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Abstract
Kalisch and Bühlmann (2007) showed that for linear Gaussian models, under the Causal Markov
Assumption, the Strong Causal Faithfulness Assumption, and the assumption of causal sufficiency,
the PC algorithm is a uniformly consistent estimator of the Markov Equivalence Class of the true
causal DAG for linear Gaussian models; it follows from this that for the identifiable causal effects in
the Markov Equivalence Class, there are uniformly consistent estimators of causal effects as well.
The k-Triangle-Faithfulness Assumption is a strictly weaker assumption that avoids some im-
plausible implications of the Strong Causal Faithfulness Assumption and also allows for uniformly
consistent estimates of Markov Equivalence Classes (in a weakened sense), and of identifiable
causal effects (Spirtes and Zhang, 2016). However, both of these assumptions are restricted to lin-
ear Gaussian models. We propose the Generalized k-Triangle Faithfulness, which can be applied to
any smooth distribution. In addition, under the Generalized k-Triangle Faithfulness Assumption,
we describe the Edge Estimation Algorithm that provides uniformly consistent estimators of causal
effects in some cases (and otherwise outputs “can’t tell”), and the Very Conservative SGS Algo-
rithm that (in a slightly weaker sense) is a uniformly consistent estimator of the Markov equivalence
class of the true DAG.
Keywords: Machine Learning, Causal Inference, Graphical Modeling

1. Introduction

It has been proved that under the Causal Markov, Faithfulness assumptions and Causal Suffi-
ciency Assumption, there are no uniformly consistent estimators of Markov equivalence classes
of causal structures represented by directed acyclic graphs (DAG)(Robins et al., 2003). Kalisch
and Bühlmann (2007) showed that for linear Gaussian models, under the Causal Markov Assump-
tion, the Strong Causal Faithfulness Assumption, and the assumption of causal sufficiency, the PC
algorithm is a uniformly consistent estimator of the Markov Equivalence Class of the true causal
DAG for linear Gaussian models; it follows from this that for the identifiable causal effects in the
Markov Equivalence Class, there are uniformly consistent estimators of causal effects as well. The
k-Triangle-Faithfulness Assumption is a strictly weaker assumption that avoids some implausible
implications of the Strong Causal Faithfulness Assumption and also allows for uniformly consistent
estimates of Markov Equivalence Classes (in a weakened sense), and of identifiable causal effects.

However, both of these assumptions are restricted to linear Gaussian models. We propose the
Generalized k-Triangle Faithfulness, which can be applied to any smooth distribution. In addition,
under the Generalized k-Triangle Faithfulness Assumption, we describe the Edge Estimation Algo-
rithm that provides uniformly consistent estimates of causal effects in some cases (and otherwise

© 2022 S. Wang & P. Spirtes.



WANG SPIRTES

outputs “can’t tell”), and the Very Conservative SGS Algorithm that (in a slightly weaker sense)
is a uniformly consistent estimator of the Markov equivalence class of the true DAG. The contri-
bution of our work is that it shows that given uniform consistency of nonparametric conditional
independence tests (which itself requires a smoothness assumption), we can reach uniform consis-
tency of estimating causal structures and effects without making parametric assumptions. The only
uniform consistency results for causal search and estimation algorithms that we know of (Kalisch
and Bühlmann, 2007), (Spirtes and Zhang, 2014) assume linear Gaussian models. Since uniform
consistency allows one to give probabilistic bounds on the size of errors given a sample size as a
function of k and the smoothness parameter, this gives some small sample results for algorithms
that only currently have large sample guarantees.

2. The Basic Assumptions for Causal Discovery

2.1. DAG and Causal Markov Condition

We use directed acyclic graphs to represent causal relations between variables. A directed graph
G = ⟨V,E⟩ consists of a set of nodes V and a set of edges E ⊂ V ×V. If there is an edge
⟨A,B⟩ ∈ E , we write A → B. A is a parent of B, and B is a child of A, the edge is out of A
and into B, and A is the source and B is the target. A directed path from X to Y is a sequence of
ordered edges where the source of the first edge is X , the target of the last edge is Y , and if there
are n edges in the sequence, for 1 ≤ i < n, the target of the ith edge is the source of the i + 1th
edge; X is an ancestor of Y , and Y is a descendant of X .

If a variable Y is in a structure X → Y ← Z, and there is no edge between X and Z, we
call ⟨X,Y, Z⟩ an unshielded collider; if there is also an edge between X and Z,then ⟨X,Y, Z⟩ is a
triangle and we call ⟨X,Y, Z⟩ a shielded collider. If ⟨X,Y, Z⟩ is a triangle but Y is not a child of
both X and Z, we call ⟨X,Y, Z⟩ a shielded non-collider; if there is no edge between X and Z, then
⟨X,Y, Z⟩ is a unshielded non-collider.

