
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DISCRETE GCBF PROXIMAL POLICY OPTIMIZATION
FOR MULTI-AGENT SAFE OPTIMAL CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

Control policies that can achieve high task performance and satisfy safety con-
straints are desirable for any system, including multi-agent systems (MAS). One
promising technique for ensuring the safety of MAS is distributed control barrier
functions (CBF). However, it is difficult to design distributed CBF-based policies
for MAS that can tackle unknown discrete-time dynamics, partial observability,
changing neighborhoods, and input constraints, especially when a distributed
high-performance nominal policy that can achieve the task is unavailable. To
tackle these challenges, we propose DGPPO, a new framework that simultane-
ously learns both a discrete graph CBF which handles neighborhood changes
and input constraints, and a distributed high-performance safe policy for MAS
with unknown discrete-time dynamics. We empirically validate our claims on a
suite of multi-agent tasks spanning three different simulation engines. The results
suggest that, compared with existing methods, our DGPPO framework obtains
policies that achieve high task performance (matching baselines that ignore
the safety constraints), and high safety rates (matching the most conservative
baselines), with a constant set of hyperparameters across all environments.

1 INTRODUCTION

Multi-agent systems (MAS) have gained significant attention in recent years due to their potential
applications in various domains such as warehouse robotics (Kattepur et al., 2018), autonomous
vehicles (Shalev-Shwartz et al., 2016), traffic routing (Wu et al., 2020) and power systems Biagioni
et al. (2022). However, a big challenge for MAS is designing distributed control policies that can
achieve high task performance while ensuring safety, especially when the two are conflicting. In the
single-agent continuous-time case, control barrier functions (CBF) are an effective tool to resolve
the conflict via the solution of a safety filter quadratic program (QP) (Xu et al., 2015; Ames et al.,
2017), minimally modifying a given performance-oriented nominal policy to be safe. While dis-
tributed CBFs have been proposed for the multi-agent (Wang et al., 2017) and partially observable
cases (Zhang et al., 2024), they have a limitation of requiring known continuous-time dynamics and
a nominal policy that can achieve high task performance (albeit not necessarily safely).

While the aforementioned assumptions are reasonable for many applications, they do not apply
when the dynamics are unknown and a performance-oriented nominal policy is not available. The
challenge of requiring a nominal policy has been addressed by approaches that combine CBFs
with reinforcement learning (RL) (Cheng et al., 2019; Emam et al., 2022), where the nominal
policy is learned via an unconstrained RL algorithm to maximize task performance while the CBF
is used as a safety filter to ensure safety. However, these works have only been applied to the
single-agent case, and require a control-affine dynamics model to ensure the resulting safety filter
QP is computationally tractable, which is too strict of an assumption for most systems, e.g. with
contact dynamics, especially in discrete time.

A third challenge is that CBF-based methods require a CBF to be known. This can be challenging in
the case of input constraints since not every function satisfies the CBF conditions (Chen et al., 2021).
Constructing a CBF is even more challenging in the case of MAS with changing neighborhoods
and limited sensing (Zhang et al., 2024). Zhang et al. (2024) proposed a learning framework for
constructing a graph CBF (GCBF) for MAS that guarantees safety while satisfying input constraints.
However, they assume known continuous-time dynamics and require an existing nominal policy.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In this work, we address these challenges by proposing a novel framework that simultaneously learns
a discrete graph CBF and a high-performance safe policy for a MAS under unknown discrete-time
dynamics, changing neighborhoods, and input constraints. We summarize our contributions below.

• We propose a method of learning discrete CBFs (DCBF) for unknown discrete-time dynamics
and with input constraints.

• We propose the discrete GCBF (DGCBF), a discrete-time extension of the GCBF, for ensuring
safety under varying neighborhoods in the limited sensing setting and extend the DCBF learning
above to the case of DGCBF.

• We propose Discrete Graph CBF Proximal Policy Optimization (DGPPO), a framework com-
bining RL and DGCBF for solving discrete-time multi-agent safe optimal control problems for
MAS with unknown dynamics and limiting sensing without a known performant nominal policy.

• Through extensive simulations, we demonstrate that DGPPO outperforms existing methods and
is not sensitive to hyperparameters. Specifically, compared to existing methods that require dif-
ferent choices of hyperparameters per environment, DGPPO achieves the lowest cost compared
to baselines with near 100% safety rate using a single set of hyperparameters.

2 RELATED WORK

Constructing Decentralized CBFs The challenge of applying CBFs for MAS has been explored
via the construction of distributed CBFs (Borrmann et al., 2015; Glotfelter et al., 2017; Wang
et al., 2017; Lindemann & Dimarogonas, 2019; Black & Panagou, 2023), which only take local
observations as input. This simplifies the big centralized QP problem into small QP problems to
be solved per agent. However, the construction is either limited to the case of unbounded control
(Lindemann & Dimarogonas, 2019), or only for a specific dynamics model (e.g., double integrator)
(Borrmann et al., 2015; Glotfelter et al., 2017; Wang et al., 2017). Recent advances in learning
CBFs using neural networks (Saveriano & Lee, 2019; Srinivasan et al., 2020; Lindemann et al.,
2021; Peruffo et al., 2021; Dawson et al., 2022; So et al., 2024; Knoedler et al., 2024) has resulted in
works that investigate learning distributed CBFs (Qin et al., 2021; Zhang et al., 2023; 2024; Zinage
et al., 2024). Nevertheless, these approaches assume known dynamics and are only applicable to
continuous-time dynamics and hence cannot be applied to our problem setting. Moreover, it is
assumed that a performant nominal policy is available, which we do not consider in this work.

CBF in RL Originally inspired by the prospect of safety during training, recent works have
integrated CBFs into the RL training process via the safety filter (Tearle et al., 2021; Hsu et al., 2023;
Garg et al., 2024) for the single-agent (Cheng et al., 2019; Emam et al., 2022; Hailemichael et al.,
2023) and multi-agent (Pereira et al., 2021; 2022) cases. Although both continuous-time (Emam
et al., 2022; Hailemichael et al., 2023) and discrete-time (Cheng et al., 2019) dynamics have been
considered, a major limitation is the requirement of affine (D)CBFs and control-affine dynamics up
to a constant disturbance term to be learned. In contrast, the problem we tackle in this work does
not make any such assumptions about the safety specifications or the structure of the dynamics.

Safe Multi-agent RL The problem of constructing safe policies for MAS has also been studied
in the RL community (Garg et al., 2024). Early works achieved safety via reward function design
(Chen et al., 2017b;a; Long et al., 2018; Everett et al., 2018; Semnani et al., 2020). However, these
approaches do not guarantee the satisfaction of the safety constraints even for the optimal policy
(Massiani et al., 2023; Everett et al., 2018; Long et al., 2018). More recently, in the single-agent
case, methods work with constraints in the form of the constrained Markov decision process
(CMDP) problem and apply techniques from constrained optimization, including primal methods
(Xu et al., 2021), primal-dual methods using Lagrange multipliers (Borkar, 2005; Tessler et al.,
2019; He et al., 2023; Huang et al., 2024), and via trust-region-based approaches (Achiam et al.,
2017; He et al., 2023). Of these, Lagrange-multiplier-based approaches are the most popular due
to their simplicity, leading to multi-agent extensions (Gu et al., 2023; Liu et al., 2021b; Ding et al.,
2023; Lu et al., 2021; Geng et al., 2023; Zhao et al., 2024). However, Lagrangian methods for
CMDPs have been observed to have unstable training and convergence to poor policies when the
constraint threshold is zero (Zanon & Gros, 2020; He et al., 2023; So & Fan, 2023; Ganai et al.,
2024), which is the setting we target in this work.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 PROBLEM SETTING AND PRELIMINARIES

3.1 MULTI-AGENT CONSTRAINED OPTIMAL CONTROL PROBLEM

Consider a N agent MAS. We aim to solve for distributed control policies that minimize a joint cost
describing a desired task while staying safe. Let the state and control of agent i at timestep k be
xki ∈ X and uki ∈ U , where xki contains agent i’s position pki ∈ P . The joint state is defined as xk :=
[xk1 ; . . . ;x

k
N ; yk] ∈ X , where yk ∈ Y is non-agent states (e.g., obstacles, goals). The joint action is

defined with uk := [uk1 ; . . . , u
k
N ] ∈ U . We assume x follows the general discrete-time dynamics

xk+1 = f(xk,uk), (1)

where f : X × U → X describes the joint dynamics and is unknown. We consider the setting
where agents only observe objects within sensing radius R > 0. Let Ni(x) = {j | ∥pj − pi∥ ≤ R}
denote the neighborhood of agent i. At timestep k, agent i only has access to local observation
oki := Oi(x

k) ∈ O for observation function Oi:

Oi(x
k) =

(
{oij}j∈Ni

, oyi

)
, oij := Oa(xi, xj), oyi := Oy(xi, y) (2)

for inter-agent Oa : X × X → Oa and non-agent Oy : X × Y → Oy observation functions. Let
the joint cost function descibing the desired task be denoted as l : X × U → R 1. Each agent has
an avoid set defined as Ai := {oi ∈ O | h(m)

i (oi) > 0,∀m} for the avoid functions h(m)
i : O → R,

m ∈ {1, . . . ,M} such that the agent is unsafe it it enters Ai any time in the trajectory. We want
to learn distributed policies µi : O → U that minimize the joint cost l while avoiding the avoid set
Ai at all times. Formally, denoting the joint policy by µ(x) = [µ1(o1); . . . ; µN (oN )], we want to
solve the following discrete-time distributed multi-agent safe optimal control problem (MASOCP):

min
µ1,...,µN

∞∑
k=0

l(xk,µ(xk)) (3a)

s.t. xk+1 = f(xk,µ(xk)), ∀i ∈ {1, . . . , N}, k ≥ 0, (3b)

h
(m)
i (oki ) ≤ 0, oki = Oi(x

k), ∀i ∈ {1, . . . , N}, ∀m ∈ {1, . . . ,M}, k ≥ 0. (3c)

The main challenge in solving (3) is satisfying the safety constraints (3c), especially in the multi-
agent case with changing neighborhood, under unknown discrete-time dynamics with input con-
straints. We propose to tackle this challenge using the framework of DCBFs, which we review next.

3.2 DISCRETE CBF

To tackle the safety constraint of Problem (3), we review the notion of DCBF. Considering the
discrete-time dynamics, we take the following definition of a DCBF from Ahmadi et al. (2019):
Definition 1. A function B : X → R is a discrete CBF (DCBF) for (1) if there exists an extended
class-κ function α satisfying α(−r) > −r for all r > 0 such that B satisfies the following property:

B(x) ≤ 0 =⇒ inf
u∈U

B(f(x,u))−B(x) + α(B(x)) ≤ 0. (4)

As shown in Ahmadi et al. (2019), the following theorem holds.
Theorem 1. The set C := {x | B(x) ≤ 0} is control invariant under any policy µ that satisfies

B(f(x,µ(x)))−B(x) + α(B(x)) ≤ 0, ∀x ∈ C (5)

Thus, if C ∩ A = ∅ for the avoid set A, then the µ from Theorem 1 renders the system safe.

Safe and Performant Policies via Safety Filtering. Given DCBFs B(m) for m = 1, . . . ,M , we
can construct a safe and performant policy using the safety filter framework. Assuming a nominal
policy µnom that is performant, e.g., minimizes the cost l, but not necessarily safe, we can obtain a
safe and performant policy by solving the following nonlinear optimization problem:

min
u∈U

∥u− µnom(x)∥2, (6a)

s.t. C(m)(x,u) ≤ 0, C(m)(x,u) := B(m)(f(x,u))−B(m)(x) + α(B(m)(x)), ∀m. (6b)

1The cost function l here is not the cost in CMDP. Rather, it corresponds to the negative reward in CMDP.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

In the general case, even if the dynamics f are known, (6) is potentially a nonlinear program that
could be difficult to solve. In our problem setting, we assume f to be unknown, which renders this
approach infeasible. Moreover, applying the safety filter framework assumes access to a performant,
distributed nominal policy µnom, which we do not assume is available. Even if it were available,
the safety filtering only minimizes the instantaneous deviation in control (6a) and can be myopic,
potentially leading to liveness problems (Reis et al., 2020) and deadlocks (Jankovic et al., 2023).

Note that not every function satisfies (5) and is a DCBF. In continuous time, unbounded inputs are
sufficient for any continuously differentiable function to be a CBF (Xiao & Belta, 2019) since the
CBF condition will be linear in the controls. However, in discrete time, the DCBF condition (5) is
potentially nonlinear in u, making it difficult to construct a DCBF even with unbounded controls.
While solutions have been proposed for the continuous-time case to construct valid CBFs under
bounded inputs (Chen et al., 2021; So et al., 2024), the same is not true for DCBFs, potentially due
to the requirement of solving a nonlinear program (6) even after such a DCBF has been found.

4 TACKLING CHALLENGES OF DCBFS FOR MASOCP WITH DGPPO

We now address four challenges of extending a DCBF-based approach to our problem setting and
propose DGPPO, our framework for solving (3). All proofs can be found in App. A.

