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Abstract

Large language models (LLMs) and knowledge
graphs (KGs) have complementary strengths
and weaknesses for logical reasoning. LLMs
exhibit strong semantic reasoning capacities,
but they lack world knowledge and structured
reasoning abilities. KGs contain extensive fac-
tual knowledge but have limited language un-
derstanding and reasoning flexibility. In this
paper, we propose a framework LKLR that en-
tangles LLMs and KGs for synergistic reason-
ing. A key technique is transforming the LLM’s
implicit reasoning chain into a grounded log-
ical query over the KG, enabling seamless in-
tegration. Traversing this query grounds each
inference step in KG facts while maintaining
reasoning flow, combining the robust knowl-
edge of KGs with the semantic reasoning of
LLMs. Our approach synergistically integrates
neural and symbolic reasoning to achieve hy-
brid reasoning capabilities. Experimental re-
sults on several QA benchmarks show that our
proposed framework achieves state-of-the-art
performance and provides transparent and reli-
able reasoning.

1 Introduction

LLMs have demonstrated powerful capabilities in
language understanding and reasoning (Wei et al.,
2022), owing to their pretraining on massive text
corpora. A major strength is their ability to perform
logical reasoning purely based on semantic patterns
in language. However, LLMs have significant lim-
itations in structured deductive reasoning. Firstly,
their lack of world knowledge results in unconfi-
dent inferences despite strong semantic reasoning
capacities (Ji et al., 2023). Secondly, LLM lacks
the ability to accurately verify the correctness of
their inferences, often generating logical but incor-
rect conclusions. Finally, LLMs struggle to reason
about novel compositions of existing knowledge,
limited to their pretraining data distribution.

In contrast, KGs (Bollacker et al., 2008; Vrande-
cic and Krotzsch, 2014) contain vast structured
knowledge about the world in the form of en-
tities and relations. This structured knowledge
could make deductions through logical reasoning
grounded in facts. However, pure KGs have notable
limitations for logical reasoning. Firstly, there is
a gap between semantic reasoning and structured
reasoning, while mapping text to structured queries
is challenging. Secondly, KGs contain facts but no
predefined reasoning patterns tailored for specific
questions. Manually engineering reasoning rules is
difficult and leads to brittle performance. Finally,
rule-based reasoning with KGs can fail for complex
multi-hop reasoning, as pre-defined rules cannot
cover all possible reasoning paths.

Despite their individual limitations, LLMs and
KGs each possess complementary strengths that
could enable more robust logical reasoning when
combined synergistically. Firstly, the inability of
LLMs to validate inferences could be augmented by
leveraging the factual accuracy of structured KGs
to correct unsupported leaps in reasoning. Sec-
ondly, the lack of semantic reasoning capabilities
in KGs could be overcome by utilizing the lan-
guage understanding capacities of LLMs to map
text to formal queries. Thirdly, the flexible multi-
step inferencing of LLMs could provide guidance
to direct valid multi-hop reasoning paths on KGs.
By compensating for their respective weaknesses in
this complementary manner, a hybrid system could
achieve greater factual accuracy, natural language
understanding, and rigorous multi-step deductive
reasoning than either LLMs or KGs alone. This
provides strong motivation for developing a frame-
work that entangles the capabilities of LLMs with
KGs for logical reasoning.

While combining LLMs and KGs is promising,
there are fundamental challenges that must be ad-
dressed. Simply incorporating external knowledge
sources like search engines or knowledge graphs
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Figure 1: An overview of LKLR, the whole framework consists of four components: (1) topic-based reasoning
chain generation, (2) reasoning chain to logical query, (3) logical query grounded, (4) knowledge-based answering.
For each step, LLM and KG are both used to enhance each other.

into existing LLLMs has difficulties. Firstly, search
engines (Zhao et al., 2023) return excessive irrel-
evant information without structure. Moreover,
reformulating complex reasoning questions into
executable program (Li et al., 2023d), such as
SPARQL, exceeds current natural language gen-
eration capabilities. If consulting KGs step-wise,
it will disrupt overall reasoning flow and coher-
ence. More fundamentally, effectively integrating
the symbolic knowledge representations in KGs
with the distributed representations in LLMs needs
more research. The reasoning mechanisms behind
KGs and LLMs differ substantially—one is based
on logical formalisms while the other relies on
neural networks. Enabling synergistic reasoning
between them requires thorough interaction and
knowledge transfer across the symbolic and neural
systems. In summary, the core challenge lies in de-
veloping integration between the neural reasoning
of LLMs and the symbolic reasoning of KGs. This
calls for innovative techniques to extract structured
knowledge from LLMs, validate it against KGs,
ground integrated reasoning chains in structured
knowledge, and enable joint optimization between
the two systems. Overcoming these challenges is
the key to realizing the potential of hybrid systems
for advanced logical reasoning.

