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Abstract

This study addresses the challenges of as-
sessing and enhancing social-pragmatic in-
ference in large language models (LLMs).
We first highlight the inadequacy of current
accuracy-based multiple choice question an-
swering (MCQA) formats in assessing social-
pragmatic reasoning, and propose the direct
evaluation of models’ free-form responses as
measure, which - as our results show - corre-
lates better with human judgement. Further, we
explore the enhancement of pragmatic abilities
in LLMs, proposing the use of preference opti-
mization (PO) over supervised finetuning (SFT)
since there’s no “gold” answer in responding to
a social situation. Our results indicate that pref-
erential tuning significantly outperforms and
proves more robust than SFT across pragmatic
phenomena, and offers a near-free launch to en-
hance models’ pragmatic ability without com-
promising generic abilities. Lastly, we delve
into LLMs’ internal space and demonstrate that
the substantial boost of the model’s pragmatic
reasoning capabilities is linked to deeper layer
representation, mirroring human’s high-level
thinking. Our experiments span multiple prag-
matic and social reasoning data sources, cov-
ering diverse phenomena, as well as a image
referential game requiring multimodal theory
of mind (ToM). With our refined paradigms for
evaluating and enhancing pragmatic inference,
this paper offers key insights for developing
more socially aware language models. !

1 Introduction

Social-pragmatic inference is a key aspect of hu-
man communication, requiring the ability to under-
stand and respond to the implied meanings, inten-
tions, and emotional states behind literal utterances
(Horn, 1972; Grice, 1975; Green, 1998; Carston,
2004) along with shared social conventions (Goff-
man, 1959). This type of inference covers a range

'Our code will be made publicly available.

of phenomena including implicatures, irony, humor,
and metaphor, as well as high-level cognitive think-
ing such as theory of mind (ToM) (Premack and
Woodruff, 1978), which are all essential for inter-
preting non-literal language and context-dependent
messages. For instance, a friend’s statement, “/¢t’s
chilly in here” that might be a polite request to close
a window rather than a mere observation about tem-
perature demonstrates pragmatic inference.

The importance of social-pragmatic intelligence
in human communication underscores the need for
large language models (LLMs) to possess similar
capabilities to interact more naturally with users.
Current approaches to addressing pragmatic abili-
ties in LLMs face two lines of limitations:

1) On the evaluation front, typical evaluation
methods measure classification accuracy on bench-
marks formatted as multiple (if not binary) choice
question answering (MCQA) (Le et al., 2019; Ruis
et al., 2023; Hu et al., 2023; Zhou et al., 2023;
Gandhi et al., 2023; Sravanthi et al., 2024). How-
ever, even if a model chooses the correct option
label, it might still fail to respond by itself in a
pragmatic way to a social scenario. For example
(see Fig. 1), a model might correctly choose an
appropriate answer in an MCQA setup without
truly grasping the social intricacies of changing the
subject. Furthermore, real-life social interactions
rarely have a single “gold” answer, therefore judg-
ing by the accuracy of selecting the provided fixed
response undermines the assessment of a model’s
true pragmatic capability in flexible generations.

2) On the pragmatic-ability-improvement front,
while inference-time methods such as few-shot
prompt engineering (Moghaddam and Honey,
2023; Ruis et al., 2023) and external graph-modules
(Sclar et al., 2023) have been proposed to increase
LLMs’ pragmatic test results, little effort has been
made to explicitly invoke the model’s internal so-
cial pragmatic intelligence, so that it learns to gen-
erate social-pragmatically appropriate answers en-
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Figure 1: An example of LLMs’ outputs when queried about a social-pragmatic scenario taken from Hu et al. (2023).
On the right-hand side, a LLAMA2-13B-Chat (Touvron et al., 2023) model correctly selects the gold response ID
when given the question and all the candidate answers in a multiple choice question answering (MCQA) format,
whereas it fails to grasp the true underlying pragmatic meaning of the scenario when asked to generate its own
response to the question. The left-hand side is the open-ended response of a smaller LLAMA2-7B-Chat model
preference-tuned on the contrast of the gold answer to other less pragmatic options. Its response is equally good and

pragmatically sound as the provided “gold” answer.

tirely on its own.

In this paper, we propose paradigm shifts on both
fronts.

1) For evaluation, we argue for an open-ended
evaluation protocol that directly assesses a model’s
own response to a social scenario. We introduce
length-normalized relative score (LN RS) that di-
rectly rates the model’s free-form response in ref-
erence to the provided “gold” answer with GPT4 2
(OpenAl, 2023) as judge and further debiased for
reducing length gameability (Dubois et al., 2024;
Galambosi, 2024). Supported by human evaluation,
our open-ended metric LN R.S is better correlated
with human preferences than the MCQA accuracy.

