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Abstract

Large language models (LLMs) and knowledge001
graphs (KGs) have complementary strengths002
and weaknesses for logical reasoning. LLMs003
exhibit strong semantic reasoning capacities,004
but they lack world knowledge and structured005
reasoning abilities. KGs contain extensive fac-006
tual knowledge but have limited language un-007
derstanding and reasoning flexibility. In this008
paper, we propose a framework LKLR that en-009
tangles LLMs and KGs for synergistic reason-010
ing. A key technique is transforming the LLM’s011
implicit reasoning chain into a grounded log-012
ical query over the KG, enabling seamless in-013
tegration. Traversing this query grounds each014
inference step in KG facts while maintaining015
reasoning flow, combining the robust knowl-016
edge of KGs with the semantic reasoning of017
LLMs. Our approach synergistically integrates018
neural and symbolic reasoning to achieve hy-019
brid reasoning capabilities. Experimental re-020
sults on several QA benchmarks show that our021
proposed framework achieves state-of-the-art022
performance and provides transparent and reli-023
able reasoning.024

1 Introduction025

LLMs have demonstrated powerful capabilities in026

language understanding and reasoning (Wei et al.,027

2022), owing to their pretraining on massive text028

corpora. A major strength is their ability to perform029

logical reasoning purely based on semantic patterns030

in language. However, LLMs have significant lim-031

itations in structured deductive reasoning. Firstly,032

their lack of world knowledge results in unconfi-033

dent inferences despite strong semantic reasoning034

capacities (Ji et al., 2023). Secondly, LLM lacks035

the ability to accurately verify the correctness of036

their inferences, often generating logical but incor-037

rect conclusions. Finally, LLMs struggle to reason038

about novel compositions of existing knowledge,039

limited to their pretraining data distribution.040

In contrast, KGs (Bollacker et al., 2008; Vrande- 041

cic and Krötzsch, 2014) contain vast structured 042

knowledge about the world in the form of en- 043

tities and relations. This structured knowledge 044

could make deductions through logical reasoning 045

grounded in facts. However, pure KGs have notable 046

limitations for logical reasoning. Firstly, there is 047

a gap between semantic reasoning and structured 048

reasoning, while mapping text to structured queries 049

is challenging. Secondly, KGs contain facts but no 050

predefined reasoning patterns tailored for specific 051

questions. Manually engineering reasoning rules is 052

difficult and leads to brittle performance. Finally, 053

rule-based reasoning with KGs can fail for complex 054

multi-hop reasoning, as pre-defined rules cannot 055

cover all possible reasoning paths. 056

Despite their individual limitations, LLMs and 057

KGs each possess complementary strengths that 058

could enable more robust logical reasoning when 059

combined synergistically. Firstly, the inability of 060

LLMs to validate inferences could be augmented by 061

leveraging the factual accuracy of structured KGs 062

to correct unsupported leaps in reasoning. Sec- 063

ondly, the lack of semantic reasoning capabilities 064

in KGs could be overcome by utilizing the lan- 065

guage understanding capacities of LLMs to map 066

text to formal queries. Thirdly, the flexible multi- 067

step inferencing of LLMs could provide guidance 068

to direct valid multi-hop reasoning paths on KGs. 069

By compensating for their respective weaknesses in 070

this complementary manner, a hybrid system could 071

achieve greater factual accuracy, natural language 072

understanding, and rigorous multi-step deductive 073

reasoning than either LLMs or KGs alone. This 074

provides strong motivation for developing a frame- 075

work that entangles the capabilities of LLMs with 076

KGs for logical reasoning. 077

While combining LLMs and KGs is promising, 078

there are fundamental challenges that must be ad- 079

dressed. Simply incorporating external knowledge 080

sources like search engines or knowledge graphs 081
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Head relation: performer, … 

Tail relation set: follows, …

Where did the artist who had a concert tour named Country Nation World Tour graduate from college?

Topic Entity

Country Nation 

World Tour 

Country Nation World Tour 

(Q17004176)

Relation Retrieval

Reasoning Generation

The Country Nation World Tour 

is performed by Luke Bryan. 

