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Pixel3DMM: Versatile Screen-Space Priors for
Single-Image 3D Face Reconstruction
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Figure 1: We present Pixel3DMM, a set of two ViTs Dosovitskiy et al. (2020), which are tailored
to predict per-pixel surface normals and uv-coordinates. Here, we demonstrate the fidelity and
robustness of Pixel3DMM on challenging inputs. From top to bottom we show input RGB, predicted
normals, 2D vertices extracted from the uv-coordinate prediction, and our FLAME fitting results.

Abstract

We address the 3D reconstruction of human faces from a single RGB im-
age. To this end, we propose Pixel3DMM, a set of highly-generalized vision
transformers which predict per-pixel geometric cues in order to constrain
the optimization of a 3D morphable face model (3DMM). We exploit the
latent features of the DINO foundation model, and introduce a tailored
surface normal and uv-coordinate prediction head. We train our model by
registering three high-quality 3D face datasets against the FLAME mesh
topology, which results in a total of over 1,000 identities and 976K images.
For 3D face reconstruction, we propose a FLAME fitting opitmization that
solves for the 3DMM parameters from the uv-coordinate and normal es-
timates. To evaluate our method, we introduce a new benchmark for
single-image face reconstruction, which features high diversity facial ex-
pressions, viewing angles, and ethnicities. Crucially, our benchmark is the
first to evaluate both posed and neutral facial geometry. Ultimately, our
method outperforms the state-of-the-art (SoTA) by over 15% in terms of
geometric accuracy for posed facial expressions.

1 Introduction

3D reconstruction of faces, tracking facial movements, and ultimately extracting expressions
for animation tasks are fundamental problems in many domains such as computer games,
movie production, telecommunication, and AR/VR applications. Recovering 3D head
geometry from a single image is a particularly important task due to the vast amount of
available image collections.
Unfortunately, reconstructing faces from a single input image is also inherently under-
constrained. Not only depth ambiguity renders this task challenging, but also ambiguities
between albedo and lighting/shadow effects. In addition, properly disentangling identity
and expression information – which is critical for many downstream applications – makes
the problem difficult. Finally, occlusions and unobserved facial regions further complicate
the problem in real application scenarios, thus highlighting the need for strong data priors.
A typical approach to single-image face reconstruction is to exploit 3D parametric head
models (3DMMs) Blanz & Vetter (2023); Li et al. (2017) which provide a low-dimensional
parametric representation for the underlying 3D geometry. Optimizing within a 3DMM’s

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

disentangled parameter space heavily constrains the search space with built-in assumptions
about plausible facial structure and expressions, and allows to extract disentangled identity
and expression information. Nonetheless, despite relying on 3DMMs, many ambiguities
remain and their simplifying assumptions about our world often cannot explain the com-
plexity of the real world. This necessitates additional priors in order to obtain compelling
fitting results such as sparse Sagonas et al. (2013) and dense Cao et al. (2013); Wood et al.
(2022) facial landmarks, or UV coordinate predictions Taubner et al. (2024a).
In recent years, we have also seen significant progress in feed-forward 3DMM regres-
sors Sanyal et al. (2019); Feng et al. (2021); Daněček et al. (2022); Retsinas et al. (2024);
Zielonka et al. (2022); Zhang et al. (2023). However, it is complicated to extend feed-
forward regressors, e.g. to a multi-view or temporal domain, and, as we will show later,
they fall behind optimization-based approaches on inputs with strong facial expressions.
Overall, accurate 3D face reconstruction from single images remains a challenging and
highly relevant problem.
Therefore, we propose Pixel3DMM, a novel optimization-based 3D face reconstruction
approach. Our main idea is to exploit and further develop broadly generalized and powerful
foundation models to predict pixel-aligned geometric cues that effectively constrain the 3D
state of an observed face. Given a single image at test time, we propose normal and uv-
coordinate predictions as optimization constraints from which we fit a 3D FLAME model.
Instead of a simple rendering loss of uv-coordinates, we then transfer the information
into a 2D vertex loss, which offers a wider basin of attraction during optimization. We
argue that this strategy is superior to traditional photometric terms, or sparse landmarks,
which often struggle with extreme view points and facial expressions. In order to train our
approach, we unify three recent, high-fidelity 3D face datasets Giebenhain et al. (2023); Zhu
et al. (2023); Martinez et al. (2024) by registering them against the FLAME Li et al. (2017)
model.Our approach outperforms all available normal estimators for human faces in the
NeRSemble Kirschstein et al. (2023) dataset.
In order to advance the evaluation of single-image 3D face reconstruction methods,
we further propose a new benchmark based on the multi-view video dataset NeRSem-
ble Kirschstein et al. (2023), which includes a wider variety of facial expressions than exist-
ing benchmarks Sanyal et al. (2019); Zhu et al. (2023); Feng et al. (2018); Chai et al. (2022).
Our benchmark is the first to allow for the simultaneous evaluation of posed and neutral
facial geometry. This enables a more direct comparison of methods, especially regarding
fitting fidelity and ability to disentangle expression and identity information. Finally, we
show that compared to our strongest baselines, our approach improves the L2-Chamfer
reconstructions loss by over 15% for posed geometry, while slightly improving over neutral
geometry predictions.
To summarize, our main contributions are as follows:

• A new formulation to exploit foundation model features for 3D-related, pixel-
aligned predictions, facilitating SoTA normal estimations for human faces.