2) For enhancing LLM’s pragmatic inference,
we regard the not-selected answer options in exist-
ing MCQA-formatted datasets not as incorrect, but
as a less pragmatically grounded answer in com-
parison to the “gold” response. We use prefer-
ence optimization (PO) objectives such as DPO
(Rafailov et al., 2024) to finetune an LLM so that
it grasps the subtle nuances of pragmatic prefer-
ence. We empirically demonstrate that preferen-
tial tuning yields a much better performance boost
on an LLM than typical supervised finetuning
(SFT) across pragmatic phenomena, and induces
less impact on other abilities inherited from the
base LLM. When transferring to the multimodal
setting of image referential game (Corona et al.,

2GPT4 is the sole model available performing with high
robustness and human-likeness in most social pragmatic stud-
ies (Gandhi et al., 2023; Sap et al., 2023; Zhou et al., 2023;
Ruis et al., 2023; Kosinski, 2023)

2019; Zhu et al., 2021; Liu et al., 2023) that re-
quires the captioning model to have a theory of
mind (ToM) (Premack and Woodruff, 1978), the
PO objective also results in a more capable ToM-
aware image captioner, which further illustrates the
superiority of PO over SFT for imparting models
with pragmatic abilities.

To develop a deeper understanding of how the
internal components of a transformer (Vaswani
et al., 2017)-based LLM are most responsible for
invoking social-pragmatic abilities, we further ex-
perimented with controlling different trainable lay-
ers. The results suggest that pragmatic understand-
ing is clearly associated with deeper-down trans-
former layers, which hints at a potential similarity
with how human pragmatic inference also relies on
higher-level cognitive processes.

Opverall, the main contributions of this paper are:

* Proposing open-ended assessment of models’
free-form responses instead of MCQA classifica-
tion for evaluating social-pragmatic understanding,
which correlates better with human judgement;

* Proposing preference optimization (PO) over
supervised finetuning (SFT) for the enhancement
of LLMs’ pragmatic capacity without harming
other inherited model abilities, which is effec-
tively proved by experiments across pragmatic data
sources and multimodal theory of mind (ToM);

* Providing empirical analyses of how only train-
ing deeper layers of an LLM can invoke pragmatic
performance gains, which potentially mirrors hu-
man’s high-level cognitive thinking.



2 Evaluating Pragmatic Abilities
2.1 Existing Evaluation: MCQA Accuracy

Existing works mostly assess a language model’s
pragmatic intelligence in the form of multiple (or
even binary) choice question answering (MCQA)
tasks, where for a given social scenario, a set of
answer options is provided, from which the model
being evaluated needs only choose one as its re-
sponse (Le et al., 2019; Ruis et al., 2023; Hu et al.,
2023; Zhou et al., 2023; Gandhi et al., 2023; Sra-
vanthi et al., 2024), and the accuracy of correctly
selecting the annotated “gold” answer is used as the
indicator of a model’s pragmatic abilities (M C'Q) A-
Acc). In recent studies, the way to elicit a model’s
choice among the set of provided answer options
can be divided into two methods:

* Metalinguistic®> Probing: The model is directly
prompted the instruction to choose from a set of
answers associated with symbolic indicators (alpha-
betic letters like A|B|C|D (Le et al., 2019; Sravanthi
et al., 2024; Robinson and Wingate, 2023) or index
digits like 1]2]3]4 (Hu et al., 2023)). The model
then generates the symbolic indicator of the option
it chooses.

* Probability Probing: The model is prompted
the scenario and question text (context, x). We then
calculate the model’s likelihood of generating each
one of the answer options y; conditioned on the
input context. The option with the highest proba-
bility is deemed the answer the model chooses in
the sense that it is most likely to be generated by
the model. For the probability calculation, there
can again be variations in the normalization tech-
nique (Brown et al., 2020; Robinson and Wingate,
2023; Holtzman et al., 2021) that lead to different
formulations:

* Without normalization: P (y; | x);

* With length normalization over j tokens in y; :
Sy Pyl oyt 71)

* N orrrfélization by unconditional answer proba-

. P(y;
bility*: %

The problems with these accuracy-based MCQA
tests are multi-fold:

1) This task format deviates far from real-life
social interactions, where there’s no fixed answer
to select. Even the provided “gold” answer in

3Term adopted from Hu and Levy (2023), also known as
multiple choice prompting (MCP) in Robinson and Wingate
(2023).

‘domain conditional point-wise mutual information in
Holtzman et al. (2021)’s term.

these benchmarks may not be the best response
to the given scenario. For instance, the preference-
tuned model’s response in Fig. 1 (left-hand part) is
equally sound in its social and pragmatic sense.

2) As also pointed out in Robinson and Wingate
(2023), different models have different levels of
proficiency binding an option to its symbol (mul-
tiple choice symbol binding, MCSB), which is an
ability potentially conflated with true pragmatic in-
telligence, especially with the metalinguistic prob-
ing approach.

3) Being able to classify the correct answer op-
tion does not necessarily mean that a model really
understands the social scenario and can respond in
a socially and pragmatically grounded way on its
own (see right-hand part of Fig. 1), which is the
actual ability desired for more natural human-LLM
interaction in real-life applications.

Therefore, we argue for a paradigm shift in eval-
uating machine pragmatics towards open-ended
assessment of the model’s autonomous response,
while still keeping the use of the annotated “gold”
answer as reference.

2.2 Open-Ended Evaluation:
Length-Normalized Relative Score

We introduce Length-Normalized Relative Score
(LN RS) to quantitatively measure how well the
model’s own response is when compared to the
provided “gold” answer. Instead of providing the
model with options for choice, we directly obtain
the model’s own response to the pragmatic ques-
tion describing a social scenario. Then we ask the
most advanced GPT4 (OpenAl, 2023) to score the
model’s own response in reference to the provided
“gold” answer.