4.1 CONSTRAINT-VALUE FUNCTION IS DCBF

To construct a DCBF, we show that the constraint-value function of a policy is a DCBF, extending the
insights of (So & Fan, 2023) to discrete-time. This allows learning a DCBF with policy evaluation.

For an arbitrary function ζ : X → R, let the avoid set be A := {x ∈ X | ζ(x) > 0}. For a fixed
deterministic policy µ, consider the constraint-value functions V ζ,µ, defined as

V ζ,µ(x) = max
k≥0

ζ(xk), s.t. x0 = x, xk+1 = f(xk,µ(xk)). (7)

Then, V ζ,µ is a DCBF, which we show in the following theorem.
Theorem 2 (Discrete Policy CBF). For a given µ, the constraint-value function V h,µ is a DCBF
for any extended class-κ function α satisfying α(−r) > −r for all r > 0. Moreover, given h(m), µ
satisfies V h

(m),µ(f(x,u))− V h
(m),µ(x) + α(V h

(m),µ(x)) ≤ 0 for all m ∈ {1, . . . ,M}.

Theorem 2 enables the construction of a DCBF by choosing any policy µ and evaluating its
constraint-value function. Consequently, we can construct a DCBF by learning the value function.

4.2 REMOVING THE NOMINAL POLICY WITH EXPLICIT COST OPTIMIZATION

We next address the challenge of requiring a performant nominal policy in the safety filter (6) by
instead directly learning a policy using RL that minimizes the joint cost function (3a). This has
been done previously in the single-agent setting via the framework of shielding for RL, where an
unconstrained policy µθ with parameters θ is learned using existing unconstrained RL techniques,
and the (D)CBF safety filter is incorporated into the environment dynamics (Cheng et al., 2019;
Emam et al., 2022; Hailemichael et al., 2023). Formally, the following problem is considered:

min
µθ

∞∑
k=0

l(xk,uk), s.t. uk = SafetyFilter(µθ(x
k)), (8)

where SafetyFilter computes the minimizer of (6). However, solving (6) in the discrete case
is a nonlinear program that is difficult unless B(m) is linear and the dynamics are control-
affine, an assumption that we, unlike previous works (Cheng et al., 2019; Emam et al.,
2022; Hailemichael et al., 2023), do not impose. To work around this, we constrain the
learned policy to satisfy the DCBF conditions instead of using the safety filter framework.

min
θ

∞∑
k=0

l(xk,µθ(x
k)), (9a) s.t. C(m)(xk,µθ(x

k)) ≤ 0, ∀m = {1, . . . ,M}, k ≥ 0, (9b)

where C(m) is defined in (6b). This removes the need for a nominal policy and for solving the
nonlinear safety filter program (6).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.3 CONSTRAINED POLICY OPTIMIZATION USING DCBF UNDER UNKNOWN DYNAMICS

We now tackle the challenge of performing constrained policy optimization using DCBFs in (9). We
choose to use a purely primal method inspired by constraint-rectified policy optimization (CRPO)
(Xu et al., 2021) due to its simplicity (it does not have parameters related to the dual problem,
but simply chooses to take different gradient steps based on the current constraint satisfaction.)
Specifically, if the constraint (9b) is satisfied, our algorithm takes one gradient step to minimize
the objective (9a). Otherwise, if the constraint is violated, our algorithm takes one gradient step to
minimize the DCBF constraint C.

This procedure still cannot be implemented as-is since the gradient of C cannot be computed di-
rectly without knowledge of the dynamics f . To this end, we propose to use score function gradients
(Williams, 1992) to compute gradients of (9b) without knowing the dynamics f . Since this requires
a stochastic policy, we modify (9) accordingly. For clarity, let πθ(·|x) denote the probability density
function of the stochastic policy with parameters θ conditioned on state x. It can be tempting to
consider the following stochastic version of the problem which resembles the CMDP setting.

min
θ

Ex∼ρ0,u∼πθ(·|x)
[
Qπθ (x,u)

]
, s.t. Ex∼ρπθ ,u∼πθ(·|x)

[
C(m)(x,u)

]
≤ 0, (10)

where Qπθ is the Q-function and ρ0, ρπθ are the initial and stationary state distributions. Here, we
constrain the expectation of the DCBF constraint. However, this formulation is not sufficient for
safety, as the expectation does not guarantee satisfaction for all states as in (6), leading to an unsafe
policy. To tackle this, we modify the constraint, leading to the following problem.

min
θ

Ex∼ρ0,u∼πθ(·|x)
[
Qπθ (x,u)

]
, (11a)

s.t. Ex∼ρπθ Eu∼πθ(·|x)

[
max

{
0, C(m)(x,u)

}]
︸ ︷︷ ︸

:=C̃
(m)
θ (x)

≤ 0, ∀m. (11b)

Here, the satisfaction of (11b) guarantees that the DCBF constraint is satisfied almost surely
(App. A.2). Applying gradient-manipulation style primal optimization as in CRPO (Xu et al., 2021)
gives us the following expression for the gradient ∇θL of the policy loss L.

∇θL(θ) =

{
∇θEx∼ρ0,u∼πθ(·|x)

[
Qπθ (x,u)

]
, Ex∼ρπθ

[
C̃

(m)
θ (x)

]
≤ 0, ∀m,

ν Ex∼ρπθ

[
∇θC̃

(m)
θ (x)

]
for any m that violates, otherwise,

(12)
where ν > 0 is a hyperparameter scaling the size of constraint minimization steps. The gradient of
C̃

(m)
θ can be computed using score function gradients (see App. A.4, discussion on ρπθ in App. B.2).

Improving sample efficiency with Gradient Projection. One drawback of (12) is that this
scheme is sample-inefficient in the sense that if only a single state x̄ violates the DCBF constraint,
then the gradient information of the total cost from all other safe states is thrown away. We propose
to use this thrown-away gradient information by projecting the cost gradient to be orthogonal
to the gradient direction of the violating constraints, similar to techniques from multi-objective
optimization (Yu et al., 2020; Liu et al., 2021a). This requires computing the gradient M + 1 times,
which is expensive when M is large. Instead, we propose to use the following informal theo
Informal Theorem 3 (Approximate Gradient Projection for Decoupled Policy Parameters). Let
σ(m) := ∇θEx∼ρ[C̃

(m)
θ (x)] denote the gradient of the m-th DCBF constraint violation for any

state distribution ρ. Under suitable assumptions on the policy parametrization πθ, modifying the
gradient of the objective (11a) from gorig := Ex∼ρπθEu∼πθ(·|x) [∇θ logπ(x,u)Q

πθ (x,u)] to

g := Ex∼ρπθEu∼πθ(·|x)

[
∇θ logπ(x,u)1{maxm C̃

(m)
θ (x)≤0}Q

πθ (x,u)
]
, (13)

by multiplying the Qπθ with an indicator function gives an approximate projection g of gorig such
that g · σ(m) = 0 ∀m, i.e., it lies in the orthogonal complement of the constraint gradients σ(m).

We state this more formally in Theorem A2. By Informal Theorem 3, we can treat g as an
approximate projection of the gradient of the objective (11a) so that it does not interfere with
the gradients from the safety constraints. Combining σ(m) (with ρ = ρπθ ) and g from Informal

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Theorem 3 gives the following gradient ∇θL of the policy loss L, where ψ denotes the stop gradient
operation (see App. B for a detailed derivation and discussion about important details).

L(θ) = Ex∼ψ(ρπθ )Eu∼ψ(πθ(·|x))
[
logπθ(x,u)ψ

(
Q̃(x,u, θ)

)]
, (14)

Q̃(x,u, θ) := 1{maxm C̃
(m)
θ (x)≤0}ψ(Q

πθ (x,u)) + νmax
m

C̃(m)(x,u). (15)

Although we cannot guarantee that the conditions of Informal Theorem 3 hold, we find that adding
this gradient projection improves performance. We provide empirical comparisons between this
gradient projection method (14) and methods without projection (10), (11) in App. C.6.1.

Scheduling the weight ν. Empirically, different values of ν result in a tradeoff between safety and
cost minimization (potentially due to not satisfying Informal Theorem 3). To remedy this, we sched-
ule ν by taking ν = 1 initially to encourage exploration at the beginning, then doubling it after 50%
and 75% of the total update steps to emphasize safety. We investigate this further in Section 5.3.

4.4 EXTENDING TO THE MULTI-AGENT CASE WITH DGCBF

Having proposed three solutions to tackle the difficulty of using CBFs in RL for unknown
discrete-time dynamics, we now tackle the final challenge of changing neighborhoods due to the
limited sensing radius of each agent. For this, we draw inspiration from GCBF (Zhang et al., 2024),
which provides a theoretical framework for constructing distributed CBFs that can handle varying
neighborhood sizes, albeit for the case of continuous-time dynamics.

To construct a distributed DCBF B, we need B to be a function of each agent’s local observation oi
as opposed to the joint state x. We make this concrete in the following definition.

Definition 2 (Discrete GCBF). A function B̃ : O → R is a Discrete Graph CBF (DGCBF) if there
exists a class-κ function α with α(−r) > −r for all r > 0 and a control policy µ : O → U satisfying

B̃(oj(x)) ≤ 0, ∀j =⇒ B̃(o+i (x))− B̃(oi(x)) + α(B̃(oi(x))) ≤ 0, ∀x ∈ X , ∀i, (16)

where o+i (x) = Oi(f(x,µ(x))) and µ denotes the resulting joint policy from each agent using µ.

Since a DCBF B is defined for a MAS with a fixed size N , B can not be used when N changes.
Given a DGCBF B̃, we can construct a DCBF B as B(x) := maxi B̃(oi(x)) (App. A.6), thus B̃
guarantees safety. However, the same DGCBF B̃ can also be used to guarantee safety for any N ,
which we show in App. A.7.
Remark 1 (Discontinuity due to neighborhood changes). Unlike the continuous-time case (Zhang
et al., 2024), which assumes that the GCBF is unaffected by agents at the sensing-radius boundary,
DGCBF does not have this requirement. This is because the proof of safety in GCBF relies on
continuity (with respect to time) during neighborhood changes. However, in discrete-time, the proof
of safety only looks at finite differences and hence does not require continuity of the DGCBF.

Finding a function B̃ that satisfies (16) is nontrivial, especially in the case of neighborhood changes
due to the limited sensing radius. Though we can learn a DGCBF using Section 4.1, it is unclear how
the learned function satisfies (16) when the neighborhood of agents changes. One sufficient way for
this to hold is to take advantage of the attention mechanism to place zero weights on the features
corresponding to agents far enough away such that the value of B̃ is not affected too much by such
agents. We state this informally in the following theorem (see App. A.5 for the formal version).
Informal Theorem 4 (Satisfying (16) during neighborhood changes). Let ξ1, ξ2, and ξ3 be
functions that encode the input observations into some feature space. Suppose B̃ is of the form

B̃(Oi(x)) = ξ1

∑
j∈Ni

w(oij)ξ2(oij), ξ3(o
y
i )

 , (17)

where w : Oa → R is a weighting function that goes to 0 for observations oij of agents that are far
enough away. Then, under technical conditions on the dynamics, B̃ satisfies (16) and is a DGCBF.

We encourage B̃ to satisfy (16) during neighborhood changes by parameterizing the value functions
using graph neural networks (GNN) with graph attention (Veličković et al., 2017), which takes the

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

𝝅𝝅 ⋅ 𝒙𝒙

𝝁𝝁 𝒙𝒙

Deterministic Rollout

𝐶̃𝐶 𝑚𝑚 ≤ 0?

𝐴𝐴𝑖𝑖GAE

𝜈𝜈max
𝑚𝑚

𝐶̃𝐶𝜃𝜃
𝑚𝑚

PPO loss with 𝐴̃𝐴𝑖𝑖

MSE

MSE

Gradient
Projection

𝝅𝝅𝒊𝒊 ⋅ 𝒐𝒐𝒊𝒊

𝝁𝝁𝒊𝒊 𝒐𝒐𝒊𝒊

Stochastic 
Forward

Backprop
Agent Policy

𝑉𝑉ℎ 𝑚𝑚

𝑉𝑉𝑙𝑙Stochastic Rollout

Deterministic
Forward

Figure 1: DGPPO algorithm. In addition to the normal MAPPO path (top) using stochastic
rollouts, we introduce a second path (bottom) that uses deterministic rollouts to learn a DGCBF.

form of (17) and hence is amenable to Informal Theorem 4. Similar to (Zhang et al., 2024), the atten-
tion mechanism naturally learns to place zero weights on the features corresponding to neighboring
agents that are far enough away, enabling the learned B̃ to satisfy (16) during neighborhood changes.

Finally, Theorem 2 can be extended to DGCBF, as shown in the following Corollary.

Corollary 1 (Discrete Policy GCBF). Suppose V h
(m),µ

i : X → R for agent i can be expressed
using only local observations oi, i.e., there exists some Ṽ h

(m),µ : O → R such that

Ṽ h
(m),µ(o0i ) = V h

(m),µ
i (x0) := max

k≥0
h(m)(oki ). (18)

Then, Ṽ h
(m)

is a DGCBF.

