E [F (wT+1)] +

d∑
i=1

(
2ησi +

Liη
2

2

)
E

[
T∑

t=1

η2t,ig
2
t,i

]

≤ F (w1)− F ∗ +

d∑
i=1

(
2ησi +

Liη
2

2

)
log h(T)

= F (w1)− F ∗ +

(
2η∥σ∥1 +

∥L∥1η2

2

)
log h(T),

where we used Assumption 2.1 and (21) in the second inequality. This completes the proof.

To simplify the notation, let us denote the right-hand side of (22) by Q. This implies that, if we
ignore the logarithmic term, we have Q = Õ

(
F (w1)− F ∗ + η∥σ∥1 + η2∥L∥1

)
. Corollary B.3

shows that the sum of weighted squared gradient norms is bounded by a constant depending on
problem parameters, up to log factors. Hence, the remaining task is to establish lower bounds on
the step sizes η̂t,i. For instance, if we were able to show that all the step sizes η̂t,i are uniformly
lower bounded by Ω̃(1√

T
), then Corollary B.3 would immediately imply a rate of Õ(1

T 1/4) in terms
of the gradient ℓ2-norm ∥∇F (wt)∥2. However, there are several challenges: (i) The step sizes η̂t,i
are determined by the observed stochastic gradient rather than specified by the user. (ii) To further
complicate the issue, due to correlation between the step size η̂t,i and the iterate wt, this implies that
E
[
η̂t,i∇iF (wt)

2
]
̸= E [η̂t,i]E

[
∇iF (wt)

2
]

and hence a lower bound on E [η̂t,i] would not suffice.
(iii) Finally, since the step sizes for each coordinate are updated independently, it is unclear how to
construct a uniform lower bound across all the coordinates.

As mentioned in the proof sketch, to address the last challenge, we study each coordinate and con-
struct a uniform lower bound on η̂t,i for t ∈ [T]. Specifically, for each coordinate i ∈ [d], we define
a new auxiliary step size η̃T,i as in (4). From (2) and bt−1,i =

∑t−1
s=1 g

2
s,i in (AdaGrad), we have

η̂t,i ≥ η̃T,i for all t ∈ [T]. To address the second issue, we separate the step sizes from the gradients
as follows:

E

[
T∑

t=1

η̂t,i
2

∇iF (wt)
2

]
≥ E

[
η̃T,i

2

T∑
t=1

∇iF (wt)
2

]
≥

E
[√∑T

t=1 ∇iF (wt)2
]2

E
[

2
η̃T,i

] , (23)

where we used the elementary inequality that E
[
X2

Y

]
≥ E[X]2

E[Y] for any two positive random variables

X and Y . Hence, in the following lemma, we will establish an upper bound on E
[

1
η̃T,i

]
, instead of

directly lower bounding E [η̃T,i].

Lemma B.4. Consider the step size η̃T,i defined in (4). For any i ∈ [d], we have

E
[

1

η̃T,i

]
≤ σi

√
2T + δ

η
+

√
3

η
E


√√√√ T∑

t=1

∇iF (wt)2

 .

Proof. From the definition of η̃T,i and using b2t−1,i =
∑t−1

s=1 g
2
s,i ≤

∑T−1
t=1 g2t,i, we have

E
[

η

η̃T,i

]
≤ E


√√√√ T∑

t=1

g2t,i + σ2
i +

T∑
t=1

∇iF (wt)2 + δ

 .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

We then can use the upper bound of g2t,i ≤ 2((gt,i −∇iF (wt))
2 +∇iF (wt)

2):

E
[

η

η̃T,i

]
≤ E


√√√√ T∑

t=1

2((gt,i −∇iF (wt))2 +∇iF (wt)2) + σ2
i +

T∑
t=1

∇iF (wt)2 + δ


= E


√√√√2

T−1∑
t=1

(gt,i −∇iF (wt))2 + 3

T∑
t=1

∇iF (wt)2 + σ2
i + δ


≤ E


√√√√2

T−1∑
t=1

(gt,i −∇iF (wt))2 + σ2
i

+ E


√√√√3

T∑
t=1

∇iF (wt)2

+ δ.

Applying Jensen’s inequality and the bounded variance from Assumption 2.3b, we get

E
[

η

η̃T,i

]
≤

√√√√2

T−1∑
t=1

E [(gt,i −∇iF (wt))2] + σ2
i + E


√√√√3

T∑
t=1

∇iF (wt)2

+ δ

≤
√

2Tσ2
i +

√
3E


√√√√ T∑

t=1

∇iF (wt)2

+ δ

Rearranging the terms immediately leads to the stated lemma.

Lemma B.4 establishes an upper bound on E
[

1
η̃T,i

]
in terms of the sum E

[√∑T
t=1 ∇iF (wt)2

]
,

which also appears on the right hand side of (5). By combining Corollary B.3, (5) and Lemma B.4,
we arrive at the following lemma.

Lemma B.5. Consider the update in AdaGrad and recall that Q denotes the right-hand side in (3).
It holds that

E

 d∑
i=1

√√√√ T∑
t=1

∇iF (wt)2

 ≤ 2
√
3

η
Q+

√
2dδQ

η
+ 2

√
∥σ∥1Q

η
T

1
4 . (24)

Proof. It follows from (23) that

E


√√√√ T∑

t=1

∇iF (wt)2

2

≤ E

[
T∑

t=1

η̂t,i
2

∇iF (wt)
2

]
E
[

2

η̃T,i

]
.

Using the result from Lemma B.4, we get a quadratic inequality as follows:

E


√√√√ T∑

t=1

∇iF (wt)2

 ≤

√√√√E

[
T∑

t=1

η̂t,i
2

∇iF (wt)2

]√
E
[

2

η̃T,i

]

≤
√

2

η

√√√√E

[
T∑

t=1

η̂t,i
2

∇iF (wt)2

]√√√√√(σi

√
2T + δ) +

√
3E


√√√√ T∑

t=1

∇iF (wt)2


Solving the quadratic we have he following bound,

E


√√√√ T∑

t=1

∇iF (wt)2

 ≤ 2
√
3

η
E

[
T∑

t=1

η̂t,i
2

∇iF (wt)
2

]
+

√
2

η

√
(σi

√
2T + δ)

√√√√E

[
T∑

t=1

η̂t,i
2

∇iF (wt)2

]

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Combining the bounds from all the coordinates and using the Cauchy-Schwartz inequality for the
second term:

E

 d∑
i=1

√√√√ T∑
t=1

∇iF (wt)2

 ≤ 2
√
3

η
E

[
d∑

i=1

T∑
t=1

η̂t,i
2

∇iF (wt)
2

]

+

√
2

η

√√√√ d∑
i=1

σi

√
2T + dδ

√√√√E

[
d∑

i=1

T∑
t=1

η̂t,i
2

∇iF (wt)2

]
(25)

We can further bound the term using the result from Corollary B.3,

E

 d∑
i=1

√√√√ T∑
t=1

∇iF (wt)2

 ≤ 2
√
3

η

(
F (w1)− F ∗ +

(
2η∥σ∥1 +

η2∥L∥1
2

)
log h(T)

)

+

√
2

ηT

√
(∥σ∥1

√
2T + dδ)

√
F (w1)− F ∗ +

(
2η∥σ∥1 +

η2∥L∥1
2

)
log h(T)

where h(T) is defined in Lemma B.2. This completes the proof.

