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ABSTRACT

When developing new large language models (LLMs), a key step is evaluating
their final performance, often by computing the win-rate against a reference model
based on external feedback. Human feedback is the gold standard, particularly for
capturing nuanced qualities like coherence, readability, and alignment with hu-
man expectations. However, human evaluations are costly — even for large tech
companies — and when conducted with active users, they may negatively impact
user experience. A promising alternative is synthetic feedback, where evalua-
tions are conducted by other large language models, including reward models.
While this eliminates the need for costly human annotations, it introduces biases
that may distort the evaluation process. In this work, we propose a statistically
principled framework that integrates human and synthetic feedback to reduce re-
liance on human annotations while maintaining unbiased win-rate calculations.
Our experiments demonstrate a reduction in human annotations by up to 12.2%
with an off-the-shelf synthetic evaluator and up to 24.8% with a finetuned variant.
Apart from being generalizable, scalable, and free of hyper-parameter tuning, our
method offers predictable annotation savings, which can be estimated based on
data-dependent characteristics.
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Figure 1: (Left) Illustration of Control Variates Evaluation, which makes use of a possibly
inaccurate synthetic evaluator to reduce the variance of evaluation, reducing the need of human
annotations while preserving unbiasedness. (Right) Averaged mean square error v.s. number of
human annotations for Human Evaluation, Synthetic Evaluation and Control Variates Evaluation
using the finetuned Skywork-8B evaluator on Chatbot Arena. The Synthetic Evaluation has high
bias, while the bias of Human and Control Variates Evaluations are negligible. Control Variates
Evaluation reduces the variance of Human Evaluation.

Accurately evaluating the performance of large language models (LLMs) is crucial before large-
scale deployment. Human judgment remains the gold standard for this evaluation, as it captures
nuanced qualities such as coherence, harmlessness, and readability (Bai et al., 2022), while also
ensuring alignment with human values (Ouyang et al., 2022). A widely accepted performance metric
is the win rate, assessed by humans against a reference model (Chiang et al., 2024). However,
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this approach demands substantial time and financial resources due to human involvement. When
conducted with active system users, it may also diminish user experience, see Figure 2.

Figure 2: OpenAI’s prompting users for feedback; excessive requests may negatively impact user
experience.

In order to mitigate these challenges, recent works have explored cost-efficient alternatives, most
notably the use of synthetic feedback generated by other LLMs, a concept often referred to as
“LLM-as-a-judge” (Zheng et al., 2023; Dubois et al., 2024), to compute the head-to-head win rate.
This approach leverages the computational efficiency of LLMs to evaluate other models, reducing
the need for extensive human involvement. Despite its promise, synthetic feedback often introduces
biases since LLM can not perfectly reflect human preference, undermining the evaluation reliability
(Zheng et al., 2024). As a result, a critical need remains for evaluation methods that reduce the cost
of human annotation while maintaining the reliability and generalizability.

Besides replacing the evaluator, recently there has been a growing interest in accelerating LLM eval-
uation (Ye et al., 2023; Polo et al., 2024a; Zhou et al., 2024) with smaller datasets. However, previous
methods only focused on reducing the number of prompts in a specific benchmark with predefined
answers (e.g., math problems). Thus it is unclear if these methods generalize or apply to other tasks.
For example, in math benchmark it is easy to find some problems that are “representative” of the
whole benchmark, but in general the prompts are more diverse and less structured, and sometimes
they are generated on the fly, such as when a user interacts with a language model via APIs.

Towards reliable and cost-efficient LLM evaluation, in this work we propose to leverage LLM gen-
erated synthetic feedback to reduce the number of human annotations, in the standard head-to-head
win rate setting (Chiang et al., 2024). Specifically, we propose Control Variates Evaluation (Figure 1
left), an unbiased LLM evaluation method based on the classical control variates technique (Laven-
berg & Welch, 1981) that combines human annotations and synthetic feedback. Note that there are
previous works (Chaganty et al., 2018; Boyeau et al., 2024) that apply control variates to machine
learning evaluation, but they study settings like single-response natural language evaluation or BT
modelling (Bradley & Terry, 1952). Therefore, the performance of control variates in head-to-head
win rate estimation still requires thorough investigation.

In our work, we theoretically show that Control Variates Evaluation enjoys a lower variance, and
thus it requires fewer human annotations to achieve the same level of accuracy on the win rate
estimation. Empirically, Control Variates Evaluation enjoys significant human annotation saving
for various types of synthetic evaluators, from a small reward model with 2B parameters to LLMs
such as GPT-4. In addition, we can further reduce human annotations by finetuning the synthetic
evaluators on existing human annotations for other LLMs. Note that the cost of control variates
is minimal as it only requires some additional synthetic feedbacks, which can be generated at a
low cost. Somehow surprisingly, the synthetic evaluators that contribute to such achievement are
inaccurate themselves and have high prediction bias (c.f. Figure 1 right).

Besides the advantage of reducing the number of human annotations, Control Variates Evaluation
also has a predictable saving, one that can be estimated from the data and one which depends on
how strongly the synthetic feedback correlates with human judgments. This is in contrast to the all
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existing methods that do not provide predictions on the potential saving. Based on the theoretical
guarantee, we propose human annotation saving ratio as a metric to evaluate our method, which
can be computed through a few human annotations without actually running the evaluation. We
demonstrate through experiments that this metric perfectly reflects the practical variance reduction
effect in Control Variates Evaluation.