Luke Bryan went to college at 

Georgia Southern University.

Triplet Extraction

(Country Nation World Tour, 

performed by, Luke Bryan)

(Luke Bryan, went to college at,

 Georgia Southern University)

Anchor Variable

(Country Nation World Tour, performed by, #A)

(#A, went to college at, #B) Query Grounding

Anchor: Country Nation World Tour

Step1 Relation: performer

#A: Brad Paisley

Step2 Relation: educated at

 #B: Belmont University, Linsly School, …

Brad Paisley is the performer of 

the Country Nation World Tour 

concert, and he is educated at the 

Belmont University

Knowledge-based Answeing

Figure 1: An overview of LKLR, the whole framework consists of four components: (1) topic-based reasoning
chain generation, (2) reasoning chain to logical query, (3) logical query grounded, (4) knowledge-based answering.
For each step, LLM and KG are both used to enhance each other.

into existing LLMs has difficulties. Firstly, search082

engines (Zhao et al., 2023) return excessive irrel-083

evant information without structure. Moreover,084

reformulating complex reasoning questions into085

executable program (Li et al., 2023d), such as086

SPARQL, exceeds current natural language gen-087

eration capabilities. If consulting KGs step-wise,088

it will disrupt overall reasoning flow and coher-089

ence. More fundamentally, effectively integrating090

the symbolic knowledge representations in KGs091

with the distributed representations in LLMs needs092

more research. The reasoning mechanisms behind093

KGs and LLMs differ substantially—one is based094

on logical formalisms while the other relies on095

neural networks. Enabling synergistic reasoning096

between them requires thorough interaction and097

knowledge transfer across the symbolic and neural098

systems. In summary, the core challenge lies in de-099

veloping integration between the neural reasoning100

of LLMs and the symbolic reasoning of KGs. This101

calls for innovative techniques to extract structured102

knowledge from LLMs, validate it against KGs,103

ground integrated reasoning chains in structured104

knowledge, and enable joint optimization between105

the two systems. Overcoming these challenges is106

the key to realizing the potential of hybrid systems107

for advanced logical reasoning.108

To address these integration challenges, we pro-109

pose a framework that entangles LLMs and KGs for110

synergistic reasoning. Our approach leverages the111

complementary strengths of both systems through112

an iterative workflow as shown in Figure 1: Firstly,113

we utilize the chain-of-thought reasoning capac-114

ity of the LLM to decompose the question into115

a logical query, since we hypothesize the LLM’s116

reasoning approach implicitly contains a valid log- 117

ical structure, though with spurious entities gen- 118

erated by the model. This query decomposition 119

enables explicit integration of symbolic knowledge 120

with the LLM’s distributed representations. We 121

then traverse the query step-by-step on the KG, 122

with each inference grounded in factual knowledge 123

while maintaining an overall reasoning flow guided 124

by the LLM. Finally, the LLM contextualizes the 125

extracted subgraphs to answer the original question. 126

This framework enables tight interaction between 127

the LLM and KG to validate inferences, ground 128

them in structured knowledge, and leverage the rea- 129

soning capacities of both systems in a synergistic 130

manner. 131

We conduct extensive experiments demonstrat- 132

ing the effectiveness of our proposed approach on 133

logical reasoning tasks. We consider three challeng- 134

ing settings: multi-hop knowledge base question 135

answering, open-domain question answering, and 136

slot filling for entity-centric queries. Across four 137

standard benchmarks for these tasks, our integrated 138

framework achieves new state-of-the-art results. 139

Our contributions could be summarized as: 140

• We propose a novel framework, LKLR, 141

that combines the complementary reasoning 142

strengths of LLMs and KGs. This enables 143

robust and rigorous reasoning by utilizing the 144

advantages of each system. 145

• We develop an innovative technique to trans- 146

form free-form reasoning questions into 147

grounded logical queries over KGs. 148

• We conduct extensive experiments on four log- 149

ical reasoning benchmarks, demonstrating the 150
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state-of-the-art performance of our integrated151

