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Figure 1: We present Pixel3DMM, a set of two ViTs |Dosovitskiy et a1.| (]2020[), which are tailored
to predict per-pixel surface normals and uv-coordinates. Here, we demonstrate the fidelity and
robustness of Pixel3DMM on challenging inputs. From top to bottom we show input RGB, predicted
normals, 2D vertices extracted from the uv-coordinate prediction, and our FLAME fitting results.

ABSTRACT

We address the 3D reconstruction of human faces from a single RGB im-
age. To this end, we propose Pixel3DMM, a set of highly-generalized vision
transformers which predict per-pixel geometric cues in order to constrain
the optimization of a 3D morphable face model (3DMM). We exploit the
latent features of the DINO foundation model, and introduce a tailored
surface normal and uv-coordinate prediction head. We train our model by
registering three high-quality 3D face datasets against the FLAME mesh
topology, which results in a total of over 1,000 identities and 976K images.
For 3D face reconstruction, we propose a FLAME fitting opitmization that
solves for the 3DMM parameters from the uv-coordinate and normal es-
timates. To evaluate our method, we introduce a new benchmark for
single-image face reconstruction, which features high diversity facial ex-
pressions, viewing angles, and ethnicities. Crucially, our benchmark is the
first to evaluate both posed and neutral facial geometry. Ultimately, our
method outperforms the state-of-the-art (SoTA) by over 15% in terms of
geometric accuracy for posed facial expressions.

1 INTRODUCTION

3D reconstruction of faces, tracking facial movements, and ultimately extracting expressions
for animation tasks are fundamental problems in many domains such as computer games,
movie production, telecommunication, and AR/VR applications. Recovering 3D head
geometry from a single image is a particularly important task due to the vast amount of
available image collections.

Unfortunately, reconstructing faces from a single input image is also inherently under-
constrained. Not only depth ambiguity renders this task challenging, but also ambiguities
between albedo and lighting /shadow effects. In addition, properly disentangling identity
and expression information — which is critical for many downstream applications — makes
the problem difficult. Finally, occlusions and unobserved facial regions further complicate
the problem in real application scenarios, thus highlighting the need for strong data priors.

A typical approach to single-image face reconstruction is to exploit 3D parametric head
models (3DMMs) Blanz & Vetter| (2023); |Li et al.| (2017) which provide a low-dimensional
parametric representation for the underlying 3D geometry. Optimizing within a 3DMM'’s
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disentangled parameter space heavily constrains the search space with built-in assumptions
about plausible facial structure and expressions, and allows to extract disentangled identity
and expression information. Nonetheless, despite relying on 3DMMs, many ambiguities
remain and their simplifying assumptions about our world often cannot explain the com-
plexity of the real world. This necessitates additional priors in order to obtain compelling
fitting results such as sparse [Sagonas et al.| (2013) and dense [Cao et al.| (2013); Wood et al.
(2022) facial landmarks, or UV coordinate predictions Taubner et al.[(2024a).

In recent years, we have also seen significant progress in feed-forward 3DMM regres-
sors [Sanyal et al.| (2019); [Feng et al.| (2021); Danécek et al.| (2022); |Retsinas et al.| (2024);
Zielonka et al. (2022); |Zhang et al.| (2023). However, it is complicated to extend feed-
forward regressors, e.g. to a multi-view or temporal domain, and, as we will show later,
they fall behind optimization-based approaches on inputs with strong facial expressions.
Overall, accurate 3D face reconstruction from single images remains a challenging and
highly relevant problem.

Therefore, we propose Pixel3DMM, a novel optimization-based 3D face reconstruction
approach. Ourmainideais to exploit and further develop broadly generalized and powerful
foundation models to predict pixel-aligned geometric cues that effectively constrain the 3D
state of an observed face. Given a single image at test time, we propose normal and uv-
coordinate predictions as optimization constraints from which we fit a 3D FLAME model.
Instead of a simple rendering loss of uv-coordinates, we then transfer the information
into a 2D vertex loss, which offers a wider basin of attraction during optimization. We
argue that this strategy is superior to traditional photometric terms, or sparse landmarks,
which often struggle with extreme view points and facial expressions. In order to train our
approach, we unify three recent, high-fidelity 3D face datasets Giebenhain et al.|(2023);|Zhu
et al| (2023); Martinez et al.| (2024) by registering them against the FLAME L1 et al.| (2017)
model.Our approach outperforms all available normal estimators for human faces in the
NeRSemble Kirschstein et al.| (2023) dataset.

In order to advance the evaluation of single-image 3D face reconstruction methods,
we further propose a new benchmark based on the multi-view video dataset NeRSem-
ble Kirschstein et al.[(2023), which includes a wider variety of facial expressions than exist-
ing benchmarks |Sanyal et al.| (2019); |Zhu et al.| (2023); Feng et al|(2018); |Chai et al.[ (2022).
Our benchmark is the first to allow for the simultaneous evaluation of posed and neutral
facial geometry. This enables a more direct comparison of methods, especially regarding
fitting fidelity and ability to disentangle expression and identity information. Finally, we
show that compared to our strongest baselines, our approach improves the L2-Chamfer
reconstructions loss by over 15% for posed geometry, while slightly improving over neutral
geometry predictions.

To summarize, our main contributions are as follows:
* A new formulation to exploit foundation model features for 3D-related, pixel-
aligned predictions, facilitating SoTA normal estimations for human faces.
¢ A novel 3D face reconstruction approach based on predicted uv-map correspon-
dences and surface normals.
¢ A 3D face reconstruction benchmark and evaluation protocol from high-fidelity
multi-view face captures.