GPT4-Judge. We use GPT4 as judge, for it is
the sole LLM available that has been most con-
sistently shown to perform robustly at a human-
matching level across various social-pragmatic
studies (Gandhi et al., 2023; Sap et al., 2023; Zhou
et al., 2023; Ruis et al., 2023; Kosinski, 2023).
Also, GPT4 has been commonly applied in numer-
ous settings, e.g., in typical instruction-following
evaluation (Chiang et al., 2023; Li et al., 2023;
Dubois et al., 2024, 2023; Wang et al., 2023a), and
even as a “teacher” to guide other LLMs in rea-
soning tasks (Shridhar et al., 2023; Hsieh et al.,
2023). In line with prior work using GPT4-judge,
we also randomly permute the order of the model’s
answer and the provided “gold” answer to allevi-



ate potential position bias. Specifically, we query
GPT4 twice with reversed order of the model’s
and the “gold” answer. Our prompt template for
querying GPT4 (gpt-4-1106-preview) to score
the model’s free-form answer in reference to the
provided gold answer is given in Appx.A.

After parsing each of GPT4’s responses as a pair
of scores, we then compare the average scores of
the model’s answer to the average scores of the
gold answer. For all the questions from the test
set T', we first calculate the relative score (RS)

of the model’s response a,,.4e; in reference to the
JS(amodel) .
qeT
quT JS(agota) > mn
which JS denotes the judge’s score. This intuitively

measures the degree to which the model’s answers
are as good as (or even better than) the “gold” re-
sponses throughout the test set, which directly indi-
cates if the model’s understanding — as manifested
in its own free-form answer — aligns with nuanced
social norms and pragmatic rules.

“gold” answer agoq as RS =

Length Normalization. Inspired by recent
advancements in LLM evaluations such as
AlpacaEval-2.0 (Dubois et al., 2024; Galambosi,
2024), we also carefully reduce the influence
of length bias that may affect GPT4’s judgment
(termed length gameability in Dubois et al. (2024))
in our pragmatic evaluation. We adopted the /o-
gistic length normalization technique (Galambosi,
2024; Dubois, 2024) > to our open-ended prag-
matic evaluation. Specifically, length-normalized
relative score (LN RS) normalizes the RS by a
temperature-weighted sigmoid function of the dif-
ferences between the length of model’s and the
“gold” response:

quT JS (amodel)

LNRS =
quT JS(agold)
1
o( (D Len(agod) = D Len(amoder)))
qeT qeT

ey

in which 7 betokens a temperature hyperparameter,
and JS and Len denotes the judge score and token
length respectively.

In §4.1, we empirically demonstrate the supe-
riority of the open-ended LN RS over current

SThe length control method used in AlpacaEval-2.0
(Dubois et al., 2024) cannot be transferred to our evaluation
setting without prior win-rate data. So we turned to length
normalization that has only a close performance gap to length
control.

MCQA-Acc, the former of which correlates better
with real user preferences in human evaluation.

3 Improving Pragmatic Abilities

On top of establishing an open-ended evaluation
paradigm that matches real-life scenarios more
closely, we also set out to investigate how the
social-pragmatic inference of LLMs can be intrin-
sically improved. Different from previous works
(§5) that are more inclined to apply external mod-
ules for better cognitive abilities (Sclar et al., 2023;
Takmaz et al., 2023) or few-shot prompt engineer-
ing (Moghaddam and Honey, 2023; Ruis et al.,
2023), we are concerned about aligning the model’s
intrinsic representation towards a more social-
pragmatically grounded distribution.

Let pgp be an LLM parameterized by 6. In our
context, pg takes a question ¢ as input, which de-
scribes a pragmatics-involved social context, and
golq 18 the annotated correct answer.

Supervised Finetuning (SFT). The straightfor-
ward approach is to apply SFT on the question
q and gold answer a4 conveniently provided by
each MCQA-formatted data source D. The ob-
jective is to minimize the negative log-likelihood
loss of correctly predicting each token in the gold
answer a4, conditioned on the question g:

‘CSFT(H) = _]E(q,agold)wD [log p@(agold|Q)] )

Preference Optimization (PO). In social contexts,
however, there is no definitive right answer. For ex-
ample, in the MCQA-formatted data sources like in
Fig. 1, we do not consider e.g., option 3) a wrong
answer. It is just not as socially and pragmatically
appropriate in common sense as option 4) in the
described context. Such nuanced understanding —
weighing the possible responses in terms of prag-
matic soundness and social appropriateness — is
exactly what we want to develop in the model.

We thus turn to the preference optimization (PO)
paradigm with the simplified direct preference op-
timization (DPO) objective (Rafailov et al., 2024),
which does not solely rely on maximizing the like-
lihood of a given answer but rather focuses on op-
timizing the model parameters 6 to reflect a pref-
erence for more desired answers over less desired
ones. Among different answer options to g, we
construct pairwise triples (¢, agoid, Gother), Where
given a question g, ageq 18 the provided “gold” an-
swer and thus the preferred response over any other




answer option a¢p.,-. For a data source D, the PO
objective can be formulated as:

Lppro(Pe; Pret) =

p@(agold|Q)
—E ~p|logo| Blog ———=
(¢,0g01d:00ther)~D [ ( pref(agold|Q)

. 5108; p9(“other|‘]) )]’ 3)

pref(aother IQ)

where ¢ is the sigmoid function, 3 is a hyperpa-
rameter.