• A novel 3D face reconstruction approach based on predicted uv-map correspon-
dences and surface normals.

• A 3D face reconstruction benchmark and evaluation protocol from high-fidelity
multi-view face captures.

We plan to make the model, code, and our new benchmark publicly available to promote
progress in single image 3D face reconstruction and encourage quantitative benchmarking
on challenging facial expressions.

2 Related Work
Single-Image 3DMM Fitting Tracking morphable models from single images is a well-
studied problem in the context of 3D face reconstruction and tracking. Early works Blanz
& Vetter (1999); Paysan et al. (2009); Li et al. (2017), introduced statistical shape and texture
priors to estimate 3D face geometry from 2D images. Such methods rely on photometric
fitting and subsequent approaches improve modeling capabilities using learned implicit
representations Lin et al. (2023); Giebenhain et al. (2024). While some methods Thies et al.
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Figure 2: Method Overview: Pixel3DMM consists of (a) learning pixel-aligned geometric priors
(left) and (b) test-time optimization against predicted uv-coordinates and normals (right). On the
left we show our network architecture and training examples. On the right we depict the process of
finding per-vertex 2D locations using a nearest neighbor (N.N.) look up, and our loss terms.

(2016); Grishchenko et al. (2020) favor a high tracking frame rate for real-time applications,
others favor reconstruction accuracy Zielonka et al. (2022).

Facial Landmark Prediction Numerous reconstruction methods Li et al. (2017); Cao et al.
(2013) for faces rely on accurate landmark predictions, which are usually coupled with
vertices of a template mesh. Pioneering work on detecting such landmarks already relies on
statistical learning Cootes et al. (2001) and more recent models exploit large datasets Wood
et al. (2021); Wu et al. (2018) and neural networks to improve the performance Bulat
& Tzimiropoulos (2017); Bazarevsky et al. (2019). MediaPipe Bazarevsky et al. (2019),
for instance, uses a convolutional network inspired by MobileNet Howard et al. (2017).
Another line of work focuses on densely aligning template mesh and 2D predictions. To
achieve this FlowFace Taubner et al. (2024a) employs a vision-transformer backbone and
iteratively refines the flow from UV to image space.

3DMM Regression DECA Feng et al. (2021) trains a regressor to predict 3DMM
parameters from an image . An extension of this work is presented in EMOCA Daněček
et al. (2022), which emphasizes the reconstruction of emotion-rich expressions. Similarly,
SPECTRE Filntisis et al. (2022) aims at temporal consistency and reconstructing lip motion.
SMIRK Retsinas et al. (2024) introduces a neural synthesis component, reducing the
domain gap between real and rendered images. Since the aforementioned methods don’t
assume 3D training data, it is easy to scale them to large datasets. As a downside, the lack
of 3D information impedes accuracy and leaves depth ambiguity. In order to address this,
MICA Zielonka et al. (2022) supervises directly in 3D space. TokenFace Zhang et al. (2023)
is a transformer-based method that can be trained on both 2D and 3D data.

Face Reconstruction Benchmarks The Stirling Feng et al. (2018) dataset contains 2000
images of 135 subjects. Unfortunately, ground truth reconstructions are only available for
neutral poses in this dataset. Similarly, the NoW Sanyal et al. (2019) benchmark provides
reconstructions only in the neutral expression. It has 2054 images of 100 subjects.Both the
FaceScape Zhu et al. (2023) and the REALY Chai et al. (2022) dataset contain posed scans.
While the former has 10 identities, the latter has 100 subjects. Neither of these two bench-
marks measures disentanglement by additionally evaluating against neutral geometry.

3 Pixel3DMM

In this work we address the challenges of single-image face reconstruction by learning
powerful priors of pixel-aligned geometric cues. In particular we train two vision trans-
former networks, which predict uv-coordinates and surface normals against which we
fit FLAME Li et al. (2017) parameters at inference time. In section 3.1 we describe our
Pixel3DMM networks, our data acquisition, and how we train them for accurate surface
normal and uv-coordinate prediction. Afterwards, in section 3.2, we elaborate on our single-
image fitting approach, which is purely based on our surface normal and uv-coordinate
predictions.