We plan to make the model, code, and our new benchmark publicly available to promote
progress in single image 3D face reconstruction and encourage quantitative benchmarking
on challenging facial expressions.

2 RerLatep WoORk

Single-Image 3DMM Fitting Tracking morphable models from single images is a well-
studied problem in the context of 3D face reconstruction and tracking. Early works [Blanz
& Vetter|(1999); Paysan et al.|(2009); |Li et al.{(2017), introduced statistical shape and texture
priors to estimate 3D face geometry from 2D images. Such methods rely on photometric
fitting and subsequent approaches improve modeling capabilities using learned implicit
representations Lin et al. (2023); (Giebenhain et al.| (2024). While some methods Thies et al.
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Figure 2: Method Overview: Pixel3DMM consists of (a) learning pixel-aligned geometric priors
(left) and (b) test-time optimization against predicted uv-coordinates and normals (right). On the
left we show our network architecture and training examples. On the right we depict the process of
finding per-vertex 2D locations using a nearest neighbor (N.N.) look up, and our loss terms.
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(2016); Grishchenko et al.[(2020) favor a high tracking frame rate for real-time applications,
others favor reconstruction accuracy Zielonka et al.| (2022).

Facial Landmark Prediction Numerous reconstruction methods|Li et al.| (2017);/Cao et al.
for faces rely on accurate landmark predictions, which are usually coupled with
vertices of a template mesh. Pioneering work on detecting such landmarks already relies on
statistical learning|Cootes et al.[(2001) and more recent models exploit large datasets Wood
et al| (2021); Wu et al| (2018) and neural networks to improve the performance Buiat
& Tzimiropoulos (2017); [Bazarevsky et al| (2019). MediaPipe |Bazarevsky et al. (2019),
for instance, uses a convolutional network inspired by MobileNet [Howard et al.| (2017).
Another line of work focuses on densely aligning template mesh and 2D predictions. To
achieve this FlowFace [Taubner et al|(2024a) employs a vision-transformer backbone and
iteratively refines the flow from UV to image space.

3DMM Regression DECA [Feng et al| (2021) trains a regressor to predict 3DMM
parameters from an image . An extension of this work is presented in EMOCA
et al.|(2022), which emphasizes the reconstruction of emotion-rich expressions. Similarly,
SPECTRE [Filntisis et al.|(2022) aims at temporal consistency and reconstructing lip motion.
SMIRK [Retsinas et al.| (2024) introduces a neural synthesis component, reducing the
domain gap between real and rendered images. Since the aforementioned methods don’t
assume 3D training data, it is easy to scale them to large datasets. As a downside, the lack
of 3D information impedes accuracy and leaves depth ambiguity. In order to address this,

MICA |Zielonka et al|(2022) supervises directly in 3D space. TokenFace Zhang et al.| (2023)

is a transformer-based method that can be trained on both 2D and 3D data.

Face Reconstruction Benchmarks The Stirling Feng et al.| (2018) dataset contains 2000
images of 135 subjects. Unfortunately, ground truth reconstructions are only available for
neutral poses in this dataset. Similarly, the NoW [Sanyal et al|(2019) benchmark provides
reconstructions only in the neutral expression. It has 2054 images of 100 subjects.Both the
FaceScape [Zhu et al|(2023) and the REALY [Chai et al. (2022) dataset contain posed scans.
While the former has 10 identities, the latter has 100 subjects. Neither of these two bench-
marks measures disentanglement by additionally evaluating against neutral geometry.

3 PixeL3DMM

In this work we address the challenges of single-image face reconstruction by learning
powerful priors of pixel-aligned geometric cues. In particular we train two vision trans-
former networks, which predict uv-coordinates and surface normals against which we
fit FLAME [Li et al| (2017) parameters at inference time. In section 3.1 we describe our
Pixel3DMM networks, our data acquisition, and how we train them for accurate surface
normal and uv-coordinate prediction. Afterwards, in section[3.2, we elaborate on our single-
image fitting approach, which is purely based on our surface normal and uv-coordinate
predictions.
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3.1 LEARNING PixeL-ALIGNED GEOMETRIC CUES

Despite recently released high-quality 3D face datasets |Zhu et al.| (2023); Kirschstein et al.
(2023); |Giebenhain et al|(2023); [Martinez et al.| (2024), such data is still relatively scarce,
especially w.r.t. the number of different identities, ethnicities, age distribution and lighting
variation. We therefore take inspiration from recent achievements on fine-tuning founda-
tional and large generative models to become experts on a constrained domain, e.g. [Hu
et al. (2022); Ruiz et al.| (2023).

In particular we train two expert networks
N . R512X512X3 — [71’ 1]512><512><3 and U : R512><512><3 — [07 1]512><512><2 (1)

which, given a single inputimage I, predict surface normals /(1) and uv-space coordinates
U(I), respectively.

3.1.1 NETWORK ARCHITECTURE

We build Pixe]3DMM on top of the foundational features from a pre-trained DINOv2(Oquab
et al.| (2023) backbone. As depicted in fig. 2} we extend the ViT architecture using a simple
prediction head. It consists of four additional transformer blocks, three up-convolutions
which lift the feature map resolution from 32 to 256 x 256. Finally, we use a single linear
layer to increase the feature dimensionality and unpatchify the predictions to 512 x 512 x ¢,
where ¢ € {3,2} for normals and uv-coordinate prediction tasks, respectively.