In summary, our contribution is three folds:

1. We introduce Control Variates Evaluation to reduce the number of human annotations in
head-to-head win rate estimation with zero bias, resulting in a reliable, cost-efficient and
task-agnostic LLM evaluation method.

2. We demonstrate the viability of improving human annotation saving through fine-tuning.
3. We propose the human annotation saving ratio as the data-dependent metric to predict the

saving in human data when using the Control Variates Evaluation.

We believe our work is a first step towards principled efficient LLM evaluation and can be com-
bined with various existing and future works. Our code is available at https://github.com/
Zanette-Labs/control_variates_evaluation.

2 RELATED WORK

LLM Evaluation: Metric, Benchmark and Systems. The earliest attempt for LLM evaluation
includes rule based metrics such as BLEU (Papineni et al., 2002) and ROUGE (Lin, 2004), which
only measures the similarity between the model generation and the reference text. Going beyond
rule-based metrics, LLM evaluation has been proposed, with earlier works using LLM to compute
similarity (Zhang et al., 2020; Yuan et al., 2021). Recently, LLM-as-a-judge has been proposed to
evaluate LLMs (Zheng et al., 2023; Dubois et al., 2024), by querying powerful LLMs to generate
preference of generations between different models, with the hope that the powerful LLMs can
serve as a proxy for human evaluation. Towards real human evaluation, very few public systems
exist due to their high cost and time-consuming nature, with the large-scale community collective
effort Chatbot Arena (Chiang et al., 2024) being the most notable one.

Speeding Up LLM Evaluation. Recently there has been a surge of research on speeding up LLM
evaluation, with the goal of reducing the cost and time of evaluating LLMs. One approach is to use
heuristics to minimize the number of prompts or tasks to evaluate, with the hope that the selected
subset can represent the whole distribution of the prompts or tasks (Ye et al., 2023; Perlitz et al.,
2023; Polo et al., 2024a). The other approach is to leverage active learning or bandit algorithms to
select a subset of the prompts: (Polo et al., 2024b; Zhou et al., 2024; Li et al., 2024). However, these
methods are still limited by the requirement to operate within a specific benchmark with prefined
answers, and thus can not be applied to human evaluation, the focus of our work. In addition to the
essential benefit that human evaluation can provide, note that it is more challenging because it is
task-agonistic and typically has less structure than any specific benchmark.

Control Variates and Its Application. Control variates is a well-known variance reduction tech-
nique in Monte Carlo sampling (Owen, 2013), with applications to finance (Broadie & Glasserman,
1998; Hesterberg & Nelson, 1998; Kemna & Vorst, 1990; Glasserman, 2004). In recent years, it
has also been applied to various areas of machine learning, such as variational inference (Geffner &
Domke, 2018), bandits (Verma & Hanawal, 2021), optimization (Yuan et al., 2024) and computer
graphics (Rousselle et al., 2016; Müller et al., 2020). In particular (Chaganty et al., 2018) uses con-
trol variates to evaluate natural language metrics, but it is restricted to single response evaluation. In
our work, we extend control variates evaluation to pairwise LLM comparison.

Prediction-Powered Inference (PPI, and PPI++) (Angelopoulos et al., 2023a;b; Boyeau et al., 2024)
is a related technique which uses variance reduction to improve the MLE objective. Boyeau et al.
(2024) applies PPI++ to estimate practical metrics in machine learning, such as accuracy, correlation
and BT model (Bradley & Terry, 1952) in pairwise model comparisons. It differs from our work
which conducts an in-depth study of control-variates to accelerate head-to-head win rate estimation.
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3 PRELIMINARIES

3.1 LLM EVALUATION

We consider the problem of evaluating LLMs performance through head-to-head comparisons, via
human preference judgments. Given a set of prompt X , we compare two LLMs ℓ1 and ℓ2 by esti-
mating the win rate of ℓ1 over ℓ2 on X .

Formally, we independently sample a prompt x ∈ X , and sample two responses y1 ∼ ℓ1(· | x)
and y2 ∼ ℓ2(· | x) from ℓ1 and ℓ2 respectively. We then ask human annotators to choose the better
response with label z

(
y1 ≻ y2

)
, where

z
(
y1 ≻ y2

)
=


1 if y1 is preferred over y2,
0 if y2 is preferred over y1,
0.5 if tie.

We will use the shorthand z sometimes in the rest of the text when the context is clear. The win rate
of ℓ1 over ℓ2 on the prompt x is defined as p

(
ℓ1 ≻ ℓ2

)
:= Ex,y1,y2

[
z
(
y1 ≻ y2

)]
, i.e., the averaged

human preference over the prompt set, and Ex,y1,y2 [·] := Ex∼Uniform(X )

[
Ey1∼ℓ1(·|x),y2∼ℓ2(·|x)[·]

]
.

To estimate p
(
ℓ1 ≻ ℓ2

)
empirically, we collect an evaluation dataset Deval = {(xi, y

1
i , y

2
i )}ni=1,

estimate human preference zi = z(y1i ≻ y2i ) with zemi and output the empirical average
p̂em

(
ℓ1 ≻ ℓ2

)
= 1

n

∑n
i=1 z

em
i as the estimate of the win rate. Our goal is to minimize the number

of human annotations involved in the process while keeping p̂em close to p.

3.2 HUMAN AND SYNTHETIC EVALUATION

Human Evaluation annotates every sample (xi, y
1
i , y

2
i ) in Deval with human, i.e. let zemi := zi. This

makes the evaluation unbiased. However, leveraging human annotator is extremely expensive, but
without enough amount of samples n, the empirical mean p̂em(ℓ1 ≻ ℓ2) can be very noisy due to
high variance from a small sample size.

