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ABSTRACT

In this work, we significantly alleviate the long-standing scalability issue of
semidefinite programming (SDP), by equipping a novel tune-free operator stepsize
to the alternating direction method of multipliers (ADMM) optimizer. To our
best knowledge, this is the first operator stepsize in the context of SDP. More
importantly, it is tune-free and computationally cheap (defined on dot product).
Preliminary tests show that our operator ADMM surpasses the acceleration limit of
the standard scalar version (limit found via grid search), i.e., our operator stepsize
can outperform an arbitrarily fine tuned scalar one.

1 INTRODUCTION

Semidefinite programming (SDP) is widely recognized as one of the most important breakthroughs
in the last century, with wide applications across fields, including machine learning, control, robotics,
and communications. However, there exists a long-standing obstacle for SDP to gain further popularity
— the scalability issue. It arises in middle or large scale problems, where an exponentially growing
computation cost with data dimension is generally unacceptable. How to improve the scalability
has been intensively studied, with several main directions: (i) exploiting structures, e.g., sparsity,
symmetry, low-rankness etc.; (ii) approximation via linear and second-order cone programs. (iii)
augmented Lagrangian methods, such as Newton-CG and alternating direction method of multipliers
(ADMM); A comprehensive survey on scalability can be found in Majumdar et al. (2020). This
manuscript will focus on the ADMM approach.

To start, we briefly review some history. SDP was developed as a generalization of linear programming
(LP). The first polynomial-time solver of LP was introduced by Karmarkar (1984), termed the interior-
point method (IPM). Later, Nesterov & Nemirovsky (1988); Nesterov & Nemirovskii (1994) extended
it to any convex program, provided that the function is self-concordant. SDP can easily satisfy this
condition, and hence been considered not much harder to solve than LP Vandenberghe & Boyd
(1996).

Despite the great successes of IPMs, they are in general not well-suited for problems of middle or
large scale. This is related to their second-order nature, where an inverse of the Hessian matrix is
required, or at least an approximate inverse. Such an inverse operation is highly expensive for a large
size variable. Even worse, the Hessian matrix is in general dense and rarely admits some structures
like sparsity to reduce the computation cost. In the literature, employing first-order algorithms Beck
(2017), Teboulle (2018) is considered one of the most promising directions. An outstanding candidate
is ADMM Glowinski & Marroco (1975); Gabay & Mercier (1976). It has become increasingly
popular, largely owes to a comprehensive survey by Boyd et al. (2011). In fact, one may already
encounter ADMM, except under a different name. In recent years, many well-known algorithms
have been revealed as equivalent to ADMM, such as the Douglas-Rachford Splitting (DRS) Lions &
Mercier (1979); Douglas & Rachford (1956) and the Primal-Dual Hybrid Gradient (PDHG) method
Pock et al. (2009); Esser et al. (2010); Chambolle & Pock (2011); O’Connor & Vandenberghe (2020).

The procedures for the first-order algorithms to solve SDP are largely similar, mainly differ on how to
guarantee the solution being positive semidefinite (PSD). There are 3 typical strategies. (i) Directly
define the variable in a quadratic form R” R, which is always PSD, see e.g. Burer & Monteiro
(2003; 2005); Wang et al. (2023). However, its efficiency highly depends on the dimension of R,
i.e., only efficient if it is low-rank. (ii) Enforcing PSD by a projected variable, denoted as Ils, (X).
The success owes to that projector Ilg, is strongly semi-smooth Sun & Sun (2002), and an inexact
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semi-smooth Newton-CG method can apply, see e.g. Zhao et al. (2010). (iii) The last approach is
via ADMM, which is a general framework that can apply to general convex problems, even some
non-convex issues, see Boyd et al. (2011). Its application to SDP is well studied in Wen et al. (2010).

