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Abstract

Quantifying a model’s sensitivity to data is a key tool for model criticism and interpretabil-
ity. Influence functions are the de-facto method for estimating such quantities. Latent
variable models are ubiquitous in modern ML (e.g. mixture of experts, deep generative
models), but estimating the influence of individual data points can be challenging due to
the rigid structure between observed and latent variables. In previous work, Zhu and Lee
(2001) proposed to take a Newton-step on a surrogate function inspired by the Expectation-
Maximization (EM) algorithm. This exploits the model’s structure to decouple the effect of
perturbations to the data such that the influence on different parameters can be measured
separately. We present a generalization of this approach from the lens of Variational Bayes
that does not have the restrictions of EM and can be used in a wide-variety of settings.

1. Introduction

Sensitivity and perturbation have a long history in model diagnostics (i.e. pioneering works
in the 70s by Cook and others) to detect influential examples that lead to the largest
changes in the model when removed. This was originally proposed for simple models with
analytic solutions such as linear regression (Cook, 1977) or principal components analysis
(PCA) (Critchley, 1985) for which the effect can be evaluated exactly.

In recent years, there is increased interest in developing sensitivity-based techniques for
deep learning, with use cases such as diagnosing model behaviour (Koh and Liang, 2017),
detecting memorized examples (Feldman and Zhang, 2020), attributing training data to
test-time predictions (Koh and Liang, 2017; Yeh et al., 2018), constructing validation-free
generalization measures (Beirami et al., 2017). In contrast to linear regression or PCA, the
effect of perturbation to the data can no longer be evaluated exactly. Various techniques
have been proposed to get around this, some more global in their nature such as training
many models on different subsamples of the data (Feldman and Zhang, 2020; Jiang et al.,
2021; Ilyas et al., 2022), or hybrid approaches that track gradients during training (Hara
et al., 2019; Pruthi et al., 2020). In this work, we consider a popular local sensitivity-based
technique called influence function (Cook and Weisberg, 1980; Koh and Liang, 2017), that
constructs a second-order Taylor expansion to the loss leading to a Newton-step. Although
originally proposed for supervised problems that are framed as minimizing an empirical
risk, influence function has been demonstrated on generative models (Terashita et al., 2021;
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Figure 1: We demonstrate influence function vs EM-influence for a mixture density network
trained on a toy dataset (left plot) from Bishop (1994). Whilst both approaches are con-
structed from a single Newton step, influence function uses the conditional mixture model
NLL whereas EM-influence uses its lower bound. Many of the top influential examples can
be found in both (middle plots). By incorporating the missing information in EM-influence,
one can recover influence function (right plot).

Kong and Chaudhuri, 2021; Georgiev et al., 2023), matrix factorization (Cheng et al., 2019)
and decentralized settings with bi-level structure (Terashita and Hara, 2022; Zhu et al.,
2025). However, in these cases there is often little thought to the original construction
which may not be appropriate in certain cases. In particular, here we are interested in
models with latent variables. Such models arise for instance from simply combining the
outputs of different submodel (e.g. state-of-the-art models such as GPT-4 are suggested
to be a mixture of experts), or multi-level hierarchies as encountered in federated or meta
learning. Naively using influence function in these cases can be challenging. In the mixture
model case, the Hessian computation required by the Newton step grows with the number of
components where each component could be a neural network with millions of parameters.

We would like to develop sensitivity-based techniques that explicitly take into account
latent variables. Previous work (Zhu and Lee, 2001) in the setting of classical latent vari-
able models addressed some of the challenges by taking inspiration from the Expectation-
Maximization (EM) algorithm (Dempster et al., 1977). This used the so-called “complete-
data” log-likelihood instead which directly takes into account the latent variables. They
showed this reduces the computational effort involved with little effect on the accuracy of
the influence estimates. However, EM is restrictive in that it requires the posterior over
latent variables to be available in closed-form. In this work, we propose a generalization by
considering the optimality condition of the Variational Bayes (VB) objective. This allows us
to leverage the model’s structure, where present, in particular its conditional independence
assumptions, to enable efficient influence estimation. This can be seen as a consequence of
the factorization constraints in VB that lead to a decoupling behaviour where the effect of
perturbation in the data can be measured across parameters separately.