4 Experiments
4.1 Pragmatic Question Answering

Setup. We experimented with four popular social
and pragmatic inference data sources — SOCIAL-
IQA (Sap et al., 2019), PRAGMEGA (Floyd, 2022;
Hu et al., 2023), LUDWIG (Ruis et al., 2023),
PUB (Sravanthi et al., 2024). They cover a wide
range of pragmatic phenomena including implica-
ture, metaphor, irony, and various social norms.
Tab. 6 summarizes the dataset details. We used
three versions of base LLM across different pre-
training data and model sizes: PYTHIA-6.9B-Tulu
(Wang et al., 2023b), LLAMA2-7B-Chat and
LLAMA2-13B-Chat (Touvron et al., 2023).° Our
detailed training configurations can be found in
Tab. 4.

Human Evaluation. To further support our ad-
vocate for open-ended assessment of pragmatic
abilities, we recruited 12 voluntary human partic-
ipants from top educational institutions to judge
the quality of different responses. Given a social-
pragmatic context and question, the human evalua-
tor is presented with randomly ordered four types
of responses (the dataset-annotated “gold” option,
the base LLM’s responses, the m-uﬁl and the
SFT-tuned models’ generations). Then we ask the
evaluator to rank the responses in terms of their
pragmatic understanding and fitness to the context
scenario. Appx.B gives the detailed instructions
we employed for this user study. The ranking of
the four responses is transformed into scores, with
the first place receiving 4 points and the last place
receiving 1 point. In total, we randomly sampled

We only adopted already instruction-tuned chat models as
baseline in order to start with a decent instruction-following
ability for our models, especially because the social-pragmatic
data is relatively scarce and might not be sufficient for general-
purpose alignment tuning.

192 samples coupled with the four responses, and
randomly assigned 16 data points to each evaluator
for assessment.

Results. Fig. 2, Fig. 3, and Tab. 1 shows the perfor-
mance of LLMs finetuned with different paradigms
(PO v.s. SFT) — evaluated respectively in the
open-ended framework (§2.2), the MCQA format’
(§2.1), and user study (see above). From the results,
we observe the following patterns:

1) Across almost all configurations of base mod-
els, training data, test sets as well as evaluation
paradigms (MCQA/open-ended/human-eval), the
PO-tuned LLMs significantly outperforms the SFT-
trained counterparts, boosting the pragmatic infer-
ence over the base model by a substantial margin.
There are very few exceptions such as the negli-
gibly lower LUDWIG Test LN RS score of the
PYTHIA-6.9B-Tulu DPO-tuned on PUB in con-
trast to SFT. Additionally, under the MCQA setup,
the DPO-tuned LLAMA2-13B-Chat performs worse
than SFT on PRAGMEGA_Test, which however
strongly contrasts human users’ judgement (Tab. 1)
that ranks the PO-version of LLAMA2-13B-Chat as
having the best response quality.

2) The open-ended evaluation paradigm corre-
lates better with human judgement than the MCQA
results. Tab. 1 reveals the clear human prefer-
ence for responses generated by PO-tuned models,
which claims the best place (even better than the
annotated “gold” answer) for both LLAMA2 models
and second only to the “gold” answer for PYTHIA.
In contrast, the SFT-ed models is even lower rated
than its base LLMs, showing that SFT can even
hurt pragmatic performance. These human eval-
uation results resonate with the LN RS compar-
isons Fig. 2, where we observe similar patterns
of PO’s superiority and SFT’s potential harm on
model pragmatics.

3) The PO objective enables a more robust
transfer to “out-of-domain” pragmatic phenomena.
We intentionally designed our test sets to consist
of both “in-domain” (i.e., same data source and
similar phenomena with train sets, e.g., SOCIAL-
I0QA_Train/_Test) and “out-of-domain” (i.e., dif-
ferent data source and phenomena from the train
sets) data. We sometimes observe even larger per-
formance gains of PO on different data sources.
For instance, when tested on SOCIAL-IQA_Test,
LLAMA2-13B-Chat DPO-finetuned on PUB (impli-

"We used the length-normalized probability probing vari-
ant in our implementation.
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Figure 2: LN RS comparisons across models, data sources and training paradigms (PO v.s. SFT).

catures, presuppositions, etc.) even outperforms the
version DPO-ed on the same social norm dataset.

4) The PO objective exerts little influence on
other abilities inherited from the base LLMs. In
Tab. 3, across almost all benchmarks including
professional examination (Hendrycks et al., 2020;
Zhong et al., 2023; Clark et al., 2018), math (Cobbe
et al., 2021), reading comprehension (Mihaylov
et al., 2018), the models DPO-ed on our pragmatic
data always outperforms their SFT counterparts,
frequently by a large margin. This strongly shows
that despite being finetuned on pragmatic datasets,
the preference-optimized version offers a near-free
launch of pragmatic abilities, while even improv-
ing the various other abilities learnt by the base
models at the same time. The SFT-tuned alter-
natives, however, performs far worse in terms of
retaining these inherited abilities.