4.5 DGPPO: PUTTING EVERYTHING TOGETHER

Combining the proposed solutions from the previous subsections, we present DGPPO, a framework
for solving the discrete-time multi-agent safe optimal control problem (3). DGPPO follows the
basic structure of on-policy MARL algorithms such as MAPPO (Yu et al., 2022).

1. We perform a T -step stochastic rollout with the policy πθ. However, unlike MAPPO, we
additionally perform a T -step deterministic rollout using a deterministic version of πθ (by taking
the mode), which we denote µ, to learn the DGCBF (per Theorem 2).

2. We update the value functions via regression on the corresponding targets computed using GAE
(Schulman et al., 2015), where the targets for the cost-value function V l uses the stochastic
rollout and the targets for the constraint-value functions V h

(m),µ use the deterministic rollout.
3. We update the policy πθ by replacing the Q-function with its GAE (Schulman et al., 2015), then

combining the CRPO-style decoupled policy loss (14) with the PPO clipped loss (Schulman et al.,
2017) using the learned constraint-value functions V h

(m),µ as the DGCBFs B̃(m). Specifically,
we treat the expression within the expectation in (14) as a pseudo-advantage Ãi for agent i and
use a single-sample estimator Ĉ(m)

θ,i of C̃(m)
θ,i in (14), giving us

Ĉ
(m)
θ,i := max

{
0, V h

(m),µ(o+i )− V h
(m),µ(oi) + α(V h

(m),µ(oi))
}
, (19)

Ãi := AGAE
1{maxm Ĉ

(m)
θ,i ≤0} + νmax

m
Ĉ

(m)
θ,i 1{maxm Ĉ

(m)
θ,i >0} (20)

where AGAE denotes the GAE (Schulman et al., 2015) for agent i. We then use Ãi in the PPO
policy loss (Schulman et al., 2017) as done in MAPPO (Yu et al., 2022).

We summarize our DGPPO algorithm in Figure 1.

5 EXPERIMENTS

In this section, we design experiments to answer the following research questions: (Q1) Does
DGPPO learn a safe policy that also achieves low costs without hyperparameter tuning in different

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) TARGET (b) SPREAD (c) LINE (d) BICYCLE

(e) TRANSPORT

Obstacle

Goal

Agents

(f) WHEEL

Obstacles

Goal

Agents

(g) TRANSPORT2

Figure 2: Environments. We test on (top) LiDAR, (bottom) MuJoCo, and VMAS environments.

0.5 1.0 1.5
Cost

0.6

0.8

1.0

Sa
fe

ty
 ra

te

Target

0.5 1.0
Cost

0.6

0.8

1.0

Sa
fe

ty
 ra

te

Spread

0.5 1.0
Cost

0.6

0.8

1.0
Sa

fe
ty

 ra
te

Line

0.5 1.0
Cost

0.6

0.8

1.0

Sa
fe

ty
 ra

te

Bicycle

0.2 0.4
Cost

0.6

0.8

1.0

Sa
fe

ty
 ra

te

Transport

0.0 0.5 1.0
Cost

0.6

0.8

1.0

Sa
fe

ty
 ra

te

Wheel

0.50 0.75 1.00
Cost

0.0

0.5

1.0

Sa
fe

ty
 ra

te

Transport2

0.0 0.5 1.00.00

0.25

0.50

0.75

1.00 DGPPO (ours)
Penalty(0.02)
Penalty(0.1)
Penalty(0.5)
Schedule
Lagr(1)
Lagr(5)
Lagr(lr)

Figure 3: Comparison on N = 3 agents. denotes the mean ± standard deviation. Methods
closer to the top left yield lower costs and higher safety rates.

environments? (Q2) How stable is the training of DGPPO? (Q3) Can DGPPO maintain its perfor-
mance with an increasing number of agents? (Q4) Is DGPPO sensitive to the hyperparameters?

To compare the methods, we look at the cost and safety rate. The cost is the trajectory cumulative
cost

∑T
k=0 l(x

k, uk). The safety rate is the ratio of agents that are safe over the entire trajectory.
Details on implementation, tasks, hyperparameters, code, and additional experiments are in App. C.

5.1 SETUP

Environments We evaluate DGPPO in a wide range of environments including four LiDAR
environments (TARGET, SPREAD, LINE, BICYCLE) where the agents use LiDAR to detect obstacles
(Keyumarsi et al., 2023), one MuJoCo environment TRANSPORT (Todorov et al., 2012), and two
VMAS environments (TRANSPORT2, WHEEL) (Bettini et al., 2022; 2024).

Baselines We compare DGPPO against baseline methods that can solve MASOCP under unknown
discrete-time dynamics, including the state-of-the-art MARL algorithm InforMARL (Nayak et al.,
2023) and the safe MARL algorithm MAPPO-Lagrangian (Gu et al., 2021; 2023). For InforMARL,
we add the constraint violations max{0,maxm h

(m)} weighted by β to the cost function for

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5
Step 1e5

0.0

0.5

1.0

C
os

t

Spread

0.0 0.5 1.0 1.5
Step 1e5

0.0

0.5

1.0

Sa
fe

ty
 ra

te

Spread

0.0 0.5 1.0 1.5
Step 1e5

0.0

0.5

1.0

C
os

t

Line

0.0 0.5 1.0 1.5
Step 1e5

0.6

0.8

1.0

Sa
fe

ty
 ra

te

Line

DGPPO (ours) Schedule Lagr(lr)

Figure 4: Training Stability. DGPPO yields smoother training curves compared to the baselines.

0.0 0.5 1.0 1.5
Step 1e5

0.00

0.25

0.50

0.75

1.00

C
os

t

N= 5

0.0 0.5 1.0 1.5
Step 1e5

0.2

0.4

0.6

0.8

1.0

Sa
fe

ty
 ra

te

N= 5

0.0 0.5 1.0 1.5
Step 1e5

0.00

0.25

0.50

0.75

1.00

C
os

t

N= 7

0.0 0.5 1.0 1.5
Step 1e5

0.2

0.4

0.6

0.8

1.0

Sa
fe

ty
 ra

te

N= 7

DGPPO (ours) Penalty(0.02) Penalty(0.1) Penalty(0.5) Schedule Lagr(1) Lagr(5) Lagr(lr)

Figure 5: Scaling toN = 5, 7. Unlike other methods, DGPPO performs similarly with more agents.

different βs (Penalty(β)). We also try a weight-scheduling scheme where β starts at 0.01 and
increases at 50% and 75% of the total steps (Schedule). For MAPPO-Lagrangian, we use a GNN
backbone for fair comparison. We notice the official implementation (Gu et al., 2023) uses a tiny
learning rate on the Lagrange multipliers (10−7), so we consider two different initialization λ0
(Lagr(λ0)). We also increase the learning rate of λ to 0.12 (Lagr(lr)). We run each method for the
same number of update steps, chosen to be large enough such that all methods converge.3

5.2 MAIN RESULTS

For each environment, we run each algorithm with 3 different seeds and evaluate each run on 32
different initial conditions. We draw the following conclusions.

(Q1): DGPPO has the best performance and is hyperparameter insensitive. We first compare
the converged policies of all algorithms (Figure 3). DGPPO is closest to the top left corner in
all environments, indicating that it performs the best. For Penalty and Lagr, different choices of
hyperparameters result in either focusing only on safety or focusing only on performance. Even with
a fixed hyperparameter, the performance of these two baseline also varies between environments.
On the other hand, using the same set of hyperparameters in all environments, DGPPO consistently
achieves the lowest cost among methods with a safety rate close to 100%.

(Q2): Training of DGPPO is more stable. Next, we compare the training stability of DGPPO with
Schedule, due to having a weight scheduled, and Lagr(lr), due to having non-negligible learning rate
(Figure 4). Schedule experiences an increase in cost as β increases throughout training. Lagr(lr)
experiences high variance and many spikes in both cost and safety rate throughout training. This is
similar to previous results obtained in the single-agent when the cost threshold is zero (So & Fan,
2023; He et al., 2023). DGPPO has a much smoother training curve than both. We provide training
curves on other algorithms and environments in App. C.5.

(Q3): DGPPO scales well with more agents. Finally, we test the scalability of the methods on
LINE by increasing the N from 3 to 5 and 7 (Figure 5). The same trends from before still hold with
DGPPO achieving the best performance and high safety rates. We also see that DGPPO performs
well even with more agents, but the baseline methods are more inconsistent (e.g., Schedule is
mostly safe with N = 5 but not so for N = 7), possibly due to their hyperparameter sensitivity.

5.3 ABLATION STUDIES

We now study hyperparameter sensitivity (Q4) by varying different hyperparameters in DGPPO.

Class-κ function α. For the class-κ function in (16), we use a linear α(r) = ar with a = 0.3. We
test the sensitivity of DGPPO to this by varying a (Figure 6a) on SPREAD. We observe that a = 0

2This is the smallest learning rate of λ that does not make the algorithm ignore the safety constraints.
3We also test baselines run for double the environment steps similar to DGPPO for fairness (App. C.6.2).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5
Step 1e5

0.00

0.25

0.50

0.75

1.00

1.25

C
os

t

0.0 0.5 1.0 1.5
Step 1e5

0.80

0.85

0.90

0.95

1.00

Sa
fe

ty
 ra

te

a= 0 a= 0.075 a= 0.15 a= 0.3 a= 0.6 a= 1.2

(a) Varying α in DGPPO.

0.0 0.5 1.0 1.5
Step 1e5

0.00

0.25

0.50

0.75

1.00

1.25

C
os

t

0.0 0.5 1.0 1.5
Step 1e5

0.80

0.85

0.90

0.95

1.00

Sa
fe

ty
 ra

te

ν= 1.0 ν= 2.0 ν= 4.0 ν= 8.0 ν schedule

(b) Varying ν in DGPPO.

0.0 0.5 1.0 1.5
Step 1e5

0.00

0.25

0.50

0.75

1.00

1.25

C
os

t

0.0 0.5 1.0 1.5
Step 1e5

0.80

0.85

0.90

0.95

1.00

Sa
fe

ty
 ra

te

Deterministic Stochastic

(c) The necessity of deterministic rollouts to learn V h.

0 1 2
Step 1e4

0.6

0.8

1.0

1.2

1.4

1.6

C
os

t

0 1 2
Step 1e4

0.0

0.2

0.4

0.6

0.8

1.0

Sa
fe

ty
 ra

te

Learned CBF Hand-crafted CBF

(d) The necessity of learning a CBF.

Figure 6: Ablations. We vary hyperparameters (top) and verify our design decisions (bottom).

leads to conservative behavior with a high cost. a = 1.2 leads to an unsafe policy, which is to be
expected since the α(−r) > −r condition is violated. For the other values that satisfy this condition,
there is no significant difference in either cost or safety. We can thus choose any a ∈ (0, 1).

Weight ν on the gradient of C̃. We introduced a schedule for ν which weights the constraint
minimization step (Section 4.3). We test the sensitivity to ν on SPREAD with different static
schedules (Figure 6b). The safety rate is lower with ν = 1, while the convergence in cost for
ν = 4, 8 is slower. The proposed schedule leads to faster cost convergence and a high safety rate.

Learning V h with a stochastic policy. Theorem 2, used to learn the DGCBF V h
(m),µ, requires

deterministic rollouts. Consequently, DGPPO uses double the environment samples by performing
both a stochastic and deterministic rollout. We verify whether this is necessary by seeing how
the type of rollout (deterministic vs stochastic) used to learn the DGCBF affects performance
(Figure 6c), which shows that using a stochastic rollout degrades both the cost and safety rate.
Thus, the use of a deterministic rollout to learn V h

(m),µ is necessary despite the increased data use.

Using a hand-crafted DGCBF. One motivation for DGPPO is that it is difficult to construct a
DGCBF with changing neighborhoods and input constraints. We test this by using h(m) directly as
the DGCBF (instead of the learned V h

(m),µ,), as is commonly done for CBFs, on TRANSPORT2
(Figure 6d). Using this hand-crafted “DGCBF” results in a decreased safety rate (∼15% decrease),
validating the need to learn a DGCBF. If no DGCBF is used, it performs even worse (App. C.6.3).

6 CONCLUSION

We propose DGPPO to learn distributed safe policies for discrete-time MAS with unknown dynam-
ics under a limited sensing radius. We extend CBFs to this problem setting with DGCBFs, propose a
construction using constraint-value functions, and provide a new way of applying CBFs to the case
of unknown dynamics using policy gradients. Experimental results across three simulation engines
suggest that DGPPO is robust to hyperparameters and performs well, achieving a safety rate match-
ing conservative baselines while matching the performance of the performant but unsafe baselines.

Limitations DGPPO uses both stochastic and deterministic rollouts, decreasing the sample
efficiency. Moreover, safety under stochastic dynamics has not been considered. Finally, although
safety is guaranteed when the DGCBF constraints are satisfied at all states, achieving this in practice
using learning is hard. We leave these limitations to future work.

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International Conference on Machine Learning, pp. 22–31. PMLR, 2017.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Mohamadreza Ahmadi, Andrew Singletary, Joel W Burdick, and Aaron D Ames. Safe policy syn-
thesis in multi-agent pomdps via discrete-time barrier functions. In 2019 IEEE 58th Conference
on Decision and Control (CDC), pp. 4797–4803. IEEE, 2019.