Our work corresponds to the ADMM method, most related to Wen et al. (2010). We achieved
significant advances. (i) To our best knowledge, ours is the first operator stepsize in the context of
SDP, not limited to the ADMM solver. For example, a diagonal matrix stepsize is not applicable here
(no closed-form iterates). (ii) Our operator is specially designed, inspired by the Schur complement
lemma. It enjoys the benefits of closed-form ADMM iterates and low computational cost (defined
on dot product). (iii) Our operator stepsize is tune-free. It will be automatically updated based on
a certain degree-4 polynomial. Numerically, we observed significant advantages compared to the
empirical choice of scalar stepsize 1 and 1.6, as suggested in Wen et al. (2010). Even more, we
performed a grid search to find the best scalar stepsize choice (least iteration number complexity
sense), which can be viewed as the acceleration limit (not a priori knowledge). Preliminary tests
show that our operator stepsize has surpassed such a limit.

For notations, || - || denotes the Euclidean norm, induced by the inner product (-, -). By o we denote
the operator composition. The uppercase bold, lowercase bold, and not bold letters are used for
matrices, vectors, and scalars, respectively.

1.1 ADMM FRAMEWORK

To start, we introduce the general ADMM framework. It involves two sub-problems that typically
admit closed-form solutions for a scalar stepsize, but often not when generalized to an operator one.
Consider a general convex program:
minimize f(x) + g(z),
x,z

subjectto Ax — Bz = ¢, (1.1)

with functions f, g being convex, closed and proper (lower semi-continuous) and bounded linear
operators A, BB being injective. A solution is assumed exists.

The standard ADMM iterates, with a scalar stepsize v > 0, are
1 = argmin f(x) + %HA:B — Bz" —c+ ¥ /4|2,
€T

ZMH = argmin g(z) + %”Awk“ —Bz—c+ A/,

}\k+1

A+ (Azht — B2 —¢), (standard)
The above can be generalized to an operator stepsize,

1
"t = argmin f(x) + §HA£B —BzF —c+ MTINFIA,,
T

1
2R = argmin g(z) + §||.A:c’€+1 — Bz —c+ M3y,
AL = Xk M (.Awar1 — Bkt — c), (generalized)
where M > 0 is positive definite, and where ||v||p = +/ (v, Mw) is known as the M-norm.

Owing to M being positive definite, the decomposition M = S o S always exists. We will directly
discuss the selection of S, which is instantly transferable to M.

1.2 SEMIDEFINITE PROGRAMMING

Semidefinite programming (SDP) include two standard forms, see Vandenberghe & Boyd (1996).

o (i) The standard primal SDP, which minimizes a linear function subject to a linear matrix inequality,
minimize (c,x),
x

subjectto  Ag + Z x;A; = 0. (primal)

=1
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with A, € S*, i =0,1,...,m being symmetric matrices.
e (ii) The standard dual SDP, which is written in a matrix variable,
minimize (A, X),
X
subjectto  (A;, X)=¢;, i=1,...,m,
X = 0. (dual)

The ADMM steps for solving the above two formulations will be similar, detailed below.

1.3 ADMM SOLVER

Here, we apply the abstract ADMM framework to solve the two SDP problems, equation primal and
equation dual. We can compactly write them into

mlI)l(lf%lZ@ f(X) +dsn (2),
subject to AX = Z, (1.2)

with X € R"*"™ Z € R™*" being matrix variables (can reduce to vectors), where 6§1 denotes the
indicator function on the semidefinite cone S} . The above unified framework can be specified into

(i) equation primal via
m

f(.’I}) = <Cv .’13>, Az = AO + szAu (13)
i=1
with x € R”, dom f = R".

(ii) equation dual via
f(X) = (Ao, X), domf={X €S"[(A;X) =, Vi}, (1.4)
and A = 7 vanishes (identity operator).

