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Abstract

This study addresses the challenges of as-001
sessing and enhancing social-pragmatic in-002
ference in large language models (LLMs).003
We first highlight the inadequacy of current004
accuracy-based multiple choice question an-005
swering (MCQA) formats in assessing social-006
pragmatic reasoning, and propose the direct007
evaluation of models’ free-form responses as008
measure, which - as our results show - corre-009
lates better with human judgement. Further, we010
explore the enhancement of pragmatic abilities011
in LLMs, proposing the use of preference opti-012
mization (PO) over supervised finetuning (SFT)013
since there’s no “gold” answer in responding to014
a social situation. Our results indicate that pref-015
erential tuning significantly outperforms and016
proves more robust than SFT across pragmatic017
phenomena, and offers a near-free launch to en-018
hance models’ pragmatic ability without com-019
promising generic abilities. Lastly, we delve020
into LLMs’ internal space and demonstrate that021
the substantial boost of the model’s pragmatic022
reasoning capabilities is linked to deeper layer023
representation, mirroring human’s high-level024
thinking. Our experiments span multiple prag-025
matic and social reasoning data sources, cov-026
ering diverse phenomena, as well as a image027
referential game requiring multimodal theory028
of mind (ToM). With our refined paradigms for029
evaluating and enhancing pragmatic inference,030
this paper offers key insights for developing031
more socially aware language models. 1032

1 Introduction033

Social-pragmatic inference is a key aspect of hu-034

man communication, requiring the ability to under-035

stand and respond to the implied meanings, inten-036

tions, and emotional states behind literal utterances037

(Horn, 1972; Grice, 1975; Green, 1998; Carston,038

2004) along with shared social conventions (Goff-039

man, 1959). This type of inference covers a range040

1Our code will be made publicly available.

of phenomena including implicatures, irony, humor, 041

and metaphor, as well as high-level cognitive think- 042

ing such as theory of mind (ToM) (Premack and 043

Woodruff, 1978), which are all essential for inter- 044

preting non-literal language and context-dependent 045

messages. For instance, a friend’s statement, “It’s 046

chilly in here” that might be a polite request to close 047

a window rather than a mere observation about tem- 048

perature demonstrates pragmatic inference. 049

The importance of social-pragmatic intelligence 050

in human communication underscores the need for 051

large language models (LLMs) to possess similar 052

capabilities to interact more naturally with users. 053

Current approaches to addressing pragmatic abili- 054

ties in LLMs face two lines of limitations: 055

1) On the evaluation front, typical evaluation 056

methods measure classification accuracy on bench- 057

marks formatted as multiple (if not binary) choice 058

question answering (MCQA) (Le et al., 2019; Ruis 059

et al., 2023; Hu et al., 2023; Zhou et al., 2023; 060

Gandhi et al., 2023; Sravanthi et al., 2024). How- 061

ever, even if a model chooses the correct option 062

label, it might still fail to respond by itself in a 063

pragmatic way to a social scenario. For example 064

(see Fig. 1), a model might correctly choose an 065

appropriate answer in an MCQA setup without 066

truly grasping the social intricacies of changing the 067

subject. Furthermore, real-life social interactions 068

rarely have a single “gold” answer, therefore judg- 069

ing by the accuracy of selecting the provided fixed 070

response undermines the assessment of a model’s 071

true pragmatic capability in flexible generations. 072

2) On the pragmatic-ability-improvement front, 073

while inference-time methods such as few-shot 074

prompt engineering (Moghaddam and Honey, 075

2023; Ruis et al., 2023) and external graph-modules 076

(Sclar et al., 2023) have been proposed to increase 077

LLMs’ pragmatic test results, little effort has been 078

made to explicitly invoke the model’s internal so- 079

cial pragmatic intelligence, so that it learns to gen- 080

erate social-pragmatically appropriate answers en- 081
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Figure 1: An example of LLMs’ outputs when queried about a social-pragmatic scenario taken from Hu et al. (2023).
On the right-hand side, a LLAMA2-13B-Chat (Touvron et al., 2023) model correctly selects the gold response ID
when given the question and all the candidate answers in a multiple choice question answering (MCQA) format,
whereas it fails to grasp the true underlying pragmatic meaning of the scenario when asked to generate its own
response to the question. The left-hand side is the open-ended response of a smaller LLAMA2-7B-Chat model
preference-tuned on the contrast of the gold answer to other less pragmatic options. Its response is equally good and
pragmatically sound as the provided “gold” answer.

tirely on its own.082

In this paper, we propose paradigm shifts on both083

fronts.084

1) For evaluation, we argue for an open-ended085

evaluation protocol that directly assesses a model’s086

own response to a social scenario. We introduce087

length-normalized relative score (LNRS) that di-088

rectly rates the model’s free-form response in ref-089

erence to the provided “gold” answer with GPT4 2090

(OpenAI, 2023) as judge and further debiased for091

reducing length gameability (Dubois et al., 2024;092

Galambosi, 2024). Supported by human evaluation,093

our open-ended metric LNRS is better correlated094

with human preferences than the MCQA accuracy.095

2) For enhancing LLM’s pragmatic inference,096

we regard the not-selected answer options in exist-097

ing MCQA-formatted datasets not as incorrect, but098

as a less pragmatically grounded answer in com-099

parison to the “gold” response. We use prefer-100

ence optimization (PO) objectives such as DPO101

(Rafailov et al., 2024) to finetune an LLM so that102

it grasps the subtle nuances of pragmatic prefer-103

ence. We empirically demonstrate that preferen-104

tial tuning yields a much better performance boost105

on an LLM than typical supervised finetuning106

(SFT) across pragmatic phenomena, and induces107

less impact on other abilities inherited from the108

base LLM. When transferring to the multimodal109

setting of image referential game (Corona et al.,110

2GPT4 is the sole model available performing with high
robustness and human-likeness in most social pragmatic stud-
ies (Gandhi et al., 2023; Sap et al., 2023; Zhou et al., 2023;
Ruis et al., 2023; Kosinski, 2023)

