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Abstract Bayesian statistical workflow offers a powerful way to learn from data, but software projects
that implement complex Bayesian workflows in practice are unusual, partly due to the
difficulty of orchestrating Bayesian statistical software. Bibat addresses this challenge
by providing a full-featured, scalable Bayesian statistical analysis project using an inter-
active template. Bibat is available on the Python Package index, documented at https:
//bibat.readthedocs.io/ and developed at https://github.com/teddygroves/bibat/.
Bibat is free to use under the MIT license. This paper explains the motivation for bibat,
describes intended usage, discusses bibat’s design, compares bibat with similar software,
highlights several examples of bibat’s use in science and provides links to community re-
sources associated with bibat.

1 Introduction: the problem of orchestrating Bayesian workflow software

The term “Bayesian workflow” captures the idea that Bayesian statistical analysis comprises not
just inference, but also specific approaches to related activities like data preparation, model design,
diagnosis, debugging and criticism. This idea can be found in Box and Tiao (1992) and has recently
received increasing scholarly recognition (Gelman et al. 2020; Grinsztajn et al. 2021; Gabry et al.
2019). Software tools now exist that address most individual aspects of a Bayesian workflow: see
Strumbelj et al. (2024) for a review of the state of the art.

Unfortunately, each tool typically addresses one, or at most a few, of the many activities that
comprise a real Bayesian workflow software project; it is left to the individual project team to
orchestrate all the tools they require. Writing software that performs this orchestration can be
time-consuming and tricky, especially in the common scenario where it is not initially clear how
many, or what kind of, statistical models, datasets, data manipulations or investigations an analysis
will require.

Bibat is a new tool that addresses the difficulty of orchestrating Bayesian workflow software
by providing a full-featured, high-quality project that can be extended to implement a wide range
of statistical analyses.

2 How bibat works

To use bibat, a user must first install the templating library copier (copier developers 2024) and
then use the command copier copy to trigger bibat. The user is then presented with an interactive
form which prompts them to select from a range of customisation options. A new directory is then
created if necessary and filled with code that implements an example analysis, with customisations
reflecting the user’s choices. This analysis works immediately, and can be reproduced with the
single command make analysis without the need for any further action by the user: in this sense
bibat comes with batteries included.

Figure 1 illustrates the components of a bibat-based Bayesian workflow and shows how it pro-
ceeds: the project team edits the code components, then runs make analysis, triggering creation
of the result components. After inspecting these they repeat the process, leading to a cycle that
ultimately results in a complete, easily reproducible analysis.
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Figure 1: Schematic representation of a Bayesian workflow implemented using bibat. The author
inspects their analysis’s results, edits code corresponding to the boxes on the left, runs the
command make analysis, then repeats. The diagram illustrates several key features of bibat:
inference components are modular and plural, the overall workflow is iterative and cyclical
and the whole analysis can be executed with a single command.

Bibat is documented at https://github.com/teddygroves/bibat/. The documentation web-
site includes instructions for getting started, a detailed explanation of bibat’s concepts and an ex-
tended vignette illustrating how to implement a complex statistical analysis starting from bibat’s
example analysis usage. In addition, the documentation site contains a full description of bibat’s
python API and command line interface, instructions for contributing and a section discussing
accessibility considerations.

‘Hello world’ example
This section illustrates bibat’s use by stepping through a typical example. A similar description
can be found on the ‘Getting started” page of bibat’s documentation.

The first step to use bibat is installing copier. This can be done using pipx (Pipx developers
2024) as follows:
$ pipx install copier

Next, choose a directory name, e.g. hello-world and trigger bibat using copier:

$ copier copy gh:teddygroves/bibat hello-world

Here is what should appear next. Some options are text fields, and others, such as
open_source_license are enumerated choices.

Welcome to bibat, the batteries-included Bayesian analysis template!

You'll be asked a series of questions whose answers will be used to
generate a tailored project for you.


https://github.com/teddygroves/bibat/

Name of your project
Hello world

Name of your project, with no spaces (used for venv and package names)
hello_world

A short description of the project.
A 'hello world example of using bibat'

Your name (or your organization/company/team)
Hello world developers

Author email (will be included in pyproject.toml)
author@email.com

Code of conduct contact
author@email.com

open_source_Llicense
MIT

docs_format
Quarto

create_dotgithub_directory (bool)
Yes

After all the fields are completed, the directory hello-world is created if it doesn’t exist and
populated or edited based on the form. If this is successful, some more messages appear indicating
which files have been created or edited and explaining what to do next.

The final setup step is to change directory into the new folder and run make analysis:

$ cd hello-world
$ make analysis

This will set up a suitable Python virtual environment, install non-Python dependencies if
necessary and then run the analysis, creating the results shown on the right-hand side of Figure 1.

Design choices

Bibat’s design was informed by the aims to accommodate the many sources of complexity in a
Bayesian workflow project, to ensure easy reproducibility, encourage collaborative development
and to integrate many open-source, widely-adopted and powerful Bayesian workflow tools.