1.3.1 IMPLEMENTATION DETAILS (SCALAR CASE)
Here, we present the ADMM closed-form iterates for solving equation 1.2, given a scalar stepsize.
(i) For equation primal, its X-update is given by

zht = (ATA)_I (AT (Zk —AF )y — Ag) —c/v), (1.5)
where A = [vec(A;), -+ ,vec(A,,)] € R ™ Ay = vec(Ay) € R™ <L,
(i) For equation dual, its X-update is given by solving the following KKT system:

I A vec( XKL | | vec(vZ* — AF — Ag)
D e R B
which is an overdetermined system that is instantly solvable via a pseudo inverse.
The other iterates are the same for the primal and dual SDP. The Z-update is
Zk1 = s (AXFH + AR /), (1.7)
which is a projection, setting all the negative eigenvalues to zeros. At last,
AFFL _ AR _|_7(AXI€+1 _ Zk+1)' (1.8)

1.3.2 GENERALIZATION CHALLENGE

The main challenge for employing an operator stepsize is that — in general, the Z-update no longer
admits a closed-form iterate, i.e., the following:

1
ZM =argmin 65 (Z) + §||AX]chl - Z+ M AR,

1
=argmin Jg» (Z) + §||SAXk+1 ~SZ +STIAF|2 (1.9)

does not admit a closed-form solution in general.
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1.4 OUR CONTRIBUTION

Our contribution involves two main aspects. (i) First, we propose the following specially designed
operator stepsize, inspired by the Schur complement lemma, see Proposition 2.1:

Y2 _1
Valh Vil | g l Valn ym e ] (1.10)
, ; v ) )
VLo Ve 12 77 Lo 7= L2

where 1; € S™, 1, € R™*(n=m) 1, € S"=™ are ones matrices.

S =

e It is computationally cheap, due to defined on element-wise multiplication (a.k.a. dot product).
Particularly, its inverse S~! does not require computation, owing to the above explicit form.

o It addresses the closed-form iterates challenge, aforementioned in Section 1.3.2. Specifically,
equation 1.9 admits the following closed-form solution:

ZM = 87 <SAX’““ + SlA’“>. (1.11)

(ii) The above operator stepsize S does not need any tuning. It will be automatically calculated via
the closed-form root of a degree-4 polynomial. Moreover, such a stepsize update can be early stopped
to save some runtime.

Below, we summarize our operator ADMM algorithm, with slightly different steps for equation primal
and equation dual. They may be simplified if some tailored structures exploited.

Algorithm 1 SDP via operator ADMM (standard primal version)

Input: Set Z°=0, A°=0, S, =1.
1: while iterates not converged do
2:

a1 (ATA)TN (AT (5,28 - AR - Ag) —e)),
ZM S Mgy (Ao + mat(Azt ) + S71AR),
AL AP 1S, (Ao + mat(Aa:kH) — SkaH) , (primal)
where Ay = vec(SpAp), A = [vec(Sp A1), -- -, vec(SpAm)].
3:  operator adaption: Compute Sy via Corollary 3.2.

4: end while
Output: primal solution «*, dual solution A*.

Algorithm 2 SDP via operator ADMM (standard dual version)

Input: Set Z° =0, A’ =0, S, =1.
1: while iterates not converged do
2:  X-update via the following KKT system (pseudo inverse):

SpoSip(I) A vee(XFH) | | vec (S o Si(ZF) — AF — Ayp)
AT 0 u = c s (dual)
where A = [vec(A1), - - ,vec(A,,)]. The rest iterates are
ZMt o S e (stk“ + SklA"’),
AR AP £ 8,08, (Xk+1 — Zkﬂ) ) (cont.)

3:  operator adaption: Compute Sy via Corollary 3.2.
4: end while
Qutput: primal solution X, dual solution A*.
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2 CLOSED-FORM GUARANTEE (OPERATOR CASE)

Here, we address the closed-form issue of an operator stepsize, aforementioned in Sec. 1.3.2.