Finally, we relate the left-hand side of (24) to the ℓ1-norm of the gradients. Specifically, we can
write:

1

T

T∑
t=1

∥∇F (wt)∥1=
1

T

T∑
t=1

d∑
i=1

|∇iF (wt)|=
1

T

d∑
i=1

T∑
t=1

|∇iF (wt)|≤
1√
T

d∑
i=1

√√√√ T∑
t=1

|∇iF (wt)|2,

which implies that

1

T

T∑
t=1

E [∥∇F (wt)∥1] ≤
2
√
3Q

η
√
T

+

√
2dδQ

ηT
+ 2

√
∥σ∥1Q

η

1

T 1/4
.

Since Q = O
(
F (w1)− F ∗ + (η∥σ∥1 + η2∥L∥1) log h(T)

)
and δ < 1

d , we obtain the result in
Theorem 3.1.

B.1 PROOF OF LEMMA B.2

Before we prove Lemma B.2, we first present two helper lemmas.

Lemma B.6. Let {as}∞s=1 be any sequence such that as ≥ 0 for all s. Moreover, define At =
At−1 + at, where A0 = 0. Then we have

T∑
t=1

at
At + δ2

≤ log

(
1 +

AT

δ2

)
(26)

Proof. The proof is similar to (Faw et al., 2022, Lemma 15) and we repeat here for completeness.
Note that for any t ≥ 1, we have

at
At + δ2

= 1− At−1 + δ2

At + δ2
≤ log

(
At + δ2

At−1 + δ2

)
.

The last step follows from x ≤ − log(1− x). Summing the above inequalities from t = 1 to t = T ,
we obtain that

T∑
t=1

at
At + δ2

≤ log

(
AT + δ2

A0 + δ2

)
= log

(
1 +

AT

δ2

)
.

This completes the proof.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Lemma B.7. Suppose that Assumption 2.4b holds and consider the update rule in AdaGrad. Then
for any coordinate i ∈ [d] and iteration t ≥ 0, we have

|∇iF (wt+1)−∇iF (wt)| ≤ η
√

Li∥L∥1. (27)

As a corollary, this implies that

|∇iF (wt)| ≤ |∇iF (w1)|+ η
√

Li∥L∥1t ≤ ∥∇F (w1)∥∞ + η
√
∥L∥∞∥L∥1t. (28)

Proof. To begin with, we prove that if Assumption 2.4b holds, then for any vectors x,y ∈ Rd,

d∑
i=1

1

Li
|∇iF (x)−∇iF (y)|2 ≤

d∑
i=1

Li|xi − yi|2. (29)

To see this, define the weighted Euclidean norm ∥ · ∥L as ∥x∥L :=
√∑d

i=1 Lix2
i and correspond-

ingly its dual norm is given by ∥x∥L,∗ :=
√∑d

i=1
1
Li
x2
i . Thus, we can rewrite Assumption 2.4b as

|F (y) − F (x) − ⟨∇F (x),y − x⟩| ≤ 1
2∥y − x∥2L. This is equivalent to the fact that the gradient

∇F (x) is 1-Lipschitz with respect to the norm ∥ · ∥L, i.e., ∥∇F (x) − ∇F (y)∥L,∗ ≤ ∥x − y∥L.
Squaring both sides of the inequality leads to (29).

Applying (29) to the two consecutive iterates wt+1 and wt, we obtain that
∑d

i=1
1
Li
|∇iF (wt+1)−

∇iF (wt)|2 ≤
∑d

i=1 Li|wt+1,i − wt,i|2. Moreover, note that from the update rule of AdaGrad, it
holds that

|wt+1,i − wt,i| = η
∣∣∣ gt,i
bt,i + δ

∣∣∣ ≤ η
∣∣∣ gt,i√

b2t−1,i + g2t,i + δ

∣∣∣ ≤ η.

Hence, we further have
∑d

i=1
1
Li
|∇iF (wt+1) − ∇iF (wt)|2 ≤ η

∑d
i=1 Li = η∥L∥1, which im-

plies (27).

Applying the triangle inequality, we have:

|∇iF (wt)| ≤ |∇iF (w1)|+
t−1∑
s=1

|∇iF (ws+1)−∇iF (ws)| ≤ |∇iF (w1)|+ η
√

Li∥L∥1t.

Since |∇iF (w1)| ≤ ∥∇F (w1)∥∞ and Li ≤ ∥L∥∞ for any i ∈ [d], we obtain (28).

Now we are ready to prove Lemma B.2. Recall from the definition of AdaGrad that

ηt,i =
η√

b2t−1,i + g2t,i + δ
and η̂t,i =

η√
b2t−1,i +∇iF (wt)2 + σ2

i + δ
. (30)

Let a = b2t−1,i + g2t,i and b = b2t−1,i +∇iF (wt)
2 + σ2

i . Then

|ηt,i − η̂t,i| = η

∣∣∣∣ 1√
a+ δ

− 1√
b+ δ

∣∣∣∣ = η

∣∣∣∣ b− a

(
√
a+ δ)(

√
b+ δ)(

√
a+

√
b)

∣∣∣∣
= η

∣∣∣∣∣ ∇iF (wt)
2 + σ2

i − g2t,i

(
√
a+ δ)(

√
b+ δ)(

√
a+

√
b)

∣∣∣∣∣
≤

η|∇iF (wt)
2 − g2t,i|+ ησ2

i

(
√
a+ δ)(

√
b+ δ)(

√
a+

√
b)
.