As discussed in Gelman et al. (2020), Bayesian workflows are complicated, featuring plural-
ity, cyclicity and complexity at many levels. As a specialised Bayesian workflow template, a key
goal for bibat was to manage this complexity. Bibat achieves this aim by separating non-interacting
analysis components into separate, potentially plural modules and by serialising data to files wher-
ever possible. Prepared datasets, statistical models, inference configurations, inference results,
plots and analyses all have file representations. Fitting modes, data manipulations and data mod-
els are modularised in code through the use of appropriately structured data classes and functions.
Thanks to this modular approach it is possible to perform small sub analyses individually and to
iteratively expand the analysis by adding components without needing to consider everything at
once. In addition, bibat ensures that there are minimal restrictions on the components: for exam-
ple, datasets need not be singular or tabular, and it is possible to use any statistical model that
Stan can compile. Thanks to these accommodations a project team using bibat should typically
not need to foresee the ultimate requirements of their analysis before starting the project.

Bibat encourages reproducibility by providing a preconfigured makefile with a target analysis
that triggers creation of an isolated environment, installation of dependencies, data preparation,



statistical computation and analysis of results. In this way a bibat analysis can be reproduced on
most platforms using a single command. In particular, this target attempts to install cmdstan if
necessary, using a recipe tailored to the host operating system. This functionality addresses a
common issue where researchers find it difficult to install Stan, especially on Windows. A second
way in which bibat encourages reproducibility is by providing a preconfigured Python project
following modern conventions, making bibat analyses straightforward to replicate and extend for
other researchers who are already familiar with these conventions.

Bibat integrates many widely-adopted open-source tools to implement the components of a
Bayesian workflow. These include pydantic (Pydantic developers 2022) and pandera (Niels Ban-
tilan 2020) for data modelling, Stan (Carpenter et al. 2017) for statistical inference, cmdstanpy
(Stan Development Team 2022) for python-Stan interface, arviz (Kumar et al. 2019) for storing
and analysing inferences, matplotlib (Hunter 2007) and lovelyplots (Sheriff 2022) for plotting and
sphinx (Georg Brandl and the Sphinx team 2022) and quarto (Allaire et al. 2022) for documentation.

To encourage collaborative development of Bayesian workflow projects, Bibat projects include
a preconfigured test environment, continuous integration, linting and pre-commit hooks. In addi-
tion, bibat includes documentation as a first class, integrated component of the analysis, helping
to keep it in sync with the other components.

Bibat is continuously tested to ensure that it works on the operating systems Linux, macOS
and Windows. Bibat’s continuous integration runs a test suite as well as an end-to-end functional
test on all supported Python versions.

Fitting modes

The most novel part of bibat’s design is the introduction of an abstraction called “fitting mode”,
which allows bibat projects to handle fitting a model to a dataset in different ways. This is often
necessary as part of a Bayesian workflow: for example, one might perform MCMC sampling of
both the prior and posterior distributions, or perform multiple leave-out-one-fold fits for cross-
validation, or compare MCMC-based posterior inference with an alternative computation method.

Fitting modes in bibat projects take the form of instances of the class FittingMode. Each fitting
mode contains a name, a function that fits a prepared dataset and instructions for how and where to
save the results. For example, the provided prior sampling fitting mode is called “prior”, contains
a function that runs MCMC sampling with the likelihood input variable set to @, returning a
CmdStanMCMC instance, and specifies that this result should be written to the InferenceData group
prior. Bibat provides fitting modes for prior sampling, posterior sampling and k-fold posterior
sampling. Users can easily implement additional fitting modes or modify the FittingMode class
to achieve even richer functionality. Fitting modes can be referenced by name from the file that
configures an inference: for example, the following lines indicate that the inference should be run
in prior, posterior and k-fold modes:

modes = ["prior", "posterior", "kfold"]

Fitting modes allow bibat projects to succinctly but flexibly declare how to perform inferences,
and allow results corresponding to the same inference to be stored alongside each other appropri-
ately.

Comparison with alternative software

Other than bibat, we are not aware of any interactive template that specifically targets Bayesian
workflow projects. There are some templates that arguably encompass Bayesian workflow as a
special case of data analysis project, such as cookiecutter-data-science (Driven Data 2022), but
these are of limited use compared with a specialised template due to the many specificities of



Bayesian workflow. cookiecutter-cmdstanpy-wrapper (Ward 2024) is an interactive template that
targets a different use case than Bayesian workflow projects, namely setting up a Python package
that provides pre-compiled Stan models.

There is some software that addresses the general task of facilitating Bayesian workflow, but us-
ing a different approach from bibat’s. For example, bambi (Capretto et al. 2020) and brms (Biirkner
2017) aim to make implementing Bayesian workflows easier by providing ergonomic ways to spec-
ify and fit Bayesian regression models to tabular datasets. Bibat is complementary with these pack-
ages, as it targets use cases that they do not support, such as analyses where complex datasets or
custom models might be required.

Limitations

Using bibat effectively requires familiarity with Pydantic, pandera, arviz, Stan and managing a
medium-sized Python project. Many statistical analysis projects do not require using these tools,
for example if data preparation or validation is trivial, if custom statistical models are not required,
or if the analysis can be carried out by a single script. Practitioners who wish to implement such
Bayesian workflows may prefer to simply write their software from scratch rather than use bibat,
using tools like bambi or brms to ensure that the software challenge remains manageable.