3
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3.1 Learning Pixel-Aligned Geometric Cues

Despite recently released high-quality 3D face datasets Zhu et al. (2023); Kirschstein et al.
(2023); Giebenhain et al. (2023); Martinez et al. (2024), such data is still relatively scarce,
especially w.r.t. the number of different identities, ethnicities, age distribution and lighting
variation. We therefore take inspiration from recent achievements on fine-tuning founda-
tional and large generative models to become experts on a constrained domain, e.g. Hu
et al. (2022); Ruiz et al. (2023).
In particular we train two expert networks

N : R512×512×3 → [−1, 1]512×512×3 and U : R512×512×3 → [ 0, 1]512×512×2 (1)

which, given a single input image I , predict surface normalsN (I) and uv-space coordinates
U(I), respectively.

3.1.1 Network Architecture

We build Pixel3DMM on top of the foundational features from a pre-trained DINOv2 Oquab
et al. (2023) backbone. As depicted in fig. 2, we extend the ViT architecture using a simple
prediction head. It consists of four additional transformer blocks, three up-convolutions
which lift the feature map resolution from 32 to 256 × 256. Finally, we use a single linear
layer to increase the feature dimensionality and unpatchify the predictions to 512× 512× c,
where c ∈ {3, 2} for normals and uv-coordinate prediction tasks, respectively.

3.1.2 Data Preparation

To train our networks, we opt for three recent, high-quality 3D face datasets: NPHM Gieben-
hain et al. (2023), FaceScape Zhu et al. (2023), and Ava256 Martinez et al. (2024). We follow
the non-rigid registration procedure from NPHM, register all datasets into a uniform for-
mat and topology. fig. 2 shows pairs of input views with the associated supervision signal
for surface normals and uv-coordinates.
Dataset Numbers In total, our dataset comprises 470 identities from NPHM in 23 expres-
sion and 40 renderings each (376K rgb, normal and uv images in total). For FaceScape we
use 350 subjects, observed under 20 different expressions and 50 cameras each (350K rgb,
normal and uv images in total). Since Ava256 is a video dataset, we leverage furthest point
sampling to select the 50 most diverse expressions per person. For each person we choose
a random subset of 20 cameras (250K rgb and uv images in total).
Diffsion-based Lighting Variations Since FaceScape and Ava256 are both studio datasets,
which are captured at rather homogeneous lighting conditions, we leverage IC-Light Zhang
et al. (2025), an image conditioned diffusion model Rombach et al. (2022), which alters the
lighting condition based on a text prompt or background image.

3.1.3 Training

We train our models M ∈ {N ,U} using a straight forward image translation formulation

argmin
ΨM

∑
k∈D

∑
p∈Mk

∥f(Ik)p − Y k
p ∥2, (2)

where ΨM denotes the network’s parameters, k ∈ D is a sample from our dataset, Ik and
Y k are input rgb and target images, respectively, and p ∈ Mk are all pixels in the associated
foreground mask.
Note, that instead of freezing the parameters of our DINOv2 backbone altogether, we set
their learning rate ten times lower, in order to encourage prior preservation but enable
stronger domain adoption.
Compared to Sapiens Khirodkar et al. (2024), a recent SoTA foundation model for human
bodies and faces, training our models is cheap and can be realized using 2 GPUs and
training for 3 days. Additionally, all our data is publicly available. The relatively low
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computational burden and data accessibility, will hopefully inspire more research to follow
in a similar direction.

3.2 Single-Image FLAME Fitting

Given a single image I , we leverage our prior networks to obtain predicted surface normals
N (I) and uv-coordinates U(I). Using these predictions we aim to recover 3DMM param-
eters. In particular, we optimize for FLAME Li et al. (2017) identity, expression, and jaw
parameters, as well as, camera rotation, translation, focal length and principal point:

ΩFLAME = {zid ∈ R300, zex ∈ R100, θ ∈ SO(3)} (3)
Ωcam = {R∈SO(3),t∈R3,fl∈R+,pp∈R2}. (4)

3.2.1 2D Vertex Loss

Using the estimated uv-coordinates U(I), we aim to extract the 2d location p∗v for each
visible vertex v ∈ V of the FLAME mesh. To this end we first run a facial segmentation
network Zheng et al. (2022), in order to mask out the background, eyeballs and mouth
interior. Then we find correspondences for each vertex v ∈ V using a nearest neighbor
lookup into U(I). To be more specific let T uv

v ∈ [0, 1]2 denote the uv-coordinate of v in the
template mesh T . Then we find the pixel location

p∗v = argmin
p∈P

∥T uv
v − U(I)p∥ (5)

as the pixel with the closest uv prediction. Finally, we define

Luv =
∑
v∈V

1∥T uv
v −U(I)p∥<δuv · |p

∗
v − π(v)| (6)

to be our 2d vertex loss, where 1 denotes the indicator function which masks out vertices
with a nearest neightbor distance larger than δuv . V = FLAME(ΩFLAME) is the current
estimate of the FLAME parametric model, and π denotes the projection implied by the
current estimate of the camera parameters Ωcam.

