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Abstract

Neural dependency parsing has achieved re-001
markable performance for low resource mor-002
phologically rich languages. It has also been003
well-studied that morphologically rich lan-004
guages exhibit relatively free word order. This005
prompts a fundamental investigation: Is there006
a way to enhance dependency parsing perfor-007
mance, making the model robust to word order008
variations utilizing the relatively free word or-009
der nature of morphologically rich languages?010
In this work, we examine the robustness of011
graph-based parsing architectures on 7 rela-012
tively free word order languages. We focus013
on scrutinizing essential modifications such014
as data augmentation and the removal of po-015
sition encoding required to adapt these archi-016
tectures accordingly. To this end, we propose017
a contrastive self-supervised learning method018
to make the model robust to word order vari-019
ations. Furthermore, our proposed modifica-020
tion demonstrates a substantial average gain of021
3.03/2.95 points in 7 relatively free word order022
languages, as measured by the UAS/LAS Score023
metric when compared to the best performing024
baseline.025

1 Introduction026

Dependency parsing for low-resource languages027

has greatly benefited from diverse data-driven028

strategies, including data augmentation (Şahin and029

Steedman, 2018), multi-task learning (Nguyen and030

Verspoor, 2018), cross-lingual transfer (Das and031

Sarkar, 2020), self-training (Rotman and Reichart,032

2019; Clark et al., 2018) and pre-training (Sandhan033

et al., 2021). Further, incorporating morphological034

knowledge substantially improves the parsing per-035

formance for low-resource Morphologically rich036

languages (MRLs; Dehdari et al., 2011; Vania et al.,037

2018; Dehouck and Denis, 2018; Krishna et al.,038

2020a).039

MRLs tend to have sentences that follow a rela-040

tively free word order (Futrell et al., 2015; Krishna041

et al., 2020b), as structural information is often 042

encoded using morphological markers rather than 043

word order. In MRLs, a sentence may have dif- 044

ferent acceptable word order configurations, that 045

preserve the semantic and structural information. 046

However, the permutation invariance is often not 047

reflected in their corresponding semantic space 048

representations encoded using a pretrained model. 049

Pretrained models typically include a position en- 050

coding component, often shown to be beneficial 051

for tasks in languages that follow a fixed word or- 052

der. However, removing the position encoding of 053

the encoder during fine-tuning is demonstrated to 054

be counterproductive (Krishna et al., 2019; Ghosh 055

et al., 2024). 056

Languages, including MRLs, tend to follow a 057

preferred word order typology. However, such pref- 058

erences are often followed for the efficiency of com- 059

munication, from a cognitive, psycho-linguistic, 060

and information-theoretic standpoint and not due 061

to any limitations of the morphology (Krishna et al., 062

2019; Clark et al., 2023; Xu and Futrell, 2024). For 063

instance, Sanskrit, a classical language (Coulson, 064

1976), predominantly consists of sentences writ- 065

ten as verses in its pre-classic and classic literature. 066

The majority of the available corpora in Sanskrit are 067

written in verse form (Hellwig, 2010–2021). Here, 068

verbal cognition often takes a backseat as words 069

are often reordered to satisfy metrical constraints in 070

prosody (Krishna et al., 2020b, §2). Hence, these 071

sentences appear to be arbitrarily ordered based 072

on syntactic analysis (Kulkarni et al., 2015). In 073

this work, we propose a self-supervised contrastive 074

learning framework, primarily for Sanskrit, that 075

makes the model agnostic to the word order varia- 076

tions within a sentence. 077

Our Contrastive Self-Supervised Learning 078

(CSSL) framework builds upon the recent success 079

of using annotated pairs in contrastive learning 080

Khosla et al. (2021); Yue et al. (2021) to make the 081

model permutation invariant to the arbitrary word 082
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order variations in Sanskrit (Wright, 1968). Given083