To address these integration challenges, we pro-
pose a framework that entangles LLMs and KGs for
synergistic reasoning. Our approach leverages the
complementary strengths of both systems through
an iterative workflow as shown in Figure 1: Firstly,
we utilize the chain-of-thought reasoning capac-
ity of the LLM to decompose the question into
a logical query, since we hypothesize the LLM’s

reasoning approach implicitly contains a valid log-
ical structure, though with spurious entities gen-
erated by the model. This query decomposition
enables explicit integration of symbolic knowledge
with the LLM’s distributed representations. We
then traverse the query step-by-step on the KG,
with each inference grounded in factual knowledge
while maintaining an overall reasoning flow guided
by the LLM. Finally, the LLLM contextualizes the
extracted subgraphs to answer the original question.
This framework enables tight interaction between
the LLM and KG to validate inferences, ground
them in structured knowledge, and leverage the rea-
soning capacities of both systems in a synergistic
manner.

We conduct extensive experiments demonstrat-
ing the effectiveness of our proposed approach on
logical reasoning tasks. We consider three challeng-
ing settings: multi-hop knowledge base question
answering, open-domain question answering, and
slot filling for entity-centric queries. Across four
standard benchmarks for these tasks, our integrated
framework achieves new state-of-the-art results.

Our contributions could be summarized as:

* We propose a novel framework, LKLR,
that combines the complementary reasoning
strengths of LLMs and KGs. This enables
robust and rigorous reasoning by utilizing the
advantages of each system.

* We develop an innovative technique to trans-
form free-form reasoning questions into
grounded logical queries over KGs.

* We conduct extensive experiments on four log-
ical reasoning benchmarks, demonstrating the



state-of-the-art performance of our integrated
approach.

2 Preliminaries

Previously, we mentioned that we would transform
a natural language question into a logical query. In
this section, we will introduce the definition of log-
ical query. Given a set of entities ) and relations
R, a knowledge graph G is defined as (V, R, T),
where T represents triplets. A triplet, denoted as
r(es, e;), signifies the existence of relation r be-
tween entities e; and e, both belonging to V.

In a logical query ¢, anchor entities are denoted
by the set V, C V), and existential quantified vari-
able nodes are represented as Vq, Vo, ..., V. The
target answer is expressed as the variable V7. Fol-
lowing the approach proposed by BetaE (Ren and
Leskovec, 2020), the logical query is structured in
disjunctive normal form, where it can be written as
a disjunction of conjunctions:

Q[%] ::‘/?:‘/1"/27""‘/76:Cl\/CQ\/"'\/Cn.

Here, each ¢; is a conjunction of literals a;;, ex-
pressed as ¢; = a;;\- - -Aa;py,. An atom or negation
of an atom, such as r(eq, V), =r(eq, V), r(V', V),
or —r(V', V), represents a;;, where e, € Va,
V.VieV,Vo,..., Vi, V?,and V # V',

Logical queries incorporate variables, constants,
relations, and logical operators, where variables
signify entities for inference, constants anchor the
query, relations indicate connections, and logical
operators like intersection impose constraints on
entity sets. A crucial aspect of our framework in-
volves translating the reasoning chain of the LLM
into a logical query so it can be executable over the
KGs.