2. Preliminaries of Influence Functions

Influence function is most often used in (deep) supervised learning for models trained by
minimizing an empirical risk, ℓ̄(θ) =

∑
i ℓi(θ)+R(θ), comprising a sum over N per-example
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loss terms ℓi(θ) with model parameters θ ∈ RP and a regularizer R(θ). Given a dataset
D = {D1,D2, . . . ,DN}, these terms can be identified with a valid likelihood function, ℓi(θ) =
− log p(Di|θ), decomposed over the N i.i.d. examples and a prior R(θ) = − log p(θ). This
gives a probabilistic interpretation of the minima θ∗ as the maximum-a-posteriori (MAP)
estimate of a Bayesian model. This perspective is not at all restrictive, for instance the cross-
entropy loss used for training classifiers is essentially equivalent to a categorical likelihood,
and the widely-used regularizer R(θ) = 1

2δ ∥θ∥
2 (i.e. weight-decay) corresponds to a zero-

mean isotropic Gaussian. This viewpoint is essential for when we consider latent variable
models.

In this work, we consider a counterfactual perspective for model diagnosis, seeking to
answer the question: what if a specific example was removed from D, how much would the
model change? By repeating this procedure across all examples in D, we can identify those
that are most impactful on the model, referred to as influential examples. A naive approach
would be to repeat the training process on D\i, that is the dataset without the ith example,
however this is infeasible for large N .

Instead, influence functions approach this by estimating the influence from θ∗ that
is a model resulting from a single training run, via local perturbative methods. Let us
first denote the objective without the ith example as ℓ̄\i(θ) = ℓ̄(θ) − ℓi(θ). Then we

take a single step of Newton’s method from θ∗ on this perturbed objective, θ̂
\i
∗ ← θ∗ −

(∇2ℓ̄\i(θ∗))
−1∇ℓ̄\i(θ∗). Using the stationarity condition, ∇ℓ̄(θ∗) = 0, we have ∇ℓ̄\i(θ∗) =

−∇ℓi(θ∗). It is common to then approximate ∇2ℓ̄\i(θ∗) ≈ ∇2ℓ̄(θ∗) as this reduces the
computational burden of influence estimation when repeated for multiple examples. This
gives rise to the canonical expression of influence function,

θ̂
\i
∗ − θ∗ = H−1

∗ ∇ℓi(θ∗), ℓi(θ̂
\i
∗ )− ℓ(θ∗) ≈ ∇ℓi(θ∗)⊤H−1

∗ ∇ℓi(θ∗) (1)

where H∗ = ∇2ℓ̄(θ∗) is the Hessian. On the right side, we show the deviation in the loss,
sometimes referred to as Cook’s Distance (Cook and Weisberg, 1982), which follows from a
1st-order Taylor expansion to ℓi(θ) followed by plugging in the left equation. This can be
easily extended to measuring the influence on groups of examples.

3. Challenges of Influence Functions for Models with Latent Variables

Let us consider a simple extension of the Bayesian model introduced earlier, in particular
introducing a set of latent variables zi local to each data point Di. These variables capture
the underlying structure or hidden factors that explain the observed data. A popular model
of this kind is the mixture model for which the loss terms are given by,

ℓi(θ) = − log

(
K∑
k=1

p(Di, zi = k|θ)

)
= − log

(
K∑
k=1

πkpk(Di|wk)

)
(2)

where K is the number of components, πk are the mixing proportions that satisfy 0 ≤
πk ≤ 1 and