approach.152

2 Preliminaries153

Previously, we mentioned that we would transform154

a natural language question into a logical query. In155

this section, we will introduce the definition of log-156

ical query. Given a set of entities V and relations157

R, a knowledge graph G is defined as (V,R, T ),158

where T represents triplets. A triplet, denoted as159

r(ei, ej), signifies the existence of relation r be-160

tween entities ei and ej , both belonging to V .161

In a logical query q, anchor entities are denoted162

by the set Va ⊆ V , and existential quantified vari-163

able nodes are represented as V1, V2, . . . , Vk. The164

target answer is expressed as the variable V ?. Fol-165

lowing the approach proposed by BetaE (Ren and166

Leskovec, 2020), the logical query is structured in167

disjunctive normal form, where it can be written as168

a disjunction of conjunctions:169

q[V?] := V? : V1, V2, . . . , Vk : c1 ∨ c2 ∨ · · · ∨ cn.170

Here, each ci is a conjunction of literals aij , ex-171

pressed as ci = aij∧· · ·∧aim. An atom or negation172

of an atom, such as r(ea, V ), ¬r(ea, V ), r(V ′, V ),173

or ¬r(V ′, V ), represents aij , where ea ∈ Va,174

V, V ′ ∈ V1, V2, . . . , Vk, V ?, and V ̸= V ′.175

Logical queries incorporate variables, constants,176

relations, and logical operators, where variables177

signify entities for inference, constants anchor the178

query, relations indicate connections, and logical179

operators like intersection impose constraints on180

entity sets. A crucial aspect of our framework in-181

volves translating the reasoning chain of the LLM182

into a logical query so it can be executable over the183

KGs.184

3 Method185

In this section, we describe the methodology for186

our proposed framework, LKLR, to entangle LLMs187

and KGs handling logical reasoning. As outlined188

previously, our approach aims to leverage the com-189

plementary strengths of LLMs and KGs through190

an iterative process that grounds an LLM’s implicit191

reasoning chain into the structured query. The192

framework comprises four stages: 1) reasoning193

chain generation by LLM based on the topic entity194

in question and relation in KG, 2) transformation195

from reasoning chain to a complex logical query, 3)196

execution of the logical query grounded in the KG,197

and 4) answering the original question with knowl- 198

edge triplets. This section provides the technical 199

details for each stage . We demonstrate how our 200

techniques enable tight integration between the neu- 201

ral reasoning of the LLM and symbolic reasoning 202

of the KG to achieve robust deductive reasoning 203

that is both semantically driven and knowledge- 204

grounded. 205

3.1 Topic-based Reasoning Chain Generation 206

The first stage of LKLR involves generating a rea- 207

soning chain for a given question as the example in 208

Figure 2. 209

Question: Which college did the artist who had a 

concert tour named Country Nation World Tour 

graduate from?

Topic Entity:

Country Nation World Tour.

Entity Name: Country Nation World Tour.

Wikidata ID: Q17004176.

Head Relations: performer; start time; instance of; 

end time; based on

Entity Name: follows.

Reason with the topic entity and one above relation.

We could use the head relation (performer) as a 

start. The Country Nation World Tour is performed 

by Luke Bryan. Luke Bryan went to college at 

Georgia Southern University.

Figure 2: Example for the topic-based reasoning chain
generation, the steps are started from the topic entity
and the related relation.

We identify the key topic entities in the question 210

by prompting the LLM to extract the keywords, 211

since we need an anchor entity for logical reason- 212

ing over the KG in the following stage. After that, 213

all relations of a topic entity are retrieved in the 214

KG to construct a head relation set and a tail rela- 215

tion set. Then the LLM needs to construct the full 216

reasoning chain like the chain-of-thought (CoT), 217

but the difference is that the reasoning must initiate 218

from a topic entity and select a first-step relation 219

from the two relation sets connected to the topic 220

entity. It then continues reasoning based on the 221

initiated relation and entity. The constraint on the 222

first step of inference will make it easier for the 223

transformed query to be grounded on KG in the 224

following stage. If the model is allowed to freely 225

construct the inference chain, the incompleteness 226

of KG may result in the query not being grounded 227

on KG. 228

We choose to leverage the LLM’s own reason- 229

ing chain as a starting point because large lan- 230
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guage models can produce coherent reasoning231