On the other hand, Synthetic Evaluation generates preference estimates using a reward model or
LLM (e.g., GPT-4) (Zheng et al., 2023) on every sample. Although it completely obviates the need
for human annotations, the evaluation is biased and can lead to inaccurate win rate prediction.

3.3 OTHER NOTATIONS

For two one-dimensional random variables x and y, we use Cov[x, y], Corr[x, y] to denote the
covariance and correlation coefficient between x and y, respectively. We use Var[x] to denote
the variance of x. Let {xi}ni=1, {yi}ni=1 be samples of x and y, respectively, we abuse the no-
tation and use Var [{xi}ni=1] for the empirical variance of {xi}ni=1, and Cov [{xi}ni=1, {yi}ni=1],
Corr [{xi}ni=1, {yi}ni=1] for the empirical covariance and correlation coefficient between {xi}ni=1
and {yi}ni=1 respectively.

4 EFFICIENT LLM EVALUATION VIA CONTROL VARIATES

In this section, we introduce Control Variates Evaluation, which combines human and synthetic
annotations to realize a variance-reduced unbiased evaluation method, based on control variates
(Lavenberg & Welch, 1981). We first recap the classical control variates method in the context
of LLM evaluation, and then formally describe how to adapt the control variates method to make
it applicable in practice. Finally, we briefly discuss its application in the LLM-as-a-judge setting
(Zheng et al., 2023).

4.1 CONTROL VARIATES

Given a sample (x, y1, y2) with human preference z and synthetic preference ẑ, we treat z as the
random variable for which we want to estimate its mean. Using ẑ as the control variate, the classical

4



Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Algorithm 1 Control Variates Evaluation

1: Input: Evaluation dataset Deval =
{
(xi, y

1
i , y

2
i )
}n

i=1
, human annotation budget k,

2: Optional Input: Finetune dataset Dfinetune =
{
(xj , y

1
j , y

2
j )
}m

j=1
with human annotations

{zj}mj=1.
3: (Optional) Finetune the synthetic evaluator on Dfinetune.
4: Get synthetic evaluations ẑ1, ẑ2, · · · , ẑn on Deval.
5: Sample k data from Deval and get human annotations zi1 , zi2 , · · · , zik .
6: Estimate µẑ = 1

n

∑n
i=1 ẑi.

7: Estimate α using
{
zij

}k

j=1
and

{
ẑij

}k

j=1
by Equation (2)

8: Output the estimated win rate 1
k

∑k
j=1 zij − α

(
1
k

∑k
j=1 ẑij − µẑ

)
.

control variates approach (Lavenberg & Welch, 1981) constructs a new estimated preference:

zem := zcv;α = z − α(ẑ − µẑ), (1)

where µẑ = Ex,y1,y2

[
ẑ
(
y1 ≻ y2

)]
is the synthetic win rate, and α ∈ R is the control variates co-

efficient used to control the variance of zcv;α. Intuitively, µẑ cancels out the bias incurred by the con-
trol variate ẑ, keeping the estimate unbiased. In addition, assuming that µ̂z is known, we can guar-
antee variance reduction compared to human evaluation, as stated by the following classical result:

Proposition 4.1 (Control Variates Properties (Lavenberg & Welch, 1981) ). Suppose the expecta-
tions, variances, covariances and correlation coefficients, unless otherwise stated, are taken under
the distribution x ∼ Uniform(X ), y1 ∼ ℓ1(· | x), y2 ∼ ℓ2(· | x). Then the control variates estimate
zcv;α enjoys the following properties

(1) (Unbiasedness) For any α ∈ R, we have E[zcv;α] = p(ℓ1 ≻ ℓ2).

(2) (Variance Reduction) Let ρ = Corr[z, ẑ] be the correlation coefficient between human and
synthetic preference. Then we have minα∈R Var[zcv;α] =

(
1− ρ2

)
Var[z]. The minimum

is achieved if and only if α equals α∗ = Cov[z,ẑ]
Var[ẑ] .

(3) (Human Annotation Saving) Given an evaluation dataset Deval = {(xi, y
1
i , y

2
i )}ni=1, in

which {xi}ni=1 are sampled i.i.d. from X , y1i ∼ ℓ1(· | xi), y2i ∼ ℓ2(· | xi) (i ∈ [n]). Let
{ij}mj=1 be independently sampled from [n]. Then when m = (1− ρ2)n, we have

Var

 1

m

m∑
j=1

zcv;α
∗

ij

 = Var

[
1

n

n∑
k=1

zk

]

Here the variance on the right hand side is taken by the randomness of sampling
{(xi, y

1
i , y

2
i )}ni=1. The variance on the left hand side is taken by the randomness of sam-

pling {(xi, y
1
i , y

2
i )}ni=1 as well as that of sampling {ij}mj=1.

We provide the proof in Appendix A for completeness.

Human annotation saving ratio. Proposition 4.1 immediately suggests that the control variates
method can reduce the percentage of human annotations by ρ2 while maintaining the same variance
as that of Human Evaluation, with negligible cost of querying the synthetic evaluator. Therefore, ρ2
is an important metrics to measure the performance of control variates method. We refer to ρ2 as the
human annotation saving ratio.