2.1 OPERATOR DESIGN

It begins with the following insight:

Lemma 2.1 (guideline). Given any invertible operator S, with its inverse denoted as S™'. Suppose
the following holds:
S NZ)esSt, VZesh. (2.1)

Then, a closed-form solution is available:
_ . 1
S 1o g (SV) :arggzm s (Z) + §||Z - Vi,
1
= argmin dgn (Z) + =||SZ — SV||?, (2.2)
z + 2

where M =S o S.

Following from above, all we need is to design an operator satisfying equation 2.1.

Proposition 2.1 (operator design). Given scalars v1,72 > 0 and any integer m € {1,2,...,n—1}.
Let operator S be defined as

o :
S(V) = 7 11 vilo oy (2.3)
vnlo vz 1z |
and its inverse being
229 L 1, |
STH(V) = [ o Vil o, (2.4)
o Al

where 1, € S™, 1¢ € Rmx(n—m) 15, € S®™™, and where 1 denotes the ones matrix (i.e., all entries
being 1), by © the element-wise multiplication.

Then, .
S ollg: (SV) = arggﬁn b1 (Z) + 5||SZ - SV (2.5)
Remarks 2.1 (partitioning choice). Above, any integer m € {1,2,...,n — 1} is feasible. However,

the algorithm performance does change with m (but not too sensitive). Empirically, we find the
choice m = n — 1 typically works well, and we set it as the default.

2.1.1 ADMM IMPLEMENTATION (OPERATOR CASE)

Equipping the above operator stepsize S to ADMM, we arrive at the following iterates (for solving
equation 1.2):

1
Xk = arg)r(nin F(X) + S ISAX — SZF + STIAY|?,

ZM = §7 M g (SAX’““ + SlAk>,

AFFL = AR 4 3(5Axk+1 — szkﬂ). (2.6)

The above X-update can be further written into a closed form. Specifically,

(i) for equation primal, we have

bt = (ATA)7 (AT (SZ’“ _STIAR - Ao) - c) , 2.7
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where A = [vec(SAy),--- ,vec(SA,,)] € R"*™ and where Ay = vec(SAy).

e For equation dual, the X-update closed-form is given by solving the following KKT system:

SoS(I) A vee(XHT1) | | vec (SoS8(ZF) — Ak — Ag) )38
AT 0 . = c (2.8)
where A = [vec(A;),- - ,vec(A,,)] € R"**™ Tt is an overdetermined system that is instantly

solvable via a pseudo inverse. (u is an auxiliary variable that will be omitted.)

3  OPERATOR STEPSIZE SELECTION

Here, we show how to select our operator stepsize automatically. It involves two steps. First,
minimize an upper bound, which yields a theoretical optimal choice (not a priori knowledge). Then,
we approximate such a choice successively.

3.1 THEORETICAL CHOICE

To start, we need a characterization of the ADMM convergence rate. It is first established in He &
Yuan (2015) through variational inequality. Below, we will adopt a recent fixed-point argument from
Ryu & Yin (2022), which is slightly more convenient.

Lemma 3.1. (Ryu & Yin, 2022, Theorem 1) ADMM admits the following worst-case convergence
rate:

IgHH = ¢F|* <

where initialization C° can be arbitrary.

< kHIIc* ¢°1?, (3.1)

Our ADMM iterates as in equation 2.6 corresponds to the above fixed-point view, via
Chl = SAXHFHL L SIAEK, (3.2)

Corollary 3.1. Under zero initialization X° = Z° = A = 0, the worst-case optimal choice of our
operator stepsize S can be determined via

miniSmize |SAX* + S A2, (3.3)

3.1.1 SOLUTION DETAILS
Now, we solve the above problem. For the sake of light notation, denote X = AX. Also, define
partitioning
5 X1 XO Al AO
X = . A= 34
|: XO X2 :| i |: Ag A2 ) ( )
where X1, A; € S, X5, Ay € S™™ are symmetric matrices, and where X, Ay € R™*(n=m)

Lemma 3.2. Invoke the definition of S in equation 2.3. equation 3.3 can be rewritten into

et
n}ymimize X1 + ||A HQ‘F’Yl’Y2||X2||2‘*‘7“1‘*”24‘2’)’1”){0”2 fHA . (3.5)
1,772

The above admits closed-form solutions, related to the root of the polynomial below.