3.2.2 Optimization

Next to the 2d vertex lossLuv , we include the normal lossLn = |N (I)−rendern(V )|, where
rendern denotes a rendering of surface normals of the FLAME mesh. The regularization
term R = λid∥zid − zMICA

id ∥22 + λex∥zex∥22 completes our overall energy term
E = λuvLuv + λnLn +R. (7)

Here zMICA
id denotes MICA’s Zielonka et al. (2022) identity prediction.

3.3 Monocular Video Tracking

Next to the single-image scenario, tracking faces in monocular videos is a fundamental task
in computer vision. To address this problem, we simply extend our optimization strategy
from section 3.2.2 globally over all images in a video sequence {It}Tt=1. Using our prior
networks, we first obtain normal predictions {N (It)} and uv-predictions {U(It)} After
obtaining an initial estimate for Ω(0)

FLAME and Ω
(0)
cam on the first frame by optimizing for eq. (7),

we freeze zid, fl and pp. We then sequentially optimize for all remaining attributes in
Ω

(t)
FLAME and Ω

(t)
cam. Using the results from the sequential optimization pass as initialization,

we extend eq. (7) to a batched version using randomly sampled frames. Note, that the
parameters zid, fl and pp are shared for all frames. In order to enforce smoothness across
all per-frame optimization targets we add a smoothness term

LΦ
smooth=

λΦ
smooth
2 ∗B

∑
t∈B

∥Φ(t−1)−Φ(t)∥22+∥Φ(t)−Φ(t+1)∥22 (8)

to the energy E, where Φ(t) ∈ {z(t)ex , θ
(t),R(t), t(t)} denotes any of the per-frame variables.

5
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4 3D Face Reconstruction Benchmark

Constructing a benchmark that covers the variety of facial geometry and its complex de-
formations is a challenging endeavor. Compared to existing benchmark, ours focuses on
strong facial expressions, and is the first to jointly evaluate posed and neutral face reconstruc-
tion. Our benchmark contains 21 subjects, each in its neutral state and in 20 different and
diverse facial expressions. We e hope that our proposed benchmark will be adopted as a
standard by the community to encourage better quantitative comparisons across methods.
For more information we refer to appendix A.1.

Input DECA EMOCA Metr. Track. TokenFace FlowFace Ours
Figure 3: Qualitative Comparison (Posed): We show overlays of the reconstructed meshes.
Insets with a blue border depict L2-Chamfer distance as an error map, rendered from
a frontal camera. Red insets show the reconstructed mesh from the same camera. We
encourage the reviewers to watch our supplementary material for additional visualizations.
4.1 Task Description and Evaluation Protocol

Our benchmark consists of posed and neutral 3D face reconstruction. The posed recon-
struction task aims to measure the fidelity of a 3D reconstruction. Given any expressive
face image, the underlying geometry shall be recovered. The neutral reconstruction task
measures how well a reconstruction method can disentangle the effects of shape and ex-
pression. Specifically, the task is to reconstruct the face under neutral expression given
an image of the person under any arbitrary expression. Both tasks are evaluated using
standard practice, and refer to appendix A.1 for more details.

Input DECA EMOCA MICA FlowFace Ours Neutral image

Figure 4: Qualitative Comparison (Neutral): Alignment against the neutral expression.

5 Experimental Results

5.1 Implementation Details
Prior Learning We train Pixel3DMM using the Adam Kingma & Ba (2014) optimizer, a
batch size of 40, and 2 A6000 GPUs, which takes 3 days until convergence. We use a learning

6
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Table 1: Results on our benchmark.
Neutral Posed

L1↓ NC↑ R2.5↑ L1↓ NC↑ R2.5↑

MICA 1.68 88.3 91.0 - - -
TokenFace - - - 2.62 86.5 76.8
DECA 2.07 87.6 84.5 2.38 87.0 79.8
EMOCAv2 2.21 87.3 82.4 2.63 86.0 75.8
Metr. Tracker - - - 2.03 87.8 85.7
NHA (stage1) 2.35 86.9 80.6 2.67 86.4 76.2
VHAP (stage1) 2.95 84.7 71.0 3.04 84.8 69.9
FlowFace 1.93 87.8 87.0 1.96 87.9 87.9
Ours 1.66 88.3 91.2 1.66 88.4 91.6

Table 2: Existing benchmarks.