flows, though individual factual statements may232

be unreliable. Our approach maintains the overall233

reasoning direction while replacing specific entities234

to ground the chain in knowledge.235

This seeds the CoT with KG-based relations236

while leveraging the LLM’s strengths in chaining237

logical inferences. The resulting CoT contains an238

implicit reasoning structure that will be made ex-239

plicit in the next stage through query transforma-240

tion.241

3.2 Reasoning Chain to Logical Query242

The second stage transforms the reasoning chain243

into a grounded logical query over the knowledge244

graph as the example in Figure 3.245

Input: The Country Nation World Tour is 

performed by Luke Bryan. Luke Bryan went to 

college at Georgia Southern University.

Extracted Triplets：

(Country Nation World Tour, performed by, Luke 

Bryan)

(Luke Bryan, went to college at, Georgia Southern 

University)

(Q17004176, performed by, #A)

(#A, went to college at, #B)

Figure 3: Example for the transformation from reason-
ing to logical query.

Firstly, we extract the chain into triplet facts246

using the LLM, as large models excel at this in-247

formation extraction task (Li et al., 2023a; Chern248

et al., 2023). Secondly, we process the triplets249

to form variables for querying: entities presented250

in the original topic entities are kept, while other251

non-topic entities are replaced with variables. This252

grounds the query in the topic while allowing in-253

ference chaining. Crucially, the same entity is re-254

placed with the same variable across all triplets,255

and the results of this variable correspond to the in-256

tersection of the different result sets of this variable257

in different atoms. Additionally, we filter triplets258

where both entities become variables, unless those259

variables could be linked with one of the topic260

entities through other variables. Otherwise, such261

triplets with disconnected variables will fail to be262

grounded during query execution due to a lack of263

grounding.264

The resulting transformed triplets form a logical265

query with topic entities and intersecting variables266

for multi-hop inference. This makes the implicit267

reasoning structure explicit for execution over the 268

KG while maintaining relevance to the original 269

question through topic grounding. 270

3.3 Logical Query Grounding 271

The third stage executes the logical query through 272

multi-hop reasoning over the KG, and the exam- 273

ple in Figure 4 shows one step. We begin from 274

the topic entities identified earlier and traverse the 275

query triplets sequentially. 276

Entity: Brad Paisley 

Query Relation: went to college at

Head Relations: educated at; gender; occupation…

Tail Relations: winner; performer; composer…

Choose the equal relation.

The relation educated at is highly relevant to the 

query relation went to college at.

Head Entity: Brad Paisley 

Relation: educated at

Results：Belmont University; John Marshall High 

School; Linsly School

Figure 4: Example for logical query grounding.

A key problem is linking the query relations to 277

the actual relations in the KG, as there may be name 278

inconsistencies between the language-generated 279

relation and the relations obtained from the KG. 280

To address this, we leverage the language model 281

to select the most appropriate KG relations that 282

semantically match the current query relation. 283

Executing a triplet can retrieve multiple entity 284

candidates, but part of them may satisfy the cur- 285

rent step query. However, they could not satisfy 286

the overall query structure finally if the variable is 287

also shown in other triplets. Our use of intersecting 288

variables across triplets constrains the results to 289

entities fulfilling the logical constraints. Perform- 290

ing intersection at each reasoning step prunes the 291

search space and reduces final redundant results. 292

If the full reasoning chain fails to be grounded on 293

the KG, we provide feedback to the LLM indicating 294

where the failure occurred. This allows the model 295

to update its reasoning approach and generate an 296

alternative chain. 297

Overall, this stage grounds each reasoning step 298

in the KG by eliminating the disambiguation of 299

relations while leveraging the query structure to 300

maintain relevance and validity. The output is ex- 301

tracted subgraphs containing inferred chains con- 302

nected to the topic entities, with related knowledge 303

triplets. 304
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3.4 Knowledge-based Answering305

The fourth stage involves the LLM utilizing the306

extracted knowledge triplets to answer the original307

question like the example in Figure 5.308

Question: Which college did the artist who had a 

concert tour named Country Nation World Tour 

graduate from?