Lemma 3.3 (polynomial root). Consider the following degree-4 polynomial:

ap* +bp® +dp+e=0. (3.6)
Suppose all coefficients are real and b, d not simultaneously equal 0. Then, it admits 4 closed-form
roots as
%( U4—\/U5—u6),
P %(***“‘ﬁ Vs — Ug), 3.7)
%( +u4_\/u5+u6)7
%( +U4+\/U5+U6),
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where .
b2 b2 b+ 8
Uy = 102 +usz, us= 22 uz, U = — dug (3-8)
and where
V2T, 5 o 1 bd — 4ae
Uy = — (ad® + b%e), up = uy + 1/ (bd — 4ae)3 +u2, us = — (Jug — ———). (3.9
1= ), u2 = ug ( ) 1, U3 \/ga(\/ > Tz ). (3.9)

Theorem 3.1. The worst-case optimal choice of stepsize S, or equivalently the parameter pair
(71, 72), is given by

. WIATIZ + S5 [A3]12 + 2] Ag)12 3.10)
= o * * || W o : :
I X512 + I X312 + 211X )12
with 3 being a positive root of the following degree-4 polynomial:
4% 3¢ . N . X
W IXSIPIATIE + 37 (XS P IAGH + XTI IATI) — 3 (A I X 1 + I AGIPXT %)
— [lAs P X5 % = o, (3.11)

with a closed-form solution available via Lemma 3.3.

3.2 PRACTICAL USE
The above involves certain optimal point information, hence not instantly useful in practice. To
address it, we replace the optimal solutions (unknown) by the current iterates (known).

Similar approximation idea already appears in the machine learning field, but on a different issue, the
importance sampling, see e.g. Yuan et al. (2016), (Rizk et al., 2022, Sec. IV. C).

Corollary 3.2. The (k + 1)-th operator stepsize Si+1 can be determined via

k+1 k+1)2 1 k+12 k+1)2
e _ | 2 AT + el A2 + 2] Ag ™l

71 1

— n . . (3.12)
s [ XFFH2 4+ A5 THIX G2 + 2 X512

with 75“ being a positive root of the following degree-4 polynomial:
k414 x>k k k+13 /1| ¥k k ok k
2w TN P IATE A s X P ATH? + X P AT
k k ok k ok k ok
=% T ASTPIXG T + AT I X ) — AP X2 =, (3.13)

with a closed-form solution available via Lemma 3.3.

4 NUMERICAL EXAMPLES
In this section, we present two examples, arising from digital communication and machine learning.

4.1 BOOLEAN QUADRATIC PROGRAM

We start with the Boolean quadratic program. It is a fundamental problem in digital communication,
particularly popular in circuit design.
Ideally, one would like to solve the following Boolean program:
minimize || Az — b||?,
T
subjectto  z; € {—1,1}, i=1,...,n, (NP-hard)
withz € R"*!, b € R™*!, A € R™*", This problem is well-known to be NP-hard. In the literature,
it is common to instead solving a semidefinite relaxed version, which we compactly written as
minimize (A, X),
X
subjectto diag(X) =1,
X =0, (relaxed)
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ATA b
bt 0
equation dual, and is solvable via our Algorithm 2.

where Ay = . This formulation corresponds to the standard dual form as in

However, we emphasize that our general solver cannot exploit any tailored structure. Here, the
diagonal constraint is highly structured, and it would be a better idea to employ a tailored version,
which is both simpler and more efficient, summarized below.