2019; Zhu et al., 2021; Liu et al., 2023) that re- 111

quires the captioning model to have a theory of 112

mind (ToM) (Premack and Woodruff, 1978), the 113

PO objective also results in a more capable ToM- 114

aware image captioner, which further illustrates the 115

superiority of PO over SFT for imparting models 116

with pragmatic abilities. 117

To develop a deeper understanding of how the 118

internal components of a transformer (Vaswani 119

et al., 2017)-based LLM are most responsible for 120

invoking social-pragmatic abilities, we further ex- 121

perimented with controlling different trainable lay- 122

ers. The results suggest that pragmatic understand- 123

ing is clearly associated with deeper-down trans- 124

former layers, which hints at a potential similarity 125

with how human pragmatic inference also relies on 126

higher-level cognitive processes. 127

Overall, the main contributions of this paper are: 128

• Proposing open-ended assessment of models’ 129

free-form responses instead of MCQA classifica- 130

tion for evaluating social-pragmatic understanding, 131

which correlates better with human judgement; 132

• Proposing preference optimization (PO) over 133

supervised finetuning (SFT) for the enhancement 134

of LLMs’ pragmatic capacity without harming 135

other inherited model abilities, which is effec- 136

tively proved by experiments across pragmatic data 137

sources and multimodal theory of mind (ToM); 138

• Providing empirical analyses of how only train- 139

ing deeper layers of an LLM can invoke pragmatic 140

performance gains, which potentially mirrors hu- 141

man’s high-level cognitive thinking. 142
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2 Evaluating Pragmatic Abilities143

2.1 Existing Evaluation: MCQA Accuracy144

Existing works mostly assess a language model’s145

pragmatic intelligence in the form of multiple (or146

even binary) choice question answering (MCQA)147

tasks, where for a given social scenario, a set of148

answer options is provided, from which the model149

being evaluated needs only choose one as its re-150

sponse (Le et al., 2019; Ruis et al., 2023; Hu et al.,151

2023; Zhou et al., 2023; Gandhi et al., 2023; Sra-152

vanthi et al., 2024), and the accuracy of correctly153

selecting the annotated “gold” answer is used as the154

indicator of a model’s pragmatic abilities (MCQA-155

Acc). In recent studies, the way to elicit a model’s156

choice among the set of provided answer options157

can be divided into two methods:158

• Metalinguistic3 Probing: The model is directly159

prompted the instruction to choose from a set of160

answers associated with symbolic indicators (alpha-161

betic letters like A|B|C|D (Le et al., 2019; Sravanthi162

et al., 2024; Robinson and Wingate, 2023) or index163

digits like 1|2|3|4 (Hu et al., 2023)). The model164

then generates the symbolic indicator of the option165

it chooses.166

• Probability Probing: The model is prompted167

the scenario and question text (context, x). We then168

calculate the model’s likelihood of generating each169

one of the answer options yi conditioned on the170

input context. The option with the highest proba-171

bility is deemed the answer the model chooses in172

the sense that it is most likely to be generated by173

the model. For the probability calculation, there174

can again be variations in the normalization tech-175

nique (Brown et al., 2020; Robinson and Wingate,176

2023; Holtzman et al., 2021) that lead to different177

formulations:178

• Without normalization: P (yi | x);179

• With length normalization over j tokens in yi :180 ∑ℓi
j=1 P(y

j
i |x,y

1···j−1)
ℓi

;181

• Normalization by unconditional answer proba-182

bility4: P (yi|x)
P (yi|xuncond)

183

The problems with these accuracy-based MCQA184

tests are multi-fold:185

1) This task format deviates far from real-life186

social interactions, where there’s no fixed answer187

to select. Even the provided “gold” answer in188

3Term adopted from Hu and Levy (2023), also known as
multiple choice prompting (MCP) in Robinson and Wingate
(2023).

4domain conditional point-wise mutual information in
Holtzman et al. (2021)’s term.