Since
√
a ≥ |gt,i|,

√
b ≥ max{|∇iF (wt)|, σi}, we have |∇iF (wt)

2 − g2t,i| ≤ |∇iF (wt) −
gt,i|(|∇iF (wt)|+ |gt,i|) ≤ |∇iF (wt)− gt,i|(

√
a+

√
b) and σ2

i ≤ σi(
√
a+

√
b). Therefore,

|ηt,i − η̂t,i| ≤
η|∇iF (wt)− gt,i|+ ησi

(
√
a+ δ)(

√
b+ δ)

=
1

η
(|∇iF (wt)− gt,i|+ σi) ηt,iη̂t,i,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

where we used ηt,i =
η√
a+δ

and η̂t,i =
η√
b+δ

in the last inequality. Hence we have,

|(ηt,i − η̂t,i)∇iF (wt)gt,i| ≤
1

η
ηt,iη̂t,i(|∇iF (wt)− gt,i|+ σi)|∇iF (wt)gt,i|

=
ηt,iη̂t,i

η
|∇iF (wt)− gt,i| · |∇iF (wt)gt,i|+

σiηt,iη̂t,i
η

|∇iF (wt)gt,i|.

Using the Cauchy-Schwartz inequality, we further have

E [ηt,iη̂t,i|∇iF (wt)− gt,i| · |∇iF (wt)gt,i| | Ft−1]

≤ η̂t,i|∇iF (wt)|
√
E [|∇iF (wt)− gt,i|2 | Ft−1]E

[
η2t,ig

2
t,i | Ft−1

]
≤ σiη̂t,i|∇iF (wt)|

√
E
[
η2t,ig

2
t,i | Ft−1

]
where the last step follows from the bounded variance in Assumption 2.3b. We proceed to bound
the second term in a similar manner:

E [σiηt,iη̂t,i|∇iF (wt)gt,i| | Ft−1] ≤ σiη̂t,i|∇iF (wt)|
√

E
[
η2t,ig

2
t,i | Ft−1

]
.

Combining the results, the term E [|(ηt,i − η̂t,i)∇iF (wt)gt,i| | Ft−1] is bounded as follows:

E [|(ηt,i − η̂t,i)∇iF (wt)gt,i| | Ft−1] ≤
2σiη̂t,i|∇iF (wt)|

η

√
E
[
η2t,ig

2
t,i | Ft−1

]
≤ 1

2
η̂t,i∥∇iF (wt)∥2 +

2η̂t,iσ
2
i

η2
E
[
η2t,ig

2
t,i | Ft−1

]
(31)

where we used Young’s inequality in (31) in the last inequality. Finally, since η̂t,i ≤ η
σi

, we further

have η̂t,iσ
2
i

η2 ≤ σi

η and this proves the inequality in (20).

Next, we prove (21) in Lemma B.2. From the definition of the step size in (30), we have:

E

[
T∑

t=1

η2t,ig
2
t,i

]
= η2E

 T∑
t=1

g2t,i

(
√

b2t−1,i + g2t,i + δ)2

 ≤ η2E

[
T∑

t=1

g2t,i
b2t−1,i + g2t,i + δ2

]
.

Using Lemma B.6, we can bound the summation with a log term as follows,

η2E

[
T∑

t=1

g2t,i
b2t−1,i + g2t,i + δ2

]
≤ η2E

[
log

(
1 +

b2T,i

δ2

)]
≤ η2 log

(
1 +

E
[
b2T,i

]
δ2

)
,

where we apply Jensen’s Inequality to the concave log function in the last inequality. Moreover,
since b2T,i =

∑T
t=1 g

2
t,i, by using Assumptions 2.2 and 2.3b we have

E
[
b2T,i

]
=

T∑
t=1

E
[
g2t,i
]
≤

T∑
t=1

(
σ2
i + E

[
∇iF (wt)

2
])

≤ T∥σ∥2∞ +

T∑
t=1

E
[
∇iF (wt)

2
]
,

where we used the fact that σi ≤ ∥σ∥∞ for any i ∈ [d]. Using the result from Lemma B.7, for any
t ∈ [T], we further have

∇iF (wt)
2 ≤

(
∥∇F (w1)∥∞ + η

√
∥L∥∞∥L∥1t

)2
≤
(
∥∇F (w1)∥∞ + η

√
∥L∥∞∥L∥1T

)2
.

Combining all the inequalities above, we obtain that

η2E

[
T∑

t=1

g2t,i
b2t−1,i + g2t,i + δ2

]
≤ η2 log

(
1 +

T∥σ∥2∞
δ2

+
T (∥∇F (w1)∥∞ + η

√
∥L∥∞∥L∥1T)2

δ2

)
Hence, we have proved the bound in (21) of Lemma B.2. This completes the proof of the results in
Lemma B.2.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

C LOWER BOUND RESULTS

C.1 PROOF OF THEOREM 2.1

To finish the proof of Theorem 2.1, it remains to show that the function p can be constructed satis-
fying those three conditions. This is achieved by applying the following lemma.

Lemma C.1. For any given ϵ ∈ (0,
√
2], let N be an positive integer such that N ≤ 1

ϵ2 + 1
2 . Then

for any N points {xt}Nt=1 in R, there exists a function p : R → R of one dimension such that: (i) its
gradient is 1-Lipschitz; (ii) p(x1)− inf p ≤ 1; (iii) p′(xt) = −ϵ for any t ∈ [N].

Specifically, since T ≤ ∥L∥∞∆f

ϵ2 = 1
ϵ̃2 with ϵ̃ = ϵ√

∥L∥∞∆f

, the existence of p follows from applying

Lemma C.1 to the T points {
√

L1/∆fx
(1)
t }Tt=1.

Proof of Lemma C.1. We divide the proof into two cases.

Case I: The point x1 is the largest among the N points {xt}Nt=1, i.e., xt ≤ x1 for any t ∈ [N]. In
this case, we define the function p : R → R as follows;

p(x) =

{
−ϵ(x− x1), x ∈ (−∞, x1];
1
2 (x− x1)

2 − ϵ(x− x1), x ∈ (x1,+∞).

By direct calculation, we have p′(x) = −ϵ when x ∈ (−∞, x1] and p′(x) = x − x1 − ϵ when
x ∈ (x1,+∞). Hence, it is straightforward to verify that p′ is 1-Lipschitz. Moreover, the minimum
of p is achieved at x = x1 + ϵ, with inf p = − 1

2ϵ
2. Thus, we have p(x1) − inf p = 1

2ϵ
2 ≤ 1 since

ϵ ≤
√
2. Finally, since p′(x) = −ϵ for all x ≤ x1, we conclude that p′(xt) = −ϵ for all t ∈ [N].

Hence, the function p satisfies all the three conditions in Lemma C.1.