the comprehensive morphological marking system,084

the core semantic essence of a sentence remains085

unaltered, rendering the permuted counterpart as086

a suitable positive pairing for contrastive learning.087

This simple use of word permutations in a sentence088

as positive pairs achieves substantial improvement089

over prior methods. Our approach, to the best of090

our knowledge, is the first to use a contrastive learn-091

ing approach for dependency parsing.092

Our proposed approach is modular and agnostic,093

allowing for seamless integration with any encoder094

architecture without necessitating alterations to the095

pertaining decisions. Moreover, our objective is to096

leverage recent advancements in parsing literature097

by augmenting with the CSSL framework, which098

would make these models more robust to word or-099

der variations. In this work, we start by examining100

the robustness of graph-based parsing architectures101

(Ji et al., 2019; Mohammadshahi and Henderson,102

2020, 2021). We believe, graph-based parsing ar-103

chitectures could be a natural choice to model flex-104

ible word order. We then focus on investigating105

essential modifications such as data augmentation106

Şahin and Steedman (2018) and the removal of107

position encoding Ghosh et al. (2024) required108

to adapt these architectures accordingly. We fi-109

nally show the efficacy of our approach on the best110

baseline Mohammadshahi and Henderson (2021,111

RNGTr) model by integrating CSSL with it and112

report an average performance gain of 3.03/2.95113

points (UAS/LAS) improvement over 7 MRLs.114

Our main contributions are as follows:115

• We propose a novel contrastive self-supervised116

learning (CSSL) module to make dependency pars-117

ing robust for free word order languages.118

• Empirical evaluations of CSSL module affirm its119

efficacy for 7 free word-ordered languages120

• We demonstrate statistically significant improve-121

ments with an average gain of 3.03/2.95 points over122

the best baseline on 7 MRLs.123

2 Contrastive Self-Supervised Learning124

CSSL enables joint learning of representation, via125

contrastive learning, with the standard classifica-126

tion loss for dependency parsing. Here, via CSSL,127

we identify sentences which are word-level per-128

mutations of each other as similar sentences, and129

others as dissimilar sentences. The similar sen-130

tences are brought closer while pushing dissimilar131

examples apart (van den Oord et al., 2019; Tian 132

et al., 2020). As shown in Figure 1, the original 133

sentence serves as an anchor point, while its per- 134

mutations represent positive examples, juxtaposed 135

with randomly generated sentences serving as neg- 136

ative examples. For a given input, when selecting

Figure 1: The Contrastive Loss minimizes the distance
between an anchor (blue) and a positive (green), both
of which have a similar meaning, and maximizes the
distance between the anchor and a negative (red) of a
different meaning.

137
a dissimilar sample, we choose a random sentence 138

that clearly differs significantly from any permuta- 139

tion of the given sentence. 140

Figure 2: Schematic illustration of the proposed ap-
proach for Sanskrit. Self-supervised CSSL leverages
the sentence and its permutation pairs as positives and
other in-batch instances as negatives.

Formally, as shown in Figure 2 for a sentence 141

Xi (anchor example), its representation should be 142

similar to the permuted instance X+
i as permuta- 143

tion 1 does not alter the meaning of a sentence in 144

Sanskrit. However, the representation will differ 145

from a random sentence X−
i (negative example). 146

Therefore, the distance between the appropriate 147

representations of Xi and X+
i is expected to be 148

small. Thus, we can develop a contrastive objec- 149

tive by considering (Xi, X+
i ) a positive pair and 150

N − 1 negative pairs (Xi, X−
i ) : 151

1Refer to AppendixA.2 for the algorithm to generate the
permutations.
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LCSSL = − log
exp (zi · zi+/τ)∑
a∈N exp (zi · za/τ)