Nonetheless, to apply control variates approach in the context of LLM evaluation, we still face the
following challenges: 1) How to estimate the synthetic win rate µẑ? 2) How to compute the corre-
lation coefficient α in practice to achieve the lowest variance? 3) How to improve the correlation
coefficient if the off-the-shelf automatic evaluator does not give a satisfactory human annotation
saving ratio? In the following, we discuss how to construct the control variates for LLM evaluation.
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4.2 CONTROL VARIATES EVALUATION

Algorithm 1 describes the full procedure of control variates evaluation. Same as other evaluation
methods, control variates evaluation requires an evaluation dataset Deval =

{
(xi, y

1
i , y

2
i )
}n

i=1
. The

Control Variates Evaluation consists of the following steps: Synthetic annotation gathering (Line
4). We generate synthetic preferences ẑi ∈ [0, 1] from an automatic annotator for all samples in
the evaluation dataset. Synthetic preferences can be generated in various ways depending on the
type of automatic annotator. For an LLM annotator like GPT-4, we query the model to directly
generate the preference in natural language. If the automatic annotator is a reward model, we can
query the rewards r1i and r2i from the two responses y1i and y2i respectively, and then compute the
synthetic preference as the Bradley-Terry score of the two rewards (Bradley & Terry, 1952), i.e.,
ẑi =

1
1+exp(r2i−r1i )

.

Human annotation sampling (Line 5). We query the human annotator and obtain human pref-
erence z ∈ {0, 0.5, 1}. Instead of annotating all the samples like in Human Evaluation, we only
annotate k samples randomly drawn from the evaluation dataset, in which k is the number of human
annotations we want to use. Increasing k lowers the variance of the estimation but raises the cost of
evaluation.

Synthetic win rate estimation (Line 6). Since µẑ is unknown in practice, we estimate it by
averaging the synthetic evaluator’s preferences on the whole evaluation dataset. In other words,
µẑ := 1

n

∑n
i=1 ẑi.

Control variates coefficient computation (Line 7). Although Proposition 4.1(2) already shows
the optimal α, the covariance between human and synthetic annotations as well as the variance of
synthetic annotations needs to be estimated via sampling. Since human annotations are involved in
the computation, we reuse the human annotations

{
zij

}k

j=1
:

α :=
Cov

[{
zij

}k

j=1
,
{
ẑij

}k

j=1

]
Var

[{
ẑij

}k

j=1

] . (2)

It is standard practice in control variates to estimate α with Equation (2) (Owen, 2013, Chapter
8.9). Although it introduces some correlation between α and the final estimator, and thus the
estimated win rate in Algorithm 1 is technically biased, the incurred bias is usually negligible, and
it is standard practice to ignore such bias (Owen, 2013, Chapter 8.9). We also validate this practice
through experiments in Section 5.2.

Win rate estimation (Line 8). After we obtain estimations of the synthetic win rate µẑ , and the
control variates coefficient α, we can apply Equation (1) to get the variance-reduced preference

estimates
{
zcv;αij

}k

j=1
for the samples we collected with human annotations. Then we output the

win rate estimate by taking the average over the preference estimates:

p̂em(ℓ1 ≻ ℓ2) =
1

k

k∑
j=1

zcv;αij
=

1

k

k∑
j=1

zij − α

1

k

k∑
j=1

ẑij − µẑ

 .

(Optional) Synthetic evaluator finetuning (Line 3). On many popular LLM evaluation bench-
marks such as Chatbot Arena and MT Bench (Zheng et al., 2023), there are abundant off-the-shelf
human annotations for pre-generated language model responses. Now suppose we have a new LLM
and we want to compare it with the existing ones in the benchmark. Can we make use of these exist-
ing human annotations to help reduce the human annotations needed in Control Variates Evaluation?

Recall that the human annotation saving ratio is ρ2, the square of correlation coefficient between
human and synthetic annotations. One natural idea is to raise the correlation coefficient by finetuning
the synthetic evaluator with existing human annotations, to save future human annotations.

Formally, suppose that we have a finetune dataset Dfinetune =
{
(xj , y

1
j , y

2
j

}m

j=1
with precollected

human annotations {zj}mj=1. We discard the ties and assume zj ∈ {0, 1} for all 1 ≤ j ≤ m. In case
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(a) Skywork-8B (b) Skywork-8B (ft)

Figure 3: Averaged mean-square error versus number of human annotations for Skywork-8B (pre-
trained and finetuned) on Chatbot Arena. The x-coordinate of curves “Human” and “Control Vari-
ates” correspond to the number of human annotations (Zheng et al., 2023). The curve “Human
(shifted)” is derived by horizontally scaling the Human Evaluation curve by (1 − s), in which s is
the averaged human annotation saving ratio in Table 1. The averaged mean-square error of Control
Variates Evaluation converges to near 0, indicating that it has negligible bias. The human annotation
saving ratio aligns perfectly with the actual variance relationship between Human Evaluation and
Control Variates Evaluation.

that the synthetic evaluator is a reward model, we finetune the evaluator on Dfinetune to maximize the
Bradley-Terry score on the chosen response:

BT
(
r1j , r

2
j , zj

)
=

zj
1 + exp(r2j − r1j )

+
1− zj

1 + exp(r1j − r2j )
.

After finetuning, we can expect an increase in the correlation coefficient ρ and thus also the human
annotation saving ratio when we want to evaluate the win rate between a new LLM pair on the same
benchmark. Note that the dataset used for finetuning the synthetic annotator contains responses
generated by LLMs that are different from the LLMs that we wish to evaluate, i.e., the responses in
evaluation dataset are out of distribution w.r.t. the finetune dataset. Nevertheless, we show in the
experiment section (c.f. Section 5.4) that the finetuned model still generalizes well in terms of the
correlation coefficient to the human annotations.