these benchmarks may not be the best response 189

to the given scenario. For instance, the preference- 190

tuned model’s response in Fig. 1 (left-hand part) is 191

equally sound in its social and pragmatic sense. 192

2) As also pointed out in Robinson and Wingate 193

(2023), different models have different levels of 194

proficiency binding an option to its symbol (mul- 195

tiple choice symbol binding, MCSB), which is an 196

ability potentially conflated with true pragmatic in- 197

telligence, especially with the metalinguistic prob- 198

ing approach. 199

3) Being able to classify the correct answer op- 200

tion does not necessarily mean that a model really 201

understands the social scenario and can respond in 202

a socially and pragmatically grounded way on its 203

own (see right-hand part of Fig. 1), which is the 204

actual ability desired for more natural human-LLM 205

interaction in real-life applications. 206

Therefore, we argue for a paradigm shift in eval- 207

uating machine pragmatics towards open-ended 208

assessment of the model’s autonomous response, 209

while still keeping the use of the annotated “gold” 210

answer as reference. 211

2.2 Open-Ended Evaluation: 212

Length-Normalized Relative Score 213

We introduce Length-Normalized Relative Score 214

(LNRS) to quantitatively measure how well the 215

model’s own response is when compared to the 216

provided “gold” answer. Instead of providing the 217

model with options for choice, we directly obtain 218

the model’s own response to the pragmatic ques- 219

tion describing a social scenario. Then we ask the 220

most advanced GPT4 (OpenAI, 2023) to score the 221

model’s own response in reference to the provided 222

“gold” answer. 223

GPT4-Judge. We use GPT4 as judge, for it is 224

the sole LLM available that has been most con- 225

sistently shown to perform robustly at a human- 226

matching level across various social-pragmatic 227

studies (Gandhi et al., 2023; Sap et al., 2023; Zhou 228

et al., 2023; Ruis et al., 2023; Kosinski, 2023). 229

Also, GPT4 has been commonly applied in numer- 230

ous settings, e.g., in typical instruction-following 231

evaluation (Chiang et al., 2023; Li et al., 2023; 232

Dubois et al., 2024, 2023; Wang et al., 2023a), and 233

even as a “teacher” to guide other LLMs in rea- 234

soning tasks (Shridhar et al., 2023; Hsieh et al., 235

2023). In line with prior work using GPT4-judge, 236

we also randomly permute the order of the model’s 237

answer and the provided “gold” answer to allevi- 238
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ate potential position bias. Specifically, we query239

GPT4 twice with reversed order of the model’s240

and the “gold” answer. Our prompt template for241

querying GPT4 (gpt-4-1106-preview) to score242

the model’s free-form answer in reference to the243

provided gold answer is given in Appx.A.244

After parsing each of GPT4’s responses as a pair245

of scores, we then compare the average scores of246

the model’s answer to the average scores of the247

gold answer. For all the questions from the test248

set T , we first calculate the relative score (RS)249

of the model’s response amodel in reference to the250

“gold” answer agold as RS =
∑

q∈T JS(amodel)∑
q∈T JS(agold)

, in251

which JS denotes the judge’s score. This intuitively252

measures the degree to which the model’s answers253

are as good as (or even better than) the “gold” re-254

sponses throughout the test set, which directly indi-255

cates if the model’s understanding – as manifested256

in its own free-form answer – aligns with nuanced257

social norms and pragmatic rules.258

Length Normalization. Inspired by recent259

advancements in LLM evaluations such as260

AlpacaEval-2.0 (Dubois et al., 2024; Galambosi,261

2024), we also carefully reduce the influence262

of length bias that may affect GPT4’s judgment263

(termed length gameability in Dubois et al. (2024))264

in our pragmatic evaluation. We adopted the lo-265

gistic length normalization technique (Galambosi,266

2024; Dubois, 2024) 5 to our open-ended prag-267

matic evaluation. Specifically, length-normalized268

relative score (LNRS) normalizes the RS by a269

temperature-weighted sigmoid function of the dif-270

ferences between the length of model’s and the271

“gold” response:272

LNRS =

∑
q∈T JS(amodel)∑
q∈T JS(agold)

273

· σ( 1

τ · T
(
∑
q∈T

Len(agold)−
∑
q∈T

Len(amodel)))

(1)

274

in which τ betokens a temperature hyperparameter,275

and JS and Len denotes the judge score and token276

length respectively.277

In §4.1, we empirically demonstrate the supe-278

riority of the open-ended LNRS over current279

5The length control method used in AlpacaEval-2.0
(Dubois et al., 2024) cannot be transferred to our evaluation
setting without prior win-rate data. So we turned to length
normalization that has only a close performance gap to length
control.

MCQA-Acc, the former of which correlates better 280

with real user preferences in human evaluation. 281

3 Improving Pragmatic Abilities 282

On top of establishing an open-ended evaluation 283

paradigm that matches real-life scenarios more 284

closely, we also set out to investigate how the 285

social-pragmatic inference of LLMs can be intrin- 286

sically improved. Different from previous works 287

(§5) that are more inclined to apply external mod- 288

ules for better cognitive abilities (Sclar et al., 2023; 289

Takmaz et al., 2023) or few-shot prompt engineer- 290

ing (Moghaddam and Honey, 2023; Ruis et al., 291

2023), we are concerned about aligning the model’s 292

intrinsic representation towards a more social- 293

pragmatically grounded distribution. 294

Let pθ be an LLM parameterized by θ. In our 295

context, pθ takes a question q as input, which de- 296

scribes a pragmatics-involved social context, and 297

agold is the annotated correct answer. 298

Supervised Finetuning (SFT). The straightfor- 299

ward approach is to apply SFT on the question 300

q and gold answer agold conveniently provided by 301

each MCQA-formatted data source D. The ob- 302

jective is to minimize the negative log-likelihood 303

loss of correctly predicting each token in the gold 304

answer agold conditioned on the question q: 305

LSFT(θ) = −E(q,agold)∼D [logpθ(agold|q)] (2) 306

Preference Optimization (PO). In social contexts, 307

however, there is no definitive right answer. For ex- 308

ample, in the MCQA-formatted data sources like in 309

Fig. 1, we do not consider e.g., option 3) a wrong 310

answer. It is just not as socially and pragmatically 311

appropriate in common sense as option 4) in the 312

described context. Such nuanced understanding – 313

weighing the possible responses in terms of prag- 314

matic soundness and social appropriateness – is 315

exactly what we want to develop in the model. 316

We thus turn to the preference optimization (PO) 317

paradigm with the simplified direct preference op- 318

timization (DPO) objective (Rafailov et al., 2024), 319

which does not solely rely on maximizing the like- 320

lihood of a given answer but rather focuses on op- 321

timizing the model parameters θ to reflect a pref- 322

erence for more desired answers over less desired 323

ones. Among different answer options to q, we 324

construct pairwise triples (q, agold, aother), where 325

given a question q, agold is the provided “gold” an- 326

swer and thus the preferred response over any other 327
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answer option aother. For a data source D, the PO328

objective can be formulated as:329

330

LDPO(pθ;pref) =331

− E(q,agold,aother)∼D

[
log σ

(
β log

pθ(agold|q)
pref(agold|q)