Method NoW FaceScape
Med.↓ Mean↓ CD↓ MNE↓ CR↑

Dense 1.02 1.28 - - -
PRNet - - 3.56 .126 89.6
3DDFAv2 - - 3.60 .096 93.1
DECA 1.09 1.38 4.69 .108 99.5
MICA 0.90 1.11 - - -
FlowFace 0.87 1.07 2.21 .083 -
TokenFace 0.76 0.82 3.70 .101 93.8
Ours 0.87 1.07 1.76 .077 98.0

rate of 1×10−4 for the prediction head and 1×10−5 for the DINO backbone. For simplicity
we choose a light-weight network head. Using a DPT Ranftl et al. (2021) head instead
resolves the last remaining patch artifacts of the ViT-Base backbone but drastically increases
runtime whithout improving down-stream reconstruction performance. Similarly, we find
that replacing ViT-Base with Sapiens-300M Khirodkar et al. (2024) backbone (the smallest
available Sapiens model) incurs high computational costs without reconstruction benefits.
We use 10% of the subjects as validation set, and exclude all the subjects from our benchmark
from the training set.
FLAME Fitting We use the Adam optimizer with lrid = 0.001 and lrex = 0.003. We set
λuv =2000, λn =200, λid =0.15 and λex =0.01. We perform 500 optimization steps which
takes 30 seconds in our unoptimized implementation.

5.2 Baselines
Feed-Forward FLAME Regressors The first category of approaches we compare against
are feed-forward neural networks trained to predict FLAME parameters. In this category
of baselines, we choose DECA Feng et al. (2021) and EMOCA Daněček et al. (2022) which
are trained on 2D data only. Additionally, we compare against MICA Zielonka et al. (2022),
which is trained on 3D data and only predicts identity parameters zid, and TokenFace Zhang
et al. (2023) which istrained on a mixture of 2D and 3D data.
Optimization-Based Approaches We compare against MetricalTracker Zielonka et al.
(2022), which optimizes against two sets of facial landmark predictions Bulat & Tzimiropou-
los (2017); Cao et al. (2013) and a photometric term. Additionally, we compare against Flow-
Face Taubner et al. (2024a), a recent method that predicts flow from the uv-space into image
space, in order to predict 2D image-space vertex positions. Similar to Pixel3DMM, FlowFace
also uses a dense 2D vertex loss, but predicts them in a quite different manner. Finally, we
compare against VHAP (Qian et al., 2024) and Neural Head Avatars (NHA) (Grassal et al.,
2022), which start by optimizing within FLAME space (stage1) and continue by optimizing
for vertex offsets (stage2).
Normal Estimation We compare against recent large-scale industry-born surafce normal
estimators Sapiens-2B (Khirodkar et al., 2024) and concurrent work DAViD (Saleh et al.,
2025). Additionally, we compare against Deep Face Normals (DFN) (Abrevaya et al., 2020)
and Diff-E2E (Martin Garcia et al., 2025), which distill a normal estimator from StableDif-
fusion (Rombach et al., 2022)

5.3 Our Benchmark
Posed Face Reconstruction We present quantitative and qualitative results for the posed
reconstruction task (see section 4.1) in table 1 and fig. 3, respectively. Quantitatively,
Pixel3DMM outperforms all baselines by a large margin. In general, the feed-forward pre-
dictors (DECA, EMOCAv2, TokenFace) perform significantly worse than the optimization
based approaches (MetricalTracker, FlowFace and Ours). Visually, DECA and TokenFace
seem to underfit facial expressions, while EMOCAv2 exaggerates them. Compared to our
approach, FlowFace sometimes exhibits performance drops for extreme facial expressions.
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Input Sapiens Diff-E2E DAViD Ours COLMAP Input Sapiens Diff-E2E DAViD Ours COLMAP

Figure 5: Surface Normal Estimation: Qualitative comparison to SoTA surface normal estimators.

Table 3: Ablation Study.
Neutral Posed

L1↓ L2↓ R2.5↑ L1↓ L2↓ R2.5↑

Lmks. 1.68 1.14 91.1 2.02 1.37 85.7
Lmks.+Pho. 1.69 1.14 90.8 2.05 1.38 85.4
Ours+Lmks.+Pho. 1.68 1.14 91.0 1.86 1.26 88.3
only U 1.66 1.11 91.3 1.72 1.16 90.6
only N 1.69 1.12 90.7 1.70 1.14 91.0
only Sapiens 1.72 1.16 90.2 1.81 1.23 89.0
Ours 1.66 1.12 91.2 1.66 1.11 91.6
no MICA 1.90 1.29 87.2 1.74 1.17 90.1

