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Abstract

A number of deep learning approaches have recently been proposed to improve1

model performance on subgroups under-represented in the training set. However,2

Menon et al. [13] recently showed that, models with poor subgroup performance3

can still learn representations which contain useful information about these sub-4

groups. In this work, we explore the representations learned by various approaches5

to robust learning, finding that different approaches learn very similar represen-6

tations. We probe a range of post-hoc procedures for making predictions from7

learned representations, showing that the distribution of the post-hoc validation set8

is paramount, and that clustering-based methods may be a promising approach.9

1 Introduction10

Machine learning systems trained with expected risk minimization (ERM) often struggle to perform11

well on under-represented subgroups in the training data [2, 5]. For this reason, a number of learning12

algorithms have been proposed to improve performance across subgroups, many taking advantage of13

subgroup information [3, 4, 8, 11]. However, it has also been noted that deep models trained with14

ERM can sometimes learn representations that contain sufficient information to perform well on all15

subgroups [13], even when the model’s predictions yield large subgroup disparities.16

In this work, we explore this apparent disconnect between representation learning and prediction in17

the context of group-robust classification. We consider a three-stage procedure, where a model is18

trained, then some post-hoc adaptation occurs directly on the learned representations, then tested19

for performance on various subgroups. We find that ERM-learned representations can be practically20

identical to those learned by more specialized methods that take advantage of subgroup information.21

Given this, we explore a range of procedures for post-hoc adaptation of a model by learning a new22

classifier on the representations directly, using a validation set and no subgroup information. We23

show that the distribution of the validation set is extremely important to obtaining good subgroup24

performance, and that clustering methods in representation space may be better than linear classifiers.25

Our results suggest that learning better representations for subgroup classification is a promising26

direction, and that post-hoc adaptation can be helpful for improving robustness.27

2 Background28

Notation. We assume a classification dataset of (input, label) pairs {(xi, yi)}ni=1, with x ∈ X , y ∈29

Y = {1 . . . Y }. We may also have a categorical subgroup variable {gi}ni=1 (g ∈ {1 . . . G}): ci = g ↔30

example i is in subgroup g. Subgroup information is assumed available at training/validation time,31

but not test time. Usually, c will not be distributed uniformly throughout the training set — rather,32

some subgroups will be smaller, i.e. some values of c will be uncommon. Our goal is to learn a33

classification function f̄ : X −→ Y which performs well on all subgroups. The metric by which we34



will evaluate our success is worst-group accuracy, that is, ming E[1[f̄(x) = y]|gi = g]. In this work,35

we assume f̄ takes the form: f̄ = argmaxf(x); f(x) = σ(w>r(x) + b). Here, σ is the softmax36

function, w is a matrix containing a vector of weights for each class, b is a scalar bias, and r is37

a function outputting a vector representation of x. The model we use throughout, satisfying this38

functional form, is a Resnet-50 [7].39

Train-Adapt-Test Procedure. Since we are interested in three aspects of model training (repre-40

sentation learning, post-hoc adaptation, and subgroup performance on test data), we consider a41

three-stage procedure. First, we initialize a model and train it on a training set with an unbalanced42

subgroup distribution; here, we learn the prediction function f and, as a byproduct, the representation43

function r. Next, we focus on r only, and perform post-hoc adaptation, using a validation set to44

learn a simple classifier on top of r. Finally, we test our adapted model (the composition of our45

post-hoc classifier and r) on held-out data, and record the performance on each subgroup.46

Algorithms. We discuss several training algorithms, described fully in App. A.2. Expected risk47

minimization (ERM) is the usual paradigm for training ML models, where we ignore subgroup48

information and minimize mean loss on the training set. We also look at two robust approaches,49

which aim to take advantage of subgroup information g. The first is Group Distributionally Robust50

Optimization (GDRO) [19], which aims explicitly to minimize the worst group’s average loss. The51

second is Invariant Risk Minimization (IRM) [1], uses a gradient penalty with the goal of learning a52

representation such that the same predictive classifier is optimal across subgroups.53