Aaron D Ames, Xiangru Xu, Jessy W Grizzle, and Paulo Tabuada. Control barrier function based
quadratic programs for safety critical systems. IEEE Transactions on Automatic Control, 62(8):
3861–3876, 2017.

Matteo Bettini, Ryan Kortvelesy, Jan Blumenkamp, and Amanda Prorok. Vmas: A vectorized
multi-agent simulator for collective robot learning. The 16th International Symposium on
Distributed Autonomous Robotic Systems, 2022.

Matteo Bettini, Amanda Prorok, and Vincent Moens. Benchmarl: Benchmarking multi-agent
reinforcement learning. Journal of Machine Learning Research, 25(217):1–10, 2024.

David Biagioni, Xiangyu Zhang, Dylan Wald, Deepthi Vaidhynathan, Rohit Chintala, Jennifer
King, and Ahmed S Zamzam. Powergridworld: A framework for multi-agent reinforcement
learning in power systems. In Proceedings of the Thirteenth ACM International Conference on
Future Energy Systems, pp. 565–570, 2022.

Mitchell Black and Dimitra Panagou. Adaptation for validation of consolidated control barrier
functions. In 2023 62nd IEEE Conference on Decision and Control (CDC), pp. 751–757, 2023.
doi: 10.1109/CDC49753.2023.10383597.

Vivek S Borkar. An actor-critic algorithm for constrained markov decision processes. Systems &
Control Letters, 54(3):207–213, 2005.

Urs Borrmann, Li Wang, Aaron D Ames, and Magnus Egerstedt. Control barrier certificates for
safe swarm behavior. IFAC-PapersOnLine, 48(27):68–73, 2015.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/jax-ml/jax.

Yu Fan Chen, Michael Everett, Miao Liu, and Jonathan P How. Socially aware motion planning
with deep reinforcement learning. In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 1343–1350. IEEE, 2017a.

Yu Fan Chen, Miao Liu, Michael Everett, and Jonathan P How. Decentralized non-communicating
multiagent collision avoidance with deep reinforcement learning. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pp. 285–292. IEEE, 2017b.

Yuxiao Chen, Mrdjan Jankovic, Mario Santillo, and Aaron D Ames. Backup control barrier
functions: Formulation and comparative study. In 2021 60th IEEE Conference on Decision and
Control (CDC), pp. 6835–6841. IEEE, 2021.

Richard Cheng, Gábor Orosz, Richard M Murray, and Joel W Burdick. End-to-end safe rein-
forcement learning through barrier functions for safety-critical continuous control tasks. In
Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 3387–3395, 2019.

Charles Dawson, Zengyi Qin, Sicun Gao, and Chuchu Fan. Safe nonlinear control using robust neu-
ral lyapunov-barrier functions. In Conference on Robot Learning, pp. 1724–1735. PMLR, 2022.

Dongsheng Ding, Xiaohan Wei, Zhuoran Yang, Zhaoran Wang, and Mihailo Jovanovic. Provably
efficient generalized lagrangian policy optimization for safe multi-agent reinforcement learning.
In Learning for Dynamics and Control Conference, pp. 315–332. PMLR, 2023.

Yousef Emam, Gennaro Notomista, Paul Glotfelter, Zsolt Kira, and Magnus Egerstedt. Safe
reinforcement learning using robust control barrier functions. IEEE Robotics and Automation
Letters, 2022.

11

http://github.com/jax-ml/jax


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Michael Everett, Yu Fan Chen, and Jonathan P How. Motion planning among dynamic, decision-
making agents with deep reinforcement learning. In 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 3052–3059. IEEE, 2018.

Milan Ganai, Zheng Gong, Chenning Yu, Sylvia Herbert, and Sicun Gao. Iterative reachability
estimation for safe reinforcement learning. Advances in Neural Information Processing Systems,
36, 2024.

Kunal Garg, Songyuan Zhang, Oswin So, Charles Dawson, and Chuchu Fan. Learning safe control
for multi-robot systems: Methods, verification, and open challenges. Annual Reviews in Control,
57:100948, 2024.

Nan Geng, Qinbo Bai, Chenyi Liu, Tian Lan, Vaneet Aggarwal, Yuan Yang, and Mingwei Xu.
A reinforcement learning framework for vehicular network routing under peak and average
constraints. IEEE Transactions on Vehicular Technology, 2023.

Paul Glotfelter, Jorge Cortés, and Magnus Egerstedt. Nonsmooth barrier functions with applications
to multi-robot systems. IEEE control systems letters, 1(2):310–315, 2017.

Jaskaran Singh Grover, Changliu Liu, and Katia Sycara. Deadlock analysis and resolution for
multi-robot systems. In Algorithmic Foundations of Robotics XIV: Proceedings of the Fourteenth
Workshop on the Algorithmic Foundations of Robotics 14, pp. 294–312. Springer, 2021.

Shangding Gu, Jakub Grudzien Kuba, Munning Wen, Ruiqing Chen, Ziyan Wang, Zheng Tian,
Jun Wang, Alois Knoll, and Yaodong Yang. Multi-agent constrained policy optimisation. arXiv
preprint arXiv:2110.02793, 2021.

Shangding Gu, Jakub Grudzien Kuba, Yuanpei Chen, Yali Du, Long Yang, Alois Knoll, and
Yaodong Yang. Safe multi-agent reinforcement learning for multi-robot control. Artificial
Intelligence, 319:103905, 2023.

Habtamu Hailemichael, Beshah Ayalew, and Andrej Ivanco. Optimal control barrier functions for
rl based safe powertrain control. IFAC-PapersOnLine, 56(3):385–390, 2023.

Tairan He, Weiye Zhao, and Changliu Liu. Autocost: Evolving intrinsic cost for zero-violation
reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 14847–14855, 2023.

Kai-Chieh Hsu, Haimin Hu, and Jaime F Fisac. The safety filter: A unified view of safety-critical
control in autonomous systems. Annual Review of Control, Robotics, and Autonomous Systems,
7, 2023.

Weidong Huang, Jiaming Ji, Chunhe Xia, Borong Zhang, and Yaodong Yang. Safedreamer: Safe
reinforcement learning with world models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=tsE5HLYtYg.

Mrdjan Jankovic, Mario Santillo, and Yan Wang. Multiagent systems with cbf-based controllers:
Collision avoidance and liveness from instability. IEEE Transactions on Control Systems
Technology, 2023.

Ajay Kattepur, Hemant Kumar Rath, Anantha Simha, and Arijit Mukherjee. Distributed optimiza-
tion in multi-agent robotics for industry 4.0 warehouses. In Proceedings of the 33rd Annual ACM
Symposium on Applied Computing, pp. 808–815, 2018.

Shaghayegh Keyumarsi, Made Widhi Surya Atman, and Azwirman Gusrialdi. Lidar-based online
control barrier function synthesis for safe navigation in unknown environments. IEEE Robotics
and Automation Letters, 2023.

Luzia Knoedler, Oswin So, Ji Yin, Mitchell Black, Zachary Serlin, Panagiotis Tsiotras, Javier
Alonso-Mora, and Chuchu Fan. Rpcbf: Constructing safety filters robust to model error and
disturbances via policy control barrier functions. arXiv preprint, 2024.

12

https://openreview.net/forum?id=tsE5HLYtYg


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Lars Lindemann and Dimos V Dimarogonas. Control barrier functions for multi-agent systems
under conflicting local signal temporal logic tasks. IEEE control systems letters, 3(3):757–762,
2019.

Lars Lindemann, Haimin Hu, Alexander Robey, Hanwen Zhang, Dimos Dimarogonas, Stephen Tu,
and Nikolai Matni. Learning hybrid control barrier functions from data. In Conference on robot
learning, pp. 1351–1370. PMLR, 2021.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent
for multi-task learning. Advances in Neural Information Processing Systems, 34:18878–18890,
2021a.

Chenyi Liu, Nan Geng, Vaneet Aggarwal, Tian Lan, Yuan Yang, and Mingwei Xu. Cmix: Deep
multi-agent reinforcement learning with peak and average constraints. In Machine Learning and
Knowledge Discovery in Databases. Research Track: European Conference, ECML PKDD 2021,
Bilbao, Spain, September 13–17, 2021, Proceedings, Part I 21, pp. 157–173. Springer, 2021b.

Pinxin Long, Tingxiang Fan, Xinyi Liao, Wenxi Liu, Hao Zhang, and Jia Pan. Towards optimally
decentralized multi-robot collision avoidance via deep reinforcement learning. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pp. 6252–6259. IEEE, 2018.

Songtao Lu, Kaiqing Zhang, Tianyi Chen, Tamer Başar, and Lior Horesh. Decentralized policy
gradient descent ascent for safe multi-agent reinforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pp. 8767–8775, 2021.

Pierre-François Massiani, Steve Heim, Friedrich Solowjow, and Sebastian Trimpe. Safe value
functions. IEEE Transactions on Automatic Control, 68(5):2743–2757, 2023.

Siddharth Nayak, Kenneth Choi, Wenqi Ding, Sydney Dolan, Karthik Gopalakrishnan, and Hamsa
Balakrishnan. Scalable multi-agent reinforcement learning through intelligent information
aggregation. In International Conference on Machine Learning, pp. 25817–25833. PMLR, 2023.

Marcus Pereira, Ziyi Wang, Ioannis Exarchos, and Evangelos Theodorou. Safe optimal control
using stochastic barrier functions and deep forward-backward sdes. In Conference on Robot
Learning, pp. 1783–1801. PMLR, 2021.

Marcus A Pereira, Augustinos D Saravanos, Oswin So, and Evangelos A Theodorou. Decentralized
safe multi-agent stochastic optimal control using deep fbsdes and admm. arXiv preprint
arXiv:2202.10658, 2022.

Andrea Peruffo, Daniele Ahmed, and Alessandro Abate. Automated and formal synthesis of neural
barrier certificates for dynamical models. In International conference on tools and algorithms
for the construction and analysis of systems, pp. 370–388. Springer, 2021.

Zengyi Qin, Kaiqing Zhang, Yuxiao Chen, Jingkai Chen, and Chuchu Fan. Learning safe multi-agent
control with decentralized neural barrier certificates. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=P6_q1BRxY8Q.

Matheus F Reis, A Pedro Aguiar, and Paulo Tabuada. Control barrier function-based quadratic
programs introduce undesirable asymptotically stable equilibria. IEEE Control Systems Letters,
5(2):731–736, 2020.

Matteo Saveriano and Dongheui Lee. Learning barrier functions for constrained motion planning
with dynamical systems. In 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 112–119. IEEE, 2019.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

13

https://openreview.net/forum?id=P6_q1BRxY8Q


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Samaneh Hosseini Semnani, Hugh Liu, Michael Everett, Anton De Ruiter, and Jonathan P How.
Multi-agent motion planning for dense and dynamic environments via deep reinforcement
learning. IEEE Robotics and Automation Letters, 5(2):3221–3226, 2020.

Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent, reinforcement
learning for autonomous driving. arXiv preprint arXiv:1610.03295, 2016.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. arXiv preprint
arXiv:2009.03509, 2020.

Oswin So and Chuchu Fan. Solving stabilize-avoid optimal control via epigraph form and deep
reinforcement learning. In Proceedings of Robotics: Science and Systems, 2023.

Oswin So, Zachary Serlin, Makai Mann, Jake Gonzales, Kwesi Rutledge, Nicholas Roy, and
Chuchu Fan. How to train your neural control barrier function: Learning safety filters for
complex input-constrained systems. In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pp. 11532–11539. IEEE, 2024.

Mohit Srinivasan, Amogh Dabholkar, Samuel Coogan, and Patricio A Vela. Synthesis of control
barrier functions using a supervised machine learning approach. In 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 7139–7145. IEEE, 2020.

Ben Tearle, Kim P Wabersich, Andrea Carron, and Melanie N Zeilinger. A predictive safety filter
for learning-based racing control. IEEE Robotics and Automation Letters, 6(4):7635–7642, 2021.

Chen Tessler, Daniel J. Mankowitz, and Shie Mannor. Reward constrained policy optimization. In
International Conference on Learning Representations, 2019.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
2012. doi: 10.1109/IROS.2012.6386109.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Li Wang, Aaron D Ames, and Magnus Egerstedt. Safety barrier certificates for collisions-free
multirobot systems. IEEE Transactions on Robotics, 33(3):661–674, 2017.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Tong Wu, Pan Zhou, Kai Liu, Yali Yuan, Xiumin Wang, Huawei Huang, and Dapeng Oliver Wu.
Multi-agent deep reinforcement learning for urban traffic light control in vehicular networks.
IEEE Transactions on Vehicular Technology, 69(8):8243–8256, 2020.

Wei Xiao and Calin Belta. Control barrier functions for systems with high relative degree. In 2019
IEEE 58th conference on decision and control (CDC), pp. 474–479. IEEE, 2019.

Tengyu Xu, Yingbin Liang, and Guanghui Lan. Crpo: A new approach for safe reinforcement
learning with convergence guarantee. In International Conference on Machine Learning, pp.
11480–11491. PMLR, 2021.