3.1.2 DaArta PREPARATION

To train our networks, we opt for three recent, high-quality 3D face datasets: NPHM)|Gieben-
hain et al.|(2023), FaceScape |Zhu et al.| (2023), and Ava256 Martinez et al.|(2024). We follow
the non-rigid registration procedure from NPHM, register all datasets into a uniform for-
mat and topology. fig.[2[shows pairs of input views with the associated supervision signal
for surface normals and uv-coordinates.

Dataset Numbers In total, our dataset comprises 470 identities from NPHM in 23 expres-
sion and 40 renderings each (376K rgb, normal and uv images in total). For FaceScape we
use 350 subjects, observed under 20 different expressions and 50 cameras each (350K rgb,
normal and uv images in total). Since Ava256 is a video dataset, we leverage furthest point
sampling to select the 50 most diverse expressions per person. For each person we choose
a random subset of 20 cameras (250K rgb and uv images in total).

Diffsion-based Lighting Variations Since FaceScape and Ava256 are both studio datasets,
which are captured at rather homogeneous lighting conditions, we leverage IC-LightZhang
et al.|(2025), an image conditioned diffusion model[Rombach et al.|(2022), which alters the
lighting condition based on a text prompt or background image.

3.1.3 TRAINING

We train our models M € {N,U} using a straight forward image translation formulation

argmin 3> 37 1/, = VYl @)

M keD peM*

where ¥ denotes the network’s parameters, k € D is a sample from our dataset, I* and
Y'* are input rgb and target images, respectively, and p € M* are all pixels in the associated
foreground mask.

Note, that instead of freezing the parameters of our DINOv2 backbone altogether, we set
their learning rate ten times lower, in order to encourage prior preservation but enable
stronger domain adoption.

Compared to Sapiens Khirodkar et al.|(2024), a recent SoTA foundation model for human
bodies and faces, training our models is cheap and can be realized using 2 GPUs and
training for 3 days. Additionally, all our data is publicly available. The relatively low
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computational burden and data accessibility, will hopefully inspire more research to follow
in a similar direction.

3.2 SinGLe-Imace FLAME FirTinG

Given a single image I, we leverage our prior networks to obtain predicted surface normals
N (I) and uv-coordinates ¢/ (I). Using these predictions we aim to recover 3DMM param-
eters. In particular, we optimize for FLAME [Li et al|(2017) identity, expression, and jaw
parameters, as well as, camera rotation, translation, focal length and principal point:

Qrame = {zig € R*, 2, e R0 € SO(3)} 3)
Qcam = {ReSO(3)teR* AcRT ppeR?. (4)

3.2.1 2D VEertEX Loss

Using the estimated uv-coordinates U/(I), we aim to extract the 2d location p} for each
visible vertex v € V of the FLAME mesh. To this end we first run a facial segmentation
network |[Zheng et al.| (2022), in order to mask out the background, eyeballs and mouth
interior. Then we find correspondences for each vertex v € V using a nearest neighbor
lookup into U(I). To be more specific let "V € [0, 1]? denote the uv-coordinate of v in the
template mesh 7. Then we find the pixel location

py = argmin||T,Y —U(I), || ®)

peEP

as the pixel with the closest uv prediction. Finally, we define

Luy = Z Ly e w1y, || <bur * [P5 — T(V)] (6)

veV

to be our 2d vertex loss, where 1 denotes the indicator function which masks out vertices
with a nearest neightbor distance larger than d,,. V' = FLAME (Qpamg) is the current
estimate of the FLAME parametric model, and = denotes the projection implied by the
current estimate of the camera parameters Qcam.

3.2.2 OPTIMIZATION

Next to the 2d vertex loss L, we include the normalloss £,, = [N (I)—render, (V)| where
render, denotes a rendering of surface normals of the FLAME mesh. The regularization

term R = A ||zig — 2 “*[|3 + Aex||Zex||3 completes our overall energy term
E = MiwLow + AL + R. @)
Here zM“A denotes MICA's|Zielonka et al.| (2022) identity prediction.

3.3 MonNocuLAR VIDEO TRACKING

Next to the single-image scenario, tracking faces in monocular videos is a fundamental task
in computer vision. To address this problem, we simply extend our optimization strategy
from section globally over all images in a video sequence {I;}/_,. Using our prior
networks, we first obtain normal predictions {N(I;)} and uv-predictions {U/(I;)} After

obtaining an initial estimate for Qé%)AME and Q9), on the first frame by optimizing for eq.

we freeze zld, fl and pp. We then sequentially optimize for all remaining attributes in

QétL Ame and o). Using the results from the sequential optimization pass as initialization,
we extend eq. (7) to a batched version using randomly sampled frames. Note, that the
parameters z;4, fl and pp are shared for all frames. In order to enforce smoothness across
all per-frame optimization targets we add a smoothness term
Admooth 1 2 12
smooth — 2smooé ZH(I)(t - q)(t ” + ”q) (t+ ” (8)
teB

£e

to the energy E, where &) ¢ {z{!, 6® R® ()} denotes any of the per-frame variables.
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4 3D Face ReconsTRUCTION BENCHMARK

Constructing a benchmark that covers the variety of facial geometry and its complex de-
formations is a challenging endeavor. Compared to existing benchmark, ours focuses on
strong facial expressions, and is the first to jointly evaluate posed and neutral face reconstruc-
tion. Our benchmark contains 21 subjects, each in its neutral state and in 20 different and
diverse facial expressions. We e hope that our proposed benchmark will be adopted as a
standard by the community to encourage better quantitative comparisons across methods.
For more information we refer to appendix[A.1}

Input DECA EMOCA  Metr. Track. TokenFace FlowFace Ours

Figure 3: Qualitative Comparison (Posed): We show overlays of the reconstructed meshes.
Insets with a blue border depict Ly-Chamfer distance as an error map, rendered from
a frontal camera. Red insets show the reconstructed mesh from the same camera. We
encourage the reviewers to watch our supplementary material for additional visualizations.