∑
k πk = 1, pk(·) is the density of the kth component with parameters wk, and

θ := {πk,wk}Kk=1 contains all parameters. We can assume the regularizer is selected such
that it corresponds to a valid prior (e.g. Dirichlet prior for the mixing proportions).
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Naturally, one might consider directly applying influence function as given in Eq. (1) to
the mixture model. However, this approach faces significant challenges, specifically com-
puting and inverting the Hessian becomes increasingly expensive as its size scales with the
number of components. We can clearly see this by manipulating the following identity:

log p(D,θ) = log p(D,Z|θ) + log p(θ)− log p(Z|D,θ) (3)

=⇒ log p(D,θ) = Ep(Z|D,θ∗)[log p(D,Z|θ)] + log p(θ)︸ ︷︷ ︸
−L(θ;θ∗)

−Ep(Z|D,θ∗)[log p(Z|D,θ)]︸ ︷︷ ︸
−H(θ;θ∗)

(4)

=⇒ ∇2ℓ̄(θ) = ∇2
θL(θ;θ∗)−∇2

θH(θ;θ∗) (5)

The first line holds for any value of Z. In the second line, we choose to take the
expectation of both sides with respect to p(Z|D,θ∗), the posterior evaluated at θ = θ∗.
Then in the last line, we take the Hessian of both sides resulting in a relationship that
is referred to as the Missing Information Principle (Orchard and Woodbury, 1972). This
leads to an interpretation of the Hessian as the “complete information” minus the “missing
information”. The complete-information matrix can benefit from structure present in the
model leading to block-diagonal Hessian structure in the aforementioned mixture case (i.e.
decoupling of the different components). We can see this by writing the expected regularized
“complete-data” log-likelihood,

L(θ;θ∗) = −
N∑
i=1

K∑
k=1

γ
(∗)
ik [log πk + log pk(Di|wk)]− log p(θ) (6)

where we set the following prior p(θ) = p(π)
∏

k p(wk) = Dir(π;α0)
∏

k N(wk;0, δ
−1
k I). The

posterior probabilities γ
(∗)
ik = p(zi = k|Di,θ∗), often called “responsibilities”, are given by,

γ
(∗)
ik =

π∗kpk(Di|w∗k)∑K
k′=1 π∗k′pk′(Di|w∗k′)

(7)

which have the effect of introducing per-example (and per-component) weights in Eq. (6).
Comparing Eq. (6) with Eq. (2), we can see that the log and summation are interchanged
revealing a decomposition into independent parts governed by distinct parameters sets,
namely π and wk ∀k = 1, . . . ,K. This is a consequence of the conditional independence
assumptions in the model that are not taken into account when locally approximating
the regularized (incomplete-data) log-likelihood by a 2nd-order Taylor expansion, as done
in influence function. The missing-information matrix is responsible for the off-diagonal
blocks in the Hessian resulting in a large, dense matrix. We can see this by writing the
following,

H(θ;θ∗) = −
N∑
i=1

K∑
k=1

γ
(∗)
ik log γik (8)

where the responsibilities γik depend on the normalization constant. It turns out −L(θ,θ0)
is the auxiliary function constructed and maximized in each iteration of the (General-
ized) Expectation-Maximization algorithm where the second argument of L determines the
setting of parameters used to evaluate the posterior over latent variables. As clear from
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Eq. (4), this maximizes a lower bound to the (regularized) log-likelihood −ℓ̄(θ) ≥ −L(θ;θ∗).
A standard result (Dempster et al., 1977) tells us that if θ∗ is the minima of the regularized
empirical risk, then θ∗ is a fixed point of L(θ;θ∗).