Topic Entity: Country Nation World Tour

Start Relation: performer

Knowledge Triplets:

(Country Nation World Tour, performer, Brad 

Paisley)

(Brad Paisley, educated at, Belmont University)

(Brad Paisley, educated at, John Marshall High 

School)

(Brad Paisley, educated at, Linsly School)

Brad Paisley is the performer of the Country 

Nation World Tour concert, and he is educated at 

the Belmont University.

Figure 5: Example for the final answering with the
knowledge.

First, we provide the LLM with the question text,309

the topic entities and the first step relation. This310

primes the model to continue its initial line of rea-311

soning. Next, we supply the LLM with the full312

set of subgraphs extracted and grounded over the313

KG with the logical query. These provide external314

knowledge to augment the LLM’s fact inferences.315

Finally, we instruct the LLM to contextualize this316

knowledge by continuing its initial reasoning chain317

to generate the final answer to the question. Pro-318

viding the grounded topic entities and relations319

focuses the LLM on reasoning paths most relevant320

to the question and extracted knowledge.321

Importantly, even if the full query fails to be322

grounded completely due to KG incompleteness,323

the partial chains and entities retrieved could still324

provide useful knowledge. The LLM can utilize325

these grounded facts to improve its final answer.326

This stage allows the LLM to interpret and syn-327

thesize the retrieved knowledge using its strong lan-328

guage capacities, answering the question by com-329

bining its reasoning with structured external facts.330

4 Experiment331

In this section, we detail the experimental setup to332

evaluate the proposed LKLR framework for entan-333

gling LLMs and KGs for synergistic reasoning. We334

aim to assess the effectiveness of our approach in335

logical reasoning tasks.336

4.1 Dataset and Evaluation Metrics 337

We evaluate LKLR on four standard logical rea- 338

soning benchmarks: WebQSP (Yih et al., 2016) 339

is tailored for multi-hop question answering over 340

KGs. The result could demonstrate the model’s 341

proficiency in multi-hop reasoning. QALD- 342

10(en) (Perevalov et al., 2022) is a benchmark for 343

semantic web question answering, featuring ques- 344

tions from diverse domains. The dataset serves as 345

a testbed for LKLR’s capabilities in handling com- 346

plex queries. WebQuestion (Berant et al., 2013) 347

is designed for open-domain question answering. 348

LKLR is tested on its capacity to answer diverse 349

questions by reasoning over the knowledge graph, 350

demonstrating its effectiveness in open-domain sce- 351

narios. T-REx (ElSahar et al., 2018) is a dataset 352

containing large-scale high-quality alignments be- 353

tween DBpedia abstracts and Wikidata triples. We 354

use this dataset to assess the performance of LKLR 355

framework in handling the slot-filling task. 356

To evaluate the accuracy of the different, exact 357

match accuracy (Hits@1) is used following previ- 358

ous works (Sun et al., 2023c). 359

4.2 Baselines 360

Standard prompting (IO prompt) (Brown et al., 361

2020): Models are provided with example ques- 362

tions, but the answers lack any explicit reasoning 363

process, focusing solely on outputs. 364

Chain-of-thought prompting (CoT 365

prompt) (Wei et al., 2022): It presents mod- 366

els with example questions, each accompanied 367

by an explicit reasoning chain or process. This 368

prompts the model to answer questions incorporat- 369

ing the understanding of intermediate steps in the 370

reasoning process. 371

Self-Consistency prompting (SC 372

prompt) (Wang et al., 2023): Guiding the 373

language model with a CoT prompt, prompting 374

the generated multiple reasoning paths through 375

multiple samples, and selecting the most consistent 376

answer via voting. 377

Think on Graph (ToG) (Sun et al., 2023c): The 378

model conducts multi-step reasoning from the topic 379

entity in the question. The exploration involves se- 380

lecting relations using LLM and employs a beam- 381

search approach to obtain multiple paths on KG 382

with a max depth, and LLM scores each path to 383

get the answer. The main difference between ToG 384

and our model is that ToG only considers the cur- 385

rent reasoning step, without holistically consider- 386
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Multi-Hop Open-Domain Slot-Filling