152

where N represents a batch, zi represents the repre-153

sentation vector of the anchor sample, z+i denotes154

the representation vector for the positive sample155

(permuted sample), za represents the representa-156

tion vector for a sample in the batch (N different157

samples), and τ is a temperature parameter that158

controls the concentration of the distribution. For159

all representation vectors, we employ pooled sen-160

tence embedding (Reimers and Gurevych, 2020)161

for the CSSL loss. Therefore, our final loss is:162

L = LCSSL + LCE (1)163

The classification loss LCE is the cross-entropy164

loss applied only to token-level labels of the origi-165

nal training input. The scorer is based on biaffine-166

scorer (Dozat and Manning, 2017), which tries to167

independently maximize the local probability of168

the correct head word for each word.169

3 Experiment170

3.1 Dataset and metric171

As our primary benchmark dataset, we utilize the172

Sanskrit Treebank Corpus (Kulkarni, 2013, STBC).173

From STBC, we use a train and dev split of 2,800174

and 1,000 respectively. Further, we employ a test175

set comprising 300 sentences, drawn from the clas-176

sical Sanskrit work, Śiśupāla-vadha (Ryali, 2016).177

Moreover, from Universal Dependencies178

(de Marneffe et al., 2021, UD-2.13), we choose179

6 additional morphologically rich low-resource180

languages, namely, Turkish, Telugu, Gothic, Hun-181

garian, Ancient Hebrew, and Lithuanian.2 Please182

note that all the seven languages are chosen from183

diverse language families and are typologically184

diverse. Our experiments are primarily focused on185

a low-resource setting. However, we also show186

how the framework performs on high-resource187

MRL. We also experiment with English which is a188

fixed-ordered high-resource language. Here, we189

use a training set of 12,544 sentences. We use190

standard UAS/LAS metrics (McDonald and Nivre,191

2011) for evaluation.192

Baselines: We utilize Mohammadshahi and Hen-193

derson (2020, G2GTr), a transition-based depen-194

dency parser. Furthermore, we explore Ji et al.195

2The statistics of each of the treebanks used for our experi-
ments is mentioned in Table 4 in the Appendix.

Model UAS LAS
G2GTr (Transition-based) 85.75 82.21
GNN (Graph-based) 88.01 82.8
RNGTr (Graph-based) 89.62 87.43
RNGTr (NoPos) 80.78 78.37
RNGTr (DA) 90.38 88.46
Prop. System (CSSL) 91.86 89.38
CSSL + DA 92.43 90.18

Table 1: Comparison of graph-based parsers on Sanskrit
STBC dataset. We modify the best baseline RNGTr by
integrating the proposed method (CSSL) to compare
against variants, removing position encoding (NoPos)
and data augmentation (DA). The best performances are
bold-faced. The results (CSSL vs DA) and (CSSL vs
DA+CSSL) are statistically significant as per the t-test
with a p-value < 0.01 for the LAS metric.

(2019, GNN) a graph neural network-based model 196

that captures higher-order relations in dependency 197

trees. Finally, we examine Graph-to-Graph Non- 198

Autoregressive Transformer proposed by Moham- 199

madshahi and Henderson (2021, RNGTr) which 200

iteratively refines arbitrary graphs through recur- 201

sive operations. 202

Hyper-parameters: For RNGTr model, we use 203

the same architecture from the work of Moham- 204

madshahi and Henderson (2020) which uses pre- 205

trained mBERT (Wolf et al., 2020) as the encoder 206

and an MLP and biaffine followed by softmax for 207

the decoder. We adopt the RNGTr codebase with 208

hyperparameter settings as follows: the batch size 209

is 16, the learning rate as 2e-5, the number of trans- 210

former blocks as 12 and for the decoder 2 Feed 211

Forward Layers, and the remaining hyperparame- 212

ters are the same. 213

3.2 Results 214

In Table 1, we benchmark graph-based parsers on 215

the Sanskrit STBC dataset. Our proposed con- 216

trastive loss module is standalone and could be 217

integrated with any parser.3 Thus, we modify the 218

best baseline RNGTr by integrating the proposed 219

method (CSSL) and comparing it against variants, 220

removing position encoding (NoPos), and augment- 221

ing data augmentation (DA) 4. Table 1 illustrates 222

that the proposed framework adds a complemen- 223

tary signal making robust word order representa- 224

3Refer to Appendix A.3 for empirical evidence.
4Refer to Appendix A.1 for the algorithm used in Data

Augmentation.