4.1 Task DescriprioN AND EvaLuaTioN ProTOCOL

Our benchmark consists of posed and neutral 3D face reconstruction. The posed recon-
struction task aims to measure the fidelity of a 3D reconstruction. Given any expressive
face image, the underlying geometry shall be recovered. The neutral reconstruction task
measures how well a reconstruction method can disentangle the effects of shape and ex-
pression. Specifically, the task is to reconstruct the face under neutral expression given
an image of the person under any arbitrary expression. Both tasks are evaluated using
standard practice, and refer to appendix|A.1I|for more details.

Input DECA  EMOCA  MICA  FlowFace  Ours  Neutralimage
Figure 4: Qualitative Comparison (Neutral): Alignment against the neutral expression.

5 ExpPerRIMENTAL RESuLTS

5.1 IMPLEMENTATION DETAILS

Prior Learning We train Pixel3DMM using the Adam (2014) optimizer, a
batch size of 40, and 2 A6000 GPUs, which takes 3 days until convergence. We use a learning
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Table 1: Results on our benchmark.

Table 2: Existing benchmarks.

Neutral25 Posed _ Method NoW FaceScape
L1y NCt R™t L1y NCt R™t Med.) Mean, CDJ MNE, CR}
MICA 1.68 88.3 91.0 - - -
TokenFace - - - 262 86,5 76.8 EEKIS; 1'02_ 122% 356; 126- 89(:
DECA 2.07 87.6 845 238 87.0 79.8 3DDFAv2 _ _ 3.60 .096 93'1
EMOCAv2 221 87.3 824 2.63 86.0 75.8 DECA 109 1.38 4.69 .108 99’5
Metr. Tracker - 2.03 87.8 85.7 ' ’ ’ ’ ’

MICA 090 1.11 - -
FlowFace 0.87 1.07 2.21 .083 -
TokenFace 0.76 0.82 3.70 .101 93.8
Ours 0.87 1.07 1.76 .077 98.0

NHA (stagel) 2.35 86.9 80.6 2.67 86.4 76.2
VHAP (stagel) 2.95 84.7 71.0 3.04 84.8 69.9
FlowFace 1.93 87.8 87.0 1.96 879 879
Ours 1.66 88.3 91.2 1.66 88.4 91.6

rate of 1 x 10~ for the prediction head and 1 x 1075 for the DINO backbone. For simplicity
we choose a light-weight network head. Using a DPT Ranftl et al.| (2021) head instead
resolves the last remaining patch artifacts of the ViT-Base backbone but drastically increases
runtime whithout improving down-stream reconstruction performance. Similarly, we find
that replacing ViT-Base with Sapiens-300M |Khirodkar et al. (2024) backbone (the smallest
available Sapiens model) incurs high computational costs without reconstruction benefits.
We use 10% of the subjects as validation set, and exclude all the subjects from our benchmark
from the training set.

FLAMEFitting We use the Adam optimizer with Irjg =0.001 and Ire, =0.003. We set A, =
2000, A, =200, Aig =0.15 and Aex = 0.01. We perform 500 optimization steps which takes
30 seconds in our unoptimized implementation. As a comparison, the widely established
MetricalTracher [Zielonka et al| (2022) operates at roughly 2 frames per minute for their
online-tracking approach, while our method achieves a total runtime of 30 frames per
minute (measure and averaged over a video with 300 frames). All runtime measurements
were performed on an RTX3080 GPU.

5.2 BASELINES

Feed-Forward FLAME Regressors The first category of approaches we compare against
are feed-forward neural networks trained to predict FLAME parameters. In this category
of baselines, we choose DECA [Feng et al.|(2021) and EMOCA Danécek et al|(2022) which
are trained on 2D data only. Additionally, we compare against MICA [Zielonka et al.| (2022),
which is trained on 3D data and only predicts identity parameters z;q, and TokenFace Zhang
et al.[(2023) which istrained on a mixture of 2D and 3D data.

Optimization-Based Approaches We compare against MetricalTracker [Zielonka et al.
(2022), which optimizes against two sets of facial landmark predictionsBulat & Tzimiropou-
los|(2017);/Cao et al.|(2013) and a photometric term. Additionally, we compare against Flow-
Face|Taubner et al|(2024a), a recent method that predicts flow from the uv-space into image
space, in order to predict 2D image-space vertex positions. Similar to Pixel3DMM, FlowFace
also uses a dense 2D vertex loss, but predicts them in a quite different manner. Finally, we
compare against VHAP (Qian et al., 2024) and Neural Head Avatars (NHA) (Grassal et al.}
2022), which start by optimizing within FLAME space (stagel) and continue by optimizing
for vertex offsets (stage2).