WebQSP QALD10-en WebQuestions T-Rex

without knowledge graph

IO prompt 63.3(+13.6%) 42(+27.4%) 48.7(+25.7%) 33.6(+141.7%)

CoT prompt 62.2(+15.6%) 42.9(+24.7%) 48.5(+26.2%) 32(+153.8%)

SC prompt 61.1(+17.7%) 45.3(+18.1%) 50.3(+21.7%) 41.8(+94.3%)

with knowledge graph

ToG 68.8(+4.5%) 50.2(+6.6%) 54.5*(+12.3%) 76.8(+5.7%)

LKLR 71.9 53.5 61.2 81.2

Table 1: The main result for baselines and LKLR on question answering. We use the OpenAI API to call GPT-
3.5-turbo as the LLM, and the knowledge base used for models with external knowledge is Wikidata (Vrandecic
and Krötzsch, 2014) except the result *, which is based on Freebase (Bollacker et al., 2008). The baseline results
are from (Sun et al., 2023c). The best results are marked with bold, and the numbers in parentheses represent the
proportion of improvement in the best result compared to that result.

ing previous choices. In contrast, LKLR follows387

a complete reasoning framework for solving the388

problem, making the connections between steps389

more coherent.390

4.3 Main Results391

The Table 1 presents the experimental results across392

multiple question-answering tasks and datasets,393

comparing baseline methods with our proposed394

LKLR. Notably, LKLR consistently outperforms395

baselines across tasks, showcasing its versatility396

and robust performance. The collaborative integra-397

tion of LLMs and knowledge graphs within LKLR398

positions it as a powerful framework, delivering no-399

table improvements across diverse reasoning tasks.400

Our model exhibits a significant performance401

boost compared to models without the integra-402

tion of external knowledge. The key enhancement403

stems from our method’s adeptness at seamlessly404

combining the inferential capabilities of LLM with405

the. This fusion enables a more comprehensive406

understanding of natural language and a nuanced407

interpretation of complex queries. Furthermore,408

the integration of external knowledge plays a cru-409

cial role in addressing the limitations inherent in410

LLM. While LLMs excel in semantic reasoning,411

they often fall short in multi-step deductive rea-412

soning, world knowledge validation, and reasoning413

about novel compositions of existing knowledge.414

By grounding the LLM’s implicit reasoning chain415

in the knowledge graph through a logical query,416

LKLR overcomes these limitations. Each step of417

the reasoning process is aligned with factual knowl-418

edge from the KG, enhancing the model’s ability 419

to validate inferences and produce more reliable 420

results. 421

Compared to the ToG method, our approach ex- 422

cels by strategically pre-planning reasoning paths 423

from a holistic perspective. Unlike ToG’s dy- 424

namic exploration, LKLR leverages the large lan- 425

guage model’s chain-of-thought reasoning to pre- 426

compose a structured reasoning chain. This proac- 427

tive approach ensures purposeful and directed rea- 428

soning, enhancing coherence and alignment with 429

the overall question. The use of beam-search fur- 430

ther enables adaptability. Overall, LKLR stands out 431

for its strategic planning, providing a more focused 432

and effective approach to multi-step reasoning com- 433

pared to ToG’s exploratory nature. 434

4.4 Analysis 435

We conducted an in-depth analysis of the knowl- 436

edge effectiveness in our experimental results, pro- 437

viding quantitative evidence to demonstrate the 438

tangible performance improvement achieved by 439

our method. We specifically focused on the ex- 440

tent of knowledge acquisition and the impact of 441

knowledge completeness on the experimental out- 442

comes. Here we choose the QALD10-en, T-Rex, 443

and WebQSP datasets. We do not use WebQues- 444

tions since WebQSP is based on it and has higher 445

quality, which is more representative when con- 446

ducting analysis. 447

In the process of grounding query, potential fail- 448

ures could occur, such as unsuccessful triplet ex- 449

traction or the incompleteness of the knowledge 450
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Figure 6: The proportion of different types of query
grounding. Complete is denoted as Com.