Xiangru Xu, Paulo Tabuada, Jessy W Grizzle, and Aaron D Ames. Robustness of control barrier
functions for safety critical control. IFAC-PapersOnLine, 48(27):54–61, 2015.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu.
The surprising effectiveness of ppo in cooperative multi-agent games. Advances in Neural
Information Processing Systems, 35:24611–24624, 2022.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems,
33:5824–5836, 2020.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Mario Zanon and Sébastien Gros. Safe reinforcement learning using robust mpc. IEEE Transactions
on Automatic Control, 66(8):3638–3652, 2020.

Songyuan Zhang, Kunal Garg, and Chuchu Fan. Neural graph control barrier functions guided
distributed collision-avoidance multi-agent control. In Conference on Robot Learning, pp.
2373–2392. PMLR, 2023.

Songyuan Zhang, Oswin So, Kunal Garg, and Chuchu Fan. Gcbf+: A neural graph control barrier
function framework for distributed safe multi-agent control. arXiv preprint arXiv:2401.14554,
2024.

Youpeng Zhao, Yaodong Yang, Zhenbo Lu, Wengang Zhou, and Houqiang Li. Multi-agent first
order constrained optimization in policy space. Advances in Neural Information Processing
Systems, 36, 2024.

Vrushabh Zinage, Abhishek Jha, Rohan Chandra, and Efstathios Bakolas. Decentralized safe and
scalable multi-agent control under limited actuation. arXiv preprint arXiv:2409.09573, 2024.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A PROOFS

A.1 PROOF OF THEOREM 2

Proof. Dynamic programming on V h,µ gives

V h,µ(x) = max
{
h(x), V h,µ(f(x, µ(x)))

}
. (21)

Let V h,µ(x) ≤ 0. This gives us two cases depending on which argument in the max is larger.

Case 1: h(x) ≤ V h,µ(f(x, µ(x))): Here, we have that V h,µ(x) = V h,µ(f(x, µ(x))), which
implies

V h,µ(f(x, µ(x)))− V h,µ(x) = 0 ≤ 0 ≤ −α(V h,µ(x)). (22)

Case 2: h(x) > V h,µ(f(x, µ(x))): Here, we have that V h,µ(x) = h(x) > V h,µ(f(x, µ(x))),
which implies

V h,µ(f(x, µ(x)))− V h,µ(x) < 0 ≤ 0 ≤ −α(V h,µ(x)). (23)

Thus, V h,µ(f(x, µ(x)))− V h,µ(x) + α(V h,µ(x)) ≤ 0 if V h,µ(x) ≤ 0, and V h,µ is a DCBF.

A.2 PROOF THAT EQUATION (11b) IMPLIES C(m)(x,u) ≤ 0 ALMOST SURELY

Theorem A1. Suppose

Ex∼ρπθ Eu∼πθ(·|x)

[
max

{
0, C(m)(x,u)

}]
︸ ︷︷ ︸

:=C̃
(m)
θ (x)

≤ 0. (24)

Then, C(m)(x,u) ≤ 0 almost surely.

Proof. Note that (24) can only be satisfied when the expectation equals 0 since max{0, ·} is
non-negative.

Assume for contradiction that P (C(m)(x,u) ≤ 0) ≤ 1− ϵ for ϵ > 0, i.e., P (C(m)(x,u) > 0) ≥ ϵ.
Then,

0 = Ex∼ρπθEu∼πθ(·|x)

[
max

{
0, C(m)(x,u)

}]
(25)

≥ P
(
C(m)(x,u) > 0

)
Ex∼ρπθ ,u∼πθ(·|x)

[
max

{
0, C(m)(x,u)

}
| C(m)(x,u) > 0

]
(26)

= ϵEx∼ρπθ ,u∼πθ(·|x)

[
max

{
0, C(m)(x,u)

}
| C(m)(x,u) > 0

]
(27)

> 0. (28)

which is a contradiction. Thus, P (C(m)(x,u) ≤ 0) = 1, and C(m)(x,u) ≤ 0 almost surely.

A.3 FORMAL STATEMENT AND PROOF OF INFORMAL THEOREM 3

We first formally state Informal Theorem 3 below.

Theorem A2 (Approximate Gradient Projection for Decoupled Policy Parameters). Suppose
that for all x1 ̸= x2, the parameters θ of the stochastic policy πθ are orthogonal, i.e.,
(∇θπθ(u1 | x1)) · (∇θπθ(u2 | x2)) = 0 for all u1,u2 ∈ U (e.g., a finite state-space X with
independent distribution at each state). Let σ(m) := ∇θEx∼ρ[C̃

(m)
θ (x)] denote the gradient of the

m-th DCBF constraint violation for any state distribution ρ. Then, the gradient of the objective
(11a), modified with an extra indicator as follows:

g := Ex∼ρπθ

[
1{maxm C̃

(m)
θ (x)≤0} Eu∼πθ(·|x) [∇θ logπ(x,u)Q

πθ (x,u)]
]
, (29)

satisfies g ·σ(m) = 0 ∀m, i.e., it lies in the orthogonal complement of the constraint gradients σ(m).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Proof. For x ∈ X , define the set Θx as the column space of the gradient of the policy π at x, i.e.,

Θx := span{∇θπθ(u | x) : u ∈ U}. (30)

By assumption, this implies that for x1 ̸= x2,

θ1 ∈ Θx1 , θ2 ∈ Θx2 =⇒ θ1 · θ2 = 0. (31)

Now, note that

σ(m) := ∇θEx∼ρ[C̃
(m)
θ (x)] (32)

= ∇θEx∼ρEu∼πθ(·|x)[max(0, C
(m)
θ (x,u))] (33)

= Ex∼ρEu∼πθ(·|x)

[
∇θ logπθ(u | x)max(0, C

(m)
θ (x,u))

]
(34)

= Ex∼ρEu∼πθ(·|x)

[
1{C(m)

θ (x,u)>0}∇θ logπθ(u | x)C(m)
θ (x,u)

]
(35)

⊆
⋃

x:E(m)

Θx, E(m) :=

{
x ∈ X : ess sup

u∈U
C

(m)
θ (x,u) > 0

}
, (36)

where we have used the score function gradient estimator of C̃θ (App. A.4). Similarly,

g := Ex∼ρπθ ,u∼πθ(·|x)
[
∇θ logπθ(u | x)1{maxm C̃

(m)
θ (x)≤0}Q

πθ (x,u)
]
, (37)

= Ex∼ρπθ ,u∼πθ(·|x)
[
∇θ logπθ(u | x)1{maxm ess supu∈U C

(m)
θ (x)≤0}Q

πθ (x,u)
]
, (38)

⊆
⋃
x:F

Θx, (39)

where

F :=

{
x ∈ X : max

m
ess sup
u∈U

C
(m)
θ (x,u) ≤ 0

}
, (40)

=

{
x ∈ X : ess sup

u∈U
C

(m)
θ (x,u) ≤ 0, ∀m

}
. (41)

Since E(m) ∩ F = ∅ for all m, we have that σ(m) · g = 0 for all m.

A.4 SCORE FUNCTION GRADIENT ESTIMATOR OF C̃θ

Proof. Using the log trick,

∇θEu∼πθ(x) [C(x, f(x,u))] = ∇θ

∫
C(x, f(x,u))πθ(x,u) du,

=

∫
C(x, f(x,u)) (∇θ logπθ(x,u))πθ(x,u) du,

= Eu∼πθ(x) [∇ logπθ(x,u)C(x, f(x,u))] .

(42)

A.5 FORMAL STATEMENT AND PROOF OF INFORMAL THEOREM 4

We first formally state Informal Theorem 4 below.
Theorem A3 (Satisfying (16) during neighborhood changes). Suppose that the maximum distance
an agent can travel in a time step is d̄. Let B̃ be of the following form.

B̃(Oi(x)) = ξ1

∑
j∈Ni

w(oij)ξ2(oij), ξ3(o
y
i )

 , (43)

where ξ1 : Rρ1 × Rρ2 → R, ξ2 : Oa → Rρ1 , and ξ3 : Oy → Rρ2 encode the observations into
some feature space, and w : Oa → R is a weighting function such that

w(oij) = 0, for all xi, xj such that ∥pi − pj∥ ≥ R− 2d̄. (44)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

If 1) B̃ satisfies (16) for all transitions where the neighborhood does not change, and 2) for
any transition x → x+ with a neighborhood change Ni(x) ̸= Ni(x

+), there exists a transition
x̄ → x̄+ where all agents that either enter or leave the neighborhood (i.e., the complement
of Ni(x) ∩ Ni(x

+)) are moved outside the sensing radius, and all the remaining agents move
identically in x and x̄, then B̃ is a DGCBF.

Proof. Let x and x+ be consecutive states such that the neighborhood of agent i changes, i.e.,
Ni(x) ̸= Ni(x

+). Let E := Ni(x) \ Ni(x
+) and F := Ni(x

+) \ Ni(x) denote the set of agents
that leave and enter the neighborhood of agent i, respectively. Since the maximum distance agents
can travel in one time step is d̄, the distance between agents can change by at most 2d̄ in one
timestep. Hence, all agents exiting the neighborhood are at least R− 2d̄ away agent i, i.e.,

j ∈ E =⇒ ∥pi − pj∥ ≥ R− 2d̄. (45)

Similarly, all agents entering the neighborhood are at least R− 2d̄ away from agent i at the x+, i.e.,
j ∈ F =⇒ ∥p+i − p+j ∥ ≥ R− 2d̄. (46)

Hence, by (44), we have that w(oij) = 0 for all j ∈ E and w(o+ij) = 0 for all j ∈ F .

Now, by asumption, there exists consecutive states x̄ and x̄+ with the same neighborhood
Ni(x̄) = Ni(x̄

+) = Ni(x) ∩ Ni(x
+), such that x̄j = xj and x̄+j = x+j for j ∈ Ni(x̄), and

similarly for non-agent states y = ȳ, y+ = ȳ+. By definition of the observation function Oi, x and
x̄ share the same observation except for the oij for j ∈ E, and similarly for x+ and x̄+ for j ∈ F .
Since wij = 0 for all j ∈ E ∪ F , the form of B̃ (43) implies that∑

j∈Ni

w(oij)ξ2(oij) =
∑
j∈Ni

w(ōij)ξ2(ōij) (47)

∑
j∈Ni

w(o+ij)ξ2(oij) =
∑
j∈Ni

w(ōij)ξ2(ō
+
ij) (48)

Hence, we must have that
B̃(Oi(x)) = B̃(Oi(x̄)), B̃(Oi(x

+)) = B̃(Oi(x̄
+)). (49)

By assumption, B̃ satisfies the DGCBF condition (16) for all transitions where the neighborhood
does not change, which includes x̄ → x̄+. Hence,

B̃(o+i )− B̃(oi) + α
(
B̃(oi)

)
= B̃(ō+i )− B̃(ōi) + α

(
B̃(ōi)

)
(50)

≤ 0, (51)

and B̃ also satisfies the DGCBF condition (16) for transitions where the neighborhood changes.
Thus, B̃ is a DGCBF.

A.6 PROOF THAT A DGCBF CAN BE USED TO CONSTRUCT A DCBF

Theorem A4. For a N -agent MAS, define B : X → R as

B(x) := max
i
B̃(Oi(x)). (52)

Then, B is a DCBF.

Proof. Let µ : O → R denote the per-agent control policy corresponding to the DGCBF B̃ in Defi-
nition 2, and let µ denote the resulting joint control policy. Then, under µ, (16) implies that for any i,

B̃(o+i (x))− B̃(oi(x)) + α(B̃(oi(x))) ≤ 0, ∀x ∈ X . (53)

Now, for a given x ∈ X , let x+ = f(x,µ(x)) denote the next state following µ. Let i1 and i2
denote the index that maximizes (52) at x and x+ respectively, i.e.,

i1 := argmin
i

B̃(Oi(x)) =⇒ B(x) = B̃(Oi1(x)), (54)

i2 := argmin
i

B̃(Oi(x
+)) =⇒ B(x+) = B̃(Oi2(x

+)). (55)

(56)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Then, using (53) and the fact that (1 − α) is also an extended class-κ function and thus is a
monotonic function Ahmadi et al. (2019):

0 ≥ B̃(Oi2(x
+))− B̃(Oi2(x)) + α(B̃(Oi2(x))), (57)

= B̃(Oi2(x
+))− (1− α) ◦ B̃(Oi2(x)), (58)

≥ B̃(Oi2(x
+))− (1− α) ◦ B̃(Oi1(x)), (59)

= B(x+)− (1− α) ◦B(x), (60)

= B(x+)−B(x) + α(B(x)). (61)

and (4) holds. Thus, B is a DCBF.

Since B̃ enables the construction of a DCBF, this implies that C, the zero sub-level set of B, i.e.,

C := {x | B(x) ≤ 0} =
⋂
i

{x | B̃(oi(x)) ≤ 0}, (62)

is forward-invariant under µ and hence control invariant.