Normal Estimation We compare against the industry-born normal estimator Sapiens-
2B (Khirodkar et al.,2024) and concurrent work DAViD (Saleh et al.,[2025). We also compare
against Deep Face Normals (DFN) (Abrevaya et al.,2020) and Diff-E2E (Martin Garcia et al.,
2025), which distill an estimator from StableDiffusion (Rombach et al., [2022)

5.3 Our BENCHMARK

Posed Face Reconstruction We present quantitative and qualitative results for the posed
reconstruction task (see section in table [I| and fig. 3} respectively. Quantitatively,
Pixel3DMM outperforms all baselines by a large margin. In general, the feed-forward pre-
dictors (DECA, EMOCAV2, TokenFace) perform significantly worse than the optimization
based approaches (MetricalTracker, FlowFace and Ours). Visually, DECA and TokenFace
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seem to underfit facial expressions, while EMOCAv2 exaggerates them. Compared to our
approach, FlowFace sometimes exhibits performance drops for extreme facial expressions.

e A
I3 1191 11t

Input Sapiens Diff-E2E DAVID Ours COLMAP Input Sapiens  DiffE2E  DAViD Ours  COLMAP
Figure 5: Surface Normal Estimation: Qualitative comparison to SoTA surface normal estimators.

Neutral Face Reconstruction Results on the neutral reconstruction task (see section [4.1)
are provided in fig. [d and table[l] First of all, we can observe that the significantly better
posed reconstruction metrics ot FlowFace and Pixe]3DMM do not immediately translate
to the neutral reconstruction. We attribute this to the ambiguities between identity and
expression in the optimization process. Note that both FlowFace and Pixel3DMM rely on
MICA predictions to initialize identity parameters z;4. While FlowFace ends up with worse
neutral reconstructions, our approach is able to improve upon MICA by a small margin.
Nevertheless, we highlight the importance of using MICA to help disambiguate between
z;q and z.y, as ablated in section Note, that TokenFace is missing from the neutral
evaluation, since TokenFace’s authors only provided posed meshes.

5.4 ResuLrrs oN ExisTING BENCHMARKS

FaceScape Benchmark Zhu et al. (2023) The FaceScape benchmark only evaluates the
posed reconstruction task. The relative performance across methods matches with results
on our benchmark, see table 2] Our method outperforms all baselines by a large margin
w.rt. chamfer distance (CD) and mean normal error (MNE), and has a slightly worse

completeness rate (CR) than DECA, see (2023) for more details.

NoW Benchmark Sanyal et al. (2019) On the NoW benchmark, which only evaluates the
neutral reconstruction task, we achieve the same metrics as FlowFace, which is the best-
performing optimization-based approach, but perform worse than TokenFace. However
on FaceScape and our benchmark we significantly outperform TokenFace. Similarly to the
results on our benchmark, Pixel3DMM can only improve a small amount on top of the MICA
predictions. We hypothesize that our prior significantly helps posed reconstructions, but
struggles to guide the optimization to properly disentangle between z;q and ze.

5.5 IN-tHE-WILD REsuLrs

In fig.[I} we demonstrate the robustness of our prior networks and fitting algorithm on chal-
lenging in-the-wild examples, including strong appearance variation, various background
contexts and surroundings, lighting /shadow effects, and occlusions such as glasses, head
wear and hands. Ultimately, this demonstrates that our approach successfully generalizes,
beyond the training data distribution. We hope that this will inspire more work in a similar
direction, especially since all data is available and 2 48GB GPUs are sufficient for training.
For tracking results on in-the-wild monocular videos we refer to our supplementary video.

5.6 Surrace NormAL EstiMATION

In table[d]and fig.[, we show quantitative and qualitative comparisons against recent state-
of-the-art normal estimation methods. Our network estimates more detailed and accurate
normals than the baselines. DAViD, a concurrent work to ours train on a vast synthetic
dataset, predicts the most competitive results. However, DAViD struggles to accurately
predict skin creases caused by complex deformations (see fig. ), highlighting the need for
real data. We also train a version of Pixel3DMM on the union of our data and the DAViD
data, denoted as "Ours*". See appendix[A.4]for more qualitative in-the-wild results.
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Table 3: Ablation Study. Table 4: Normal Estimation.

Neutral Posed
Method H3DS MultiFace NeRSemble
L1, L2y R*°t L1y L2y R*St
Lmks. 168 1.14 91.1 2.02 137 857 DFN 0.878 0.914 0.907

Lmks.+Pho. 1.69 1.14 90.8 2.051.38 854 Diff-E2E 0.889 (0.933 0.911
Ours+Lmks.+Pho. 1.68 1.14 91.0 1.86 1.26 88.3 SapienS 0902 0950 0911

only U 1.66 1.11 91.3 1.72 1.16 90.6 )

only N/ 1.69 1.12 90.7 1.70 1.14 91.0 David 0.903 0.943 0.927
only Sapiens 1.721.16 902 1.81 1.23 89.0 Qurs 0.905 0.958 0.931
Ours 1.66 1.12 912 1.66 1.11 9.6 Qurs® 0912 0.962 0934
no MICA 1.90 1.29 872 1.74 1.17 90.1

5.7 ABLATION EXPERIMENTS

We conduct extensive ablations on different compositions of our optimization energy E
in table We start by using the simplest energy, with only the landmark loss from
MetricalTracker, and our regularization term. Next we add a photometric term, as in
MetricalTracker. Asshownin table[3} these configurations achieve significantly worse posed
reconstructions. Interestingly, adding landmarks and photometric terms to the complete
our proposed energy deteriorates reconstruction performance. Next, we investigate the
effect of only using the predictions from N and U, respectively. Compared to our full model
these variants showcase lower posed reconstruction scores. We also compare our normal
predictor N against Sapiens-2B Khirodkar et al. (2024), which confirms that our improved
normal predictions translate to better reconstructions. Finally, we ablate the effect of using
MICA. Without MICA's predictions of z;q especially the neutral reconstruction metrics drop,
indicating its importance for disentanglement between identity and expression.