graph, leading to the inability to obtain ideal knowl-451

edge relevant to the questions. We categorized the452

results based on the degree of query instantiation453

into three types: "Complete" signifies obtaining a454

logical query and fully instantiating it, acquiring455

the inference triplets; "Part" indicates obtaining a456

logical query but instantiating only a portion of457

it, resulting in partial knowledge relevant to the458

questions; the final category "None" is when it’s459

impossible to extract appropriate queries or the log-460

ical queries cannot be instantiated, in which case461

we directly employ the CoT method for predic-462

tion. Figure 6 illustrates our statistical findings.463

We conducted statistical analyses on three datasets,464

revealing that the majority of the data aligns with465

our expectations, allowing us to obtain complete466

knowledge as anticipated. Instances where incom-467

plete knowledge was obtained or no knowledge468

was acquired constitute a minority in our statistical469

analyses.470

Complete Part None Overall

QALD10-en 64.02 62.50 40.91 53.50

T-Rex 93.05 - 14.57 81.20

WebQSP 73.93 70.59 61.17 71.90

Table 2: Accuracy of different types of query grounding.

Furthermore, we conducted a detailed analysis471

of the accuracy of answers in various scenarios, as472

shown in Table 2. It is evident that when complete473

knowledge is obtained, the accuracy of answers is474

consistently the highest across all datasets. This475

robustly demonstrates that our model’s ability to ac-476

quire effective knowledge contributes significantly 477

to enhancing overall performance. Moreover, even 478

in scenarios where only partial knowledge is ac- 479

quired, the accuracy of answers is notably higher 480

than in situations where no knowledge is obtained 481

at all. This aligns with our previous inference that, 482

for generative models, accuracy in capturing par- 483

tial facts can effectively elevate the overall accu- 484

racy of generated results. Future studies could ex- 485

plore further synergies between large models and 486

structured knowledge, emphasizing the potential 487

for more comprehensive investigations into their 488

consistent integration. 489

4.5 Case Study 490

We selected two questions that appeared in the ex- 491

periments for a case study as Table 3. The pur- 492

pose of choosing these two examples is not only 493

to demonstrate the effectiveness of the answers 494

but also to showcase how our chosen knowledge 495

can provide more informative responses. In the 496

first case, our answer is more detailed, offering 497

a finer granularity of information. In the second 498

case, while the answer to the question itself has de- 499

ficiencies, it can be considered correct according to 500

evaluation metrics. However, in comparison to our 501

answer, which provides intuitively accurate knowl- 502

edge triplets, the combination of a large model’s 503

response and our answer is evidently more com- 504

prehensive and accurate. This enhances the persua- 505

siveness of the response to the questioner. 506

5 Related Work 507

Recent research has demonstrated that prompting 508

methods such as chain-of-thought (Wei et al., 2022; 509

Wang et al., 2023; Kojima et al., 2022; Sun et al., 510

2023a; Besta et al., 2023; Sun et al., 2023b) can 511

significantly enhance the reasoning capabilities of 512

large language models. By constructing prompt se- 513

quences that encode reasoning logic and causal rela- 514

tionships, CoT provides step-by-step guidance for 515

LLM prediction-making under few-shot learning 516

settings. This allows LLMs to achieve improved 517

performance on complex reasoning tasks. 518

However, while prompting strategies bolster the 519

reasoning ability of LLMs, models prompted in 520

this way still suffer from issues like hallucination 521

and factual inconsistency (Ji et al., 2023) that stem 522

from their reliance on implicit knowledge derived 523

solely from training data (Lee et al., 2022). In or- 524

der to further improve the reliability and factual 525
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Q&A Where does Michelle Pfeiffer live now? Orange County

CoT Michelle Pfeiffer currently resides in the United States.

LKLR

Query: ("Q159778", "resides in", "#A")

Knowledge: Michelle Pfeiffer, residence, Orange County
Michelle Pfeiffer, country of citizenship, United States of America

Answer: Based on the knowledge triplets, Michelle Pfeiffer resides in Orange County.