Dataset. We use the semi-synthetic Waterbirds dataset [19], which is created by pasting pictures54

of birds from CUB [21] onto backgrounds from Places-365 [22]. The task is to predict whether55

the bird in the image is a land or water bird; it is confounded by the background, which can be56

either land or water backgrounds. This yields four subgroups: land birds on land, water birds on57

water, land birds on water, and water birds on land. In the training set, there is a strong correlation58

between the bird and background factors: e.g. water birds are usually shown on water backgrounds.59

The dataset also contains a validation set, which is much more subgroup-balanced than the training60

set; the authors use the worst-subgroup accuracy on this validation set for early stopping. ERM61

obtains about 60% worst-group accuracy on Waterbirds, and GDRO/IRM obtain 87-90%. While62

subgroup classification may be harder on more realistic datasets, Waterbirds is a helpful tool to better63

understand the properties of various approaches in a research context. Since Waterbirds is small, we64

always initialize from a model pre-trained on Imagenet.65

3 Feature Co-Discovery in Robust Learning66

Deep learning approaches leveraging subgroup information g can improve worst-group performance67

[8, 9, 11, 12, 20]. We ask here: how do the learned representations reflect these more specialized68

approaches? Does using subgroup information at training time, or using more specialized algorithms,69

produce richer or better-separated learned features?70

Prior literature suggests that differently-performing methods may nonetheless learn similar repre-71

sentations. For instance, Menon et al. [13] note that ERM features can be used to obtain similar72

subgroup performance to GDRO by learning a post-hoc linear model on a group-balanced validation73

set. This suggests that the necessary information needed to improve subgroup performance is already74

present in the ERM-learned representations, and that it is linearly extractible. In a meta-learning75

context, Raghu et al. [16] compares the representations learned by a model at its meta-initialization76

with the representations learned after performing task-specific adaptation. They find evidence of77

feature re-use: that the representations before and after task-specific adapation are similar, and the78

meta-initialized model and the task-adapted model differ mostly in their final classification heads.79

In Fig. 2, we show the similarity of learned representations on Waterbirds across models trained80

with several loss functions. “None” is an Imagenet pre-trained model (not trained on Waterbirds);81

“ERM”, “GDRO”, and “IRM” use the methods from Sec. 2, initialized from the “None” model and82

trained (holding the random seed constant) on Waterbirds. “ERM-2” is the same as “ERM” with83

a different random seed. To compare the representations, we use SVCCA [17], which determines84

the most-aligned dimensions between the representations produced by two layers of neurons (here,85

the final layers of two different models) across some dataset (here, the Waterbirds validation set).86
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(a) The y-axis shows the sum of the absolute values
in from the ERM and GDRO transformed classifiers.
We see that the only features which are important for
classification in the two models are co-discovered.
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(b) The y-axis shows the absolute difference in the
transformed classifier between ERM and GDRO mod-
els. We see the features which are treated highly dif-
ferently between the two models are co-discovered.

Figure 1: Waterbirds feature co-discovery in ERM- and GDRO-learned representations. X-axis shows
SVCCA similarity score for each dimension; a feature is co-discovered if it has a score near 1.

SVCCA returns a similarity score between 0 and 1 for each pair of (aligned) dimensions describing87

how “similar” they are between the two representations; these can be averaged to produce an overall88

similarity score which is “a direct multidimensional analogue of Pearson correlation”, and describes89

the overall similarity of the two representations. Like Pearson correlation, closer to 1 is more similar.90

ERM GDRO IRM None ERM-2
ERM 1 0.89 0.91 0.71 0.93

GDRO 0.89 1 0.97 0.72 0.88
IRM 0.91 0.97 1 0.73 0.9

None 0.71 0.72 0.73 1 0.71
ERM-2 0.93 0.88 0.9 0.71 1

Figure 2: SVCCA overall similarities between
learned representations on Waterbirds. None is
an Imagenet pre-trained model; ERM/GDRO/IRM
are as in Sec. 2, with the same seed, using None
as an initialization; ERM-2 is like ERM but with a
different seed. 1 is perfect similarity.