Case II: There are k points to the right of x1 among the N points {xt}Nt=1, where 1 ≤ k ≤ N − 1.
Since the statement in Lemma C.1 is independent of the ordering of {x2, . . . , xN}, without loss of
generality, we may assume that these k points are x2, . . . , xk+1.

We begin by defining an auxiliary function ϕa,b,ϵ(x) over a given interval [a, b], which is contin-
uous, piecewise quadratic and will serve as the basic building block of our worst-case function.
Specifically,

ϕa,b,ϵ(x) =

{
1
2 (x− a)2 − ϵ(x− a), x ∈ [a, a+b

2];

− 1
2 (x− b)2 − ϵ(x− b) + (b−a)2

4 − (b− a)ϵ, x ∈ (a+b
2 , b].

(32)

Direct computation shows that ϕ′
a,b,ϵ(x) = x− a− ϵ for a ≤ x ≤ a+b

2 and ϕ′
a,b,ϵ(x) = −x+ b− ϵ

for a+b
2 < x ≤ b. Therefore, it is straightforward to verify that:

• ϕa,b,ϵ(a) = 0 and ϕa,b,ϵ(b) =
(b−a)2

4 − (b− a)ϵ;

• ϕ′
a,b,ϵ is 1-Lipschitz and ϕ′

a,b,ϵ(a) = ϕ′
a,b,ϵ(b) = −ϵ;

• infx∈[a,b] ϕa,b,ϵ(x) = min{− 1
2ϵ

2, ϕa,b,ϵ(b)}.

Having defined the function ϕa,b,ϵ, we now construct the function p : R → R as follows:

p(x) =


−ϵ(x− x1), x ∈ (−∞, x1];

ϕxt,xt+1,ϵ(x) + pt, x ∈ (xt, xt+1] (1 ≤ t ≤ k);
1
2 (x− xk+1)

2 − ϵ(x− xk+1) + pk+1, x ∈ (xk+1,+∞).

(33)

Note that p(xt) = pt and the values {pt}k+1
t=1 are chosen such that the function p is continuous.

Specifically, this requires that ϕxt,xt+1,ϵ(xt+1) + pt = pt+1, By induction, this condition leads to

p1 = 0, pt =

t−1∑
i=1

(
1

4
(xi+1 − xi)

2 − (xi+1 − xi)ϵ

)
. (34)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Now we verify that p satisfies all the three conditions in Lemma C.1. First, since p′ is 1-Lipschitz
on each interval and p′ is continuous, it follows that p′ is 1-Lipschitz over the entire real line R.
Moreover, by construction, it is straightforward to verify that p′(xt) = −ϵ for all t ∈ [k + 1],
and p′(x) = −ϵ for all x ≤ x1. Combining these two facts, we obtain that the third condition in
Lemma C.1 is also satisfied. To verify the second condition, note that p(x1) = 0. Moreover, from
the definition of p in (33) and the properties of ϕa,b,ϵ, we have

p(x) ≥


0, x ∈ (−∞, x1];

min{pt − 1
2ϵ

2, pt+1}, x ∈ (xt, xt+1] (1 ≤ t ≤ k);

pk+1 − 1
2ϵ

2, x ∈ (xk+1,+∞).

Hence, this shows that

inf p ≥ min
t∈[k+1]

{
pt −

1

2
ϵ2
}

= min
t∈[k+1]

pt −
1

2
ϵ2. (35)

Next, we provide a lower bound for pt. By using Jensen’s inequality, we have

pt =

t−1∑
i=1

(
1

4
(xi+1 − xi)

2 − (xi+1 − xi)ϵ

)
=

1

4

t−1∑
i=1

(xi+1 − xi)
2 − ϵ(xt − x1)

≥ 1

4(t− 1)

(
t−1∑
i=1

xi+1 − xi

)2

− ϵ(xt − x1)

=
1

4(t− 1)
(xt − x1)

2 − ϵ(xt − x1)

≥ −(t− 1)ϵ2.

Since t ≤ k + 1 ≤ N , it further follows from (35) that inf p ≥ −(N − 1)ϵ2 − 1
2ϵ

2 = (−N + 1
2)ϵ

2.
Finally, given that N ≤ 1

ϵ2 + 1
2 by assumption, we have p(x1)− inf p ≤ (N − 1

2)ϵ
2 ≤ 1. Thus, we

conclude that the function p satisfies all the conditions in Lemma C.1.

C.2 PROOF OF THEOREM 3.2

We first present the following lemma, which will be used to construct the worst-case function.
Lemma C.2. For any positive integer N , suppose that ϵ satisfies

ϵ ≤ min

{
η logN

8
√
N

+
1

4η
√
N

, 1

}
. (36)

Let x1 = 0 and xt = η
∑t−1

s=1
1√
s

for any 2 ≤ t ≤ N . Then there exists a function p : R → R of one
dimension such that: (i) its gradient is 1-Lipschitz; (ii) p(x1)− inf p ≤ 1; (iii) p′(xt) = −ϵ for any
t ∈ [N].

Proof. We follow a similar approach as in the proof of Lemma C.1. Specifically, we construct the
function p in a similar form as (33) based on the auxiliary function ϕa,b,ϵ(x) defined in (32):

p(x) =


−ϵ(x− x1), x ∈ (−∞, x1];

ϕxt,xt+1,ϵ(x) + pt, x ∈ (xt, xt+1] (1 ≤ t ≤ N − 1);
1
2 (x− xN)2 − ϵ(x− xN) + pN , x ∈ (xN ,+∞),

where the values {pt}Nt=1 are chosen to ensure that the function p is continuous. Hence, as in (34),
we have p1 = 0 and

pt =

t−1∑
s=1

(
1

4
(xs+1 − xs)

2 − (xs+1 − xs)ϵ

)
=

t−1∑
s=1

(
η2

4s
− ηϵ√

s

)
, ∀t ≥ 2.

Using the same arguments as in Lemma C.1, we can verify that p has 1-Lipschitz gradient and
p′(xt) = −ϵ for all t ∈ [N]. Hence, it remains to show that p(x1)− inf p ≤ 1.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

To begin with, recall from (35) that inf p ≥ mint∈[N] pt − 1
2ϵ

2, and hence our goal is to lower

bound pt. Moreover, note that pt+1 − pt = η2

4t − ηϵ√
t
, which implies that pt is monotonically

increasing when t ≤ η2

16ϵ2 and monotonically decreasing when t > η2

16ϵ2 . It follows from this
observation that mint∈[N] pt = min{p1, pN}. To lower bound pN , we use the elementary inequality
that

∑N−1
s=1

1
s ≥ logN and

∑N−1
s=1

1√
s
≤ 2

√
N − 1− 1 ≤ 2

√
N . This leads to

pN =
η2

4

N−1∑
s=1

1

s
− ηϵ

N−1∑
s=1

1√
s
≥ η2

4
logN − 2ηϵ

√
N.