Models “Gold” Base +SFT +4PO
LLAMA2-7B-Chat 2.34 2.75 2.11 2.81
LLAMA2-13B-Chat 2.72 2.44 2.05 2.81

PYTHIA-6.9B-Tulu 2.83 2.33 2.19 2.66

Table 1: Average human evaluation scores elicited from
our user study ranking different responses (§4.1). Best
and second results are highlighted.

4.2 Image Referential Game with ToM

In this section, we extend our method of improv-
ing models’ pragmatic inference from pure text
world (§4.1) to multimodal environments with
large vision-language models (LVLMs). We fo-
cused on the well-established task setting of image
referential game (Zhu et al., 2021; Liu et al., 2023;
Takmaz et al., 2023), which requires a theory of
mind (ToM) (Premack and Woodruff, 1978) that
belongs to part of social-pragmatic capabilities.

Task Formulation. The image referential game
encompasses two interlocutors — a speaker and a
listener: Given an image %¢qrqet, the speaker gener-
ates a descriptive caption Cgpeqker, based on which
the listener tries to choose the target image ¢4 get
out of a set of images containing both the one de-
scribed by the speaker i;44¢¢ and several distrac-
tion images tdistractor € Ldistractor- TOM 18 VlVldly
present in this task, because the speaker has to be
able to take the listener’s understanding into ac-
count when arranging the wording of its caption,
so that the listener makes the correct choice of the
target image. In line with §4.1, we improve the
speaker VLM’s intrinsic ToM via the same SFT
and PO objectives as in §3 and §4.1, with addi-
tional visual conditions represented as the image
encodings.

Setup. We implement the base VLM-speaker as
LLaVA-1.5-7B (Liu et al., 2024). For the listener,
we use the discriminative OpenCLIP-ViT-B/32 (II-
harco et al., 2021) to match the target image %¢qrget
with the given caption from the speaker cgpeaker
based on image-text similarity. Detailed finetun-
ing configurations and are provided in Tab. 5. Our
image referential game data source is the widely-
adopted COCO-CAPTION (Lin et al., 2014) con-
taining 5 captions for each image. We follow the
Karpathy-split®, using COCO-Karpathy-Train for
training and COCO-Karpathy-Val as the test set.
To build the preferential data pairs {preferred
caption, dispreferred caption} for PO, we
use a pretrained CLIP (Ilharco et al., 2021) to cal-
culate the similarity scores between an image and
its corresponding five captions, among which the
caption with the highest text-image similarity is

8https: //cs.stanford.edu/people/karpathy/
deepimagesent/coco.zip
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taken as the preferred option. We then randomly
sample another caption as the dispreferred one. We
assess the speaker-VLM’s ToM with two metrics
according to the image referential game setting:

* CLIP-Score Win Rate: We compare different
models’ captions in terms of their similarity to the
target image implemented as CLIP-Score (Hessel
et al., 2021), and decide on the winner. This win
rate metric indicates if a model’s output is superior
in terms of its absolute fidelity to the target image.

* Target Image Retrieval Recall: We calculate
the recall rate of the target image among all distrac-
tions, given the caption generated by the speaker.
This metric directly simulates the listener’s choice
among a set of distraction images.

Fig. 4 demonstrates our data curation, preferen-
tial tuning, and evaluation pipeline.

Results. Tab. 2 presents the evaluation results of
the base LLaVA-1.5-7B speaker, together with the
SFT and PO finetuned versions in terms of both
CLIP-Score Win Rate and Target Image Retrieval
Recall. For the win rate, we compare each pair
among the three models. For the recall metric, we
set R@EL with k € {1, 5,10} indicating the number
of retrieved candidates. The results show:

1) Similar to the pure-text results (§4.1), the
PO-finetuned speaker also outperforms both the
base VLM and the SFT-trained counterpart across
metrics here in our multimodal experiment. The
+PO version of LLaVA wins both the base and +SFT
speaker in the absolute caption-image CLIP-score
similarity and it leads to the highest retrieval suc-
cess on the listener’s part, directly indicating the
best image referential game success.

2) We also find that the SFT training could
even result in a slight decrease in performance
compared to the base pretrained VLM under both
evaluation protocols. The +SFT speaker wins the
base LLaVA-1.5-7B less than 50% of times and
its resulting retrieval recall is worse than the base
speaker across candidate numbers k. This further
proves how forcing just one correct answer may
even hurt a model’s ToM that requires flexibility in
the face of dynamic social scenarios as well as the
listener’s knowledge space.

4.3 Layer Depth

Human social reasoning and pragmatic predictions
with ToM are integral to high-level cognitive pro-
cesses (Sperber and Wilson, 1986; Bara, 2011).
Inspired by this fact, in this section, we explore

the relationship between the network layers and
the pragmatic reasoning abilities in a Transformer
(Vaswani et al., 2017) -based LLM.

Setup. Following §4.1, we conducted DPO on
SOCIAL-IQA_Train as an example train set and
took the LLAMA2-7B-Chat (Touvron et al., 2023)
with 32 transformer layers as a demonstrative
model. We controlled trainable layer_id ® combina-
tions with a 4-layer interval: (5-32), (9-32), ...,
(29-32). Evaluation was performed across three
test sets SOCIAL-IQA_Test, PRAGMEGA_Test and
LUDWIG _Test (Tab. 6) using the open-ended as-
sessment metric LN RS (§2.2).