Algorithm 3 relaxed BQP via operator ADMM (simplified version; tailored structure)

Input: Set Z° =0, A’ =0, S, =1.
1: while iterates not converged do
2:

Xkl ZF - S oS (AY + Ay),
diag(X*+1) « 1,
Zk+1 — Sk_lHSi <Skxk+1 +Sk_1Ak>,

AR AR 4 S 08 (XM — ZM). 4.1

3:  operator adaption: Compute Sk via Corollary 3.2.
4: end while
Qutput: primal solution X ™, dual solution A*.

4.1.1 BEYOND THE LIMIT

Here, we compare our operator stepsize with the underlying best scalar choice. Such a best scalar is
not a priori knowledge, and we find it by grid searching (under a fixed random number generator).

T ——iteration number graph

- - underlying best scalar ‘
- © best scalar choice

10° —our tune-free operator 100

. N - - _ oof
.. 5
N 3

:T: RS N E 800
2
T 10 N c
s \ 2

< N T 700f
= - s

600

500 L L
50 100 150 200 250 300 350 400 450 500 10 15 20

Iteration number

2 20 %
stepsize value (scalar)
(a) Convergence rate. (b) Limit via grid search.

Figure 1: Beyond the scalar-case limit, m = n = 50.

Remarks 4.1. We observed that our operator stepsize outperforms the best scalar choice by a noticeable
margin. Particularly, ours is around 4 x faster to reach a moderate accuracy of 107°.

Remarks 4.2. Additionally, we find that the best scalar varies rapidly, being highly sensitive to
different data sizes and types. It appears impossible to make a direct guess.

4.1.2 SCALABILITY

Here, we concern the scalability issue. We compare our operator with two empirical scalar stepsize
choices, value 1 and 1.6, suggested in Wen et al. (2010). The algorithm will stop if a mean squared
error threshold of 10~ reached. The error is measured by comparing to the ground-truth, generated
via CVX Grant & Boyd (2014).
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- - scalar stepsize 1
----scalar stepsize 1.6 10!
—Our tune-free operator

Iteration number

- - scalar stepsize 1
----scalar stepsize 1.6
—Our tune-free operator

100 150 200

Data size

(b) Runtime.

150 200 250 300 350 400

Data size

(a) Iteration number complexity.

Figure 2: Scalability: our operator stepsize vs. fixed scalar 1 and 1.6.

Remarks 4.3. Figure 2a measures the iteration number complexity, and ours shows an overwhelming
advantage, roughly 50 x acceleration for an R0 size variable, and much more when the data size
further increases. Based on the curvature, ours does show a significantly better scalability.

Remarks 4.4. Figure 2b measures the CPU runtime by a ‘tic toc’ command in MATLAB. Ours has a
marginal disadvantage at the start, but soon gains advantage and arrives at roughly 10x acceleration
for an R100>1 gjze variable. Our advantage increases consistently with data dimension, based on the
curvature of the plot.

4.2 DISTANCE METRIC LEARNING

Here, we consider the distance metric learning problem in machine learning. A metric, by definition,
needs to be positive semidefinite, hence well-fitted into our scope.

Below, we adopt the notation and data setup from Xing et al. (2002a). Consider finding a distance
metric A via

e 2 2

migmize S e ltos| S el | 0 (2),
(xi,x;)€ES (xix;)¢S

subjectto A =Z, 4.2)

where ;, £; € R™ is some observation data. The number of examples is denoted by n.

The log function is challenging, and for now we handle it by employing a basic gradient descent
iteration (to solve the x-update sub-problem). The error is measured by comparing to the ground-truth,
generated via CVX Grant & Boyd (2014).

4.2.1 BEYOND THE LIMIT

Here, we compare our operator stepsize with the underlying best scalar stepsize (the limit), which is
found via grid search under a fixed random number generator. We consider 3 classes of data, each of
100 points/examples and R®>*! dimension.