3 Method

In this section, we describe the methodology for
our proposed framework, LKLR, to entangle LLMs
and KGs handling logical reasoning. As outlined
previously, our approach aims to leverage the com-
plementary strengths of LLMs and KGs through
an iterative process that grounds an LLM’s implicit
reasoning chain into the structured query. The
framework comprises four stages: 1) reasoning
chain generation by LLM based on the topic entity
in question and relation in KG, 2) transformation
from reasoning chain to a complex logical query, 3)
execution of the logical query grounded in the KG,

and 4) answering the original question with knowl-
edge triplets. This section provides the technical
details for each stage . We demonstrate how our
techniques enable tight integration between the neu-
ral reasoning of the LLM and symbolic reasoning
of the KG to achieve robust deductive reasoning
that is both semantically driven and knowledge-
grounded.

3.1 Topic-based Reasoning Chain Generation

The first stage of LKLR involves generating a rea-
soning chain for a given question as the example in
Figure 2.

(Question: Which college did the artist who had a |
concert tour named Country Nation World Tour

graduate from? o
LTopic Entity:

[Country Nation World Tour. ]

Entity Name: Country Nation World Tour.
Wikidata ID: Q17004176.

Head Relations: performer; start time; instance of;
end time; based on

Entity Name: follows.

Reason with the topic entity and one above relation.

(We could use the head relation (performer) as a
start. The Country Nation World Tour is performed
f;]Y by Luke Bryan. Luke Bryan went to college at
|Georgia Southern University.

Figure 2: Example for the topic-based reasoning chain
generation, the steps are started from the topic entity
and the related relation.

We identify the key topic entities in the question
by prompting the LLM to extract the keywords,
since we need an anchor entity for logical reason-
ing over the KG in the following stage. After that,
all relations of a topic entity are retrieved in the
KG to construct a head relation set and a tail rela-
tion set. Then the LLM needs to construct the full
reasoning chain like the chain-of-thought (CoT),
but the difference is that the reasoning must initiate
from a topic entity and select a first-step relation
from the two relation sets connected to the topic
entity. It then continues reasoning based on the
initiated relation and entity. The constraint on the
first step of inference will make it easier for the
transformed query to be grounded on KG in the
following stage. If the model is allowed to freely
construct the inference chain, the incompleteness
of KG may result in the query not being grounded
on KG.

We choose to leverage the LLM’s own reason-
ing chain as a starting point because large lan-



guage models can produce coherent reasoning
flows, though individual factual statements may
be unreliable. Our approach maintains the overall
reasoning direction while replacing specific entities
to ground the chain in knowledge.

This seeds the CoT with KG-based relations
while leveraging the LL.M’s strengths in chaining
logical inferences. The resulting CoT contains an
implicit reasoning structure that will be made ex-
plicit in the next stage through query transforma-
tion.

3.2 Reasoning Chain to Logical Query

The second stage transforms the reasoning chain
into a grounded logical query over the knowledge
graph as the example in Figure 3.

Input: The Country Nation World Tour is
performed by Luke Bryan. Luke Bryan went to
college at Georgia Southern University.
Extracted Triplets:

(Country Nation World Tour, performed by, Luke

Bryan)
ler (Luke Bryan, went to college at, Georgia Southern
University)

(Q17004176, performed by, #A)
(#A, went to college at, #B)

Figure 3: Example for the transformation from reason-
ing to logical query.

Firstly, we extract the chain into triplet facts
using the LLM, as large models excel at this in-
formation extraction task (Li et al., 2023a; Chern
et al., 2023). Secondly, we process the triplets
to form variables for querying: entities presented
in the original topic entities are kept, while other
non-topic entities are replaced with variables. This
grounds the query in the topic while allowing in-
ference chaining. Crucially, the same entity is re-
placed with the same variable across all triplets,
and the results of this variable correspond to the in-
tersection of the different result sets of this variable
in different atoms. Additionally, we filter triplets
where both entities become variables, unless those
variables could be linked with one of the topic
entities through other variables. Otherwise, such
triplets with disconnected variables will fail to be
grounded during query execution due to a lack of
grounding.

The resulting transformed triplets form a logical
query with topic entities and intersecting variables
for multi-hop inference. This makes the implicit

reasoning structure explicit for execution over the
KG while maintaining relevance to the original
question through topic grounding.

3.3 Logical Query Grounding

The third stage executes the logical query through
multi-hop reasoning over the KG, and the exam-
ple in Figure 4 shows one step. We begin from
the topic entities identified earlier and traverse the
query triplets sequentially.