Table 4: Normal Estimation.
Method H3DS MultiFace NeRSemble

DFN 0.878 0.914 0.907
Diff-E2E 0.889 0.933 0.911
sapiens 0.902 0.950 0.911
David 0.903 0.943 0.927
Ours 0.905 0.958 0.931
Ours* 0.912 0.962 0.934

Neutral Face Reconstruction Results on the neutral reconstruction task (see section 4.1)
are provided in fig. 4 and table 1. First of all, we can observe that the significantly better
posed reconstruction metrics of FlowFace and Pixel3DMM do not immediately translate
to the neutral reconstruction. We attribute this to the ambiguities between identity and
expression in the optimization process. Note that both FlowFace and Pixel3DMM rely on
MICA predictions to initialize identity parameters zid. While FlowFace ends up with worse
neutral reconstructions, our approach is able to improve upon MICA by a small margin.
Nevertheless, we highlight the importance of using MICA to help disambiguate between
zid and zex, as ablated in section 5.7. Note, that TokenFace is missing from the neutral
evaluation, since TokenFace’s authors only provided posed meshes.

5.4 Results on Existing Benchmarks
FaceScape Benchmark Zhu et al. (2023) The FaceScape benchmark only evaluates the
posed reconstruction task. The relative performance across methods matches with results
on our benchmark, see table 2. Our method outperforms all baselines by a large margin
w.r.t. chamfer distance (CD) and mean normal error (MNE), and has a slightly worse
completeness rate (CR) than DECA, see Zhu et al. (2023) for more details.

NoW Benchmark Sanyal et al. (2019) On the NoW benchmark, which only evaluates
the neutral reconstruction task, we achieve the same metrics as FlowFace, which is the
best-performing optimization based approach, but perform worse than TokenFace. Note,
however, that on FaceScape and our benchmark, we significantly outperform TokenFace.
Similarly to the results on our benchmark, Pixel3DMM can only improve a small amount
on top of the MICA predictions. We hypothesize that our prior significantly helps posed
reconstructions, but struggles to guide the optimization to properly disentangle between
zid and zex.

5.5 In-the-Wild Results

In fig. 1, we demonstrate the robustness of our prior networks and fitting algorithm on chal-
lenging in-the-wild examples, including strong appearance variation, various background
contexts and surroundings, lighting/shadow effects, and occlusions such as glasses, head
wear and hands. Ultimately, this demonstrates that our approach successfully generalizes,
even beyond the training data distribution. We hope that this will inspire more work in a
similar direction, especially since all data is available and 2 48GB GPUs are sufficient for
training. For tracking results on in-the-wild monocular videos we refer the reader to our
supplementary video.
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5.6 Surface Normal Estimation

In table 4 and fig. 5, we show quantitative and qualitative comparisons against recent state-
of-the-art normal estimation methods. Our network estimates more detailed and accurate
normals than the baselines. DAViD, a concurrent work to ours train on a vast synthetic
dataset, predicts the most competitive results. However, DAViD struggles to accurately
predict skin creases caused by complex deformations (see fig. 5), highlighting the need for
real data. We also train a version of Pixel3DMM on the union of our data and the DAViD
data, denoted as "Ours∗". For more qualitative results and in-the-wild estimates, we refer
to appendix A.2.

5.7 Ablation Experiments

We conduct extensive ablations on different compositions of our optimization energy E
in table 3. We start by using the simplest energy, with only the landmark loss from
MetricalTracker, and our regularization term. Next we add a photometric term, as in
MetricalTracker. As shown in table 3, these configurations achieve significantly worse posed
reconstructions. Interestingly, adding landmarks and photometric terms to the complete
our proposed energy deteriorates reconstruction performance. Next, we investigate the
effect of only using the predictions from N and U , respectively. Compared to our full
model these variants showcase lower posed reconstruction scores. We also compare our
normal predictor N against Sapiens-2B Khirodkar et al. (2024), which confirms that our
improved normal predictions translate to better reconstructions. Finally, we ablate the
effect of using the MICA prior. Without MICA’s predictions of zid especially the neutral
reconstruction metrics drop, indicating its importance for disentanglement between identity
and expression.

5.8 Additional Results

We highly encourage the reviewers to watch our supplementary video, and qualitative
video tracking comparisons against the most competitive baseline (as suggested by our
benchmark), which has publicly available code.