Summary. We offer several remarks:
• Our construction of control variates is task-agnostic, i.e, we do not leverage any specific structure

or knowledge of the prompt set X .
• The method is hyperparameter-free as parameters for control variates like the synthetic win rate
µẑ and control variates coefficient α are estimated directly from data. (If fine-tuning is used, one
still needs to choose fine-tuning hyper-parameters over a validation dataset)

• The performance of Control Variates Evaluation is predictable. By sampling a small subset of
evaluation data, collecting human and synthetic annotations, and computing the human annota-
tion saving ratio, the reduction in human annotations can be accurately estimated without fully
performing the evaluation. In the experiment (cf. Section 5.2), we show that the saving ratio of
human annotations correctly predicts the observed saving.

5 EXPERIMENTS

To evaluate the performance of control variates in practice, we conduct experiments on real-world
datasets to mainly answer the following questions:

• How does Control Variates Evaluation compare to Human Evaluation and Synthetic Evaluation
(c.f. Section 3.2)?

• How does the finetuning process of the synthetic evaluator affect the human annotation saving?
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5.1 SETUP

Synthetic evaluators. Towards a comprehensive analysis, we experiment with synthetic evaluators
across various model types and sizes, including GRM-Gemma-2B-sftreg (GRM-2B) (Yang et al.,
2024), ArmoRM-Llama3-8B (ArmoRM-8B) (Wang et al., 2024), Skywork-Reward-Llama-3.1-8B-
v0.2 (Skywork-8B) (Liu et al., 2024) as well as GPT-4 (Achiam et al., 2023).

Finetuning procedure. The testing of Control Variates with finetuning (Line 3 of Algorithm 1) is
done in a cross-validation manner. Suppose there are K LLMs generating responses in the evaluation
dataset. Our finetuning procedure trains K reward models, each by leaving out the data for a specific
LLM. That is, for each LLM k, we finetune the reward model on the head-to-head comparisons over
the remaining K − 1 LLMs. This finetuned reward model is then evaluated on the head-to-head
comparisons involving LLM k against the other K − 1 models. When comparing Control Variates
Evaluation with finetuning and Synthetic Evaluation, we apply the same cross-validation procedure
to Synthetic Evaluation for a fair comparison. We tested Control Variates Evaluation with finetuning
on GRM-2B and Skywork-8B models, which will be referred to as GRM-2B (ft) and Skywork-8B
(ft) respectively.

Table 1: Averaged human annotation saving ra-
tio across different synthetic evaluators on Chat-
bot Arena and MT Bench. The averaged human
annotation saving ratio is the mean of human an-
notation saving ratios on LLM pairs with at least
100 human annotations.

Chatbot Arena MT Bench
GRM-2B 10.6% 5.7%

GRM-2B (ft) 17.1% 10.9%
Skywork-8B 8.3% 7.5%

Skywork-8B (ft) 24.8% 12.6%
ArmoRM-8B 12.2% 9.6%

GPT-4 12.2% 11.9%

Benchmark. We choose LLM evaluation
datasets with abundant and trustworthy human
annotations. The datasets we considered are:
• ChatBot Arena (Zheng et al., 2023) contains

33k human-annotated preferences. The re-
sponses are generated by 20 models, i.e., 190
LLM pairs in total. There are 121 pairs that
have more than 100 annotations.

• MT Bench (Zheng et al., 2023) contains about
3.36k human-annotated preferences. The re-
sponses are generated by 6 models, i.e., 15
LLM pairs in total. There are 14 pairs that
have more than 100 annotations.

5.2 CONTROL VARIATES
EVALUATION V.S. HUMAN EVALUATION

As suggested in Section 4.1, the human annotation saving ratio is a practical metric to measure the
performance of Control Variates Evaluation. Therefore, we will first present the human annotation
saving ratio on different evaluators and benchmarks. After that, we demonstrate that this theoretical
measure matches perfectly with the actual variance reduction effect.

Human annotation saving ratio on different benchmarks and synthetic evaluators.

For each synthetic evaluator and benchmark, we test the human annotation saving ratio on every
LLM pair that have at least 100 human annotations. In order to clearly present the result, we take
the mean of the ratios across different LLM pairs to get the average human annotation saving ratio of
that evaluator on the benchmark. The result is presented in Table 1. We defer the human annotation
saving ratio on each LLM pair in Appendix C.3. For off-the-shelf evaluators, GPT-4 achieves high
saving ratio on both benchmarks. However, an 8B reward model like ArmoRM-8B has comparable
performance. Using the finetuning option of Control Variates Evaluation, Skywork-8B (ft) surpasses
the performance of GPT-4 on both benchmarks. With finetune, a small model (GRM-2B (ft)) can
also match or outperform GPT-4 in averaged human annotation saving. This means that we can save
from 10% to 20% human annotations using an easy-to-deploy reward model at nearly no cost.

Theory matches practice. We empirically justify that the theoretical human annotation saving
ratio aligns well with the practical variance reduction ratio. Besides, we verify the claim in (Owen,
2013, Chapter 8.9) that Equation (2) leads to negligible bias.