Entity: Brad Paisley

Query Relation: went to college at

Head Relations: educated at; gender; occupation...
Tail Relations: winner; performer; composer...
Choose the equal relation.

The relation educated at is highly relevant to the
l“F query relation went to college at.

Head Entity: Brad Paisley

Relation: educated at

Results: Belmont University; John Marshall High
School; Linsly School

Figure 4: Example for logical query grounding.

A key problem is linking the query relations to
the actual relations in the KG, as there may be name
inconsistencies between the language-generated
relation and the relations obtained from the KG.
To address this, we leverage the language model
to select the most appropriate KG relations that
semantically match the current query relation.

Executing a triplet can retrieve multiple entity
candidates, but part of them may satisfy the cur-
rent step query. However, they could not satisfy
the overall query structure finally if the variable is
also shown in other triplets. Our use of intersecting
variables across triplets constrains the results to
entities fulfilling the logical constraints. Perform-
ing intersection at each reasoning step prunes the
search space and reduces final redundant results.

If the full reasoning chain fails to be grounded on
the KG, we provide feedback to the LLM indicating
where the failure occurred. This allows the model
to update its reasoning approach and generate an
alternative chain.

Overall, this stage grounds each reasoning step
in the KG by eliminating the disambiguation of
relations while leveraging the query structure to
maintain relevance and validity. The output is ex-
tracted subgraphs containing inferred chains con-
nected to the topic entities, with related knowledge
triplets.



3.4 Knowledge-based Answering

The fourth stage involves the LLM utilizing the
extracted knowledge triplets to answer the original
question like the example in Figure 5.

" Question: Which college did the artist who had a |
concert tour named Country Nation World Tour
graduate from? .
Topic Entity: Country Nation World Tour

| Start Relation: performer

Knowledge Triplets:

(Country Nation World Tour, performer, Brad
Paisley)

(Brad Paisley, educated at, Belmont University)
(Brad Paisley, educated at, John Marshall High
School)

(Brad Paisley, educated at, Linsly School)

Brad Paisley is the performer of the Country
r;]y Nation World Tour concert, and he is educated at
the Belmont University.

Figure 5: Example for the final answering with the
knowledge.

First, we provide the LLM with the question text,
the topic entities and the first step relation. This
primes the model to continue its initial line of rea-
soning. Next, we supply the LLM with the full
set of subgraphs extracted and grounded over the
KG with the logical query. These provide external
knowledge to augment the LLM’s fact inferences.
Finally, we instruct the LLLM to contextualize this
knowledge by continuing its initial reasoning chain
to generate the final answer to the question. Pro-
viding the grounded topic entities and relations
focuses the LLM on reasoning paths most relevant
to the question and extracted knowledge.

Importantly, even if the full query fails to be
grounded completely due to KG incompleteness,
the partial chains and entities retrieved could still
provide useful knowledge. The LLM can utilize
these grounded facts to improve its final answer.

This stage allows the LLM to interpret and syn-
thesize the retrieved knowledge using its strong lan-
guage capacities, answering the question by com-
bining its reasoning with structured external facts.

4 Experiment

In this section, we detail the experimental setup to
evaluate the proposed LKLR framework for entan-
gling LLMs and KGs for synergistic reasoning. We
aim to assess the effectiveness of our approach in
logical reasoning tasks.

4.1 Dataset and Evaluation Metrics

We evaluate LKLR on four standard logical rea-
soning benchmarks: WebQSP (Yih et al., 2016)
is tailored for multi-hop question answering over
KGs. The result could demonstrate the model’s
proficiency in multi-hop reasoning. QALD-
10(en) (Perevalov et al., 2022) is a benchmark for
semantic web question answering, featuring ques-
tions from diverse domains. The dataset serves as
a testbed for LKLR’s capabilities in handling com-
plex queries. WebQuestion (Berant et al., 2013)
is designed for open-domain question answering.
LKLR is tested on its capacity to answer diverse
questions by reasoning over the knowledge graph,
demonstrating its effectiveness in open-domain sce-
narios. T-REx (ElSahar et al., 2018) is a dataset
containing large-scale high-quality alignments be-
tween DBpedia abstracts and Wikidata triples. We
use this dataset to assess the performance of LKLR
framework in handling the slot-filling task.