6 Limitations and Future Work
While we demonstrate the effectiveness of our approach for single image 3D reconstruc-
tion, several limitations remain. While our optimization energy could be easily extended to
incorporate observations from multiple viewpoints, our prior models cannot currently ex-
ploit multiview information. Future extensions of our architecture could include multiview
inputs similar to DUSt3R Wang et al. (2024), or video inputs similar to RollingDepth Ke
et al. (2024). Next, for training large-scale 3DMM conditioned generative models like 3D
GANS Sun et al. (2023) or diffusion models Kirschstein et al. (2024); Prinzler et al. (2024);
Taubner et al. (2024b), e.g. on the LAION-Face dataset Zheng et al. (2022), fast reconstruction
speed would be desirable. One potential avenue could be the distillation of our per-pixel
predictors into a feed-forward 3DMM predictor. Finally, our experiments showcase, that
optimization based approaches cannot flawlessly disambiguate identity and expression
parameters. Therefore, specifically crafted priors for disambiguation are required.

7 Conclusion
In this paper, we trained pixel-aligned geometric prior networks, by leveraging pre-trained,
generalized foundational features on publicly available 3D face datasets, which we reg-
istered into a uniform format. Our trained networks successfully generalize beyond the
diversity of the training data, and we experimentally show that our normal predictor signifi-
cantly outperforms all available normal estimators. We designed a 3DMM fitting algorithm
on top of our prior predictions, which results in state of the art single image 3D recon-
struction. Finally, we introduce a new benchmark, which features diverse and extreme
expressions and allows, for the first time, to simultaneously evaluate neutral and posed
geometry.
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A Appendix

In this appendix we provide additional information about our benchmark (see ap-
pendix A.1), and additional qualitative results for normal estimation and two more base-
lines, in sections A.2 and A.3, respectively. Additionally, we highly encourage the reviewers
to watch out supplemental video, including qualitative comparisons for video tracking.

A.1 3D Face Reconstruction Benchmark

Human face geometry is complex due to the presence of thin structures, different textures
and diverse shapes. Furthermore, humans can deform their facial geometry in a remarkable
way, performing a wide range of expressions and emotions. Consequently, building a
robust 3D face reconstruction pipeline that covers all potential states of a human face is
a challenging endeavor. Several 3D face reconstruction benchmarks have been previously
proposed to rank reconstruction methods in terms of quality and robustness.

Table 5: Comparison of 3D Face Reconstruction Benchmarks. We compare data capture
year, whether the benchmark evaluates posed and/or neutral geometry, expression diver-
sity, viewpoint diversity, number of persons (#pers.) and number of GT scans.

Year posed neutral expression
diversity

viewpoint
diversity #pers. #Scans

Stirling Feng et al. (2018) 2013 ✓ ✓ 133 133
REALY Chai et al. (2022) 2015 ✓ 100 100
NoW Sanyal et al. (2019) 2019 ✓ ✓ 80 80
FaceScape Zhu et al. (2023) 2020 ✓ ✓ ✓ 20 20
Ours 2023 ✓ ✓ ✓ ✓ 21 441

In table 5 we present a comparison of popular single-image face reconstruction benchmarks.
However, we find that most existing benchmarks rarely evaluate extreme facial expressions,
an important aspect of human face geometry. This can be seen in fig. 6 where we retrieve
the 5 most expressive images from the recent FaceScape benchmark Zhu et al. (2023) and the
established NoW benchmark Sanyal et al. (2019). We do this by running EMOCA Daněček
et al. (2022) on each image of the dataset, collecting the expression codes, and then perform-
ing furthest point sampling in EMOCA’s expression space, starting from the expression with
highest norm. We find that FaceScape only contains 20 different but relatively articulated
expressions while the NoW benchmark is dominated by mostly neutral and smiling expres-
sions. We therefore propose a new benchmark for 3D face reconstruction that is sourced
from images of the recently published multi-view video dataset NeRSemble Kirschstein
et al. (2023). For 21 diverse identities, we select 20 distinct expressions via furthest point
sampling in expression space, for a total of 420 images. The corresponding ground truth
3D geometries are obtained by running COLMAP Schönberger & Frahm (2016) on the 16
full resolution 3208x2200 images. Additionally, we compute one pointcloud for a neutral
frame of each person, yielding 441 ground truth 3D geometries in total.

A.1.1 Task Description

Our benchmark consists of two 3D face reconstruction tasks, given a single image as an
input: posed and neutral 3D face reconstruction. It is the first benchmark that evaluates both
settings at the same time. The following briefly defines the differences of both tasks.

Posed Reconstruction: The posed reconstruction task aims to measure the fidelity of a 3D
reconstruction. Given an image of a face under arbitrary facial expression, the underlying
geometry shall be recovered. This requires images with paired ground truth geometries
which are available in NeRSemble trough COLMAP.