332

− β log
pθ(aother|q)
pref(aother|q)

)]
, (3)333

where σ is the sigmoid function, β is a hyperpa-334

rameter.335

4 Experiments336

4.1 Pragmatic Question Answering337

Setup. We experimented with four popular social338

and pragmatic inference data sources – SOCIAL-339

IQA (Sap et al., 2019), PRAGMEGA (Floyd, 2022;340

Hu et al., 2023), LUDWIG (Ruis et al., 2023),341

PUB (Sravanthi et al., 2024). They cover a wide342

range of pragmatic phenomena including implica-343

ture, metaphor, irony, and various social norms.344

Tab. 6 summarizes the dataset details. We used345

three versions of base LLM across different pre-346

training data and model sizes: PYTHIA-6.9B-Tulu347

(Wang et al., 2023b), LLAMA2-7B-Chat and348

LLAMA2-13B-Chat (Touvron et al., 2023).6 Our349

detailed training configurations can be found in350

Tab. 4.351

Human Evaluation. To further support our ad-352

vocate for open-ended assessment of pragmatic353

abilities, we recruited 12 voluntary human partic-354

ipants from top educational institutions to judge355

the quality of different responses. Given a social-356

pragmatic context and question, the human evalua-357

tor is presented with randomly ordered four types358

of responses (the dataset-annotated “gold” option,359

the base LLM’s responses, the PO-tuned and the360

SFT-tuned models’ generations). Then we ask the361

evaluator to rank the responses in terms of their362

pragmatic understanding and fitness to the context363

scenario. Appx.B gives the detailed instructions364

we employed for this user study. The ranking of365

the four responses is transformed into scores, with366

the first place receiving 4 points and the last place367

receiving 1 point. In total, we randomly sampled368

6We only adopted already instruction-tuned chat models as
baseline in order to start with a decent instruction-following
ability for our models, especially because the social-pragmatic
data is relatively scarce and might not be sufficient for general-
purpose alignment tuning.

192 samples coupled with the four responses, and 369

randomly assigned 16 data points to each evaluator 370

for assessment. 371

Results. Fig. 2, Fig. 3, and Tab. 1 shows the perfor- 372

mance of LLMs finetuned with different paradigms 373

(PO v.s. SFT) – evaluated respectively in the 374

open-ended framework (§2.2), the MCQA format7 375

(§2.1), and user study (see above). From the results, 376

we observe the following patterns: 377

1) Across almost all configurations of base mod- 378

els, training data, test sets as well as evaluation 379

paradigms (MCQA/open-ended/human-eval), the 380

PO-tuned LLMs significantly outperforms the SFT- 381

trained counterparts, boosting the pragmatic infer- 382

ence over the base model by a substantial margin. 383

There are very few exceptions such as the negli- 384

gibly lower LUDWIG_Test LNRS score of the 385

PYTHIA-6.9B-Tulu DPO-tuned on PUB in con- 386

trast to SFT. Additionally, under the MCQA setup, 387

the DPO-tuned LLAMA2-13B-Chat performs worse 388

than SFT on PRAGMEGA_Test, which however 389

strongly contrasts human users’ judgement (Tab. 1) 390

that ranks the PO-version of LLAMA2-13B-Chat as 391

having the best response quality. 392

2) The open-ended evaluation paradigm corre- 393

lates better with human judgement than the MCQA 394

results. Tab. 1 reveals the clear human prefer- 395

ence for responses generated by PO-tuned models, 396

which claims the best place (even better than the 397

annotated “gold” answer) for both LLAMA2 models 398

and second only to the “gold” answer for PYTHIA. 399

In contrast, the SFT-ed models is even lower rated 400

than its base LLMs, showing that SFT can even 401

hurt pragmatic performance. These human eval- 402

uation results resonate with the LNRS compar- 403

isons Fig. 2, where we observe similar patterns 404

of PO’s superiority and SFT’s potential harm on 405

model pragmatics. 406

3) The PO objective enables a more robust 407

transfer to “out-of-domain” pragmatic phenomena. 408

We intentionally designed our test sets to consist 409

of both “in-domain” (i.e., same data source and 410

similar phenomena with train sets, e.g., SOCIAL- 411

IQA_Train/_Test) and “out-of-domain” (i.e., dif- 412

ferent data source and phenomena from the train 413

sets) data. We sometimes observe even larger per- 414

formance gains of PO on different data sources. 415

For instance, when tested on SOCIAL-IQA_Test, 416

LLAMA2-13B-Chat DPO-finetuned on PUB (impli- 417

7We used the length-normalized probability probing vari-
ant in our implementation.
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Figure 2: LNRS comparisons across models, data sources and training paradigms (PO v.s. SFT).