3



RNGTr RNGTr + DA RNGTr + CSSL
Language Setting UAS LAS UAS LAS UAS LAS
Turkish-IMST LRL 72.86 71.99 74.18 72.96 78.21 74.69
Telugu-MTG LRL 90.02 80.34 91.86 81.51 93.79 85.67
Gothic-POIEL LRL 86.59 81.28 88.61 82.93 89.15 84.19
Hungarian-SZEGED LRL 88.13 84.93 90.02 86.65 91.65 87.28
Ancient Hebrew-PTNK LRL 90.76 86.42 91.43 87.12 92.35 88.68
Lithuanian-ALKSNIS LRL 87.63 83.27 88.41 84.79 89.82 86.45
Turkish-PENN HRL 82.31 76.23 85.57 78.19 88.43 80.82
English-EWT non-MRL 92.08 90.23 93.76 92.16 93.19 90.71

Table 2: Performance comparison on the RNGTr model on UD Treebanks, RNGTr + DA (Data Augmentation) and
RNGTr + CSSL module. The best performances are bold-faced. Our results (CSSL) are statistically significant
compared to both RNGTr and RNGTr + DA for each language as per the t-test with a p-value < 0.01 for the LAS
metric. LRL stands for low-resource MRL, HRL means high-resource MRL.

tions to RNGTr by improving 2.24/1.95 points in225

UAS/LAS scores. The performance significantly226

drops (8.8/9.0 UAS/LAS) when position embed-227

dings are removed (vs. Pos kept) from RNGTr due228

to train-test mismatch in pretraining and fine-tuning229

steps. Moreover, our method outperforms data230

augmentation technique (DA) (Şahin and Steed-231

man, 2018) by 1.48/0.92 points (UAS/LAS) when232

integrated with the RNGTr baseline. We inte-233

grate CSSL on top of an RNGTr+DA system and234

observe statistically significant improvements of235

0.57/0.80 points (UAS/LAS), suggesting the pro-236

posed method complements the data-augmentation237

technique.238

Results on multilingual experiments: In this239

section, we investigate the efficacy of CSSL mod-240

ule in multi-lingual settings. For all MRLs, the241

trend is similar to what is observed for Sanskrit.242

Table 2 reports results on 6 other morphologically243

rich languages in low-resource settings. Our ap-244

proach averages 3.16/3.12 higher UAS/LAS scores245

than the usual cross-entropy-based RNGTr base-246

line. Our system outperforms the rotation-based247

DA technique with an average increase of 1.74/1.83248

in UAS/LAS scores. Here, as expected, our pro-249

posed CSSL approach outperforms the standard250

RNGTr and DA approaches for all the languages,251

except English. English is not an MRL and it re-252

lies heavily on configurational information of the253

words to understand sentence structure. The DA254

approach performs better by 0.57/1.45 UAS/LAS255

scores than our framework. However, it is interest-256

ing to note that CSSL still outperforms the RNGTr257

baseline by 1.11/0.48 UAS/LAS, possibly due to258

robustness of permutation invariant representation259

learning we employ in CSSL. As illustrated in Ta- 260

ble 1, it is evident that combining CSSL with DA 261

surpasses CSSL alone by approximately 0.5 points, 262

exhibiting a 2-point enhancement over DA. 263

We also experiment with Turkish on 264

UD_Turkish-PENN Treebank in a high-resource 265

setting, having 14,850 sentences in the training 266

set. Our CSSL framework outperforms usual 267

cross-entropy technique by 6.12/4.59 in UAS/LAS 268

scores and outperforms the DA technique by 269

2.96/2.63 in UAS/LAS scores. The significant 270

increase in score can be attributed to the greater 271

number of training examples. 272

4 Conclusion 273

In this work, we investigated the robustness of 274

graph-based parsing architectures across 7 lan- 275

guages characterized by relatively flexible word 276

order. We introduced a self-supervised contrastive 277

learning module aimed at making encoders insen- 278

sitive to variations in word order within sentences. 279

Additionally, the modular nature of our approach 280

enables seamless integration with any encoder ar- 281

chitecture without necessitating modifications to 282

pretraining decisions. To the best of our knowl- 283

edge, our approach represents the first utilization 284

of contrastive learning techniques for dependency 285

parsing to address challenges arising from variable 286

word order in low-resource settings. Finally, we 287

demonstrate the effectiveness of our approach by 288

integrating it with the RNGTr architecture Moham- 289

madshahi and Henderson (2021), reporting an aver- 290

age performance improvement of 3.03/2.95 points 291

(UAS/LAS) across the 7 MRLs. 292
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Limitations We could not evaluate on complete293