A.7 DGCBF HAS GENERALIZABLE SAFETY GUARANTEES

In this subsection, we prove that the same DGCBF B̃ from Definition 2 can guarantee the safety of
a MAS with any number of agents N . We will do this by showing that there exists an N̄ such that
if B̃ satisfies the DGCBF conditions (16) for N̄ agents, then the same DGCBF B̃ will also satisfy
the DGCBF conditions (16).

Let the maximum distance an agent can travel in a time step is d̄. Given a sensing radius R, define
N̄ as the maximum number of agents that can be located within a ball of radius 2R + 2d̄. For a
N -agent MAS, let XN and UN denote the joint state and control space respectively, and let fN
denote the corresponding dynamics function. For generalizability to an arbitrary number of agents,
we make the additional assumption that the dynamics fN are decoupled for each agent, i.e.,

xk+1
i = f0(x

k, uk), (63)

for per-agent dynamics function f0.

For a state x ∈ XN , let xi,N̄ ∈ X N̄ denote the restriction of x to that of agent i and its N̄ − 1
closest neighbors. We then have the following theorem.

Theorem A5. Let B̃ satisfy the DGCBF conditions (16) for N̄ agents, i.e., there exists a class-κ
function α with α(−r) > −r for all r > 0 and a control policy µ : O → U satisfying

B̃(Oj(x̃)) ≤ 0, ∀j =⇒ B̃(O+
i (x̃))− B̃(Oi(x̃)) + α(B̃(Oi(x̃))) ≤ 0, ∀x̃ ∈ X N̄ , ∀i, (64)

Then, B̃ also satisfies the DGCBF conditions (16) for any N > N̄ agents, i.e.,

B̃(Oj(x)) ≤ 0, ∀j =⇒ B̃(O+
i (x))− B̃(Oi(x)) + α(B̃(Oi(x))) ≤ 0, ∀x ∈ XN , ∀i, (65)

We will prove Theorem A5 by showing that (65) holds because it can be reduced to the case of (64).
For convenience, define B as in Theorem A4 so that

B̃(oj(x)) ≤ 0, ∀j ⇐⇒ B(x) ≤ 0. (66)

Before we prove Theorem A5, we first prove a few helpful lemmas.

Lemma 1 (Restriction leaves observations of all agents within R+ 2d̄ invariant). For any x ∈ XN

such that B(x) ≤ 0, the restriction of x to that of agent i and its N̄ − 1 closest neighbors leaves
the observation of agent i and all agent within R+ 2d̄ of i invariant, i.e., for any i,

∥pj − pi∥ ≤ R+ 2d̄ =⇒ Oj(x) = Oj(xi,N̄ ) (67)

Proof. Since B(x) ≤ 0, by definition of N̄ there can be no more than N̄ − 1 agents within radius
of 2R+ d̄ of agent i. Hence, xi,N̄ will include all agents within a radius of 2R+ d̄ of agent i.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

By definition of the observation function Oi (2),

Oi(x) =
(
{oij}j∈Ni(x), o

y
i

)
. (68)

Oj(x) depends only on all agents l that are at most R away from j. Since x and xi,N̄ agree on all
agents up to 2R+ 2d̄ away from i, this implies that for all j that are R+ 2d̄ away from i,

Nj(x) = Nj(xi,N̄ ), (69)
thus the observation is unchanged as well.

Next, we show that the observation of the next state for agent i is also left unchanged after restriction.
Lemma 2 (Restriction leaves the next observation for agent i unchanged). For any x ∈ XN

such that B(x) ≤ 0, let x+ = fN (x,µ(x)) denote the next state under µ for x, and
x̃+ = fN̄ (xi,N̄ ,µ(xi,N̄ )) the next state under µ starting from xi,N̄ . Then, for any i,

Oi(x
+) = Oi(x̃

+). (70)

Proof. We will prove this by showing that the states of all neighbors Ni(x
+) agree. For each new

neighbor j ∈ Ni(x
+), since each agent can travel at most d̄ in one step, this implies that

∥pj − pi∥ ≤ R+ 2d̄. (71)
Applying Lemma 1 gives us that agent j’s observation is equal in both cases, i.e.,

Oj(x) = Oj(xi,N̄ ). (72)

Hence, the controls µ(Oj(x)), and thus the new states match, i.e.,

x+j = f0(xj , µ(Oj(x))) = f0(xj , µ(Oj(xi,N̄ ))) = x̃+j . (73)

Since the new states for all agents in Ni(x
+) agree, this implies that the new observation for agent

i must also agree.

We are now ready to prove Theorem A5.

Proof of Theorem A5. Let x ∈ XN such that B(x) ≤ 0. Then, applying Lemma 1 and Lemma 2
implies that the current and next observations for agent i remain unchanged even when considering
only the N̄ closest agents, i.e.,

Oi(xi,N̄ ) = Oi(x), (74)

O+
i (xi,N̄ ) = O+

i (x). (75)
Hence, taking x̃ = xi,N̄ ∈ X N̄ and using (64),

B̃(O+
i (x))− B̃(Oi(x)) + α(B̃(Oi(x))) = B̃(O+

i (xi,N̄ ))− B̃(Oi(xi,N̄ )) + α(B̃(Oi(xi,N̄ )))
(76)

= B̃(O+
i (x̃))− B̃(Oi(x̃)) + α(B̃(Oi(x̃))) (77)

≤ 0. (78)

Theorem A5 implies that finding a single DGCBF B̃ that satisfies the DGCBF condition for N̄
agents enables the same DGCBF B̃ to also be applied to larger numbers of agents N > N̄ .

A.8 PROOF OF COROLLARY 1

Proof. Since Ṽ h
(m),µ(o0i ) = V h

(m),µ
i (x0) := maxk≥0 h

(m)(oki ), applying Theorem 2 gives us that

Ṽ h
(m),µ(o+i )− Ṽ h

(m),µ(oi) + α
(
Ṽ h

(m),µ(oi)
)

(79)

= V h
(m),µ

i (x+)− V h
(m),µ

i (x) + α
(
V h

(m),µ
i (x)

)
(80)

≤ 0. (81)

Thus, Ṽ h
(m),µ is a DGCBF.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

B POLICY LOSS DETAILS

B.1 DERIVATION OF (14)

We first start from (11), which we repeat below for convenience.

min
θ

Ex∼ρ0,u∼πθ(·|x)
[
Qπθ (x,u)

]
, (82a)

s.t. Ex∼ρπθ Eu∼πθ(·|x)

[
max

{
0, C(m)(x,u)

}︸ ︷︷ ︸
:=C̃(m)(x,u)

]
︸ ︷︷ ︸

:=C̃
(m)
θ (x)

≤ 0, ∀m. (82b)

In the above, we additionally define C̃(m)
θ (x) := max{0, C(m)(x,u)} for convenience.

Borrowing the ideas of gradient projection from multi-objective optimization (Yu et al., 2020; Liu
et al., 2021a), we combine the gradient from the objective minimization (82a), and the gradient
from constraint satisfaction (82b) (equivalent to constraint minimization due to the constraints
being non-negative) by projecting the gradient of (82a) such that it is orthogonal to the gradient of
all m constraints (82b). We can do this in a single backward pass by using Informal Theorem 3.

Let ψ denote the stop gradient function, such that the gradient of ψ is equal to zero. Then, for a
state distribution ρ,

σ := Ex∼ρ[∇θmax
m

C̃
(m)
θ (x)] (83)

= Ex∼ρ Eu∼πθ(x)

[
∇θ logπθ(x,u) max

m
C̃(m)(x,u)

]
, (84)

= Ex∼ψ(ρ) Eu∼ψ(πθ(x))

[
∇θ logπθ(x,u) max

m
C̃(m)(x,u)

]
, (85)

= ∇θ Ex∼ψ(ρ) Eu∼ψ(πθ(x))

[
logπθ(x,u) max

m
C̃(m)(x,u)

]
, (86)

where the second line uses the score function gradient (App. A.4), and

g = Ex∼ρπθ

[
1{maxm C̃

(m)
θ (x)≤0} Eu∼πθ(·|x) [∇θ logπθ(x,u)Q

πθ (x,u)]
]
, (87)

= Ex∼ψ(ρπθ )

[
1{maxm C̃

(m)
θ (x)≤0} Eu∼ψ(πθ(·|x)) [∇θ logπθ(x,u)ψ(Q

πθ (x,u))]
]
, (88)

= ∇θEx∼ψ(ρπθ )

[
1{maxm C̃

(m)
θ (x)≤0} Eu∼ψ(πθ(·|x)) [logπθ(x,u)ψ(Q

πθ (x,u))]
]
, (89)

where the second line follows from the policy gradient theorem. Let g̃ := νσ(m) + g. , where we
take the ρ in the definition of σ(m) to be equal to ρπθ (we discuss the implications of this in the next
subsection App. B.2):

Theorem A6. The combined gradient g̃ can be computed as the gradient of the loss function L
defined in (14), i.e.,

g̃ = ∇θL(θ), (90)

where

L(θ) := Ex∼ψ(ρπθ )Eu∼ψ(πθ(·|x))
[
logπθ(x,u)ψ

(
Q̃(x,u, θ)

)]
, (91)

Q̃(x,u, θ) :=

Q
πθ (x,u), C̃

(m)
θ (x) ≤ 0, ∀m,

νmax
m

C̃(m)(x,u), otherwise.
(92)

= 1{maxm C̃
(m)
θ (x)≤0}ψ(Q

πθ (x,u)) + νmax
m

C̃(m)(x,u). (93)

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Proof. Taking ρ = ρπθ for σ and summing the expressions for σ and g in (86) and (89) respectively
gives

νσ + g = ν∇θ Ex∼ψ(ρπθ ) Eu∼ψ(πθ(·|x))

[
logπθ(x,u) max

m
C̃(m)(x,u)

]
+∇θEx∼ψ(ρπθ )

[
1{maxm C̃

(m)
θ (x)≤0} Eu∼ψ(πθ(·|x)) [logπθ(x,u)ψ(Q

πθ (x,u))]
] (94)

= ∇θ Ex∼ψ(ρπθ ) Eu∼ψ(πθ(·|x))

[
logπθ(x,u)

(
νmax

m
C̃(m)(x,u) + ψ(Qπθ (x,u))

)]
(95)

= ∇θ Ex∼ψ(ρπθ ) Eu∼ψ(πθ(·|x))

[
logπθ(x,u)ψ

(
νmax

m
C̃(m)(x,u) +Qπθ (x,u)︸ ︷︷ ︸

:=Q̃(x,u,θ)

)]
(96)

= ∇θ Ex∼ψ(ρπθ ) Eu∼ψ(πθ(·|x))

[
logπθ(x,u)ψ

(
Q̃(x,u, θ)

)]
(97)

In other words, Theorem A6 implies that g̃ can be computed using a single backward pass.

B.2 IMPLICATIONS OF MINIMIZING THE CONSTRAINT VIOLATION OVER ρπθ

Note that a key step that allows us to move the gradient operator between the inside (83) and outside
(86) for the expression of σ is our use of ψ, because this walows this equivalent to hold even when
we take ρ = ρπθ .

Without the ψ and taking ρ = ρπθ , we would obtain that (86) is instead equivalent to

∇θEx∼ρπθEu∼πθ(·|x)[max
m

C̃(m)(x,u)] = ∇θEx0∼ρ0,uk∼πθ(·|xk)


∞∑
k=0

max
m

C̃(m)(xk,uk)︸ ︷︷ ︸
:=QC,πθ (x0,u)

 (98)

∝ Ex∼ρπθEu∼πθ(·|x)

[
∇θ logπθ(x,u) Q

C,πθ (x,u)
]
,

(99)

̸= Ex∼ρπθ Eu∼πθ(x)

[
∇θ logπθ(x,u) max

m
C̃(m)(x,u)

]
.

(100)
Note that the second line comes from the use of the policy gradient theorem, while the expression
in (100) comes from the application of the score function gradient App. A.4. Consequently, while
(100) will minimize the maximum DCBF violation C̃(m), (99) minimizes the sum of future DCBF
violations as well.

Another way to see this is to note that (98) can be viewed as an optimal control problem with cost
equal to the DCBF violation. In other words, in (98) the policy will additionally try to move to
states where the DCBF violation is small as opposed to changing only the control u such that it
satisfies the DCBF conditions in (100).

Experimental Validation To validate our intuition above, we conduct experiments in the TRANS-
PORT2 environment to compare using (98) with (100), and plot the training curves in Figure 7. The
results show that using (98) converges much slower in cost, which matches the intuition above.
Namely, (98) additionally tries to avoid states where the DCBF constraint violation is high, which
leads to unnecessary conservatism.

C EXPERIMENTS

C.1 COMPUTATION RESOURCES

The experiments are run on a 13th Gen Intel(R) Core(TM) i7-13700KF CPU with 64GB RAM and
an NVIDIA GeForce RTX 4090 GPU. The training time is around 12 hours for 2 × 105 steps for
DGPPO, 14 hours for Lagr and 10 hours for Penalty.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0
Step 1e4

0.0

0.5

1.0

1.5
C

os
t

Transport2

0.0 0.5 1.0 1.5 2.0
Step 1e4

0.0

0.5

1.0

Sa
fe

ty
 ra

te

Transport2

Score function gradient (ours) Policy gradient

Figure 7: In comparison to DGPPO which uses (100), using (98) converge much slower in cost,
which matches the intuition that (98) is optimizing for the wrong objective due to unnecessarily
avoiding states where the DCBF constraint violation is high.