Influence via Expectation-Maximization Zhu and Lee (2001) demonstrated that in
the same way each parameter set of θ in the M-step correspond to their own indepen-
dent subproblems, we can also estimate the influence on each parameter set independently.
Whilst influence function can be viewed as taking a Newton step from θ∗ on the perturbed
empirical risk, we can take a Newton step on a perturbed auxiliary function. The per-
turbation is crafted in a similar fashion but instead the ith example is dropped from the
complete-data log-likelihood. We can write the following influence estimate on the param-
eters of the kth component,

ŵ
\i
∗k −w∗k = −γ(∗)ik H−1

∗k∇wk
log pk(Di|w∗k) (∀k = 1, . . . ,K) (9)

where H∗k = −
∑N

j=1 γ
(∗)
jk ∇

2
wk

log pk(Dj |w∗k) + δkI. In the case of π, it is not necessary to
resort to Newton’s method as there exists an analytic form (keeping in mind the constraint∑

k πk = 1):

π̂
\i
∗k − π∗k =

π∗k − γ
(∗)
ik

N − 1 +Kα0 −K
(∀k = 1, . . . ,K) (10)

In Fig. 1, we show a simulation on a mixture density network (see Appendix A for
experimental details). Due to the parameter sharing in this architecture, an influence
estimate cannot be derived for each parameter set separately.

4. Influence via Variational Bayes

We have seen that through the lens of EM we can leverage the model’s structure for efficient
influence estimation. However, there are some limitations to this approach. Firstly, it
requires that the posterior over the latent variables is available in closed-form which is
not always the case. Secondly, the efficiency of influence estimation is tied to conditional
independence assumptions in the model. A natural question to ask is whether this cost can
be reduced further through additional constraints.

We propose influence via variational Bayes, a versatile approach that enables additional
decoupling of influence estimates via factorization constraints in the mean-field variational
posterior. This introduces a variational distribution over θ that we refer to as the global
variables in addition to the variational distribution over latent variables Z. As a conse-
quence, this naturally handles cases where the latent posterior is not analytic. Since EM
can be viewed as coordinate-ascent on the variational objective (Neal and Hinton, 1998),
we will show we can recover the influence estimates in the mixture model setting.

But first, let us revisit the simple extension of the Bayesian model with a set of latent
variables zi local to each data point Di. We start by assuming the following mean-field
variational family q(θ,Z) = q(θ)

∏N
i=1 q(zi). This is the optimal form of q arising from

(conditional) independency assumptions in the model. The optimal variational distribution
satisfies the following set of consistency conditions Bishop (2006):

q∗(θ) ∝ exp
{
Eq∗(Z) [log p(D,θ,Z)]

}
, q∗(zi) ∝ exp

{
Eq∗(θ) [log p(Di, zi|θ)]

}
(11)
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These optimal conditions can be equivalently stated in terms of the optimal natural param-
eters λ∗ corresponding to q∗. Let us denote the natural parameters of q(θ) and q(zi) by λθ

and λzi respectively, then we have:

λθ,∗ = ηθ +
N∑
i=1

∇̃λθ
Eq∗ [log p(Di, zi|θ)] , λzi,∗ = ∇̃λzi

Eq∗ [log p(Di, zi|θ)] (12)

where ηθ is the natural parameter of prior p(θ) and ∇̃λEq(·) = F(λ)−1∇λEq(·) is the
natural gradient with respect to λ given by premultiplying the gradient with the inverse of
the Fisher Information Matrix F(λ) of q. Eq. (12) arises by taking the natural gradient of
the variational objective. It is easy to show that this recovers Eq. (11). The fixed point for
λθ in Eq. (12) decomposes into a sum of the prior natural parameters and natural gradients
for each local factor. This is akin to message-passing where the natural gradients on the
local factors (i.e. local messages) are aggregated to obtain the global parameters. This
can be expressed as inference in a conjugate Bayesian model by multiplying by sufficient
statistics T(θ) followed by exponentiation (Khan and Lin, 2017).