UD due to limited available compute resources294

(single GPU); hence, we selected 7 representative295

languages for our experiments.296

Ethics Statement We do not foresee any eth-297

ical concerns with the work presented in this298

manuscript.299
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A Appendix512

A.1 Data Augmentaion513

In our data augmentation (DA) experiments, we em-514

ploy the Rotation algorithm described (Şahin and515

Steedman, 2018). This approach rearranges the sib-516

lings of headwords within a defined set of relations.517

This alters a collection of words or configuration518

data, but it does not modify the dependencies.519

A.2 Permutation Generation520

For generating sentence permutations, we ran-521

domly rearrange each word in a sentence to gener-522

ate phrase permutations while maintaining the re-523

lationship between the words. The random permu-524

tations are generated while preserving the original525

dependency tree structures and relations between526

words in each training sentence. In other words, we527

first generate the dependency trees for the original528

sentences and randomly permute the linear order of529

words, ensuring that the newly permuted sentences530

still respect the same dependency relations between531

word pairs.532

A.3 Integration of CSSL with another533

encoder534

The modular nature of CSSL framework allows for535

seamless integration with any encoder architecture,536

without necessitating alterations to pretraining de-537

cisions. We have shown its effectiveness for the538

best-performing baseline. We are also showing re-539

sults with one more baseline (for Sanskrit). Our540

supplementary results indicate that activating con-541

trastive loss for the G2GTr baseline on the STBC542

treebank for Sanskrit leads to an approximate 2-543

point enhancement in performance measured by544

UAS/LAS.

CE CSSL
UAS LAS UAS LAS

G2GTr 87.16 85.68 89.05 87.05

Table 3: Contrastive Loss with G2GTr on STBC dataset.

545

A.4 Treebank Statistics546

Table 4 provides the detailed statistics for the lan-547

guages used in the experiments.548

A.5 Related Work549

Contrastive learning has been the pinnacle of re-550

cent successes in sentence representation learning.551

(Chen et al., 2020) proposed SimCLR by refining552

the idea of contrastive learning with the help of 553

modern image augmentation techniques to learn 554

robust sets of features. In order to optimize the 555

appropriately designed contrastive loss functions, 556

(Gao et al., 2021; Zhang et al., 2022) uses the en- 557

tailment sentences in NLI as positive pairs, signif- 558

icantly improving upon the prior state-of-the-art 559

results. To this end, a number of methods have 560

been put forth recently in which the augmentations 561

are obtained through back-translation (Fang et al., 562

2020), dropout (Yan et al., 2021; Gao et al., 2021), 563

surrounding context sampling (Logeswaran and 564

Lee, 2018; Giorgi et al., 2021), or perturbations 565

carried out at different semantic-level (Wu et al., 566

2020; Yan et al., 2021). 567

7



Treebank Language Family train dev test
Sanskrit-STBC Indo-Aryan 2,800 1,000 300

UD-Turkish_IMST Turkic 3,435 1,100 1,100
UD-Gothic_Proeil Germanic 3,387 985 1,029
UD-Telugu_MTG Dravidian 1,051 131 146

UD-Hungarian_Szeged Uralic 910 441 449
UD-Ancient_Hebrew_PTNK Semitic 730 439 410
UD-Lithuanian_ALKSNIS Baltic 2,341 617 684

UD-Turkish_PENN Turkic 14850 622 924
UD-English_EWT Roman 12,544 2,001 2,077

Table 4: Treebank Statistics. The number of sentences in train, dev and test for each language.
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