Results. From Fig. 5, we observe an overall clear
decrease in performance as the depth of trained
LLM layers becomes shallower. While DPO-
tuning deeper layers leads to a marked improve-
ment in pragmatic inference compared to the non-
finetuned base model LLAMA2-Chat, training shal-
lower layers produces limited effects and can even
degrade performance. This underscores the neces-
sity of engaging deeper network layers for effective
pragmatic learning. Approximately from the mid-
dle of all transformer stacks, the LLM’s ability to
learn pragmatic inference degrades severely. Af-
ter about the 21th layer, the finetuning yields few
performance gains, as demonstrated by the almost
flat lines of metric scores’ change. The best perfor-
mance is achieved by training the deep-down 5- or
9-32 layers. It also seems that skipping the train-
ing of the 5-8th layer even leads to a slightly better
LN RS score, which however does not account for
a significant difference.

This contrast between the effectiveness of pref-
erential tuning in deeper versus shallower trans-
former layers suggests a possible correspondence
with the pattern observed in human cognitive pro-
cesses. Just as high-level cognitive abilities in hu-
mans such as social-pragmatic inference rely on
deep cognitive strategies, our experimental results
(Fig. 5) similarly demonstrate that deeper layers
in an LLM significantly enhance pragmatic perfor-
mance, while shallower layers have a negligible
impact.

5 Related Work

Machine Pragmatics. With theoretical under-
pinning in linguistics (Grice, 1975; Austin, 1962;
Searle, 1975; Sperber and Wilson, 1986), pragmat-

Layer_id starts from 1.



(a) CLIP-Score Win Rate

(b) Target Image Retrieval Recall

LLaVA-1.5-7B  (+ SFT) (+ DPO) R@1 R@5 R@10

LLaVA-1.5-7B - 56.6 45.4 31.0 56.9 68.4
+SFT 43.4 - 41.2 305505 56.0500 67.1;13
+PO 54.6 58.8 - 31900 580111 69.41,

Table 2: Image referential game evaluation results on COCO-Karpathy-Val in terms of the CLIP-Score Win Rate
and Target Image Retrieval Recall. We compare three versions of the speaker: the base VLM LLaVA-1.5-7B as
well as the SFT-trained (+SFT) and PO-trained (+P0) LLaVA model.

ics within the machine learning communities has
recently been explored in terms of how LLMs per-
form in scenarios involving various pragmatic phe-
nomena (Hu et al., 2023; Lipkin et al., 2023; Ruis
et al., 2023; Qi et al., 2023; Sravanthi et al., 2024)
or subtle social norms (Sap et al., 2023; Shapira
et al., 2023). The theory of mind (ToM) (Premack
and Woodruff, 1978) abilities have been tested in
false-belief tasks (Kosinski, 2023; Ullman, 2023),
story comprehension (Jones et al., 2023), and multi-
turn interactive contexts (Kim et al., 2023). Addi-
tionally, Gandhi et al. (2023) proposed a framework
for using an LLM itself to expand on ToM evalu-
ation samples, whose results showed GPT4 (Ope-
nAl, 2023) as the sole LLM matching human ca-
pabilities whereas all other LLMs struggle. To
improve LLM’s ToM inference, Moghaddam and
Honey (2023) employed few-shot prompting with
chain-of-thought (Wei et al., 2022) and step-by-
step reasoning (Kojima et al., 2022), while Sclar
et al. (2023) proposed a graph module for tracking
each character’s mental state. For the specific chal-
lenge of image referential game, approaches that
explicitly build a simulated ToM-listener have been
proposed to externally model ToM that guides the
speaker’s output (Zhu et al., 2021; Liu et al., 2023;
Takmaz et al., 2023).

Finetuning Methods of LLMs. Pretrained LLMs
undergo finetuning that typically serves to bet-
ter align these models with human requests (i.e.,
instructions) and human-like conversation. Su-
pervised finetuning (SFT) — sometimes also re-
ferred to as instruction tuning — follows the lan-
guage modeling loss on {human instruction,
response} data to directly trains the LLMs to
follow human instructions and respond like the
given “gold” response. Instruction-tuned LLMs
typically become “chatbots” in that they follow
user inquiries and carry on with dialogues in a
more natural way. For instance, the instruction-
tuned InstructGPT (Ouyang et al., 2022) out-

performs GPT3 (Brown et al., 2020) in terms of
conversation with users. Preference optimiza-
tion (PO) steers LLMs towards outputs that align
with human preferences. Reinforcement learning
from human feedback (RLHF) (Christiano et al.,
2017; Ziegler et al., 2019) uses human feedback
in the form of paired data {preferred response,
dispreferred response} to train a reward model
to interpret human feedback, which then guides the
LLM’s outputs to align with the human preferences
under a Reinforcement Learning framework. In
the face of RLHF’s limitations in its implemen-
tation complexity and unstable training process,
recent works (e.g., DPO (Rafailov et al., 2024),
SimPO (Meng et al., 2024), and etc.) greatly im-
prove the training efficiency of RHLF by alleviat-
ing the requirements for a reward model or refer-
ence model.