First, we measure the estimated mean square error of Human Evaluation and Control Variates Eval-
uation w.r.t number of human samples for each fixed LLM pair via bootstrapping. That is, we
repeatedly run the evaluation method 1000 times with a fixed number of human annotations, collect
the output win rate estimates, and compute the mean-square error, where the ground truth win-rate
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is the averaged human preference on all data of that LLM pair. For Human and Control Variates
Evaluation, we run bootstrapping using different numbers of human annotations on different LLM
pairs and plot a curve respectively with labels “Human” and “Control Variates” (c.f. Figure 7), in
which the y-axis is the averaged mean square error of the evaluation on different LLM pairs, and the
x-axis is the number of human annotations.

Figure 4: Average mean square error versus num-
ber of human annotations for GPT-4 evaluator on
Chatbot Arena (Zheng et al., 2023). Note that
even GPT-4 has high bias if used alone for Syn-
thetic Evaluation.

Theoretically, the mean-square error can be de-
composed into the square of evaluation bias and
the variance. Therefore, the mean-square error
curve still effectively reflects the variance re-
duction tendency as the number of human an-
notations increases, and when the number ap-
proaches infinity, we can extract the bias of the
evaluation through the limit of mean square er-
ror.

Then, we shift the x-axis of the Human Eval-
uation as follows. Suppose s is the averaged
human annotation saving ratio we tested in Ta-
ble 1, and (x, y) is a point on the curve of Hu-
man Evaluation. Then we shift point (x, y) to
(x(1−s), y). After shifting all points of the Hu-
man Evaluation, we get a new curve, referred
to as Human (shifted). According to Proposi-
tion 4.1 (3), the ratio of the number of human
annotations in Human Evaluation and Control Variates Evaluation should be 1 : (1− s) so that they
have the same variance. So ideally, the shifted curve of Human Evaluation should coincide with
the curve of Control Variates Evaluation. We present the bootstrap curves for Skywork-8B with
and without the finetuning procedure on Chatbot Arena in Figure 3. The other results are listed in
Figure 7 of Appendix.

On all figures, the averaged mean-square error of Control Variates Evaluation converges to near 0,
indicating negligible evaluation bias. Furthermore, the shifted curve of Control Variates Evaluation
overlaps with that of human evaluation. Therefore, the human annotation saving ratio predicts the
actual variance reduction of our algorithm almost perfectly, even if the control variates coefficient α
is estimated. This means that we can simply compute the human annotation saving ratio from the
correlation coefficient, and then we know whether the synthetic evaluator will bring us the desired
variance reduction effect when it is to be used in Control Variates Evaluation.

5.3 CONTROL VARIATES EVALUATION V.S. SYNTHETIC EVALUATION

(a) Chatbot Arena (b) MT Bench

Figure 5: Averaged human annotation saving ra-
tio before and after fine-tuning for GRM-2B and
Skywork-8B on different benchmarks. Finetuning
achieves at least 5% increase in saving ratio.

In this section, we compare the error in pre-
dicting the win rate between the Control Vari-
ates Evaluation and Synthetic Evaluation. The
error metric is the mean square error with re-
spect to the ground truth win-rate, which we
approximate with the averaged human annota-
tions on all samples of each head-to-head com-
parison. For Control Variates Evaluation, we
use the averaged mean-square error from the
previous section. For Synthetic Evaluation, we
average the synthetic annotations on all sam-
ples of a fixed LLM pair as the predicted win
rate and then calculate the mean square error.
We also include the averaged mean-square er-
ror of human for convenience of comparison.

Figure 1 (right) presents the result of finetuned
Skywork-8B, and Figure 4 presents that of GPT-4, both on Chatbot Arena. Other results are
deferred to Figure 6. Although GPT-4 is claimed to be an accurate evaluator (Zheng et al., 2023), it
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still has a significantly high error compared to Control Variates and Human Evaluation. Similarly,
even if we finetune a reward model like Skywork-8B (ft), it also suffers from high error if used in
Synthetic Evaluation alone. However, these evaluators can be incorporated into Control Variates
Evaluation to achieve much lower evaluation error.

5.4 HOW DOES FINETUNING IMPROVE CONTROL VARIATES EVALUATION?

We visualize the averaged human annotation saving ratio before and after finetuning for GRM-2B
and Skywork-8B on Chatbot-Arena and MT-Bench in Figure 5. For all experiments, the finetun-
ing procedure provides at least 5% more saving ratio. Specifically, for Skywork-8B on Chatbot
Arena, the saving ratio nearly triples. On the other hand, finetuning indeed introduces additional
computation requirement. Regarding whether to finetune the evaluator or not, there are two major
considerations. The first one is the human annotation saving ratio on the pretrained evaluator. If it is
not satisfactory, finetuning can introduce more significant savings if a finetune dataset is available.
The other consideration is the number of future tasks, as this is a trade-off between future savings in
human annotation cost and the current additional cost of finetuning computation. If there are many
future models to evaluate, then finetuning is beneficial as savings generalize to unseen models.

5.5 CONTROL VARIATES EVALUATION FOR LLM-AS-A-JUDGE

Table 2: Averaged strong evaluator’s sample sav-
ing in LLM-as-a-judge using control variates eval-
uation. The strong evaluator is GPT-4.

Weak Evaluator Chatbot Arena MT Bench
GRM 2B sftreg 22.8% 14.6%

Skywork 8B 13.5% 15.1%
ArmoRM 8B 16.0% 18.8%

Control Variates Evaluation can be similarly
applied in the LLM-as-a-judge setting. The dif-
ference is that the human annotator is replaced
with a strong LLM evaluator, and a smaller,
cheaper model plays the role of the synthetic
evaluator, to save the cost of querying the ex-
pensive model. We set GPT-4 as the strong
evaluator and test the averaged human annota-
tion saving ratio in the scenario of LLM-as-a-
judge, as shown in Table 2. A 2B reward model
like GRM-2B can achieve over 20% saving of GPT-4 annotation on Chatbot Arena and nearly 15%
saving on MT Bench. This can save the cost in LLM-as-a-judge.