Since p1 = 0, this implies that inf p ≥ min{0, η2

4 logN − 2ηϵ
√
N} − 1

2ϵ
2 and consequently

p(x1)− inf p ≤ max

{
1

2
ϵ2, 2ηϵ

√
N − η2

4
logN +

1

2
ϵ2
}
.

Using the condition in (36), we have 1
2ϵ

2 ≤ 1
2 ≤ 1 and

2ηϵ
√
N − η2

4
logN +

1

2
ϵ2 ≤ 2ηϵ

√
N − η2

4
logN +

1

2

≤ 2η
√
N

(
η logN

8
√
N

+
1

4η
√
N

)
− η2

4
logN +

1

2
= 1.

Hence, we conclude that p(x1)− inf p ≤ 1.

Built on Lemma C.2, we proceed to prove a complexity lower bound for AdaGrad in one dimension.
Lemma C.3. Consider running AdaGrad on a one-dimensional smooth function p with the scaling
parameter η. For any L > 0 and ∆ > 0, there exists a function p : R → R and a corresponding
stochastic gradient oracle such that: (i) p has L-Lipschitz gradients and p(x1) − inf p ≤ ∆; (ii)
the stochastic gradient gt is unbiased and has a bounded variance of σ2; (iii) Given ϵ such that
ϵ <

√
L∆

16
√
2

, if T ≤ L∆
256ϵ2

(
1 + σ2

4ϵ2

)
log L∆

128ϵ2 , then we have E [min1≤t≤T |p′(xt)|] ≥ ϵ.

Proof. We set x1 = 0. To begin with, we can assume without loss of generality that L = 1 and
∆ = 1. This follows from Lemma 1 in Chewi et al. (2023), which demonstrates that if a function
p : R → R has a 1-Lipschitz gradient and satisfies p(0) − inf p ≤ 1, then the rescaled function

p̃(x) = ∆p
(√

L
∆x
)

has an L-Lipschitz gradient and satisfies p̃(0) − inf p̃ ≤ ∆. Furthermore,
finding a point x̂ such that |p̃′(x̂)| ≤ ϵ is equivalent to finding a point x̂ such that |p′(x̂)| ≤ ϵ√

L∆
.

Now define N = 1
128ϵ2 log

1
128ϵ2 and we first verify that the condition in (36) is satisfied with 2ϵ.

Specifically, we will prove that 2ϵ ≤
√

logN
32N , which immediately implies (36) as η logN

8
√
N

+ 1
4η

√
N

≥√
logN
32N . By direct computation, we have√

logN

32N
= 2ϵ

√
logN

log 1
128ϵ2

= 2ϵ

√
log 1

128ϵ2 + log log 1
128ϵ2

log 1
128ϵ2

> ϵ,

where we used the fact that ϵ < 1
16

√
2
⇔ 1

128ϵ2 > 4 ⇒ log log 1
128ϵ2 > 1. Define q1 = 0 and

qt = η
∑t−1

s=1
1√
s

for any 2 ≤ t ≤ N . According to Lemma C.2, there exists a function p : R → R
such that (i) its gradient is 1-Lipschitz; (ii) p(x1)− inf p ≤ 1; (iii) p′(xt) = −2ϵ for any t ∈ [N].

Now consider running AdaGrad on the one-dimensional function p(x) with the stochastic gradient
oracle given by

Pr(gt = 0 | xt) =
σ2

σ2 + 4ϵ2
and Pr

(
gt =

(
1 +

σ2

4ϵ2
)
p′(xt) | xt

)
=

4ϵ2

σ2 + 4ϵ2
. (37)

It is straightforward to verify that E[gt | xt] = p′(xt), i.e., the stochastic gradient gt is unbiased. Our
goal is to show that, if T ≤ 1

256ϵ2

(
1 + σ2

4ϵ2

)
log 1

128ϵ2 = 1
2 (1 +

σ2

4ϵ2)N , then we have |p′(xt)| = 2ϵ

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

for all t ∈ [T] with probability at least 1
2 . If this is the case, we can also verify that the stochastic

gradient gt has variance bounded by σ2, and thus our construction satisfies all the required condi-
tions.

As mentioned in the proof sketch, our key observation is the characterization of the dynamic of Ada-
Grad in (10). Specifically, recall that Mt denote the number of times the stochastic gradient is
non-zero by time t and M0 = 0. By definition, we have E [MT] = T · 4ϵ2

δ2+4ϵ2 , and thus it
follows from Markov’s inequality that Pr(MT > 2E[MT]) ≤ 1

2 . This implies that, with prob-
ability at least 1

2 , we have MT ≤ 2T · 4ϵ2

δ2+4ϵ2 ≤ N . Moreover, conditioned on the event that

MT ≤ N , we can use induction to prove that xt = η
∑Mt−1

s=1
1√
s

and p′(xt) = −2ϵ using the
property of the constructed function p. Indeed, this holds for t = 1 and now suppose this holds for
t = s. By the definition in (37), we have either gs = 0 or gs = −2ϵ(1 + σ2

4ϵ2) = −2ϵ − σ2

2ϵ .
In the former case, Ms = Ms−1 and xs+1 = xs. In the latter case, Ms = Ms−1 + 1 and
xs+1 = xs + η

Ms
=
∑Ms−1

j=1
η√
j
+ η

Ms
=
∑Ms

j=1
η√
j
. Moreover, since Ms ≤ MT ≤ N , we

have p′(xs+1) = −2ϵ. Hence, in both cases, the statement holds for t = s + 1. Finally, using the
law of total probability, we can lower bound

E
[
min

1≤t≤T
|p′(xt)|

]
≥ 1

2
E
[
min

1≤t≤T
|p′(xt)| |MT ≤ N

]
=

1

2
· 2ϵ.

This completes the proof.

Lemma C.3 states the complexity lower bound for AdaGrad for a one-dimensional function. This
can be equivalently converted into a lower bound on the convergence rate, as stated in the following
corollary.

Corollary C.4. Consider running AdaGrad on a one-dimensional smooth function p with a scaling
parameter η. Then there exists a function p∆,L,σ,T : R → R such that p has L-Lipschitz gradient,
p(x1)− inf p ≤ ∆, the stochastic gradient gt is unbiased and has a bounded variance of σ2, and

E
[
min

1≤t≤T
|p′∆,L,σ,T (xt)|

]
≥ max

{
1

32

√
L∆ log(2T + 1)

T
,
1

16

(
σ2L∆

T
log

(
1 +

TL∆

8σ2

))1/4
}
.