To evaluate the accuracy of the different, exact
match accuracy (Hits@1) is used following previ-
ous works (Sun et al., 2023c¢).

4.2 Baselines

Standard prompting (IO prompt) (Brown et al.,
2020): Models are provided with example ques-
tions, but the answers lack any explicit reasoning
process, focusing solely on outputs.

Chain-of-thought prompting (CoT
prompt) (Wei et al., 2022): It presents mod-
els with example questions, each accompanied
by an explicit reasoning chain or process. This
prompts the model to answer questions incorporat-
ing the understanding of intermediate steps in the
reasoning process.

Self-Consistency prompting (SC
prompt) (Wang et al., 2023): Guiding the
language model with a CoT prompt, prompting
the generated multiple reasoning paths through
multiple samples, and selecting the most consistent
answer via voting.

Think on Graph (ToG) (Sun et al., 2023c): The
model conducts multi-step reasoning from the topic
entity in the question. The exploration involves se-
lecting relations using LLM and employs a beam-
search approach to obtain multiple paths on KG
with a max depth, and LLM scores each path to
get the answer. The main difference between ToG
and our model is that ToG only considers the cur-
rent reasoning step, without holistically consider-



Multi-Hop

Open-Domain Slot-Filling

WebQSP

QALD10-en

WebQuestions T-Rex

without knowledge graph

10 prompt  63.3(+13.6%) 42(+27.4%)  48.7(+25.7%) 33.6(+141.7%)
CoT prompt  62.2(+15.6%) 42.9(+24.7%) 48.5(+26.2%) 32(+153.8%)
SC prompt  61.1(+17.7%) 45.3(+18.1%) 50.3(+21.7%)  41.8(+94.3%)
with knowledge graph
ToG 68.8(+4.5%)  50.2(+6.6%) 54.5%(+12.3%)  76.8(+5.7%)
LKLR 71.9 53.5 61.2 81.2

Table 1: The main result for baselines and LKLR on question answering. We use the OpenAl API to call GPT-
3.5-turbo as the LLM, and the knowledge base used for models with external knowledge is Wikidata (Vrandecic
and Krotzsch, 2014) except the result *, which is based on Freebase (Bollacker et al., 2008). The baseline results
are from (Sun et al., 2023c). The best results are marked with bold, and the numbers in parentheses represent the
proportion of improvement in the best result compared to that result.

ing previous choices. In contrast, LKLR follows
a complete reasoning framework for solving the
problem, making the connections between steps
more coherent.

4.3 Main Results

The Table 1 presents the experimental results across
multiple question-answering tasks and datasets,
comparing baseline methods with our proposed
LKLR. Notably, LKLR consistently outperforms
baselines across tasks, showcasing its versatility
and robust performance. The collaborative integra-
tion of LLMs and knowledge graphs within LKLLR
positions it as a powerful framework, delivering no-
table improvements across diverse reasoning tasks.

Our model exhibits a significant performance
boost compared to models without the integra-
tion of external knowledge. The key enhancement
stems from our method’s adeptness at seamlessly
combining the inferential capabilities of LLM with
the. This fusion enables a more comprehensive
understanding of natural language and a nuanced
interpretation of complex queries. Furthermore,
the integration of external knowledge plays a cru-
cial role in addressing the limitations inherent in
LLM. While LLMs excel in semantic reasoning,
they often fall short in multi-step deductive rea-
soning, world knowledge validation, and reasoning
about novel compositions of existing knowledge.
By grounding the LLM’s implicit reasoning chain
in the knowledge graph through a logical query,
LKLR overcomes these limitations. Each step of
the reasoning process is aligned with factual knowl-

edge from the KG, enhancing the model’s ability
to validate inferences and produce more reliable
results.

Compared to the ToG method, our approach ex-
cels by strategically pre-planning reasoning paths
from a holistic perspective. Unlike ToG’s dy-
namic exploration, LKLR leverages the large lan-
guage model’s chain-of-thought reasoning to pre-
compose a structured reasoning chain. This proac-
tive approach ensures purposeful and directed rea-
soning, enhancing coherence and alignment with
the overall question. The use of beam-search fur-
ther enables adaptability. Overall, LKLR stands out
for its strategic planning, providing a more focused
and effective approach to multi-step reasoning com-
pared to ToG’s exploratory nature.