catures, presuppositions, etc.) even outperforms the418

version DPO-ed on the same social norm dataset.419

4) The PO objective exerts little influence on420

other abilities inherited from the base LLMs. In421

Tab. 3, across almost all benchmarks including422

professional examination (Hendrycks et al., 2020;423

Zhong et al., 2023; Clark et al., 2018), math (Cobbe424

et al., 2021), reading comprehension (Mihaylov425

et al., 2018), the models DPO-ed on our pragmatic426

data always outperforms their SFT counterparts,427

frequently by a large margin. This strongly shows428

that despite being finetuned on pragmatic datasets,429

the preference-optimized version offers a near-free430

launch of pragmatic abilities, while even improv-431

ing the various other abilities learnt by the base432

models at the same time. The SFT-tuned alter-433

natives, however, performs far worse in terms of434

retaining these inherited abilities.435

Models “Gold” Base +SFT +PO

LLAMA2-7B-Chat 2.34 2.75 2.11 2.81
LLAMA2-13B-Chat 2.72 2.44 2.05 2.81
PYTHIA-6.9B-Tulu 2.83 2.33 2.19 2.66

Table 1: Average human evaluation scores elicited from
our user study ranking different responses (§4.1). Best
and second results are highlighted.

4.2 Image Referential Game with ToM436

In this section, we extend our method of improv-437

ing models’ pragmatic inference from pure text438

world (§4.1) to multimodal environments with439

large vision-language models (LVLMs). We fo-440

cused on the well-established task setting of image441

referential game (Zhu et al., 2021; Liu et al., 2023;442

Takmaz et al., 2023), which requires a theory of443

mind (ToM) (Premack and Woodruff, 1978) that444

belongs to part of social-pragmatic capabilities.445

Task Formulation. The image referential game 446

encompasses two interlocutors – a speaker and a 447

listener: Given an image itarget, the speaker gener- 448

ates a descriptive caption cspeaker, based on which 449

the listener tries to choose the target image itarget 450

out of a set of images containing both the one de- 451

scribed by the speaker itarget and several distrac- 452

tion images idistractor ∈ Idistractor. ToM is vividly 453

present in this task, because the speaker has to be 454

able to take the listener’s understanding into ac- 455

count when arranging the wording of its caption, 456

so that the listener makes the correct choice of the 457

target image. In line with §4.1, we improve the 458

speaker VLM’s intrinsic ToM via the same SFT 459

and PO objectives as in §3 and §4.1, with addi- 460

tional visual conditions represented as the image 461

encodings. 462

Setup. We implement the base VLM-speaker as 463

LLaVA-1.5-7B (Liu et al., 2024). For the listener, 464

we use the discriminative OpenCLIP-ViT-B/32 (Il- 465

harco et al., 2021) to match the target image itarget 466

with the given caption from the speaker cspeaker 467

based on image-text similarity. Detailed finetun- 468

ing configurations and are provided in Tab. 5. Our 469

image referential game data source is the widely- 470

adopted COCO-CAPTION (Lin et al., 2014) con- 471

taining 5 captions for each image. We follow the 472

Karpathy-split8, using COCO-Karpathy-Train for 473

training and COCO-Karpathy-Val as the test set. 474

To build the preferential data pairs {preferred 475

caption, dispreferred caption} for PO, we 476

use a pretrained CLIP (Ilharco et al., 2021) to cal- 477

culate the similarity scores between an image and 478

its corresponding five captions, among which the 479

caption with the highest text-image similarity is 480

8https://cs.stanford.edu/people/karpathy/
deepimagesent/coco.zip
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taken as the preferred option. We then randomly481