Similarly, bibat accommodates plural inferences, fitting modes and datasets, but many analyses
are singular in at least one of these components and could therefore be implemented more simply
and concisely than an equivalent bibat project. On the other hand, it is typically difficult to predict
in advance which components of a Bayesian workflow will be plural, and costly to re-write a
project after mistakenly assuming that a component will be singular. While we acknowledge that
accommodating potentially unneeded plurality is an important limitation of bibat, we nonetheless
think that it is the correct choice for a general-purpose template.

Another limitation of bibat is that it makes many opinionated choices about which tools to use.
In particular, languages other than Python, inference frameworks other than Stan and validation
frameworks other than Pydantic are not supported. We think that it is on the whole good for
templates to be opinionated, as unopinionated templates are necessarily more complicated; this
limitation of bibat is therefore best addressed by the development of additional analysis templates
that make different choices.

Case studies

The following cases illustrate how bibat has been used in practice to facilitate Bayesian workflow
projects.

Groves and Jooste (2023) used bibat to compare a Bayesian and two non-Bayesian approaches
to modelling a biochemical thermodynamics dataset. Bibat facilitated this analysis even though it
was not very large—the final analysis contained one dataset, three models and three inferences—
because the fitting mode abstraction allowed for straightforward comparison of the different meth-
ods. Additionally, bibat made it easier to iteratively investigate and discard models that did not
form part of the final analysis.

In Groves (2022), Bibat was used to implement a sports analysis involving two datasets, two
models and four inferences, demonstrating that the generalised Pareto distribution can be used to
describe hitting ability in baseball. This analysis is now included in bibat as an illustration, along
with an accompanying tutorial. An illustrative graphic from this analysis is shown in Figure 2.

In this case bibat was useful because of its ability to implement arbitrary statistical models, as
latent generalised Pareto distributions are not supported by any available formula-based regression
packages. Further, bibat’s modular design made it easier to implement this medium-sized analysis
with two datasets, two models and six inferences.

These cases illustrate that bibat can be useful in a variety of real Bayesian workflows, with
different sizes, subject matters and emphases.
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Figure 2: A graphical posterior predictive check produced as part of a bibat analysis that fit two
statistical models to two datasets of baseball data. The coloured lines show each model’s
posterior predictive distributions and the black dots show the two observed datasets. See
https://github.com/teddygroves/bibat/tree/main/bibat/examples/baseball for the
full analysis.

Community

Bibat is developed in public and encourages community contribution. Please see the contributing
page https://github.com/teddygroves/bibat/blob/main/CONTRIBUTING.md and code of con-
duct https://github.com/teddygroves/bibat/blob/main/CODE_OF_CONDUCT.md if you would
like to help develop bibat.

Bibat has a growing user community, with 18 GitHub stars at the time of writing, and is af-
filiated with cmdstanpy through a link on its documentation website. Bibat is also affiliated with
the Python scientific software community PyOpenSci, allowing for help with maintenance as well
as peer review for code and documentation quality, usability and accessibility. The PyOpenSci
peer review for bibat can be found here: https://github.com/pyOpenSci/software-submission/
issues/83.

Broader impact statement

After careful reflection, the authors have determined that this work presents no notable negative
impacts to society or the environment.
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Submission Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See section “Limitations”

(c) Did you discuss any potential negative societal impacts of your work? [N/A] I can’t think
of any particular negative societal impacts of a Bayesian workflow template

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?
https://2022.automl.cc/ethics-accessibility/ [Yes]

2. If you ran experiments. ..

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same bench-
marks, data (sub)sets, available resources)? [N/A]

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,
search spaces, hyperparameter tuning)? [N/A]

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account
for the impact of randomness in your methods or data? [N/A]

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or
splits)? [N/A]

(e) Did you report the statistical significance of your results? [N/A]
(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [N/A]

(g) Did you compare performance over time and describe how you selected the maximum
duration? [N/A]

(h) Did you include the total amount of compute and the type of resources used (e.g., type of
GPUS, internal cluster, or cloud provider)? [N/A]

(i) Did you run ablation studies to assess the impact of different components of your approach?
[N/A]

3. With respect to the code used to obtain your results...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results, including all requirements (e.g., requirements. txt with explicit versions),
random seeds, an instructive README with installation, and execution commands (either in
the supplemental material or as a URL)? [Yes] See https://bibat.readthedocs.io/en/
latest/_static/report.html for instructions to reproduce the main example.
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ments or on toy data? [Yes] See section "Generating Stan inputs" here https://bibat.
readthedocs.io/en/latest/_static/report.html#preparing-the-data

(c) Did you ensure sufficient code quality and documentation so that someone else can execute
and understand your code? [Yes] See pyopensci review https://github.com/pyOpenSci/
software-submission/issues/83

(d) Did you include the raw results of running your experiments with the given code, data,
and instructions? [No] This is unnecessary as the results are easy to reproduce and the
results are large files that would be awkward to store online
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data run "make analysis" from the folder example_projects/baseball, as described in the
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