Neutral Reconstruction The neutral reconstruction task on the other hand is specific
to the face domain and measures how well a reconstruction method can disentangle the
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Figure 6: 3D Face Reconstruction Benchmark Analysis. We show the 5 most diverse images from
each benchmark dataset, as measured by the expression codes of EMOCA Daněček et al. (2022). Our
benchmark covers a richer diversity of facial expressions.

effects of shape and expression on a human 3D face. Specifically, the task is to reconstruct
the geometry of a person’s face under neutral expression given an image of the person
under any arbitrary expression. Hence, the reconstruction method needs to understand
the current facial expression, how it deforms the geometry and how the face would look
like under neutral expression. On the other hand, this task does not explicitly measure
whether a method can reconstruct expressions well.

Comparison to Existing Benchmarks The two established benchmarks from Feng et al.
(2018) and Sanyal et al. (2019) capture images and a 3D scan separately, therefore the ob-
served expression does not match the ground truth geometry. As a consequence, these
benchmarks can only measure neutral reconstruction performance. In contrast, two other
recent benchmarks ((Zhu et al., 2023; Chai et al., 2022)) merely evaluate posed reconstruc-
tions. Our benchmark is the first to evaluate both tasks at the same time.

A.1.2 Evaluation Protocol

To measure the performance of a reconstructed posed or neutral 3D face, we follow estab-
lished practice and first rigidly align the prediction to the ground truth point cloud via
landmark correspondences and ICP. Furthermore, we use segmentation masks Zheng et al.
(2022) to remove non-facial areas (hair, neck, ears, and mouth interior) from the ground
truth. We then compute three metrics: (i) uni-directional L1 Chamfer distance from GT
points to the nearest mesh surface, (ii) cosine similarity (NC) of predicted mesh normals and
GT point cloud normals, and (iii) Recall thresholded at 2.5mm (R2.5) which is the percentage
of GT points whose nearest mesh surface is 2.5mm or closer.

A.2 Surface Normal Estimation

In this section we provide additional qualitative surface normal estimation results.

A.2.1 In-the-Wild Normal Estimation

One central quality of surface normal estimators, which ultimately makes them valuable
to our community, is their generalization to arbitrary in-the-wild images of human heads.
Thus, fig. 8 provides additional estimation results on the FFHQ dataset (Karras et al.,
2019). Here, we qualitatively compare against results of two recent industry foundational
models, Sapiens (Khirodkar et al., 2024) and DAViD (Saleh et al., 2025), as well as, Diff-
E2E (Martin Garcia et al., 2025), another recent surface normal estimator distilled from
StableDiffusion (Rombach et al., 2022). While Sapiens, tends to produce blurry results,

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

DIff-E2E over-emphasizes geometric details, resulting in unnatural sharp edges. Finally,
DAViD, a concurrent work to ours, produces the most competitive results on such images.
However, similar to our findings in the main paper, the synthetic training data of DAViD is
clearly noticeable in its predictions. This can especially be seen in the estimated geometry in
the eye region, and the flatness of predicted wrinkles and creases of the skin. Pixel3DMM
tends to produces the most visually pleasing results, while all methods produce fairly
robust estimates.

A.2.2 Additional Visualizations

Furthermore, we provide additional visualizations in fig. 9, which corresponds to the
quantitative evaluation in table 4. Here, we also show error maps, visualized using aturbo-
coloring scheme. Please note that the camera registration in the H3DS dataset Ramon et al.
(2021) is slightly misaligned, which results in significantly higher errors, compared to the
NeRSemble Kirschstein et al. (2023) and MultiFace Wuu et al. (2022) evaluations. The error
maps confirm our error analysis of the previous subsection. In general, all methods perform
similar on in-the-wild and studio images, confirming their generalization abilities.

A.3 Additional Baselines

Finally, we present qualitative comparisons to VHAP (Qian et al., 2024) and Neural Head
Avatars (NHA) (Grassal et al., 2022) in fig. 10. While both methods were originally designed
for monocular video tracking, they can still be executed on a single image. However, the
increased sparsity of a single observations results in poor 3d reconstructions. In partic-
ular, both approaches consist of a two stage reconstruction paradigm: In the first stage
reconstruction is performed in the FLAME latent space, which heavily regularized the opti-
mization problem. In the second stage, both methods optimize for per-vertex offsets, which
increases the representational capacity. Especially, the second stage tends to overfit to the
single-view observation and degrade 3d accuracy.
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Figure 7: Benchmark Overview:
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Input Sapiens Diff-E2E DAViD Ours

Figure 8: Surface Normal Estimates on FFHQ.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Input Sapiens Diff-E2E DAViD Ours COLMAPDFN

Figure 9: Surface Normal Estimation: The first four rows show results from NeRSemble,
fllowed by one example from H3DS and two examples from MultiFace.
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Input VHAP (stage1) VHAP (stage2) OursNHA (stage1) NHA (stage2)

Figure 10: Additional Baselines: Posed reconstruction.
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