sample another caption as the dispreferred one. We482

assess the speaker-VLM’s ToM with two metrics483

according to the image referential game setting:484

• CLIP-Score Win Rate: We compare different485

models’ captions in terms of their similarity to the486

target image implemented as CLIP-Score (Hessel487

et al., 2021), and decide on the winner. This win488

rate metric indicates if a model’s output is superior489

in terms of its absolute fidelity to the target image.490

• Target Image Retrieval Recall: We calculate491

the recall rate of the target image among all distrac-492

tions, given the caption generated by the speaker.493

This metric directly simulates the listener’s choice494

among a set of distraction images.495

Fig. 4 demonstrates our data curation, preferen-496

tial tuning, and evaluation pipeline.497

Results. Tab. 2 presents the evaluation results of498

the base LLaVA-1.5-7B speaker, together with the499

SFT and PO finetuned versions in terms of both500

CLIP-Score Win Rate and Target Image Retrieval501

Recall. For the win rate, we compare each pair502

among the three models. For the recall metric, we503

set R@k with k ∈ {1, 5, 10} indicating the number504

of retrieved candidates. The results show:505

1) Similar to the pure-text results (§4.1), the506

PO-finetuned speaker also outperforms both the507

base VLM and the SFT-trained counterpart across508

metrics here in our multimodal experiment. The509

+PO version of LLaVA wins both the base and +SFT510

speaker in the absolute caption-image CLIP-score511

similarity and it leads to the highest retrieval suc-512

cess on the listener’s part, directly indicating the513

best image referential game success.514

2) We also find that the SFT training could515

even result in a slight decrease in performance516

compared to the base pretrained VLM under both517

evaluation protocols. The +SFT speaker wins the518

base LLaVA-1.5-7B less than 50% of times and519

its resulting retrieval recall is worse than the base520

speaker across candidate numbers k. This further521

proves how forcing just one correct answer may522

even hurt a model’s ToM that requires flexibility in523

the face of dynamic social scenarios as well as the524

listener’s knowledge space.525

4.3 Layer Depth526

Human social reasoning and pragmatic predictions527

with ToM are integral to high-level cognitive pro-528

cesses (Sperber and Wilson, 1986; Bara, 2011).529

Inspired by this fact, in this section, we explore530

the relationship between the network layers and 531

the pragmatic reasoning abilities in a Transformer 532

(Vaswani et al., 2017) -based LLM. 533

Setup. Following §4.1, we conducted DPO on 534

SOCIAL-IQA_Train as an example train set and 535

took the LLAMA2-7B-Chat (Touvron et al., 2023) 536

with 32 transformer layers as a demonstrative 537

model. We controlled trainable layer_id 9 combina- 538

tions with a 4-layer interval: (5-32), (9-32), ..., 539

(29-32). Evaluation was performed across three 540

test sets SOCIAL-IQA_Test, PRAGMEGA_Test and 541

LUDWIG_Test (Tab. 6) using the open-ended as- 542

sessment metric LNRS (§2.2). 543

Results. From Fig. 5, we observe an overall clear 544

decrease in performance as the depth of trained 545

LLM layers becomes shallower. While DPO- 546

tuning deeper layers leads to a marked improve- 547

ment in pragmatic inference compared to the non- 548

finetuned base model LLAMA2-Chat, training shal- 549

lower layers produces limited effects and can even 550

degrade performance. This underscores the neces- 551

sity of engaging deeper network layers for effective 552

pragmatic learning. Approximately from the mid- 553

dle of all transformer stacks, the LLM’s ability to 554

learn pragmatic inference degrades severely. Af- 555

ter about the 21th layer, the finetuning yields few 556

performance gains, as demonstrated by the almost 557

flat lines of metric scores’ change. The best perfor- 558

mance is achieved by training the deep-down 5- or 559

9-32 layers. It also seems that skipping the train- 560

ing of the 5-8th layer even leads to a slightly better 561

LNRS score, which however does not account for 562

a significant difference. 563

This contrast between the effectiveness of pref- 564

erential tuning in deeper versus shallower trans- 565

former layers suggests a possible correspondence 566

with the pattern observed in human cognitive pro- 567

cesses. Just as high-level cognitive abilities in hu- 568

mans such as social-pragmatic inference rely on 569

deep cognitive strategies, our experimental results 570

(Fig. 5) similarly demonstrate that deeper layers 571

in an LLM significantly enhance pragmatic perfor- 572

mance, while shallower layers have a negligible 573

impact. 574

5 Related Work 575

Machine Pragmatics. With theoretical under- 576

pinning in linguistics (Grice, 1975; Austin, 1962; 577

Searle, 1975; Sperber and Wilson, 1986), pragmat- 578

9Layer_id starts from 1.
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(a) CLIP-Score Win Rate

LLaVA-1.5-7B (+ SFT) (+ DPO)

LLaVA-1.5-7B - 56.6 45.4
+ SFT 43.4 - 41.2
+ PO 54.6 58.8 -

(b) Target Image Retrieval Recall

R@1 R@5 R@10

31.0 56.9 68.4
30.5↓0.5 56.0↓0.9 67.1↓1.3
31.9↑0.9 58.0↑1.1 69.4↑1.0

Table 2: Image referential game evaluation results on COCO-Karpathy-Val in terms of the CLIP-Score Win Rate
and Target Image Retrieval Recall. We compare three versions of the speaker: the base VLM LLaVA-1.5-7B as
well as the SFT-trained (+SFT) and PO-trained (+PO) LLaVA model.