5.8 ApbITioNAL RESULTS

We highly encourage the reviewers to watch our supplementary video, and qualitative
video tracking comparisons against the most competitive baseline (as suggested by our
benchmark), which has publicly available code.

6 LimvrtatioNs AND FUTURE WORK

While we demonstrate the effectiveness of our approach for single image 3D reconstruc-
tion, several limitations remain. While our optimization energy could be easily extended to
incorporate observations from multiple viewpoints, our prior models cannot currently ex-
ploit multiview information. Future extensions of our architecture could include multiview
inputs similar to DUSt3R |Wang et al.| (2024), or video inputs similar to RollingDepth Ke
et al.|(2024). Next, for training large-scale 3DMM conditioned generative models like 3D
GANS |[Sun et al.| (2023) or diffusion models Kirschstein et al.| (2024)); Prinzler et al.| (2024);
Taubner et al.|(2024b), e.g. on the LAION-Face dataset/Zheng et al.|(2022), fast reconstruction
speed would be desirable. One potential avenue could be the distillation of our per-pixel
predictors into a feed-forward 3DMM predictor. Finally, our experiments showcase, that
optimization based approaches cannot flawlessly disambiguate identity and expression
parameters. Therefore, specifically crafted priors for disambiguation are required.

7 CONCLUSION

In this paper, we trained pixel-alighed geometric prior networks, by leveraging pre-trained,
generalized foundational features on publicly available 3D face datasets, which we reg-
istered into a uniform format. Our trained networks successfully generalize beyond the
diversity of the training data, and we experimentally show that our normal predictor signifi-
cantly outperforms all available normal estimators. We designed a 3DMM fitting algorithm
on top of our prior predictions, which results in state of the art single image 3D recon-
struction. Finally, we introduce a new benchmark, which features diverse and extreme
expressions and allows, for the first time, to simultaneously evaluate neutral and posed
geometry.
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A APPENDIX

In this appendix we provide additional information about our benchmark (see ap-
pendix and additional qualitative results for normal estimation and two more base-
lines, in sections[A.4]and[A.5] respectively. Additionally, we highly encourage the reviewers
to watch out supplemental video, including qualitative comparisons for video tracking.

A.1 3D Face ReconsTrRUCTION BENCHMARK

Human face geometry is complex due to the presence of thin structures, different textures
and diverse shapes. Furthermore, humans can deform their facial geometry in a remarkable
way, performing a wide range of expressions and emotions. Consequently, building a
robust 3D face reconstruction pipeline that covers all potential states of a human face is
a challenging endeavor. Several 3D face reconstruction benchmarks have been previously
proposed to rank reconstruction methods in terms of quality and robustness.

Table 5: Comparison of 3D Face Reconstruction Benchmarks. We compare data capture
year, whether the benchmark evaluates posed and/or neutral geometry, expression diver-
sity, viewpoint diversity, number of persons (#pers.) and number of GT scans.

expression viewpoint

Year posed neutral diversity  diversity

#pers. #Scans

Stirling [Feng et al.| (2018) 2013 v v 133 133
REALY |Chai et al.| (2022) 2015 vV 100 100
NoW Sanyal et al.[(2019) 2019 v v 80 80
FaceScape|Zhu et al.[(2023) 2020 v v v 20 20
Ours 2023 v v v v 21 441

In table[5|we present a comparison of popular single-image face reconstruction benchmarks.
However, we find that most existing benchmarks rarely evaluate extreme facial expressions,
an important aspect of human face geometry. This can be seen in fig.[f| where we retrieve
the 5 most expressive images from the recent FaceScape benchmarkZhu et al[(2023) and the
established NoW benchmark|Sanyal et al.| (2019). We do this by running EMOCA |Danécek
et al[(2022) on each image of the dataset, collecting the expression codes, and then perform-
ing furthest point sampling in EMOCA’s expression space, starting from the expression with
highest norm. We find that FaceScape only contains 20 different but relatively articulated
expressions while the NoW benchmark is dominated by mostly neutral and smiling expres-
sions. We therefore propose a new benchmark for 3D face reconstruction that is sourced
from images of the recently published multi-view video dataset NeRSemble Kirschstein
et al|(2023). For 21 diverse identities, we select 20 distinct expressions via furthest point
sampling in expression space, for a total of 420 images. The corresponding ground truth
3D geometries are obtained by running COLMAP |Schonberger & Frahm)| (2016) on the 16
full resolution 3208x2200 images. Additionally, we compute one pointcloud for a neutral
frame of each person, yielding 441 ground truth 3D geometries in total.

A.1.1 Task DEscripTION

Our benchmark consists of two 3D face reconstruction tasks, given a single image as an
input: posed and neutral 3D face reconstruction. Itis the first benchmark that evaluates both
settings at the same time. The following briefly defines the differences of both tasks.

Posed Reconstruction: The posed reconstruction task aims to measure the fidelity of a 3D
reconstruction. Given an image of a face under arbitrary facial expression, the underlying
geometry shall be recovered. This requires images with paired ground truth geometries
which are available in NeRSemble trough COLMAP.

Neutral Reconstruction The neutral reconstruction task on the other hand is specific
to the face domain and measures how well a reconstruction method can disentangle the
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Ours

FaceScape

NoW

J ] o’ ¢ ,
Figure 6: 3D Face Reconstruction Benchmark Analysis. We show the 5 most diverse images from
each benchmark dataset, as measured by the expression codes of EMOCA |Danécek et al.|(2022). Our

benchmark covers a richer diversity of facial expressions.

effects of shape and expression on a human 3D face. Specifically, the task is to reconstruct
the geometry of a person’s face under neutral expression given an image of the person
under any arbitrary expression. Hence, the reconstruction method needs to understand
the current facial expression, how it deforms the geometry and how the face would look
like under neutral expression. On the other hand, this task does not explicitly measure
whether a method can reconstruct expressions well.