4.4 Analysis

We conducted an in-depth analysis of the knowl-
edge effectiveness in our experimental results, pro-
viding quantitative evidence to demonstrate the
tangible performance improvement achieved by
our method. We specifically focused on the ex-
tent of knowledge acquisition and the impact of
knowledge completeness on the experimental out-
comes. Here we choose the QALD10-en, T-Rex,
and WebQSP datasets. We do not use WebQues-
tions since WebQSP is based on it and has higher
quality, which is more representative when con-
ducting analysis.

In the process of grounding query, potential fail-
ures could occur, such as unsuccessful triplet ex-
traction or the incompleteness of the knowledge
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Figure 6: The proportion of different types of query
grounding. Complete is denoted as Com.

graph, leading to the inability to obtain ideal knowl-
edge relevant to the questions. We categorized the
results based on the degree of query instantiation
into three types: "Complete" signifies obtaining a
logical query and fully instantiating it, acquiring
the inference triplets; "Part" indicates obtaining a
logical query but instantiating only a portion of
it, resulting in partial knowledge relevant to the
questions; the final category "None" is when it’s
impossible to extract appropriate queries or the log-
ical queries cannot be instantiated, in which case
we directly employ the CoT method for predic-
tion. Figure 6 illustrates our statistical findings.
We conducted statistical analyses on three datasets,
revealing that the majority of the data aligns with
our expectations, allowing us to obtain complete
knowledge as anticipated. Instances where incom-
plete knowledge was obtained or no knowledge
was acquired constitute a minority in our statistical
analyses.

Complete Part None Overall
QALD10-en 64.02 62.50 4091 53.50
T-Rex 93.05 - 14.57  81.20
WebQSP 73.93 70.59 61.17  71.90

Table 2: Accuracy of different types of query grounding.

Furthermore, we conducted a detailed analysis
of the accuracy of answers in various scenarios, as
shown in Table 2. It is evident that when complete
knowledge is obtained, the accuracy of answers is
consistently the highest across all datasets. This
robustly demonstrates that our model’s ability to ac-

quire effective knowledge contributes significantly
to enhancing overall performance. Moreover, even
in scenarios where only partial knowledge is ac-
quired, the accuracy of answers is notably higher
than in situations where no knowledge is obtained
at all. This aligns with our previous inference that,
for generative models, accuracy in capturing par-
tial facts can effectively elevate the overall accu-
racy of generated results. Future studies could ex-
plore further synergies between large models and
structured knowledge, emphasizing the potential
for more comprehensive investigations into their
consistent integration.

4.5 Case Study

We selected two questions that appeared in the ex-
periments for a case study as Table 3. The pur-
pose of choosing these two examples is not only
to demonstrate the effectiveness of the answers
but also to showcase how our chosen knowledge
can provide more informative responses. In the
first case, our answer is more detailed, offering
a finer granularity of information. In the second
case, while the answer to the question itself has de-
ficiencies, it can be considered correct according to
evaluation metrics. However, in comparison to our
answer, which provides intuitively accurate knowl-
edge triplets, the combination of a large model’s
response and our answer is evidently more com-
prehensive and accurate. This enhances the persua-
siveness of the response to the questioner.

5 Related Work

Recent research has demonstrated that prompting
methods such as chain-of-thought (Wei et al., 2022;
Wang et al., 2023; Kojima et al., 2022; Sun et al.,
2023a; Besta et al., 2023; Sun et al., 2023b) can
significantly enhance the reasoning capabilities of
large language models. By constructing prompt se-
quences that encode reasoning logic and causal rela-
tionships, CoT provides step-by-step guidance for
LLM prediction-making under few-shot learning
settings. This allows LLMs to achieve improved
performance on complex reasoning tasks.
However, while prompting strategies bolster the
reasoning ability of LLMs, models prompted in
this way still suffer from issues like hallucination
and factual inconsistency (Ji et al., 2023) that stem
from their reliance on implicit knowledge derived
solely from training data (Lee et al., 2022). In or-
der to further improve the reliability and factual