Fig. 2 shows that ERM, GDRO and IRM all91

learn very similar representations on Waterbirds,92

with SVCCA overall similarities of ∼ 0.9. This93

is comparable to the similarity between two dif-94

ferent seeds of ERM, suggesting that the impact95

of these different algorithms on the represen-96

tation is minimal here, despite methodological97

differences and the availability of subgroup in-98

formation g to GDRO and IRM. Also, these99

methods are more similar to each other (∼ 0.9)100

than to their initialization (∼ 0.7). This ex-101

plains the result from Menon et al. [13]: we102

can match GDRO performance using a post-103

hoc linear model on ERM representations be-104

cause GDRO representations and ERM repre-105

sentations are roughly equal. Contrasted with106

Raghu et al. [16], we show that two models, us-107

ing different learning algorithms, learned similar features to each other, but fairly different features108

from the initialized model; we call this feature co-discovery (rather than re-use [16]).109

We explore feature co-discovery between ERM and GDRO in Fig 1 (with similar ERM/IRM results110

in App. B). We use SVCCA to transform the representations from ERM and GDRO into their most111

similar directions, and obtain an equivalent linear classifier in transformed space for each method,112

such that the transformed representations and the transformed classifier together output the same113

logits as the non-transformed model. In Fig 1a, we plot the SVCCA similarity scores for each114

dimension on the x-axis. On the y-axis, we plot the sum of the absolute values of the transformed115

classifier weights from ERM and GDRO. We observe that all dimensions which are important for116

classification in either model are co-discovered (i.e. have high similarity score). In Fig 1b, we instead117

plot the absolute difference between the ERM and GDRO transformed classifiers on the y-axis. We118

observe that all dimensions where these two methods differ for classification are also co-discovered.119

Both of these plots suggest that the improvement in subgroup disparities on Waterbirds shown by120

GDRO is due to, not improvements in learned features, but a classification layer which weights the121

same features differently. See more experimental details for this section and the next in App. A.122
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Figure 3: Waterbirds post-hoc classification results. On the left, we use the representations obtained
by a a model pre-trained on Imagenet; on the right, we use the representations learned by ERM. On
the x-axis, we show (number of minority examples) / (number of majority examples) in the post-hoc
validation set. The y-axis shows the worst-group accuracy from the 4 subgroups on the test set.
“Robust” shows the performance of GDRO/IRM, and “ERM” shows the performance of ERM; both
are fully trained, starting from a pretrained Imagenet initialization. Average over 3 seeds shown.

4 Experiments: Post-hoc Classification123

In Sec. 3, we show representations learned by ERM are similar to those learned by more specialized124

algorithms, including those using group information g. This supports the findings of Menon et al.125

[13], who show that by doing post-hoc logistic regression with a subgroup-balanced dataset, one126

can match the subgroup performance of GDRO. Here, we attempt to empirically disentangle two127

aspects of this finding, to determine which factor of the post-hoc learning procedure is important for128

subgroup performance. First is the post-hoc classification algorithm used: training a post-hoc linear129

model might induce larger disparities than a more flexible model would. Second is the distribution of130

the post-hoc validation set. As discussed previously, the given Waterbirds validation set is subgroup-131

balanced (P(background | label) = 0.5) — this is very different from the training set, and may encode132

a lot of information about the subgroups, even if only used post-hoc.133

The three adaptation algorithms we look at are logistic regression, k-NN and vector quantization134

(VQ). In each, we train the post-hoc model on the representations in the validation set, and test them135

on representations from a second held-out set (the test set). For our VQ classifier: we fit a k-means136

model to each of the two classes on the validation set, returning two sets of k centroids, and use these137

2k centroids in a 1-NN classifier for a given test point. To probe the importance of the validation138

distribution, we keep only p% of the minority examples in the validation set (minority examples have139

e.g. water bird on land background), and vary p. At p = 1, we have the original validation set — for140

each y, the number of land and water backgrounds are the same. At p = 0, we have removed all141

minority examples from the validation set. At p ≈ 0.05, we have a validation set which is distributed142

similarly to the training set.143

In Fig. 3, we show the effects of these two factors for the representations at the Imagenet pre-trained144

initialization, and the representations after ERM training on Waterbirds. We note that the distribution145

of the validation set is important, with a large difference in worst-group accuracy between the training146

set’s proportion (p = 0.05) and the given validation set (p = 1). Indeed, post-hoc adaptation on the147

given validation set, using only a pre-trained model (which never sees any Waterbirds training data)148

matches the performance of specialized robust methods, which trains on the full Waterbirds training149

set as well as subgroup information, and might be considered an upper bound for post-hoc approaches.150