Comparison to Existing Benchmarks The two established benchmarks from
(2018) and [Sanyal et al.| (2019) capture images and a 3D scan separately, therefore the ob-
served expression does not match the ground truth geometry. As a consequence, these
benchmarks can only measure neutral reconstruction performance. In contrast, two other
recent benchmarks ((Zhu et al}[2023; Chai et al., 2022))) merely evaluate posed reconstruc-
tions. Our benchmark is the first to evaluate both tasks at the same time.

A.1.2 EvaruatioN ProTOCOL

To measure the performance of a reconstructed posed or neutral 3D face, we follow estab-
lished practice and first rigidly align the prediction to the ground truth point cloud via
landmark correspondences and ICP. Furthermore, we use segmentation masks
to remove non-facial areas (hair, neck, ears, and mouth interior) from the ground
truth. We then compute three metrics: (i) uni-directional L1 Chamfer distance from GT
points to the nearest mesh surface, (ii) cosine similarity (NC) of predicted mesh normals and
GT point cloud normals, and (iii) Recall thresholded at 2.5mm (R*?) which is the percentage
of GT points whose nearest mesh surface is 2.5mm or closer.

A.2 ABLATIONS

In fig. |7} we present qualitative results corresponding to our quantitative ablation study in
table[3] Note that we focus on posed reconstructions, since the neutral reconstruction quality
is heavily aided by the MICA prediction.

A.2.1 AbpbitioNAL PrIORS

Next to the prediction of surface normals and UV-coordinates, as presented in the main
paper, it is possible to predict different modalities. In particular, we also studied the
prediction of 3D position maps in the canonical coordinate frame of the face, and the
prediction of surface normals in neutral space. We present a quantitative comparison in
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Figure 7: Ablation Study (Posed): We present a qualitative comparison to several ablation
experiments.

table[6] and a detailed description in the following two paragraphs:

Canonical Position Map Prediction Predicting depth or position maps similar to
DUSt3R Wang et al.| (2024) is another natural choice of a generic geometric cue, next to
surface normals. Due to possibility to define an unambiguous canonical coordinate frame
for faces, we find that predicting per pixel 3D position in that canonical reference frame is
more suitable than depth prediction, which heavily depends on the camera position. We
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Neutral Posed
L1, NCt+ R*%t L1, NCt+ R*t

Ours + PosMap 170 88.1 90.7 221 873 0.857
Ours, + Mneurrar 1.71 882 905 173 873 904
Ours 1.66 883 91.2 1.66 88.4 916

Table 6: Ablations of Different Prior Modalities: We ablate the effect of extending our
optimization energy F (see eq. (7)) with additional priors.

Neutral Posed
L1, NCt+ R*>+ L1, NC+ R*t
Ours, Single Image 151 882 927 153 874 933

MICA, frame average 146 883 94.6 - -
Ours, Monocular Video 1.38 88.4 96.4 1.45 88.2 94.8

Table 7: Ablation on Observation Density: Increasing the observation density by extend-
ing our optimization over a monocular video sequence improves reconstruction results.
Especially, neutral reconstruction performance benefits from multiple observation of the
same person under changing facial expressions and head poses.

thus define the network
P . RP12X512x3 _, R512x512x3 )

similar to AV in eq. (I), and train it similar according to eq. (). Data pre-processing
is also conducted in a similar manner, by simply rendering vertex positions instead of
normals. Although the prediction position maps look reasonable, integrating a position
map rendering loss

L, = ||P(I) — render,(V)|| (10)
into our [glptimization energy eq. (7) turns out to deteriorate reconstruction quality, as shown
in table

Neutral Surface Normals Similar to AV in eq. (), it is possible to define a pixel-aligned
surface normal estimation task aimed to help disentanglement of identity and expression.
To this end, we define Nyeutra Which predicts per-pixel normals in neutral space, as opposed
to N which predicts posed-space surface normals. However, ground truth for per-pixel
neutral normals is unknown for 3D scans. Therefore, we resort to our non-rigid registration
results. To obtain neutral normals, we render per-pixel bary-centric coordinates of any
registered posed mesh, which allows us to index the registered neutral mesh of the same
person in order to determine the neutral surface normal.

Once trained, we extend our optimization energy eq. (7) by

‘C%eutral = ||Nneutral(1) - rendern(VneUfral)”’ (11)

where neutral vertices Vyeutral are obtained with FLAME parameters for which all attributes
except for the shape parameters have been set to zero. Doing so, however, slightly impairs
reconstruction quality, as shown in table |6 While the neutral scores are impaired less,
the prediction quality of Mpeutral is not good enough. We speculate that predicting neutral
normals is more prone to overfitting, since the task becomes more ill-posed and our training
dataset consists of only a relatively small number of identities. Furthermore, small errors
introduced in our registration procedure lead to a more noisy training signal. Note that for
training A we can leverage ground truth 3D scans, instead of registrations thereof.