6 CONCLUSION

In this work, we propose Control Variates Evaluation to reduce human annotation costs while main-
taining unbiasedness. Our method demonstrates significant savings in human annotations across
various benchmarks, aligning well with theoretical predictions. This provides a scalable and cost-
effective alternative to full human evaluation without compromising reliability. It is an interesting
future direction to explore more nuanced human evaluation metrics and complex evaluation set-
tings, including multi-model ranking and fine-grained assessments. Other future work can focus on
improving synthetic feedback through adaptive selection or ensembling multiple evaluators.
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A PROOF OF PROPOSITION 4.1

Note that all expectations, variances, covariances and correlation coefficients in this section are taken
under the distribution x ∼ Uniform(X ), y1 ∼ ℓ1(· | x), y2 ∼ ℓ2(· | x).

Proof of unbiasedness We have

Ex,y1,y2 [zcv,α] = Ex,y1,y2 [z − α (ẑ − µẑ)]

= Ex,y1,y2 [z]− α
(
Ex,y1,y2 [ẑ]− µẑ

)
= Ex,y1,y2 [z]

= p
(
ℓ1 ≻ ℓ2

)
.

Proof of variance reduction We have

Varx,y1,y2 [zcv,α] = Varx,y1,y2 [z − α (ẑ − µẑ)]

= Varx,y1,y2 [z]− 2αCovx,y1,y2 [z, (ẑ − µẑ)] + α2Varx,y1,y2 [ẑ − µẑ]

= Varx,y1,y2 [z]− 2αCovx,y1,y2 [z, ẑ] + α2Varx,y1,y2 [ẑ]

= Varx,y1,y2 [ẑ]

(
α−

Covx,y1,y2 [z, ẑ]

Varx,y1,y2 [ẑ]

)2

+Varx,y1,y2 [z]−
(
Covx,y1,y2 [z, ẑ]

)2
Varx,y1,y2 [ẑ]

≥ Varx,y1,y2 [z]−
(
Covx,y1,y2 [z, ẑ]

)2
Varx,y1,y2 [ẑ]

.

The equality holds if and only if α =
Covx,y1,y2 [z,ẑ]

Varx,y1,y2 [ẑ]
. To further simplify the formula, recall that

ρ2 =
(
Corrx,y1,y2 [z, ẑ]

)2
=

(
Covx,y1,y2 [z, ẑ]

)2
Varx,y1,y2 [z] ·Varx,y1,y2 [ẑ]

.

Therefore we have

Varx,y1,y2 [zcv,α] ≥ Varx,y1,y2 [z]−
(
Covx,y1,y2 [z, ẑ]

)2
Varx,y1,y2 [ẑ]

= Varx,y1,y2 [z]− ρ2Varx,y1,y2 [z]

= (1− ρ2)Varx,y1,y2 [z] .

The optimality point is α∗ =
Covx,y1,y2 [z,ẑ]

Varx,y1,y2 [ẑ]
.

Proof of human annotation saving Since all samples are i.i.d., we have

Var

 1

m

m∑
j=1

zcv;αij

 =
1

m
Varx,y1,y2 [zcv,α

∗
]

=
1

m
(1− ρ2)Varx,y1,y2 [z]

=
1

n
(1− ρ2)Varx,y1,y2 [z]

= Var

[
1

n

n∑
i=1

zi

]
.

B EXPERIMENT DETAILS

B.1 HYPERPARAMETERS

The Control Variates Evaluation Algorithm 1 has no hyperparameters except for the optional fine-
tuning procedure. When finetuning Skywork-8B and GRM-2B on Chatbot Arena and MT Bench,
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we use global batch size 32 and train for 1 epoch. The finetuning of GRM-2B on Chatbot Arena
uses learning rate 1e-6, others all use learning rate 3e-6.

To determine the optimal hyperparameters for finetuning, we conduct a systematic search over a
range of learning rates and batch sizes. For instance, when we finetune Skywork-8B on Chatbot
Arena, we follow these steps:

(1) We sort the LLM models in Chatbot Arena in alphabetical order and select the first model,
RMKV-4-Raven-14B, as the holdout model to split train and test dataset.

(2) We tested learning rates in {1× 10−7, 3× 10−7, 1× 10−6, 3× 10−6, 1× 10−5, 3× 10−5}
and batch sizes in {32, 64, 128}. For each hyperparameter combination, we finetune for
one epoch and record the final test accuracy.

(3) The combination yielding the highest final test accuracy is selected as the optimal hyperpa-
rameter setting. We use the chosen hyperparameter setting to finetune Skywork-8B on all
other holdout models.

The similar procedure applies when we finetune other synthetic evaluators on other benchmarks.

B.2 HARDWARE

The experiments are run on H100 GPUs. Finetuning Skywork-8B requires 4 GPUs. Finetuning
GRM-2B as well as the collection of synthetic annotations can all be done on 1 GPU.

B.3 PROMPT TEMPLATE

We use the GPT-4 annotations for MT-Bench from the Hugging Face repository
https://huggingface.co/datasets/lmsys/mt_bench_human_judgments/
viewer/default/gpt4_pair.