ics within the machine learning communities has579

recently been explored in terms of how LLMs per-580

form in scenarios involving various pragmatic phe-581

nomena (Hu et al., 2023; Lipkin et al., 2023; Ruis582

et al., 2023; Qi et al., 2023; Sravanthi et al., 2024)583

or subtle social norms (Sap et al., 2023; Shapira584

et al., 2023). The theory of mind (ToM) (Premack585

and Woodruff, 1978) abilities have been tested in586

false-belief tasks (Kosinski, 2023; Ullman, 2023),587

story comprehension (Jones et al., 2023), and multi-588

turn interactive contexts (Kim et al., 2023). Addi-589

tionally, Gandhi et al. (2023) proposed a framework590

for using an LLM itself to expand on ToM evalu-591

ation samples, whose results showed GPT4 (Ope-592

nAI, 2023) as the sole LLM matching human ca-593

pabilities whereas all other LLMs struggle. To594

improve LLM’s ToM inference, Moghaddam and595

Honey (2023) employed few-shot prompting with596

chain-of-thought (Wei et al., 2022) and step-by-597

step reasoning (Kojima et al., 2022), while Sclar598

et al. (2023) proposed a graph module for tracking599

each character’s mental state. For the specific chal-600

lenge of image referential game, approaches that601

explicitly build a simulated ToM-listener have been602

proposed to externally model ToM that guides the603

speaker’s output (Zhu et al., 2021; Liu et al., 2023;604

Takmaz et al., 2023).605

Finetuning Methods of LLMs. Pretrained LLMs606

undergo finetuning that typically serves to bet-607

ter align these models with human requests (i.e.,608

instructions) and human-like conversation. Su-609

pervised finetuning (SFT) – sometimes also re-610

ferred to as instruction tuning – follows the lan-611

guage modeling loss on {human instruction,612

response} data to directly trains the LLMs to613

follow human instructions and respond like the614

given “gold” response. Instruction-tuned LLMs615

typically become “chatbots” in that they follow616

user inquiries and carry on with dialogues in a617

more natural way. For instance, the instruction-618

tuned InstructGPT (Ouyang et al., 2022) out-619

performs GPT3 (Brown et al., 2020) in terms of 620

conversation with users. Preference optimiza- 621

tion (PO) steers LLMs towards outputs that align 622

with human preferences. Reinforcement learning 623

from human feedback (RLHF) (Christiano et al., 624

2017; Ziegler et al., 2019) uses human feedback 625

in the form of paired data {preferred response, 626

dispreferred response} to train a reward model 627

to interpret human feedback, which then guides the 628

LLM’s outputs to align with the human preferences 629

under a Reinforcement Learning framework. In 630

the face of RLHF’s limitations in its implemen- 631

tation complexity and unstable training process, 632

recent works (e.g., DPO (Rafailov et al., 2024), 633

SimPO (Meng et al., 2024), and etc.) greatly im- 634

prove the training efficiency of RHLF by alleviat- 635

ing the requirements for a reward model or refer- 636

ence model. 637

6 Conclusion 638

This paper addresses two lines of challenges with 639

regard to the social-pragmatic abilities in LLMs. 640

We first advocate for shifting from MCQA to open- 641

ended assessment that directly measures the sound- 642

ness of the model’s own answer to a social sce- 643

nario. Then we propose to enhance the LLM’s 644

intrinsic pragmatic abilities via preference opti- 645

mization (PO) over supervised finetuning (SFT), 646

where a model learns to capture the subtle nuances 647

between preferred and dispreferred social interac- 648

tions. Our experiments on multiple pragmatic data 649

sources coupled with human evaluation, and the im- 650

age referential game, effectively demonstrate both 651

the advantages of our free-form evaluation protocol 652

and the superiority of PO over SFT in pragmatic 653

scenarios. We also reveal the impact of trainable 654

layer depth on the model’s pragmatic performance 655

gains, which potentially mirrors human’s high-level 656

social thinking. 657
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Limitations658

Under our proposed paradigm of open-ended eval-659

uation, this paper employed GPT4 (OpenAI, 2023)660

as judge to score the models’ generation, which,661

though effective, is based on API that allows lim-662

ited control over the judge’s assessment. Future663

work should look into more transparent and con-664

trollable methodologies for quantifying the quality665

of free-form outputs.666

The benefits of preference optimization (PO) for667

improving machine pragmatics is both intuitively668

motivated by our insight of the non-existence of a669

“gold” answer and empirically proved by our exper-670

iments across modalities. Nevertheless, the exact671

numeric mechanism underlying the pronounced im-672

pact of PO on social-pragmatic inference remains673

to be explored.674

Furthermore, as demonstrated by our layer-675

control studies (§4.3), LLMs’ social-pragmatic676

abilities are linked to deeper representation, which677

possibly resonates with how human pragmatic rea-678

soning is also governed by high-level cognitive pro-679

cesses. This potential synergy between machines’680

deep understanding and humans’ high-level cogni-681

tion should inspire future work on bridging human682

cognitive science with language modeling.683

Ethics Statement684

In this project, all data and pretrained models are685

publicly available. They are collected and pro-686

cessed in adherence to the respective data, check-687

points, and API usage policy. We do recognize688

that our finetuned models may generate unsafe con-689

tents, and we advise all users of careful verification690

before putting our work in real-world applications.691
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A GPT4-Judge Prompt Templates996

Here’s our prompt template for querying GPT4997

(gpt-4-1106-preview) to score the model’s free-998

form answer in relation to the provided “gold” an-999

swer (§2.2). We query GPT4 twice with reversed1000

order of the model’s and the “gold” answer:1001

Template for GPT4-judge

[Scenario]:
{QUESTION}

[Model’s Answer]:
{ANSWER_MODEL}

[Gold Answer for Reference]:
{ANSWER_GOLD}

[System]:
We request your evaluation of the AI
model’s answer in relation to the provided
scenario and the gold answer. Assess the
responses based on the following criteria:
1. Social Understanding: How well does the
model’s answer grasp the social dynamics
or pragmatic nuances of the scenario?
2. Appropriateness: Is the model’s answer
appropriate and contextually fitting for the
scenario?
3. Insightfulness: Does the answer
demonstrate a deep understanding of the
underlying intentions, implicature, deceit,
irony, sarcasm, humor, metaphor, etc.?
4. Completeness: How comprehensive
is the model’s response in capturing the
essential elements of the scenario?

Please first output a single line containing
only two numeric values representing
scores for the model’s answer and the gold
answer respectively, on a scale of 1 to
10, where a higher score indicates better
performance. The two score values should
be separated by a space. The gold answer is
for reference only and should not strictly
limit the evaluation.
In the next line, provide a comprehensive
explanation of your evaluation, discussing
each of the criteria mentioned. This
explanation should avoid any potential bias
and ensure that the judgment is solely based
on the response’s merits in the context
of the scenario and the gold answer for
reference.
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B Human Evaluation Instruction1003

Instructions for Human Evaluators

We request your ranking evaluation of
different answers to the provided scenarios
and questions. Please assess the answers
based on the following criteria:
1. Overall Appropriateness: Is the answer
suitable and contextually fitting for the
scenario?
2. Social Understanding: How well does
the answer grasp the social dynamics or
pragmatic nuances of the scenario?
3. Conversational Insightfulness: Does the
answer demonstrate a deep understanding
of the underlying intentions, implicature,
deceit, irony, sarcasm, humor, metaphor,
etc.?

Rank the answers based on their qualities.
Place the best answer first, the second-best
second, and so on.
Do NOT let the length of the answers
bias your judgment. A longer answer may
better capture the scenario, or it may be
unnecessarily verbose.
Disregard minor format variations such as
ending with or without a period, extra quo-
tation marks, or differences in upper/lower
cases.