(38)

Proof. For a given number of iterations T , we would like to find the largest ϵ that satisfies the
condition in Lemma C.3, which serves as a valid lower bound. We will rely on the following helper
lemma.

Lemma C.5. Suppose x ≥ 0. Then for y ≥ 2x
log(x+1) , we have x ≤ y log y.

A sufficient condition for the condition on T in Lemma C.3 to satisfy is

2T ≤ L∆

128ϵ2
log

L∆

128ϵ2
⇐ L∆

128ϵ2
≥ 4T

log(2T + 1)
⇔ ϵ ≤

√
L∆ log(2T + 1)

512T
.

Moreover, since
√

L∆ log(2T+1)
1024T ≤

√
2L∆T
1024T ≤

√
L∆
512 , by choosing ϵ =

√
L∆ log(2T+1)

1024T =

1
32

√
L∆ log(2T+1)

T , both conditions in Lemma C.3 are satisfied. Similarly, another sufficient con-
dition is

T ≤ σ2L∆

1024ϵ4
log

L∆

128ϵ2
⇔ TL∆

8σ2
≤ L2∆2

214ϵ4
log

L2∆2

214ϵ4

⇐ L2∆2

214ϵ4
≥ TL∆

4σ2

(
log

(
1 +

TL∆

8σ2

))−1

⇔ ϵ ≤
(
σ2L∆

214T
log

(
1 +

TL∆

8σ2

))1/4

.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Similarly, we can choose ϵ = 1
16

(
σ2L∆

T log
(
1 + TL∆

8σ2

))1/4

to satisfy both conditions. Hence, we
conclude that the lower bound in the corollary is satisfied.

Now we are ready to prove Theorem 3.2. As mentioned in the proof sketch, we choose the function
f : Rd → R of the form

∑d
i=1 p∆i,Li,σi,T (x

(i)), where x(i) denotes the i-th coordinate of x and
∆i ≥ 0 with

∑d
i=1 ∆i = ∆f . By our construction, it is straightforward to verify that the function

f satisfies both conditions in (i) and (ii). Thus, by applying Corollary C.4 to each coordinate, we
derive that

E
[
min

1≤t≤T
∥∇f(xt)∥1

]
≥

T∑
t=1

E
[
min

1≤t≤T
|p′∆i,Li,σi,T (x

(i))|
]

≥
d∑

i=1

Cmax
{√Li∆i log T

T
,

(
σ2
iLi∆i

T
log

(
1 +

TLi∆i

σ2
i

))1/4}
,

where C is an absolute constant. First, consider choosing ∆i =
Li∆f

∥L∥1
for all i ∈ [d]. It follows that

E
[
min

1≤t≤T
∥∇f(xt)∥1

]
≥

d∑
i=1

CLi

√
∆f log T

∥L∥1T
= C

√
∥L∥1∆f log T

T
.

Second, consider choosing ∆i =
σ
2/3
i L

1/3
i∑d

i=1 σ
2/3
i L

1/3
i

∆f for i ∈ [d]. Then we have

E
[
min

1≤t≤T
∥∇f(xt)∥1

]
≥

d∑
i=1

C

(
∆fσ

8/3
i L

4/3
i∑d

i=1 σ
2/3
i L

1/3
i T

log

(
1 +

TL
4/3
i ∆f

σ
4/3
i

∑d
i=1 σ

2/3
i L

1/3
i

))1/4

= C
((∑d

i=1 σ
2/3
i Li

1/3)3∆f

T
log
(
1 + ρT

)) 1
4

,

where ρ =
L

4/3
min∆f

∥σ∥
4/3
∞

∑d
i=1 σ

2/3
i L

1/3
i

. This completes the proof.

C.3 PROOF OF THEOREM 3.3

We follow a similar proof strategy as in Theorem 2.1 and use the resisting oracle argument. Consider
any deterministic method A that has access only to a first-order oracle and let T be an integer such
that T ≤ ∥L∥1∆f

ϵ2 . We adversarially construct a function f that satisfies the stated conditions and
ensures that ∇f(xt) = 1

∥L∥1
[L1ϵ, L2ϵ, . . . , Ldϵ] ∈ Rd for any t ∈ [T], where {xt}Tt=1 are the

queries made by A. Note that ∥∇f(xt)∥1 = ϵ by this construction. As shown in the proof of
Theorem 2.1, thanks to the deterministic nature of A, we can simulate the algorithm using the known
first-order oracle responses above and construct our function f based on the queries {xt}Tt=1.

Specifically, we construct the adversarial function f of the form

f(x) =

d∑
i=1

Li∆f

∥L∥1
pi

(√
∥L∥1
∆f

x(i)

)
,

where x(i) denotes the i-th coordinate of x and the one-dimensional functions pi : R → R for
i ∈ [d] will be determined as follows. Fix a coordinate i ∈ [d], let {x(i)

t }Tt=1 be the i-th coordinate
of the queries {xt}Tt=1. Since T ≤ ∥L∥1∆f

ϵ2 = 1
ϵ̃2 with ϵ̃ = ϵ√

∥L∥1∆f

, by invoking Lemma C.1,

there exists a function pi satisfying the following conditions: (i) its gradient p′i is 1-Lipschitz; (ii)

pi(
√

∥L∥1

∆f
x
(i)
1) − inf pi ≤ 1; (iii) p′i(

√
∥L∥1

∆f
x
(i)
t) = ϵ̃ = ϵ√

∥L∥1∆f

for any t ∈ [T]. By direct

computation, we can verify that f satisfies Assumption 2.4b and f(x1)−inf f ≤
∑d

i=1
Li∆f

∥L∥1
= ∆f .

Moreover, the i-th coordinate of ∇f(xt) is given by

Li∆f

∥L∥1

√
∥L∥1
∆f

p′i

(√
∥L∥1
∆f

x(i)

)
= Li

√
∆f

∥L∥1
ϵ√

∥L∥1∆f

=
Liϵ

∥L∥1
.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Therefore, the constructed function f is indeed consistent with our resisting oracle. In particular, this
implies that after ∥L∥1∆f

ϵ2 gradient queries, Algorithm A fails to find a point x̂ with ∥∇f(x̂)∥1 < ϵ.
This completes the proof.