——iteration number graph
- © best scalar choice

W00EN S o - - underlying best scalar|]
S~ _ |—our tune-free operator

’
Iteration number

5 10 15 20 25 30 35 01 02 03 04 05 06 07 08 09 1

Iteration number

(a) Convergence rate.

stepsize value (scalar)

(b) Limit via grid search.

Figure 3: Beyond the scalar-case limit, m = 3,n = 100.
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Remarks 4.5. From Figure 3a, we observe that our algorithm converged at accuracy 10, This is due
to the involvement of a log function, where the CVX employs an experimental successive estimation,
and its solution (treated as the ground-truth) is of a low accuracy.

Remarks 4.6. From Figure 3b, we observe that the iteration number graph admits a very sharp
curvature, implying high sensitivity to stepsize selection.

4.2.2 SCALABILITY

Here, we concern the scalability issue. We compare ours with two empirical scalar stepsize choices, 1
and 1.6, suggested in the milestone SDP paper Wen et al. (2010). We consider 3 classes of data, each
of 1000 points/examples. We increase the dimension of the example to test the scalability issue.

Iteration number
N,
AN
Runtime

10% B

- = scalar stepsize 1
—---scalar stepsize 1.6
—Our tune-free operator

4 6 8 10 12 14
Data dimension m

(a) Iteration number complexity.

- - scalar stepsize 1
—-=-scalar stepsize 1.6
——Our tune-free operator

8 10 12 14
Data dimension m

(b) Runtime.

Figure 4: Scalability: our operator stepsize vs. fixed scalar 1 and 1.6.

Remarks 4.7. Figure 4a measures the iteration number complexity, and ours shows a significant
advantage, roughly 10x acceleration at the beginning stage and 100x acceleration at the ending
stage. Such an advantage appears consistently increasing with data dimension.

Remarks 4.8. Figure 4b measures the CPU runtime by a ‘tic toc’ command. Ours has a marginal
disadvantage at the start, but soon gains advantage and arrives at roughly 10X acceleration at the end.
Our advantage is observed consistently increasing with data dimension.

5 CONCLUSION

For the first time, an operator stepsize is designed for semidefinite programming, with a special
structure inspired by the Schur complement lemma. It enjoys several nice properties, including
closed-form iterates, cheap computational cost (owing to dot product), and tune-free. Compared to
the standard scalar stepsize, our operator one admits extra degrees of freedom, which mathematically
allows it to surpass the acceleration limit (of the standard version). This aspect has been confirmed
numerically, where preliminary tests show great advantages in iteration number complexity and
runtime. Overall, we believe our operator ADMM significantly alleviated the long-standing scalability
issue of semidefinite programming.

6 REPRODUCIBILITY STATEMENT

All figures in this manuscript can be reproduced, using MATLAB codes submitted as supplementary
material.
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A APPENDIX

A.1 PROOF OF LEMMA 2.1

Our Lemma 2.1, restated here as

Lemma A.1 (guideline). Given any invertible operator S, with its inverse denoted as S™'. Suppose
the following holds:

S HzZ)esy, VzZesh. (A1)

Then, a closed-form solution is available:
_ . 1
S~ oTlgy (SV) = argmin 32 (Z) + 5112 - Vi
1
=argmin 6s» (Z) + =||SZ — SV |?, (A.2)
z + 2

where M =S o S.

Proof. equation A.1 implies
I (S71Z) = 052 (2). (A.3)

From the right-hand side of equation A.2, we obtain
1 _ 1, -
argmin Jg» (Z) + §HSZ — SV|> =8~ argmin &g (57 Z) + 5||Z -SV|?,
z VA
- . = 1, 5
=8 1arg12nln 551(Z)+§HZ_SV||2,
_c-1
=S8 oTlg: (SV). (A4)
where Z = SZ is a variable substitution. The proof is now concluded. O

A.2 PROOF OF PROPOSITION 2.1

Our Proposition 2.1, restated here as

Proposition A.1 (operator design). Given scalars v1,~v2 > 0 and any integer m € {1,2,...,n—1}.
Let operator S be defined as

swy=|v=h vinlod oy, (A5)
V1 1o Ve 1z
and its inverse being
229 L 1, |
SHwvy=| V! vl e, (A.6)
ﬁlo Nartep L |

where 1; € S™, 15 € R™*(n=m) 1, € S*=™ _and where 1 denotes the ones matrix (i.e., all entries
being 1), by © the element-wise multiplication.