Q&A When did carolina panthers go to superbowl? Super Bowl XXXVIII

CoT The Carolina Panthers participated in the Super Bowl in two different years: 2004 and 2016.

LKLR

Query: ("Q330120", "participated in", "#A")

Knowledge: Carolina Panthers, participating team, Super Bowl XXXVIII
Carolina Panthers, participating team, Super Bowl 50

Answer: The Carolina Panthers participated in Super Bowl XXXVIII and Super Bowl 50.
Super Bowl XXXVIII took place on February 1, 2004, and Super Bowl 50 took place on
February 7, 2016.

Table 3: Gnerated examples of CoT and LKLR. Note that we only represent the reasoning part of the answer, and
the exact answer part to calculate the metric is not shown in the table.

accuracy of LLM responses, complementary ap-526

proaches based on structured knowledge retrieval527

and evidence integration have been explored.528

To alleviate the hallucination problem in LLMs,529

some approaches incorporate external knowl-530

edge (Yao et al., 2023; Sun et al., 2023c) to help531

generate more accurate responses. By searching for532

query-relevant information from external knowl-533

edge sources such as the Web and providing it as534

part of the prompt to the LLM, these methods are535

able to generate answers with higher correctness536

to some extent (Lu et al., 2023; Liu et al., 2023;537

Li et al., 2023b). However, while supplying addi-538

tional query-relevant context can reduce the risks of539

hallucination, it lacks comprehensive correctness540

guarantees for multi-step reasoning tasks. Further-541

more, simplistic search brings redundant informa-542

tion, hampering model inference. To further en-543

hance reliability and factual consistency, recent544

work explores retrieve-after-generate paradigms545

that automatically filter (Gao et al., 2023; He et al.,546

2023; Peng et al., 2023; Zhao et al., 2023) or edit547

LLM outputs based on evidence from structured548

knowledge graphs (Li et al., 2023d; Guan et al.,549

2023; Li et al., 2023c; Baek et al., 2023). Integrat-550

ing such structured external knowledge provides a551

way to refine model generations while mitigating552

hallucination and inaccuracies.553

Our proposed approach builds on these in-554

sights to combine the benefits of reasoning-focused555

prompting and structured knowledge retrieval. We 556

utilize knowledge graphs as dependable external 557

knowledge sources to refine LLM responses after 558

initial prompting-based generation. This allows us 559

to reduce hallucinations and enhance factual consis- 560

tency without extensive re-training. The integration 561

of explicit reasoning guidance and structured exter- 562

nal knowledge seeks to complement the strengths 563

of pre-trained LLMs, addressing the limitations of 564

previous work. 565

6 Conclusion 566

In this work, we proposed a novel framework that 567

entangles large language models and knowledge 568

graphs for advanced logical reasoning. The key in- 569

novation is transforming implicit reasoning chains 570

into executable logical queries, enabling multi-hop 571

inference grounded in structured knowledge. This 572

addresses the limitations of both neural and sym- 573

bolic approaches. We demonstrate significant per- 574

formance improvements on multiple logical reason- 575

ing datasets, including multi-hop QA, open-domain 576

QA, and slot-filling tasks. The framework repre- 577

sents an important advance toward more robust rea- 578

soning in AI by combining neural creativity with 579

logical validation. Further directions include ex- 580

tending the approach to broader knowledge sources 581

and more complex reasoning. We believe this syn- 582

ergistic reasoning paradigm will open new frontiers 583

in artificial intelligence. 584
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Limitation585

While our proposed framework makes significant586

progress in integrating neural and symbolic reason-587

ing, it has some limitations that could be addressed588

in future work. A key limitation is that the entities589

involved in the reasoning must exist in the KG. If590

the reasoning contains entities not present in the591

KG, then relevant knowledge cannot be provided592

for such questions. This places requirements on the593

completeness of the KG for broad reasoning cov-594

erage. Future work could focus on techniques to595

handle reasoning about unknown entities, such as596

searching external sources or generating plausible597

knowledge. Additionally, our current framework598

relies on a single knowledge graph, while com-599

bining multiple heterogeneous knowledge sources600

could provide more diverse reasoning capabilities.601
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