C.2 ENVIRONMENTS

C.2.1 LIDAR ENVIRONMENTS

In the LiDAR environments, we assume that the agents have a radius of r = 0.05 and a local
sensing radius R = 0.5 such that one agent can observe other agents or obstacles only when they
are within its sensing radius. Agents use LiDAR to detect obstacles. For each agent, there are 32
evenly-spaced LiDAR rays originating from each agent measuring the relative location of obstacles.
To reduce the size of the multi-agent graph, the 8 shortest LiDAR rays are returned.

We use directed graphs G = (V, E) to represent the LiDAR environments. V is the set of nodes
containing the objects in the environments, including agents Va, goals/landmarks Vg , and the
hitting points of LiDAR rays (obstacles) Vo. The edges E ⊆ {(i, j) | i ∈ Va, j ∈ V} denote the
information flow from a sender node j to a receiver node (agent) i. An edge (i, j) exists only if the
distance between node i and j are smaller than the sensing radius R. The neighbor nodes of agent
i is defined as Ni := {j | (i, j) ∈ E}, so that the information flow happens between the agents and
their neighbors. The node features vi include the state of the node xi and a one-hot encoding of the
type of the node i (e.g., agent, goal/landmark, LiDAR hitting points). The edge features eij include
the information passed from node j to node i, including the relative positions and velocities.

In all LiDAR environments, we include 3 rectangle-shaped obstacles, and the agents need to avoid
inter-agent collision and agent-obstacle collisions.

We consider 4 LiDAR environments: TARGET, SPREAD, LINE, and BICYCLE:

TARGET: The agents need to reach their pre-assigned goals (Figure 2a).

SPREAD: The agents need to collectively cover a set of goals without having access to an
assignment (Figure 2b).

LINE: The agents need to form a line between two given landmarks (Figure 2c).

BICYCLE: The agents follow the more difficult bicycle dynamics. The task here is the same as
TARGET (Figure 2d).

The agents in the first 3 environments follow the double integrator dynamics. The state of agent i
is xi = [pxi , p

y
i , v

x
i , v

y
i ]

⊤, where [pxi , p
y
i ]

⊤ := pi ∈ R2 is the position of agent i, and [vxi , v
y
i ] is its

velocity. The control inputs are ui = [axi , a
y
i ]

⊤, which are the acceleration along the x-axis and
y-axis. The agents follow the dynamics

ẋi =
[
vxi vyi axi ayi

]⊤
. (101)

We limit the control inputs of the agents to be within [−1, 1], and also the velocities to
be within [−10, 10]. In the BICYCLE environment, the state of agent i is defined with

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

xi = [pxi , p
y
i , cos θ, sin θ, v]

⊤, where θ is the heading and v is the speed. The control inputs
are ui = [δ, a]⊤, including the steering angle δ and the acceleration a. The agents follow the bicycle
dynamics given by

ẋi = [v cos θ v sin θ −v sin θ tan δ v cos θ tan δ a]
⊤
. (102)

The control inputs are limited by v ∈ [−10, 10] and δ ∈ [−1.47, 1.47]. In all LiDAR environments,
we use a simulation time step of 0.03 seconds and a total horizon of 128 time steps. For all LiDAR
environments, the edge features are defined as the relative positions and relative velocities between
the nodes.

In LiDAR environments, the constraint function h contains two parts: agent-agent collisions and
agent-obstacle collisions. The agent-agent collisions h(1) function is defined as

h(1)(oi) = 2r − min
j∈Ni

∥pi − pj∥, (103)

and the agent-obstacle collision h(2) function is

h(2)(oi) = r − min
j∈Ni

∥pi − pj∥. (104)

For the cost functions l, we consider two types of them. The first type is used in the TARGET and
the BICYCLE environments, where the agents need to reach their pre-assigned goals. We define this
type of cost function with

l(x,u) =
1

N

N∑
i=1

(
0.01∥pi − pgoali ∥+ 0.001sign

(
ReLU(∥pi − pgoali ∥ − 0.01)

)
+ 0.0001∥ui∥2

)
,

(105)
where the first term penalizes the agents if they cannot reach the goal, the second term penalizes
the agents if they cannot reach the goal exactly, and the third term encourages small controls. The
second type of the cost functions is used in the SPREAD and the LINE environments, where the
agents need to cover some goals/landmarks. We define this type of cost function with

l(x,u) =
1

N

N∑
j=1

min
i∈Va

(
0.01∥pi − pgoalj ∥+ 0.001sign

(
ReLU(∥pi − pgoalj ∥ − 0.01)

)
+0.0001∥uj∥2

)
. (106)

Here, each goal finds its nearest agent and penalizes the whole team with the distance between
them. In this way, the optimal policy of the agents is to cover all goals collaboratively.

C.2.2 MUJOCO ENVIRONMENTS

For the TRANSPORT environment, we model the agents as double integrators and control the forces
applied to each agent using the MuJoCo simulator (Todorov et al., 2012). We limit the control
inputs of the agents to be within [−1, 1]. The agents need to collaboratively push a box from the
inside so that the box reaches a given goal while avoiding colliding with each other.

We use a similar cost function l(x,u) as the TARGET environment but only for the box, i.e.,

l(x,u) = 0.01∥pbox − pgoalbox ∥+ 0.001sign
(
ReLU(∥pbox − pgoalbox ∥ − 0.01)

)
(107)

We usee a single constraint function h(1) for the agent-agent collision, defined as

h(1)(oi) = 2r − min
j∈Ni

∥pi − pj∥, (108)

where pi denotes the position of agent i, and r is the radius of the agent.

C.2.3 VMAS ENVIRONMENTS

We use the REVERSETRANSPORT (which we call TRANSPORT2) and WHEEL environments from
VMAS (Bettini et al., 2022; 2024). Note that the obstacles in the VMAS environments are not
represented using LiDAR but using states including their positions and sizes. In both environments,
the agents are modeled as double integrators and control the forces applied to each agent. We limit
the control inputs of the agents to be within [−1, 1].

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

TRANSPORT2: In this environment, N agents are placed in a square red package and must push
the package from the inside to a goal location. The red package and the goal location are randomly
sampled. Unlike the original REVERSETRANSPORT environment, we include the following two
additional safety constraints:

• Inter-agent collision avoidance: The agents must avoid colliding with each other.
• Package collision avoidance: The center of the package must avoid colliding with three

randomly placed circular obstacles.

We use a similar cost function l(x,u) as the TARGET environment but only for the package, i.e.,

l(x,u) = 0.01∥ppackage − pgoalpackage∥+ 0.001sign
(
ReLU(∥ppackage − pgoalpackage∥ − 0.01)

)
(109)

We usee a two constraint functions h(1), h(2) for the agent-agent collision and package-obstacle
collisions respectively. The agent-agent collision function h(1) is defined as

h(1)(oi) = 2r − min
j∈Ni

∥pi − pj∥, (110)

where pi denotes the position of agent i, and r is the radius of the agent. The package-obstacle
collision function h(2) is defined as

h(2)(oi) = robs − min
q∈{1,2,3}

∥ppackage − pq∥. (111)

WHEEL: In this environment, N agents must collectively rotate a line anchored to the origin with
a large mass. Unlike the original WHEEL environment, we modify the goal to be a target angle that
the line must rotate to. We also include the following two additional safety contraints:

• Inter-agent collision avoidance: The agents must avoid colliding with each other.
• Line collision avoidance: The angle of the line must stay outside of a certain range of angles.

We use the same cost function l(x,u) as the TARGET environment but on the angle of the line, i.e.,

l(x,u) =
1

N

N∑
i=1

(
0.01∥pi − pgoali ∥+ 0.001sign

(
ReLU(∥pi − pgoali ∥ − 0.01)

)
+ 0.0001∥ui∥2

)
.

(112)

We usee a two constraint functions h(1), h(2) for the agent-agent collision and line-obstacle
collisions respectively. The agent-agent collision function h(1) is defined as

h(1)(oi) = 2r − min
j∈Ni

∥pi − pj∥, (113)

where pi denotes the position of agent i, and r is the radius of the agent. The package-obstacle
collision function h(2) is defined as

h(2)(oi) = robs − |θline − θobs|, (114)

where the absolute value on the angle |·| is defined as the minimum angle between the two angles.

C.3 IMPLEMENT DETAILS AND HYPERPARAMETERS

In our experiment, we let all agents share the same parameters for their policies and value functions.
More specifically, we parameterize the agent’s policy with πθ : O → U , cost-value function with
V lϕ : X → R, and constraint-value function V h

(m)

ψ : O → Rm using graph transformers (Shi et al.,
2020) with parameters θ, ϕ, and ψ, respectively. Since the cost-value function V lϕ is centralized,
after the graph transformer, we compute the average of all node features and pass that to a final
layer (multi-layer perceptron) to obtain the global cost value for the MAS.

In Table 1, we provide the value of the common hyperparameters for DGPPO and the baselines.
Besides these common hyperparameters, the value of the unique hyperparameters of DGPPO are
provided in Table 2.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 1: Common hyperparameters of DGPPO and the baselines.

Hyperparameter Value Hyperparameter Value

policy GNN layers 2 RNN type GRU
massage passing dimension 32 RNN data chunk length 16
GNN output dimension 64 RNN layers 1
number of attention heads 3 number of sampling environments 128
activation functions ReLU gradient clip norm 2
GNN head layers (32, 32) entropy coefficient 0.01
optimizer Adam GAE λ 0.95
discount γ 0.99 clip ϵ 0.25
policy learning rate 3e-4 PPO epoch 1
V l learning rate 1e-3 batch size 16384
network initialization Orthogonal layer normalization True
V l GNN layers 2

Table 2: Unique hyperparameters of DGPPO

Hyperparameter Value

V h GNN layers 1
a 0.3
ν Scheduled. Initialized at ν = 1, then doubled at 0.5 and 0.75 of the total update steps.

C.4 IMPLEMENTATION OF THE BASELINES

We implement a JAX (Bradbury et al., 2018) version of the baselines following their original
implementations:

• InforMARL: https://github.com/nsidn98/InforMARL (MIT license)

• MAPPO-L: https://github.com/chauncygu/Multi-Agent-Constrained-Policy-Optimisation
(MIT License)

C.5 TRAINING CURVES

Here, we provide the cost and safety rate during training for all algorithms in Figure 8. We can
observe that DGPPO achieves stable training in all environments with only one constant set of
hyperparameters.

C.6 ADDITIONAL ABLATION STUDIES

C.6.1 COMPARISON BETWEEN THE DECOUPLING METHOD AND THE COUPLED METHODS

In Section 4.3, we have introduced a decoupling method to performance gradient descent update
following Equation (14). Here, we empirically compare the decoupling method (14) with the
CRPO-style coupling method (12) and the CRPO-style coupling method with the constraint
being on C(x, u) instead of max{0, C(x, u)} (Equation (10)). We conduct experiments in the
TRANSPORT2 environment and compare the safety rate and cost of the converged policies with
different methods in Figure 9. We can observe that DGPPO achieves a much lower cost compared
with the coupling methods. This is because the coupling methods perform gradient descent to
minimize Qπθ only when the whole trajectory is safe, i.e., Ex∼ρπθ [C̃θ(x)] ≤ 0. This is much more
conservative than the safety requirement on the per-transition level used by the decoupling method,
especially in the multi-agent case. Therefore, the coupling method has little chance to minimize
Qπθ during training but focuses on safety, resulting in a safe policy with poor performance. On
the other hand, if the coupling method is performed with C(x, u) instead of max{0, C(x, u)}
(Equation (10)), the learned policy is no longer safe. This matches our discussion in Section 4.3.

26

https://github.com/nsidn98/InforMARL
https://github.com/chauncygu/Multi-Agent-Constrained-Policy-Optimisation


1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0 1 2
Step 1e5

0.0

0.5

1.0

1.5

C
os

t

Target

0.0 0.5 1.0 1.5
Step 1e5

0.00

0.25

0.50

0.75

1.00

1.25

C
os

t

Spread

0 1 2
Step 1e5

0.0

0.2

0.4

0.6

0.8

1.0

C
os

t

Line

0 1 2
Step 1e5

0.00

0.25

0.50

0.75

1.00

1.25

C
os

t

Bicycle

0 1 2
Step 1e5

0.2

0.4

0.6

0.8

1.0

Sa
fe

ty
 ra

te

Target

0.0 0.5 1.0 1.5
Step 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Sa
fe

ty
 ra

te

Spread

0 1 2
Step 1e5

0.5

0.6

0.7

0.8

0.9

1.0

Sa
fe

ty
 ra

te

Line

0 1 2
Step 1e5

0.5

0.6

0.7

0.8

0.9

1.0

Sa
fe

ty
 ra

te

Bicycle

0 2 4
Step 1e3

0.0

0.1

0.2

0.3

0.4

0.5

C
os

t

Transport

0 1 2
Step 1e4

0.0

0.1

0.2

0.3

0.4

0.5

C
os

t

Wheel

0 1 2
Step 1e4

0.0

0.5

1.0

1.5

C
os

t

Transport2

0.00 0.25 0.50 0.75 1.000.0

0.2

0.4

0.6

0.8

1.0

0 2 4
Step 1e3

0.0

0.2

0.4

0.6

0.8

1.0

Sa
fe

ty
 ra

te

Transport

0 1 2
Step 1e4

0.4

0.6

0.8

1.0

Sa
fe

ty
 ra

te

Wheel

0 1 2
Step 1e4

0.0

0.2

0.4

0.6

0.8

1.0

Sa
fe

ty
 ra

te

Transport2

0.00 0.25 0.50 0.75 1.000.0

0.2

0.4

0.6

0.8

1.0

DGPPO (ours)

Penalty(0.02)

Penalty(0.1)

Penalty(0.5)

Schedule

Lagr(1)

Lagr(5)

Lagr(lr)

Figure 8: Costs and safety rates of DGPPO and the baselines during training.