Then,
1
S~ ollg: (SV) = argmin 0s» (Z) + 5||SZ — SV ||*. (A7)
Z 2

Proof. To start, we define a partition, specified by integer m:

X, XO}

xI' X, (A.8)

o
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where X, € S™, X, € Rmx(n=—m) X, ¢ §n—m, By the generalized Schur complement argument,
see (Boyd & Vandenberghe, 2004, A.5.5), we can rewrite S~! (X)) into

Y2 1
X1 o Xo ] =0 (A.9)
1 XT 1 X -
Vi 0 e 2
2 Tt 1 f .
= — X1 =0, Xo— Xy X{Xp)>=0, —{IT-X1X{)X0=0, (A.10)
T 1 m( 0 1 ) \/,_W( 1 1)

where -T denotes the pseudo-inverse. Due to 71, 72 related coefficients are all positive, the above
holds if and only if X > 0. Thatis, S™'(X) € S, VX € S", i.e., equation 2.1 holds. Applying
Lemma 2.1 then concludes the proof. O

A.3 PROOF THEOREM 3.1

Our Theorem 3.1, restated here as

Theorem A.1. The worst-case optimal choice of stepsize S, or equivalently the parameter pair
(v1,72), is given by

. IATIZ + S5 1A5]1% + 21| Ag]l2 A1)
’Yl = A‘k * A* A* . :
S IXE2 + 93 X311 + 2] X312

with 3 being a positive root of the following degree-4 polynomial:

4 *
BUXSIPIALI + 3> (XS I2IAS + I X2 IATI) — 3 (1A 121X 117 + (AP X%
— | A32IX5)? =0, (A.12)

with a closed-form solution available.

Proof. The minimizer is obtained when the derivative w.r.t. y; and 7 vanishes, i.e.,

1 o * * || Wr * 2 *

—IXT* -~ P+ X507 — —3 *IIA I+ 21 X51° = =5 1A51* =0, (A.13)
T2 1 2 7
,-y* O % 1 * *|| W

I XT12 + AT+ 7 IX5]° - 5 1As)? = (A.14)
2 "N el

By equation A.13, we instantly obtain the v} expression in our proposition. which can be rewritten
into

2 %2 v 2 O
PUXTI? =37 IATP + 371 X517 — [AS17 + 2913 1 X6 )P — 203 11AG° =

(A.15)
*2_*x2) v*
XTI + 3 AT + X1 - A7 = (A.16)
which, after simple manipulations, can be simplified to
*2 %2 vx * *2_ x| vx * *
o 1 X512 = IASIP + 273 I XG 1 = 3 IAGl2 = o, (A.17)
PIXTIP =3I ATIP + 11 X311 — 31 AG )% = 0. (A.18)
Separating v gives
AX 2 AFX 2 *2 A* 2 A* 2
| ISP EgIAGE e 3IATIE A A19)

21X 5112 + 311 X5 )12 15012 + 311 X512

which should hold simultaneously, yielding equation A.12. The other one equation A.11 follows
instantly from equation A.13. The proof is now concluded. [
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A.4 DISTANCE METRIC RESULT

The Figures below correspond to our Section 4.2.1, where we see that the learned metric simplifies
the classification issue, see a detailed discussion of benefits from Xing et al. (2002b).

150

(a) Raw data. (b) Scaled by the learned metric.

Figure 5: A visualized example: 3 classes of data.
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