Where does Michelle Pfeiffer live now? Orange County

CoT Michelle Pfeiffer currently resides in the United States.
”””””” Guery: CQISOTIS" resdes ', '4Any T
LKLR Knowledge: Michelle Pfeiffer, residence, Orange County
Michelle Pfeiffer, country of citizenship, United States of America
Answer: Based on the knowledge triplets, Michelle Pfeiffer resides in Orange County.
Q&A  When did carolina panthers go to superbowl? Super Bowl XXXVIII
CoT The Carolina Panthers participated in the Super Bowl in two different years: 2004 and 2016.
”””””” Guers: CQUOI0, paricipued i’ wAn T
Knowledge: Carolina Panthers, participating team, Super Bowl XXXVIII
LKLR Carolina Panthers, participating team, Super Bowl 50

Answer: The Carolina Panthers participated in Super Bowl XXXVIII and Super Bowl 50.
Super Bowl XXXVIII took place on February 1, 2004, and Super Bowl 50 took place on

February 7, 2016.

Table 3: Gnerated examples of CoT and LKLR. Note that we only represent the reasoning part of the answer, and
the exact answer part to calculate the metric is not shown in the table.

accuracy of LLM responses, complementary ap-
proaches based on structured knowledge retrieval
and evidence integration have been explored.

To alleviate the hallucination problem in LLMs,
some approaches incorporate external knowl-
edge (Yao et al., 2023; Sun et al., 2023c) to help
generate more accurate responses. By searching for
query-relevant information from external knowl-
edge sources such as the Web and providing it as
part of the prompt to the LLM, these methods are
able to generate answers with higher correctness
to some extent (Lu et al., 2023; Liu et al., 2023;
Li et al., 2023b). However, while supplying addi-
tional query-relevant context can reduce the risks of
hallucination, it lacks comprehensive correctness
guarantees for multi-step reasoning tasks. Further-
more, simplistic search brings redundant informa-
tion, hampering model inference. To further en-
hance reliability and factual consistency, recent
work explores retrieve-after-generate paradigms
that automatically filter (Gao et al., 2023; He et al.,
2023; Peng et al., 2023; Zhao et al., 2023) or edit
LLM outputs based on evidence from structured
knowledge graphs (Li et al., 2023d; Guan et al.,
2023; Li et al., 2023c; Baek et al., 2023). Integrat-
ing such structured external knowledge provides a
way to refine model generations while mitigating
hallucination and inaccuracies.

Our proposed approach builds on these in-
sights to combine the benefits of reasoning-focused

prompting and structured knowledge retrieval. We
utilize knowledge graphs as dependable external
knowledge sources to refine LLM responses after
initial prompting-based generation. This allows us
to reduce hallucinations and enhance factual consis-
tency without extensive re-training. The integration
of explicit reasoning guidance and structured exter-
nal knowledge seeks to complement the strengths
of pre-trained LL.Ms, addressing the limitations of
previous work.

6 Conclusion

In this work, we proposed a novel framework that
entangles large language models and knowledge
graphs for advanced logical reasoning. The key in-
novation is transforming implicit reasoning chains
into executable logical queries, enabling multi-hop
inference grounded in structured knowledge. This
addresses the limitations of both neural and sym-
bolic approaches. We demonstrate significant per-
formance improvements on multiple logical reason-
ing datasets, including multi-hop QA, open-domain
QA, and slot-filling tasks. The framework repre-
sents an important advance toward more robust rea-
soning in Al by combining neural creativity with
logical validation. Further directions include ex-
tending the approach to broader knowledge sources
and more complex reasoning. We believe this syn-
ergistic reasoning paradigm will open new frontiers
in artificial intelligence.



Limitation

While our proposed framework makes significant
progress in integrating neural and symbolic reason-
ing, it has some limitations that could be addressed
in future work. A key limitation is that the entities
involved in the reasoning must exist in the KG. If
the reasoning contains entities not present in the
KG, then relevant knowledge cannot be provided
for such questions. This places requirements on the
completeness of the KG for broad reasoning cov-
erage. Future work could focus on techniques to
handle reasoning about unknown entities, such as
searching external sources or generating plausible
knowledge. Additionally, our current framework
relies on a single knowledge graph, while com-
bining multiple heterogeneous knowledge sources
could provide more diverse reasoning capabilities.
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