C.6.2 PROVIDE THE BASELINES WITH MORE DATA

In Section 4.5, we introduced that DGPPO requires sampling with both a stochastic and a determin-
istic policy. This means that DGPPO requires twice as much data per update step compared with
the baselines, although the update steps are the same. Here, we answer the question that what if the
baselines are provided with double data? We choose the WHEEL environment and select the three
best baselines in Figure 3, namely Penalty(0.02), Penalty(0.1), and Schedule. To double the data, we
consider two situations: doubling the batch size and keeping the training steps (similar to DGPPO),
and doubling the training steps and keeping the batch size. The results are shown in Figure 10, where
the semi-transparent colors show the original performance of the baselines, and the non-transparent
colors show the performance of baselines after doubling the data. We can observe that after doubling
the data, it is uncertain how the performance of the baselines changes. For example, Penalty(0.02)
performs better than before with doubling the batch size in Figure 10a, but performs worse with dou-
bling training steps in Figure 10b. On the contrary, DGPPO consistently outperforms all baselines.

C.6.3 COMPARISON WITH CONSTRAINED OPTIMIZATION WITHOUT A CBF

As the proposed algorithm DGPPO is based on CBF, one natural question to ask is what if we do not
learn the CBF but directly perform constrained optimization? To answer the question, we consider

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

1 2
Cost

0.0

0.5

1.0

Sa
fe

ty
 ra

te DGPPO

DGPPO (CRPO [max{C, 0}])

DGPPO (CRPO [C])

Figure 9: Comparison between DGPPO with the decoupling method and the CRPO-style update
with E[max{0, C}] and with E[C].

0.2 0.4
Cost

0.900

0.925

0.950

0.975

1.000

Sa
fe

ty
 ra

te DGPPO

Penalty (0.02)

Penalty (0.1)

Schedule

(a) Doubling the batch size.

0.2 0.4
Cost

0.900

0.925

0.950

0.975

1.000

Sa
fe

ty
 ra

te DGPPO

Penalty (0.02)

Penalty (0.1)

Schedule

(b) Doubling the training steps.

Figure 10: Costs and safety rates of DGPPO and three best baselines in the WHEEL environment.
We also plot the original performance of the baselines in semi-transparent colors.

0 1 2
Step 1e4

0.50

0.75

1.00

1.25

1.50

C
os

t

0 1 2
Step 1e4

0.0

0.2

0.4

0.6

0.8

1.0

Sa
fe

ty
 ra

te

Learned CBF No CBF

Figure 11: Comparison between DGPPO with doing constrained optimization without a CBF.

another baseline which changes the constraint in Equation (11b) to Ex∼ρπθ

[
max{0, h(m)(x)}

]
≤ 0

while keep all other parts the same as DGPPO. We compare DGPPO (Learned CBF) with this new
baseline (No CBF) in the TRANSPORT2 environment. The results are shown in Figure 11, which
suggests that No CBF cannot achieve a safety rate that is as high as Learned CBF. Intuitively, it is
because CBF not only constrains entering the avoid set, but also constrains the rate at which the
agent can approach the safe-unsafe boundary. Therefore, it is more robust to estimation errors than
directly doing constrained optimization.

C.6.4 SENSITIVITY ANALYSIS OF ν

In Section 5.3, we show that our proposed ν scheduling method achieves the best result compared
with other choices of ν. In particular, ν > 2 results in slower convergence in the cumulative cost.
Here, we further perform experiments to demonstrate the influence of ν on DGPPO. We consider
the SPREAD environment with ν = 1, 2, 4, 6, and train DGPPO until convergences. The results

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

0 2 4 6 8
Step 1e5

0.0

0.2

0.4

0.6

0.8

1.0

C
os

t

DGPPO

Schedule

ν= 1.0 ν= 2.0 ν= 4.0 ν= 6.0

Figure 12: Influence of different ν on the convergence speed and the converged result of DGPPO.
The dashed lines show the mean of DGPPO and the baseline with the best performance (Schedule),
and the shades show the standard deviation.

0 5
Step 1e3

0

200

400

C
os

t

HalfCheetah 2x3

0 5
Step 1e3

0.25

0.50

0.75

1.00

Sa
fe

ty
 ra

te

HalfCheetah 2x3

0 5
Step 1e3

0

200

400

600

C
os

t

Coupled HalfCheetah 4x3

0 5
Step 1e3

0.25

0.50

0.75

1.00

Sa
fe

ty
 ra

te

Coupled HalfCheetah 4x3

DGPPO (ours)
Penalty(0.02)

Penalty(0.1)
Penalty(0.5)

Schedule
Lagr(1)

Lagr(5)
Lagr(lr)

Figure 13: Cost and safety rates of DGPPO and the baselines during training in the Safe multi-agent
MuJoCo environments.

are shown in Figure 12, where the mean cost and standard deviation of DGPPO and the baseline
with the best performance (Schedule) are shown in dashed lines and shades. We can observe that
although the convergence of DGPPO becomes slower with larger ν, the converged costs are the
same, and are much lower than Schedule. This phenomenon is different from the baselines, where
different choices of hyperparameters directly affect the converged costs (See Figure 3).

C.7 ADDITIONAL ENVIRONMENTS IN THE SAFE MULTI-AGENT MUJOCO ENVIRONMENTS

To further demonstrate the ability of DGPPO in environments with complex discrete-time dynamics,
here we consider another benchmark named safe multi-agent MuJoCo (Gu et al., 2023). We use
the Safe HALFCHEETAH(2X3) and the Safe COUPLED HALFCHEETAH(4X3) tasks, where the
agents control different subsets of joints of one or two cheetahs. The first number in the parenthesis
denotes the number of agents, while the second number shows the number of joints that each
agent controls. The agents need to work collaboratively to maximize the forward velocity but
avoid colliding with a wall that moves forward at a predefined velocity. The results are shown in
Figure 13, which suggests the same results as the main experiments in Section 5.2, that DGPPO has
the best performance with a fixed set of hyperparameters.

C.8 SCALABILITY AND GENERALIZABILITY

Here we test the scalability and generalizability of DGPPO. Following Zhang et al. (2024), we
define scalability as the number of agents during training, and generalizability as the ability to be
deployed with more agents during test time.

Considering scalability, DGPPO has a similar performance as its based method GCBF+ (Zhang
et al., 2024) as we have shown in Section 5.2 that DGPPO can be trained on 7 agents, and GCBF+ is
trained with 8 in its original paper. In addition to Figure 5 in the main pages, here we also provide the
comparison of the costs and safety rates of the converged policies of each algorithm in Figure 14.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

0.2 0.4 0.6
Cost

0.8

0.9

1.0

Sa
fe

ty
 ra

te

N= 5

0.2 0.4
Cost

0.8

0.9

1.0

Sa
fe

ty
 ra

te

N= 7

DGPPO (ours)
Penalty(0.02)

Penalty(0.1)
Penalty(0.5)

Schedule
Lagr(1)

Lagr(5)
Lagr(lr)

Figure 14: Costs and safety rates of the converged policies of DGPPO and the baselines in
environments with N = 5, 7.

Table 3: Generalizability test results of DGPPO.

Number of agents Safety rate Normalized cost

8 1.000± 0.000 1.673± 0.430
16 0.992± 0.088 1.784± 0.316
32 0.987± 0.112 1.748± 0.235
64 0.986± 0.118 1.799± 0.418

128 0.982± 0.133 1.839± 0.323
256 0.985± 0.122 1.823± 0.366
512 0.985± 0.123 1.821± 0.390

Considering generalizability, GCBF+ can be deployed on 512 agents without significant perfor-
mance loss after training. Here, we perform a new experiment in the TARGET environment where
DGPPO is also trained with 8 agents. In Table 3, we show the test results of DGPPO deployed with
larger numbers of agents. We observe that DGPPO maintains high safety rates and low costs when
deployed on up to 512 agents.

However, the above results are obtained in environments with the same agent density as the training
environment. We cannot deploy DGPPO in environments with significantly higher agent density
than the training environment because RL algorithms are sensitive to distribution shifts. We leave
handling large distribution shifts to future work.

C.9 CODE

The code of our algorithm and the baselines are provided in the ‘dgppo.zip’ file in the supplementary
materials.

D MORE DISCUSSION ABOUT DGPPO

D.1 ADVANTAGES ON NOT DEPENDING ON A NOMINAL POLICY

As discussed in Section 1, one of the drawbacks of the CBF-based methods (Wang et al., 2017;
Zhang et al., 2024) is that they require a nominal policy that can achieve high task performance.
Here we further discuss why relying on a nominal performant policy is not a good idea.

Requirement of Simple or Known Dynamics. Controller design usually requires the dynamics
to be simple or requires knowledge of the dynamics. The PID controllers in Zhang et al. (2024) are
constructed for the unicycle dynamics. More generally, PID controllers are usually only used with
single-input single-output systems. For more complicated systems, one could use LQR or MPC, but
this requires full knowledge of the dynamics. In addition, PID controllers are much more difficult
to apply in environments with complex contact dynamics, for example, our TRANSPORT, WHEEL,
and TRANSPORT2 environments.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

(a) GCBF+ (Zhang et al., 2024) (b) DGPPO

Figure 15: Comparison of the converged policies learned using DGPPO and GCBF+ (Zhang et al.,
2024) in a TARGET environment, where the agent (blue) needs to avoid the large obstacle (red)
and reach the goal (green). The GCBF+ policy is myopic and gets stuck in a deadlock, while the
DGPPO policy avoids the obstacle and reaches the goal to minimize the cumulative cost.

Deadlocks Another drawback is that the CBF-QP approach of Zhang et al. (2024) leads to
deadlocks, as discussed in Section VIII of Zhang et al. (2024) or theoretically in e.g. Grover et al.
(2021). This is because the safety filter approach of Zhang et al. (2024) only minimizes deviations
from the nominal policy at the current time step, even if this leads to a deadlock at a future time
step. In contrast, minimizing the cumulative cost directly takes future behavior into account and
hence will try to avoid deadlocks. Here we perform an additional experiment to demonstrate this.
We apply the converged controller trained with GCBF+ and DGPPO respectively in the TARGET
environment shown in Figure 15, where the agent needs to get around a large static obstacle and
reach the goal. In the figure, we can observe that the GCBF+ policy gets in a deadlock behind
the obstacle because the GCBF+ policy is myopic and only considers safety safe and minimizes
the deviation from the reference controller at the current timestep. Therefore, stopping behind
the obstacle is the optimal solution for GCBF+. On the contrary, the DGPPO policy successfully
reaches the goal because it minimizes the long-horizon cumulative cost.

31


	Introduction
	Related work
	Problem setting and preliminaries
	Multi-agent constrained optimal control problem
	Discrete CBF

	Tackling Challenges of DCBFs for MASOCP with DGPPO
	Constraint-value function is DCBF
	Removing the Nominal Policy with Explicit Cost Optimization
	Constrained Policy Optimization using DCBF Under Unknown Dynamics
	Extending to the Multi-Agent Case with DGCBF
	DGPPO: Putting everything together

	Experiments
	Setup
	Main results
	Ablation studies

	Conclusion
	Proofs
	Proof of Theorem 2
	Proof that Equation (11b)  implies C(m)(x, u) 0 almost surely
	Formal Statement and Proof of Informal Theorem 3
	Score Function Gradient Estimator of 
	Formal Statement and Proof of Informal Theorem 4
	Proof that a DGCBF can be used to construct a DCBF
	DGCBF has Generalizable Safety Guarantees
	Proof of Corollary 1

	Policy Loss Details
	Derivation of (14)
	Implications of minimizing the constraint violation over 

	Experiments
	Computation resources
	Environments
	LiDAR environments
	MuJoCo environments
	VMAS environments

	Implement details and hyperparameters
	Implementation of the baselines
	Training curves
	Additional ablation studies
	Comparison between the decoupling method and the coupled methods
	Provide the baselines with more data
	Comparison with constrained optimization without a CBF
	Sensitivity analysis of 

	Additional environments in the safe multi-agent MuJoCo environments
	Scalability and Generalizability
	Code

	More discussion about DGPPO
	Advantages on not depending on a nominal policy