6 Conclusion

This paper addresses two lines of challenges with
regard to the social-pragmatic abilities in LLMs.
We first advocate for shifting from MCQA to open-
ended assessment that directly measures the sound-
ness of the model’s own answer to a social sce-
nario. Then we propose to enhance the LLM’s
intrinsic pragmatic abilities via preference opti-
mization (PO) over supervised finetuning (SFT),
where a model learns to capture the subtle nuances
between preferred and dispreferred social interac-
tions. Our experiments on multiple pragmatic data
sources coupled with human evaluation, and the im-
age referential game, effectively demonstrate both
the advantages of our free-form evaluation protocol
and the superiority of PO over SFT in pragmatic
scenarios. We also reveal the impact of trainable
layer depth on the model’s pragmatic performance
gains, which potentially mirrors human’s high-level
social thinking.



Limitations

Under our proposed paradigm of open-ended eval-
uation, this paper employed GPT4 (OpenAl, 2023)
as judge to score the models’ generation, which,
though effective, is based on API that allows lim-
ited control over the judge’s assessment. Future
work should look into more transparent and con-
trollable methodologies for quantifying the quality
of free-form outputs.

The benefits of preference optimization (PO) for
improving machine pragmatics is both intuitively
motivated by our insight of the non-existence of a
“gold” answer and empirically proved by our exper-
iments across modalities. Nevertheless, the exact
numeric mechanism underlying the pronounced im-
pact of PO on social-pragmatic inference remains
to be explored.

Furthermore, as demonstrated by our layer-
control studies (§4.3), LLMs’ social-pragmatic
abilities are linked to deeper representation, which
possibly resonates with how human pragmatic rea-
soning is also governed by high-level cognitive pro-
cesses. This potential synergy between machines’
deep understanding and humans’ high-level cogni-
tion should inspire future work on bridging human
cognitive science with language modeling.

Ethics Statement

In this project, all data and pretrained models are
publicly available. They are collected and pro-
cessed in adherence to the respective data, check-
points, and API usage policy. We do recognize
that our finetuned models may generate unsafe con-
tents, and we advise all users of careful verification
before putting our work in real-world applications.
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A  GPT4-Judge Prompt Templates

Here’s our prompt template for querying GPT4
(gpt-4-1106-preview) to score the model’s free-
form answer in relation to the provided “gold” an-
swer (§2.2). We query GPT4 twice with reversed
order of the model’s and the “gold” answer:
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Template for GPT4-judge

[Scenario]:
{QUESTION}

[Model’s Answer]:
{ANSWER_MODEL }

[Gold Answer for Reference]:
{ANSWER_GOLD}

[System]:

We request your evaluation of the Al
model’s answer in relation to the provided
scenario and the gold answer. Assess the
responses based on the following criteria:
1. Social Understanding: How well does the
model’s answer grasp the social dynamics
or pragmatic nuances of the scenario?

2. Appropriateness: Is the model’s answer
appropriate and contextually fitting for the
scenario?

3.  Insightfulness: Does the answer
demonstrate a deep understanding of the
underlying intentions, implicature, deceit,
irony, sarcasm, humor, metaphor, etc.?

4. Completeness: How comprehensive
is the model’s response in capturing the
essential elements of the scenario?

Please first output a single line containing
only two numeric values representing
scores for the model’s answer and the gold
answer respectively, on a scale of 1 to
10, where a higher score indicates better
performance. The two score values should
be separated by a space. The gold answer is
for reference only and should not strictly
limit the evaluation.

In the next line, provide a comprehensive
explanation of your evaluation, discussing
each of the criteria mentioned. This
explanation should avoid any potential bias
and ensure that the judgment is solely based
on the response’s merits in the context
of the scenario and the gold answer for
reference.



https://arxiv.org/abs/2310.03051
https://arxiv.org/abs/2310.03051
https://arxiv.org/abs/2310.03051
https://arxiv.org/abs/2107.05697
https://arxiv.org/abs/2107.05697
https://arxiv.org/abs/2107.05697

B Human Evaluation Instruction finetune the VLM’s image-encoder module, which
then provides a robust and stable embedding space
of images throughout our image referential game

Instructions for Human Evaluators

We request your ranking evaluation of experiments.
different answers to the provided scenarios
and questions. Please assess the answers
based on the following criteria:

1. Overall Appropriateness: Is the answer
suitable and contextually fitting for the
scenario?

2. Social Understanding: How well does
the answer grasp the social dynamics or
pragmatic nuances of the scenario?

3. Conversational Insightfulness: Does the
answer demonstrate a deep understanding
of the underlying intentions, implicature,
deceit, irony, sarcasm, humor, metaphor,
etc.?

Rank the answers based on their qualities.
Place the best answer first, the second-best
second, and so on.

Do NOT let the length of the answers
bias your judgment. A longer answer may
better capture the scenario, or it may be
unnecessarily verbose.

Disregard minor format variations such as
ending with or without a period, extra quo-
tation marks, or differences in upper/lower
cases.

Feel free to include any additional
comments at the end of the questionnaire.

Any data you submitted remains anony-
mous and will be used for research purposes
only.