Secondly, the difference between the methods is smaller but noteworthy, and the difference between151

adaptation and the original model (horizontal line labelled “ERM”) is large. Using the current152

validation set, VQ achieves the best performance, and this advantage is robust to perturbations in p:153

e.g. even at p = 0.05, VQ improves significantly over both the original model and linear adaptation.154

Conclusion. We draw attention to the similarity of representations learned by robust approaches to155

those learned by ERM — this suggests that robust approaches which improve representation learning156

are potentially promising. On the other hand, the utility of post-hoc adaptation here stresses the157

richness of ERM representations, and it may be better to find methods which harness that richness158

through adaptation, rather than learning different ones.159
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A Experimental Details218

A.1 Model Training219

We train (where not otherwise indicated) using SGD with learning rate of 1e-4, momentum of 0.9,220

L2 weight regularization of 1e-4, and batch size 128. We used early stopping with patience 20221

for all models, using an early stopping metric of worst-group accuracy on the validation set for all222

models except those for the coloured lines in Fig. 3, which use reweighted validation loss as an early223

stopping metric (i.e. validation loss where the subgroup losses are reweighted to match the training224

distribution’s subgroup distribution). We used K = 5 for GDRO and λ = 3 for IRM. We train all225

models in Pytorch [14] using their Imagenet-pretrained initialization [18].226

A.2 Algorithms227

We define here a number of different sueprvised classification algorithms of interest. We let ` be228

example-wise cross-entropy. Let the number of examples in a group g be ng, and let the following229

shorthand describe the average loss for a group g: `g(f) = 1
ng

∑n
i=1 `(f(xi), yi)1{gi = g}.230

Expected Risk Minimization Expected risk minimization (ERM) is the usual paradigm for231

training ML models. In ERM, we minimize the mean loss ` on the training set: LERM (f) =232
1
n

∑n
i=1 `(f(xi), yi).233

Group DRO. Group Distributionally Robust Optimization (GDRO) [19] was proposed specifically234

for subgroup-based learning, and takes advantage of the subgroup information g. This loss aims235

to ensure that no group’s loss is that bad, and the group adjustment term (with hyperparameter236

K) ensures greater focus on smaller groups, which may otherwise be ignored: LGDRO(f) =237

max
g∈{1...G}

{
`g(f) + K√

ng

}
.238

IRM. Invariant risk minimization (IRM) [1] is another method that uses subgroup information.239

The intuition for this is somewhat involved [1]; the overarching motivation is that each environment240

should learn a representation such that the same predictive classifier is optimal across environments.241

The second term below is a gradient penalty on the output of f , w is a constant multiplier on the242

output of f , and λ is a hyperparameter: LIRM (f) =
∑G

g=1 `g(f) + λ‖∇w|w=1`g(w · f)‖243

A.3 Post-hoc Training244

We used the implementations of k-NN and k-Means implemented in the faiss package [10]. We245

used the implementation of logistic regression implemented in the scikit-learn package [15]246

with the “lbfgs” solver. For each method, we searched over 5 hyperparameter values and chose the247

best one (by worst-group error on the test set) for each value reported, as suggested by Gulrajani248

and Lopez-Paz [6]. For VQ and k-NN, we loop over the values of k = 1, 2, 4, 8, 16. For logistic249

regression, we loop over the L2-regularization value C = 0.1, 0.2, 0.5, 1.0, 2.0.250
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(a) The y-axis shows the sum of the absolute values
in from the ERM and IRM transformed classifiers.
We see that the only features which are important for
classification in the two models are co-discovered.
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(b) The y-axis shows the absolute difference in the
transformed classifier between ERM and IRM models.
We see the features which are treated highly differently
between the two models are co-discovered.

Figure 4: Waterbirds feature co-discovery analysis on ERM- and IRM-learned representations. The
x-axis shows the SVCCA similarity score for each dimension in both plots; a feature is co-discovered
if it has a score near 1.

B Feature Co-Discovery in ERM and IRM251

In Fig. 1, we show evidence of feature co-discovery between ERM and GDRO. Since GDRO and252

IRM have very similar representations (as shown in Fig. 2), we would expect a similar pattern to253

hold in IRM’s representations. For completeness, we show the analogous results for ERM and IRM254

in Fig. 4.255
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