C.4 PROOF OF THEOREM 4.1

We first present a lower bound result for SGD in the one-dimensional setting. Our proof is partially
inspired by (Abbaszadehpeivasti et al., 2022, Proposition 4), which studies the convergence rate of
gradient descent in the noiseless setting.
Lemma C.6. Consider running SGD xt+1 = xt − ηgt on a one-dimensional smooth function
p with a constant step size η. For any L > 0 and ∆ > 0, there exists a function p : R →
R and a corresponding stochastic gradient oracle such that (i) p has L-Lipschitz gradients and
p(x1) − inf p ≤ ∆; (ii) the stochastic gradient gt is unbiased and has a bounded variance of σ2;
(iii) it holds that

E
[
min

1≤t≤T
|p′(xt)|

]
≥


√
2L∆, if η ≥ 2

L ;

max

{
1
2

√
∆

2ηT+ 1
2L

,min

{
σ
√

Lη
2 ,

√
2L∆

}}
, otherwise.

(39)

Proof. We first consider the simple case where η ≥ 2
L . Let

p(x) =


L
2 x

2, |x| ≤
√

2∆
L ;

√
2L∆|x| −∆, |x| >

√
2∆
L ,

and set the stochastic gradient oracle as the exact gradient oracle. Moreover, we initialize SGD with

x1 = −
√

2∆
L . It is easy to verify that both conditions (i) and (ii) are satisfied. Moreover, we can

prove by induction that the iterates xt alternate between x1 = −
√

2∆
L and x2 = −

√
2∆
L +η

√
2L∆.

Indeed, following the update rule, we have x2 = x1 − ηp′(x1) = −
√

2∆
L + η

√
2L∆. Since

η ≥ 2
L , it holds that |x2| ≥ 2

L

√
2L∆ −

√
2∆
L =

√
2∆
L and hence p′(x2) =

√
2L∆. Therefore,

x3 = x2 − ηp′(x2) = x1 and the repetition continues. This shows that |p′(xt)| =
√
2L∆ for all

t ≥ 1.

For the case where η < 2
L , we prove the lower bound by considering the following two constructions.

(i) Construction I: Set ϵ = min{σ
√

Lη
2 ,

√
2L∆} and without loss of generality, we initialize

SGD with x1 = ϵ
L . Consider the function

p(x) =

{
L
2 x

2, |x| ≤ ϵ
L ;

ϵ|x| − 1
2Lϵ

2, |x| > ϵ
L ,

(40)

with the stochastic gradient oracle g(x) given by

Pr(g(x) = 0) =
σ2

σ2 + ϵ2
and Pr

(
g(x) =

(
1 +

σ2

ϵ2

)
p′(x)

)
=

ϵ2

σ2 + ϵ2
. (41)

It is straightforward to verify that p(x) has L-Lipschitz gradients and p(x1)−inf p ≤ ϵ2

2L ≤
∆. Moreover, we can compute that

E [g(x)] =
ϵ2

σ2 + ϵ2

(
1 +

σ2

ϵ2

)
p′(x) = p′(x),

E
[
(g(x)− p′(x))

2
]
=

ϵ2

σ2 + ϵ2

(
1 +

σ2

ϵ2

)2

p′(x)2 − p′(x)2 =
σ2

ϵ2
p′(x)2.

Since |p′(x)| ≤ ϵ for any x ∈ R, this further implies that E
[
(g(x)− p′(x))

2
]
≤ σ2. Thus,

the first two conditions in Lemma C.6 are satisfied. Finally, we will prove by induction

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

that the iterates {xt}Tt=1 alternate between the two points ϵ
L and ϵ

L − η
(
ϵ+ σ2

ϵ

)
and the

gradient norm at both points is ϵ. This is clearly true for t = 1. Now suppose this holds for
t = s. We consider the following scenarios:

• Assume that xs = ϵ
L , then p′(xs) = ϵ and by the construction in (41) we have either

gs = 0 or gs = (1 + σ2

ϵ2)ϵ = ϵ + σ2

ϵ . In the former case, we have xs+1 = xs = ϵ
L ,

while in the latter case we have xs+1 = xs − η
(
ϵ+ σ2

ϵ

)
= ϵ

L − η
(
ϵ+ σ2

ϵ

)
. Hence,

the statement holds for t = s+ 1.

• Otherwise, assume that xs = ϵ
L − η

(
ϵ+ σ2

ϵ

)
. Since ϵ ≤ σ

√
Lη
2 , this implies that

σ2 ≥ 2ϵ2

Lη and thus ϵ
L − η

(
ϵ+ σ2

ϵ

)
≤ ϵ

L − ησ2

ϵ ≤ − ϵ
L . According to (40), we have

p′(xs) = −ϵ and thus gs = 0 or gs = −ϵ − σ2

ϵ . Similarly, we can show that the
statement continues to hold in both cases.

(ii) Construction II: Set ϵ = 1
2

√
∆

2ηT+ 1
2L

and we initialize SGD with x1 = 0. Similar to the

proof of Theorem 2.1, we will construct our function based on ϕa,b,ϵ(x) defined in (32).
Specifically, let N = 2T · 4ϵ2

σ2+4ϵ2 = ∆−2ϵ2/L
η(4ϵ2+σ2) and define the N points as and qt =

(t− 1)η
(
2ϵ+ σ2

2ϵ

)
for t ∈ [N]. Then consider the function

p(x) =


−2ϵx, x ∈ (−∞, 0];

Lϕqt,qt+1,2ϵ/L(x) + pt, x ∈ (qt, qt+1] (1 ≤ t ≤ N − 1);
L
2 (x− qN)2 − 2ϵ(x− qN) + pN , x ∈ (qN ,+∞),

where the values {pt}Nt=1 are determined to ensure that the function p is continuous. Specif-
ically, this requires p1 = 0 and pt+1 = pt +Lϕqt,qt+1,2ϵ/L(qt+1) = pt +

L
4 (qt+1 − qt)

2 −
2ϵ(qt+1 − qt), which leads to

pt+1 = t
(Lη2

4

(
2ϵ+

σ2

2ϵ

)2

− η(4ϵ2 + σ2)
)
≥ −ηt(4ϵ2 + σ2).

Moreover, we set the stochastic gradient oracle as

Pr(g(x) = 0) =
σ2

σ2 + 4ϵ2
and Pr

(
g(x) =

(
1 +

σ2

4ϵ2

)
p′(x)

)
=

4ϵ2

σ2 + 4ϵ2
. (42)

Again, it is straightforward to verify that p′ is L-Lipschitz, and due to the definition of ϕ in
(32), it holds that p′(qt) = −2ϵ for all t ∈ [N]. Now we will show that p(x1)− inf p ≤ ∆.
To see this, note that similar to the arguments in Lemma C.1, one can show that

inf p = min
t∈[N]

pt −
2

L
ϵ2 ≥ −η(N − 1)(4ϵ2 + σ2)− 2

L
ϵ2 ≥ −∆.