We follow the prompt template in (Zheng et al., 2023, Figure 5, Appendix A) to get GPT-4 annota-
tions in Chatbot Arena.

C ADDITIONAL EXPERIMENT RESULTS

C.1 BIAS OF SYNTHETIC EVALUATION

As described in Section 5.3, we measure the averaged mean square error of Human Evaluation,
Synthetic Evaluation and Control Variates Evaluation on different evaluators and datasets, as shown
in Figure 6. The Synthetic Evaluation has a significantly high bias, while the error of both Human
Evaluation and Control Variates Evaluation converge to zero.

C.2 HUMAN ANNOTATION SAVING RATIO MATCHES VARIANCE REDUCTION IN PRACTICE

As described in Section 5.2, we measure the averaged mean square error versus number of samples
for different evaluators on different datasets. The x-coordinate of curves “Human” and “Control
Variates” correspond to the number of human annotations (Zheng et al., 2023). The curve “Control
Variates (shifted)” is derived by horizontally scaling the Control Variates curve by 1/(1 − s), in
which s is the averaged human annotation saving ratio in Table 1. The human annotation saving
ratio aligns perfectly with the actual variance relationship between Human Evaluation and Control
Variates Evaluation.

C.3 HUMAN ANNOTATION SAVING RATIO ON EACH LLM PAIR

We visualize the human annotation ratio (in percentage) on each LLM pair that we use to compute
the averaged human annotation saving ratio in Table 1. The results are shown in Figures 8 and 9. For
a pretrained evaluator, each entry of the matrix is the human annotation saving ratio (in percentage)
on that LLM pair. For a finetuned evaluator, each entry of the matrix is the human annotation saving
ratio (in percentage) on the corresponding LLM pair, in which the LLM on the row is the left-out
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(a) Chatbot Arena,
ArmoRM-8B

(b) Chatbot Arena, GRM-
2B

(c) Chatbot Arena,
Skywork-8B

(d) Chatbot Arena, GPT-4

(e) MT Bench, ArmoRM-
8B

(f) MT Bench, GRM-2B (g) MT Bench, Skywork-
8B

(h) MT Bench, GPT-4

(i) Chatbot Arena, GRM-
2B (ft)

(j) MT Bench, GRM-2B
(ft)

(k) Chatbot Arena,
Skywork-8B (ft)

(l) MT Bench, Skywork-8B
(ft)

Figure 6: Averaged mean square error of Human Evaluation, Synthetic Evaluation and Control
Variates Evaluation on different evaluators and datasets. The Synthetic Evaluation has a significantly
high bias, while the error of both Human Evaluation and Control Variates Evaluation converge to
zero.

LLM, while the LLM on the column is used in finetuning. Please refer to Section 5.1 for the details
of finetuning procedure. Therefore, the matrices for pretrained evaluators are symmetric, while they
are asymmetric for finetuned evaluators. The diagonal entries are white and do not have values
becuase measuring human annotation saving ratio on identical LLMs is meaningless.

Note that there are some additional white entries with no values when testing GPT-4 as the synthetic
evaluator. This is because GPT-4 cannot always follow the prompt template, so that sometimes we
cannot extract a valid preference out of the output. In case that there are too few samples in an LLM
pair, it is likely that we cannot compute a valid human annotation saving ratio.
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(a) Chatbot Arena, GRM-
2B

(b) Chatbot Arena,
ArmoRM-8B

(c) Chatbot Arena,
Skywork-8B

(d) Chatbot Arena, GPT-4

(e) MT Bench, ArmoRM-
8B

(f) MT Bench, GRM-2B (g) MT Bench, Skywork-
8B

(h) MT Bench, GPT-4

(i) Chatbot Arena, GRM-
2B (ft)

(j) MT Bench, GRM-2B
(ft)

(k) Chatbot Arena,
Skywork-8B (ft)

(l) MT Bench, Skywork-8B
(ft)

Figure 7: Averaged mean square error versus number of samples for different evaluators on different
datasets. The x-coordinate of curves “Human” and “Control Variates” correspond to the number
of human annotations (Zheng et al., 2023). The curve “Control Variates (shifted)” is derived by
horizontally scaling the Control Variates curve by 1/(1 − s), in which s is the averaged human
annotation saving ratio in Table 1. The human annotation saving ratio aligns perfectly with the
actual variance relationship between Human Evaluation and Control Variates Evaluation.
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(a) Chatbot Arena, GRM-2B (b) Chatbot Arena, GRM-2B (ft)

(c) Chatbot Arena, Skywork-8B (d) Chatbot Arena, Skywork-8B (ft)

(e) Chatbot Arena, ArmoRM-8B (f) Chatbot Arena, GPT-4

Figure 8: Human annotation saving ratio (in percentage) on each LLM pair for different evaluators
on Chatbot Arena. Diagonal entries are white and do not have values because it is meaningless to
compute the human annotation saving ratio on two identical LLMs. Non-diagonal white entries in
(f) imply an invalid result, because sometimes valid preference cannot be extracted from GPT-4’s
response.
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(a) MT Bench, GRM-2B (b) MT Bench, GRM-2B (ft)

(c) MT Bench, Skywork-8B (d) MT Bench, Skywork-8B (ft)

(e) MT Bench, ArmoRM-8B (f) MT Bench, GPT-4

Figure 9: Human annotation saving ratio (in percentage) on each LLM pair for different evaluators
on MT Bench. Diagonal entries are white and do not have values because it is meaningless to
compute the human annotation saving ratio on two identical LLMs.
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