C Implementation Details

Tab. 4 is our detailed finetuning hyperparameters
for pragmatic question answering task (§4.1).:
Tab. 5 is our detailed finetuning hyperparameters
for image referential game (§4.2). Note that since
we are concerned with how the VLM “speaks” (i.e.,
how it arranges the caption wording), we do not
finetune the VLM’s image-encoder module, which
then provides a robust and stable embedding space
of images throughout our experiments.Since we
are concerned with how the VLM “speaks” (i.e.,
how it arranges the caption wording), we do not
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MCQA Evaluation of Pragmatics - Metric: MCQA-ACC.
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Figure 3: MCQA-ACC. comparisons across models, data sources and training paradigms (PO v.s. SFT).

Preferential Data Curation b). Preference Optimization
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Figure 4: Illustrations of our image referential game experiment with the preferential tuning objective DPO (Rafailov
et al., 2024): a) Data curation of paired preferential captions; b) DPO-finetuning a base speaker VLM; ¢) Evaluating
different output captions in terms of CLIP-Score Win Rate; d) Evaluating caption’s Target Image Retrieval Recall.

Model Finetuning MMLU ARC-E ARC-C AGIEval GSM8K OpenBookQA
Dataset Method ‘ 5-shot 5-shot  25-shot 0-shot 8-shot 0-shot
\ - - \ 474 80.9 53.2 37.0 232 43.8
Conl SOCIQL-IQA PO 47.5 83.0 58.4 37.3 234 46.6
LLAMAZ-7B~Chat SOCIQL-IQA SFT 48.1 81.1 52.6 36.7 20.2 44.6
PUB PO 48.1 81.2 55.3 37.8 24.3 44.2
PUB SFT 47.2 80.8 51.9 36.7 23.0 42.6
\ - - \ 53.6 83.5 59.7 39.0 354 44.0
C1amL SOCIQL-IQA PO 54.0 85.3 62.8 39.2 35.7 46.4
LLAMAZ2-13B-Chat SOCIQL-IQA SFT 53.4 84.2 58.8 38.7 332 454
PUB PO 54.4 84.8 61.6 39.5 359 44.8
PUB SFT 53.9 83.0 58.1 38.5 32.7 44.2
\ - - \ 34.0 67.9 39.7 31.9 11.7 38.4
_ _ SOCIQL-IQA PO 34.6 70.3 43.0 33.0 11.5 40.6
PYTHIA-6.9B-Tulu SOCIQL-IQA SFT 333 67.8 38.9 32.5 10.8 36.8
PUB PO 35.2 68.9 40.2 32.7 11.4 41.0
PUB SFT 33.9 67.5 39.2 322 9.9 36.0

Table 3: Various benchmark performances of the base LLMs along with their versions PO- and SFT-finetuned on
pragmatic datasets. The best metric scores are marked.
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Figure 5: Effects of trainable LLAMA2-7B transformer layer depth on the outcome PO-tuned pragmatic performance.
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Method Parameter Value

SFT, DPO | batch size 64

SFT, DPO | learning rate 5.0e — 07

SFT, DPO | max gradient norm 10.0

SFT, DPO | optimizer RMSprop (Hinton, 2014)
SFT, DPO | warmup iterations 150

SFT, DPO | training epochs 1

SFT, DPO | max sequence length | 512
SFT, DPO | max prompt length 256
SFT, DPO | label smoothing 0

DPO DPO beta 0.1

Table 4: Pragmatic question answering base LLMs’ finetuning hyperparameters.

Method ‘ Parameter ‘ Value
SFT, DPO | LoRA (Huetal., 2021) r 128

SFT, DPO | LoRA (Hu et al., 2021) alpha | 256

SFT, DPO | batch size 16

SFT, DPO | learning rate 1.0e — 07
SFT, DPO | optimizer AdamW (Loshchilov and Hutter, 2017)
SFT, DPO | learning rate schedule Cosine
SFT, DPO | weight decay 0

SFT, DPO | warmup ratio 0.03

SFT, DPO | training epochs 1

SFT, DPO | max sequence length 2048
DPO DPO beta 0.1

Table 5: Hyperparameters for finetuning the base speaker VLM LLaVA in the image referential game.

Data Source | Phenomena | #Train | #Test

SociallQA“ ‘ various social norms ‘ 33,410 ‘ 2,224

PragMega” deceits, indirect speech, irony, maxims, 0 130
metaphor, humor

LUDWIG¢ | implicature | o0 | 718

PUB¢ implicature, presupposition, reference, | 18, 627 0
deixis

Table 6: Details of the data sources for experimenting with our evaluation and tuning methods. If #Train is 0, it
means that we do not use this data source for training — because of the data’s scarcity.

“https://allenai.org/data/socialiqga. We keep the original train/dev/test splitting.

"This is an ongoing project at https://osf.io/6abgk/?view_only=42d448e3dob14ecf8h87908b3a618672. We used the
data provided by https://github.com/jennhu/1lm-pragmatics and discarded the binary classification “Coherence” task.

‘https://huggingface.co/datasets/UCL-DARK/ludwig.

dhttps://huggingface.co/datasets/cfilt/PUB. We combined the original train/dev as our training split. We also
discarded the task instances made easier with hints. The testing questions rely too much on the MCQA selection format, so we
choose not to use its test set.
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