As a result, we obtain p(x1)− inf p ≤ ∆.

Finally, we will show that E [min1≤t≤T+1 |p′(xt)|] ≥ ϵ. Our strategy is similar to the proof
of Lemma C.3. Let Mt denote the number of times the stochastic gradient is non-zero by
time t and set M0 = 0. Then from the definition of the stochastic gradient oracle in (41),
we have E[MT] =

4ϵ2

σ2+4ϵ2T . By Markov’s inequality, we have Pr(MT > 2E[MT]) ≤ 1
2 .

This implies that, with probability at least 1
2 , we have MT ≤ 2T 4ϵ2

σ2+4ϵ2 = N . Conditioned

on the event that MT ≤ N , we can use induction to prove that xt = Mt−1η
(
2ϵ+ σ2

2ϵ

)
and p′(xt) = −2ϵ for all t ∈ [T]. This is true for t = 1 and suppose that this holds for
t = s. By the definition in (42), we have either gs = 0 or gs = −2ϵ − σ2

2ϵ . In the former

case, Ms = Ms−1 and xs+1 = xs = Msη
(
2ϵ+ σ2

2ϵ

)
. In the latter case, Ms = Ms−1 + 1

and xs+1 = xs − ηgs = (Ms−1 + 1)η
(
2ϵ+ σ2

2ϵ

)
= Msη

(
2ϵ+ σ2

2ϵ

)
. Moreover, Since

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Ms ≤ N , we also have p′(xs+1) = −2ϵ. Hence, in both cases, the statement continues to
hold for t = s+ 1. Using the law of total probability, we can lower bound

E
[
min

1≤t≤T
|p′(xt)|

]
≥ 1

2
E
[
min

1≤t≤T
|p′(xt)| |MT ≤ N

]
=

1

2
· 2ϵ = ϵ.

This completes the proof.

Since both constructions provide a valid lower bound, we can take the maximum of the two as the
final lower bound. This leads to Lemma C.6.

Now we are ready to prove Theorem 4.1. Denote by p∆,L,σ,η,T (·) the function in Lemma C.6 that
achieves the lower bound. Consider the function

f(x) =

d∑
i=1

p∆/d,Li,σi,η,T (x
(i)),

where x(i) denotes the i-th coordinate of the vector x. If η ≥ 2
∥L∥∞

, then it follows from the first
lower bound in Lemma C.6 that

E
[
min

1≤t≤T
∥∇f(xt)∥1

]
≥
√

2∥L∥∞∆

d
.

If η < 2
∥L∥∞

≤ 1
Li

for all i ∈ [d], it follows from the second lower bound in Lemma C.6 that :

E
[
min

1≤t≤T
∥∇f(xt)∥1

]
≥

d∑
i=1

E
[
min

1≤t≤T
|p′∆/d,Li,σi,η,T

(x
(i)
t)|

]

≥
d∑

i=1

max

{
1

2

√
∆/d

2ηT + 1
2Li

,min

{
σi

√
Liη

2
,

√
2Li

∆

d

}}

≥
d∑

i=1

1

4

√
∆/d

2ηT + 1
2Li

+

d∑
i=1

1

2
min

{
σi

√
Liη

2
,

√
2Li

∆

d

}
(43)

≥ 1

4

√
d∆

2ηT + 1
2Lmin

+

d∑
i=1

1

2
min

{
σi

√
Liη

2
,

√
2Li

∆

d

}
. (44)

Now we would like to establish a lower bound that is independent of the step size η. Let Lmin =
mini∈[d] Li. We consider the following cases.

(i) If 2ηT ≤ 1
2Lmin

, then the lower bound in (44) is at least 1
4

√
d∆

2ηT+ 1
2Lmin

≥ 1
4

√
Lmind∆.

(ii) If 2ηT ≥ 1
2Lmin

but σi

√
Liη
2 ≥

√
2Li

∆
d for some i ∈ [d], then the lower bound in (44) is

at least 1
2

√
2Li∆

d ≥ 1
2

√
2Lmin∆

d .

(iii) Finally, If 2ηT ≥ 1
2Lmin

and σi

√
Liη
2 <

√
2Li

∆
d for all i ∈ [d], then the lower bound in

(44) becomes

1

4

√
d∆

2ηT + 1
2Lmin

+

d∑
i=1

1

2
σi

√
Liη

2
≥ 1

8

√
d∆

ηT
+

1

2
√
2

d∑
i=1

σi

√
Li

√
η.

Since η < 2
∥L∥∞

, we can further lower bound the above inequality by 1
8

√
d∆
ηT ≥

1
8

√
d∥L∥∞∆

2T . Moreover, by using the elementary inequality a+b ≥ 2
√
ab for any a, b ≥ 0,

we also obtain that

1

8

√
d∆

ηT
+

1

2
√
2

d∑
i=1

σi

√
Li

√
η ≥

d1/4∆
1/4
f (

∑d
i=1 σi

√
Li)

1/2

4 · 21/4T 1/4
.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Hence, in this case we have

E
[
min

1≤t≤T
∥∇f(xt)∥1

]
≥ max

{
1

8

√
d∥L∥∞∆

2T
,
d1/4∆

1/4
f (

∑d
i=1 σi

√
Li)

1/2

4 · 21/4T 1/4

}

≥ 1

16

√
d∥L∥∞∆

2T
+

d1/4∆
1/4
f (

∑d
i=1 σi

√
Li)

1/2

8 · 21/4T 1/4

By taking the minimum of all three cases, we conclude that

E
[
min

1≤t≤T
∥∇f(xt)∥1

]
≥ min

{
1

16

√
d∥L∥∞∆

2T
+

d1/4∆
1/4
f (

∑d
i=1 σi

√
Li)

1/2

8 · 21/4T 1/4
,
1

4

√
Lmin∆

d

}
.

Note that the second term in our lower bound is a constant independent of T . Thus, when T is
sufficiently large, we obtain the result in Theorem 4.1.

29

	Introduction
	Related work

	Preliminaries
	Assumptions and measure of stationarity

	l1-norm convergence of AdaGrad: Upper and lower bounds
	Upper bound
	Lower bounds

	l1-norm convergence of SGD: A lower bound
	Comparison between AdaGrad and SGD
	Conclusion
	Comparison with existing results on AdaGrad
	Proof of Theorem 3.1
	Proof of Lemma B.2

	Lower Bound Results
	Proof of Theorem 2.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof of Theorem 4.1