A.2.2 MonNocuLAR VIDEO TRACKING

In another ablation experiment we analyze the effect of the observation density on the
reconstruction quality. To this end we compare single image reconstruction quality against
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monocular video reconstruction results. Due to the rather static head poses of the NeRSem-
ble Kirschstein et al.{(2023) video recordings, we select the five videos with the most signif-
icant head movement which were included in our single image reconstruction benchmark.
We then select the a frontal camera and compare how reconstructions change, when using
the whole video sequence as input, compared to just using individual frames. Quantitative
results are presented in table [/} We notice that especially neutral reconstruction quality
benefits, from including multiple observations of the same person under changing expres-
sions and head poses. For a more complete comparison, we include the evaluation of
frame-averaged MICA [Zielonka et al.|(2022) predictions, which serve as initialization to our
tracking. The results indicated that our optimization significantly improves upon MICA
due to a higher observation density. This experiments shows that our neutral reconstruc-
tion performance significantly improves in a video tracking scenario with sufficient (and
potential not too extreme) head rotation.

A.3 FaiLure Casgs

While our method generally performs very robust, even with respect to extreme head
rotations, lighting conditions and occlusions, we find that certain, extreme facial expression
cannot be properly represented. We show such examples from our proposed benchmark
in fig. |9 The fitting inaccuracies are partially caused by our prior networks, and partially
caused by FLAME'’s inability to represent complex lip movements.

In general, our normal estimator V seems to generalize the best to such out of distribution
expressions. In contrast, our UV-coordinate prediction network I/ is already limited by
its training data, which has been obtained using our registration procedure combining
FLAME fitting with non-rigid-registration. Therefore, if such expressions are in our training
dataset, their registrations will likely not be perfect, which reflects in the prediction quality.
Similarly, our reconstruction procedure is likely to fail such

expressions due to its dependence on the FLAME model.

In the future, we hope to see similar approaches, which uti-
lize more powerful 3DMMs, such as MonoNPHM (Gieben-
hain et al.| (2024).

Furthermore, we illustrate the error distribution of the 1701 N

examples in the NoW test set in fig.[8l As can be seen, the °

mean error, measured in mm, per example follows a well »

behaved distribution. There are merely 21 examples with R R R R
an error higher than 1.8mm and 8 have an error higher than

2.0mm.

Figure 8: Error Distribution
Finally, we encourage the reader to watch our supplemen-
tary video and supplementary tracking comparison to Met-
ricalTracker Zielonka et al.[(2022) for examples that show-
case the robustness of our approach.

A.4  Surrace NorMAL EsTIMATION

In this section we provide additional qualitative surface normal estimation results.

A.4.1 IN-THE-WILD NorMAL EsTiIMATION

One central quality of surface normal estimators, which ultimately makes them valuable
to our community, is their generalization to arbitrary in-the-wild images of human heads.
Thus, fig. |11| provides additional estimation results on the FFHQ dataset (Karras et al.
2019). Here, we qualitatively compare against results of two recent industry foundational
models, Sapiens (Khirodkar et al} |[2024) and DAViD (Saleh et al} [2025), as well as, Diff-
E2E (Martin Garcia et al) 2025), another recent surface normal estimator distilled from
StableDiffusion (Rombach et al., [2022). While Sapiens, tends to produce blurry results,
DIff-E2E over-emphasizes geometric details, resulting in unnatural sharp edges. Finally,
DAViD, a concurrent work to ours, produces the most competitive results on such images.
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Input Pred. Normals UV-overlay Fitting Frontal Error Map

Figure 9: Failure Cases: Extreme expressions can pose an issue to our method, which is
mainly caused by the low representation capacity of the FLAME model. Thus, inference-
time optimization is impeded. The same holds for obtaining high-fidelity and consistent
registrations to get g.t. UV-coordinates for training.

However, similar to our findings in the main paper, the synthetic training data of DAViD is
clearly noticeable in its predictions. This can especially be seen in the estimated geometry in
the eye region, and the flatness of predicted wrinkles and creases of the skin. Pixe]l3DMM
tends to produces the most visually pleasing results, while all methods produce fairly
robust estimates.

A.4.2 ApDDITIONAL VISUALIZATIONS

Furthermore, we provide additional visualizations in fig. which corresponds to the
quantitative evaluation in tablefd] Here, we also show error maps, visualized using a t urbo-
coloring scheme. Please note that the camera registration in the H3DS dataset
is slightly misaligned, which results in significantly higher errors, compared to the
NeRSemble Kirschstein et al.|(2023) and MultiFaceWuu et al.| (2022) evaluations. The error

maps confirm our error analysis of the previous subsection. In general, all methods perform
similar on in-the-wild and studio images, confirming their generalization abilities.

A.5 AbpDITIONAL BASELINES

Finally, we present qualitative comparisons to VHAP (Qian et al.,2024) and Neural Head
Avatars (NHA) (Grassal et al.|2022) in fig.[13] While both methods were originally designed
for monocular video tracking, they can still be executed on a single image. However, the
increased sparsity of a single observations results in poor 3d reconstructions. In partic-
ular, both approaches consist of a two stage reconstruction paradigm: In the first stage
reconstruction is performed in the FLAME latent space, which heavily regularized the opti-
mization problem. In the second stage, both methods optimize for per-vertex offsets, which
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Figure 10: Benchmark Overview:
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increases the representational capacity. Especially, the second stage tends to overfit to the
single-view observation and degrade 3d accuracy.
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Input

Sapiens Diff-E2E DAViD

Figure 11: Surface Normal Estimates on FFHQ.
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Input DFN Sapiens Diff-E2E DAVID Ours COLMAP

Figure 12: Surface Normal Estimation: The first four rows show results from NeRSemble,
fllowed by one example from H3DS and two examples from MultiFace.
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VHAP (stagel) VHAP (stage2)  NHA (stagel) NHA (stage2)

Figure 13: Additional Baselines: Posed reconstruction.
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