Nickl et al. (2023) exploits this perspective to obtain an estimate of the posterior but
without the ith example or more generally without data in some subset M. This uses a
property of Bayesian models that data examples can be removed by simply dividing their
likelihoods from the posterior (Weiss, 1996). In the case of models without latent variables,
Nickl et al. (2023) demonstrated that this perspective recovers influence function. In our

case, we have the likelihood approximation p̃i ∝ e⟨λ̃i,∗,T(θ)⟩ corresponding to each local
factor where λ̃i,∗ is its natural gradient. By dividing p̃i (or multiple such terms in a subset
M) from q∗(θ), we obtain the following estimate of the deviation in the global natural
parameters:

λ̂
\M
θ,∗ − λθ,∗ = −

∑
i∈M
∇̃λθ

Eq∗ [log p(Di, zi|θ)] (13)

We now return to the mixture model previously introduced and show that Eq. (13) can be
used to recover the influence estimates in Eqs. (9) and (10). The optimal variational distribu-
tion on the global variables θ is given by, q(θ) = q(π)

∏
k q(wk) = Dir(π;α)

∏
k N(wk;mk,S

−1
k ),

and q(zi) =
∏

k γ
zik
ik . Specializing Eq. (13) for q(π) we obtain,

λ̂
\i
π,∗ − λπ,∗ = −γ(∗)

i =⇒ α̂
\i
k,∗ − αk,∗ = −γ

(∗)
ik (∀k = 1, . . . ,K) (14)

where γi = (γi1, . . . , γik). In this case the natural gradient is easy to evaluate due to the
presence of conditionally-conjugate structure (see Khan (2023) for further details). To re-
cover Eq. (10) exactly, we can evaluate the mode of the Dirichlet distributions corresponding

to λ̂
\i
π,∗ and λπ,∗ and then compute their deviation. Now specializing Eq. (13) for q(wk),

we obtain:
λ̂
\i
wk,∗ − λwk,∗ = −γ

(∗)
ik ∇̃λwk

Eq∗ [log pk(Di|wk)] (15)

Using the natural parameter pair λwk
= (Skmk,−1

2Sk) and expressing the natural gradient
in terms of the gradient and Hessian of log pk(Di|wk) (see (Khan and Rue, 2023), Eqs. 10-11)
followed by minor manipulation leads to:

m̂
\i
k,∗ −mk = −γ(∗)ik

(
Ŝ
\i
k,∗

)−1
Eq∗ [∇wk

log pk(Di|wk)] (16)
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Similar to the derivation of influence function from a Newton-step we can approximate

Ŝ
\i
k,∗ ≈ Ŝk,∗. In addition by approximating expectations using delta method and writing

wk = mk,Hk = Sk, we recover Eq. (9).

5. Conclusion

In this work, we consider the problem of influence estimation for latent variable models
through the lens of Variational Bayes. By leveraging the structure of the variational ob-
jective and its optimality conditions, we derived efficient influence estimates that explicitly
account for the presence of latent variables. Our approach generalizes prior work based on
the Expectation-Maximization algorithm, overcoming its limitations by allowing for models
with inexact E-step and supporting additional factorization constraints. We demonstrated
that this framework can recover influence estimates for mixture models and provides a
principled way to extend influence estimation to more complex settings. In future work,
we plan to scale up to larger models such as mixture of experts and consider settings with
hierarchical structure such as meta-learning.
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Appendix A. Experimental details

The toy dataset is generated in the same way as described in Bishop (1994) with 500 points.
The mixture density network (MDN) has a single hidden layer with 10 units and a tanh
activation function. There are then separate heads for the mixing proportions, mean and
standard deviation. A softmax function ensures the constraints for the mixing proportions
are met, and an exponential function is used to ensure positivity for the standard deviation.
The number of components is set to 3. The MDN is trained by minimizing the negative
log-likelihood of the conditional mixture model penalized by a L2-regularizer. We use the
Adam optimizer (default settings) with a learning rate of 10−2, a weight decay of 10−3 and
train for 1000 epochs (full-batch training).
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