Feel free to include any additional
comments at the end of the questionnaire.

Any data you submitted remains anony-
mous and will be used for research purposes
only.

1004

C Implementation Details1005

Tab. 4 is our detailed finetuning hyperparameters1006

for pragmatic question answering task (§4.1).:1007

Tab. 5 is our detailed finetuning hyperparameters1008

for image referential game (§4.2). Note that since1009

we are concerned with how the VLM “speaks” (i.e.,1010

how it arranges the caption wording), we do not1011

finetune the VLM’s image-encoder module, which1012

then provides a robust and stable embedding space1013

of images throughout our experiments.Since we1014

are concerned with how the VLM “speaks” (i.e.,1015

how it arranges the caption wording), we do not1016

finetune the VLM’s image-encoder module, which 1017

then provides a robust and stable embedding space 1018

of images throughout our image referential game 1019

experiments. 1020
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Figure 3: MCQA-ACC. comparisons across models, data sources and training paradigms (PO v.s. SFT).

Figure 4: Illustrations of our image referential game experiment with the preferential tuning objective DPO (Rafailov
et al., 2024): a) Data curation of paired preferential captions; b) DPO-finetuning a base speaker VLM; c) Evaluating
different output captions in terms of CLIP-Score Win Rate; d) Evaluating caption’s Target Image Retrieval Recall.

Model Finetuning MMLU ARC-E ARC-C AGIEval GSM8K OpenBookQA
Dataset Method 5-shot 5-shot 25-shot 0-shot 8-shot 0-shot

LLAMA2-7B-Chat

- - 47.4 80.9 53.2 37.0 23.2 43.8

SOCIQL-IQA PO 47.5 83.0 58.4 37.3 23.4 46.6
SOCIQL-IQA SFT 48.1 81.1 52.6 36.7 20.2 44.6

PUB PO 48.1 81.2 55.3 37.8 24.3 44.2
PUB SFT 47.2 80.8 51.9 36.7 23.0 42.6

LLAMA2-13B-Chat

- - 53.6 83.5 59.7 39.0 35.4 44.0

SOCIQL-IQA PO 54.0 85.3 62.8 39.2 35.7 46.4
SOCIQL-IQA SFT 53.4 84.2 58.8 38.7 33.2 45.4

PUB PO 54.4 84.8 61.6 39.5 35.9 44.8
PUB SFT 53.9 83.0 58.1 38.5 32.7 44.2

PYTHIA-6.9B-Tulu

- - 34.0 67.9 39.7 31.9 11.7 38.4

SOCIQL-IQA PO 34.6 70.3 43.0 33.0 11.5 40.6
SOCIQL-IQA SFT 33.3 67.8 38.9 32.5 10.8 36.8

PUB PO 35.2 68.9 40.2 32.7 11.4 41.0
PUB SFT 33.9 67.5 39.2 32.2 9.9 36.0

Table 3: Various benchmark performances of the base LLMs along with their versions PO- and SFT-finetuned on
pragmatic datasets. The best metric scores are marked.
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Figure 5: Effects of trainable LLAMA2-7B transformer layer depth on the outcome PO-tuned pragmatic performance.
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Method Parameter Value

SFT, DPO batch size 64
SFT, DPO learning rate 5.0e− 07
SFT, DPO max gradient norm 10.0
SFT, DPO optimizer RMSprop (Hinton, 2014)
SFT, DPO warmup iterations 150
SFT, DPO training epochs 1
SFT, DPO max sequence length 512
SFT, DPO max prompt length 256
SFT, DPO label smoothing 0
DPO DPO beta 0.1

Table 4: Pragmatic question answering base LLMs’ finetuning hyperparameters.

Method Parameter Value

SFT, DPO LoRA (Hu et al., 2021) r 128
SFT, DPO LoRA (Hu et al., 2021) alpha 256
SFT, DPO batch size 16
SFT, DPO learning rate 1.0e− 07
SFT, DPO optimizer AdamW (Loshchilov and Hutter, 2017)
SFT, DPO learning rate schedule Cosine
SFT, DPO weight decay 0
SFT, DPO warmup ratio 0.03
SFT, DPO training epochs 1
SFT, DPO max sequence length 2048
DPO DPO beta 0.1

Table 5: Hyperparameters for finetuning the base speaker VLM LLaVA in the image referential game.

Data Source Phenomena #Train #Test

SocialIQAa various social norms 33, 410 2, 224

PragMegab deceits, indirect speech, irony, maxims,
metaphor, humor

0 130

LUDWIGc implicature 0 718

PUBd implicature, presupposition, reference,
deixis

18, 627 0

Table 6: Details of the data sources for experimenting with our evaluation and tuning methods. If #Train is 0, it
means that we do not use this data source for training – because of the data’s scarcity.

ahttps://allenai.org/data/socialiqa. We keep the original train/dev/test splitting.
bThis is an ongoing project at https://osf.io/6abgk/?view_only=42d448e3d0b14ecf8b87908b3a618672. We used the

data provided by https://github.com/jennhu/lm-pragmatics and discarded the binary classification “Coherence” task.
chttps://huggingface.co/datasets/UCL-DARK/ludwig.
dhttps://huggingface.co/datasets/cfilt/PUB. We combined the original train/dev as our training split. We also

discarded the task instances made easier with hints. The testing questions rely too much on the MCQA selection format, so we
choose not to use its test set.
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