A Bayesian network is an ordered pair ⟨P,G⟩ where P is a probability distribution over a set of
variables V in G. A distribution P over a set of variables V satisfies the (local) Markov condition
for G if and only if each variable in V is independent of its non-parents and non-descendants,
conditional on its parents. Given M = ⟨P,G⟩, PM denotes P and GM denotes G. Two acyclic
directed graphs (DAG) G1 and G2 are Markov equivalent if conditional independence relations
entailed by Markov condition in G1 are the same as in G2. It has been proven that two DAGs
are Markov equivalent if and only if they have the same adjacencies and same unshielded colliders
(Verma and Pearl, 1990). A pattern O is an undirected graph that represents a set M of Markov
equivalent DAGs: an edge X → Y is in O if it is in every DAG in M ; if X → Y is in some DAG
and Y → X in some other DAG in M , then X − Y in O (Spirtes and Zhang, 2016)

We assume causal sufficiency, which means that V contains all direct common causes of vari-
ables in V.

2.2. Faithfulness, linear Gaussian case and k-Triangle-Faithfulness

Given a ⟨P,G⟩ that satisfies Markov Condition, we say that P is faithful to G if any conditional
independence relation that holds in P is entailed by G by the Markov Condition. We further make
the Causal Markov and Faithfulness assumption (Spirtes et al., 2001):
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Causal Markov Assumption: If the true causal model M of a population is causally sufficient,
each variable in V is independent of its non-parents and non-descendants, conditional on its parents
in GM (Spirtes and Zhang, 2016).

Causal Faithfulness Assumption: all conditional independence relations that hold in the
population are consequences of the Markov condition from the underlying true causal DAG.

In this paper we talk about cases where PM over V for G = ⟨V,E⟩ respects the Causal
Markov Assumption. If PM is faithful to GM and all variables in M are Gaussian and all causal
relations are linear, that is, any Xi ∈ V can be written as:

Xi =
∑

Xj∈PaM (Xi)

ai,jXj + ϵj

where PaM (X) denotes the set of parents of X in GM , ai,j is a real valued coefficient, and the
set of ϵj are multivariate Gaussian and jointly independent, conditional correlation between any two
variables ρX,Y |A = 0 where X,Y ∈ V and A ⊂ V \ {X,Y } implies that there is no edge between
X and Y . Based on the equation above, we define in the linear Gaussian case the edge strength
eM (Xj → Xi) as the corresponding coefficient ai,j .

It has been proved that under the Causal Markov and Faithfulness assumptions, there are no
uniformly consistent estimators of Markov equivalence classes of causal structures represented by
DAG (Robins et al., 2003). Kalisch and Bühlmann (2007) showed that such uniform consistency is
achieved by the PC algorithm if the underlying DAG is sparse relative to the sample size under a
strengthened version of Faithfulness Assumption; in particular, with p denoting the number of nodes
in the DAG, q the maximal degree of the DAG and n the sample size, they assumed that p = O(na)
for some 0 ≤ a ≤ ∞ and q = O(n1−b) for some 0 < b < 1. This Strong Causal Faithfulness
Assumption in the linear Gaussian case bounds the absolute value of any partial correlation not
entailed to be zero by the true causal DAG away from zero by some positive constants. It has the
implausible consequence that it puts a lower bound on the strength of edges, since a very weak
edge entails a very weak partial correlation. However, the Strong Causal Faithfulness Assump-
tion can be weakened to the strictly weaker (for some values of k) k-Faithfulness Assumption
while still achieving uniform consistency. Furthermore, at the cost of having a smaller subset of
edges oriented, the k-Faithfulness Assumption can be weakened to the k-Triangle-Faithfulness
Assumption, while still achieving uniform consistency and can be relaxed while preserving the uni-
form consistency: the k-Triangle-Faithfulness Assumption (Spirtes and Zhang, 2014) only bounds
the conditional correlation between variables in a triangle structure from below by some functions
of the corresponding edge strength:

k-Triangle-Faithfulness Assumption: Given a set of variables V, suppose the true causal
model over V is M = ⟨P,G⟩, where P is a Gaussian distribution over V, and G is a DAG with
vertices V. For any variables X, Y, Z that form a triangle in G:

• if Y is a non-collider on the path ⟨X,Y, Z⟩, then |ρM (X,Z|W)| ≥ k × |eM (X − Z)| for all
W ⊂ V that do not contain Y; and

• if Y is a collider on the path ⟨X,Y, Z⟩, then |ρM (X,Z|W)| ≥ k × |eM (X − Z)| for all
W ⊂ V that do contain Y.

where theX−Z represents the edge betweenX andZ but the direction is not determined.(Sprites
and Zhang, 2014)
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The k-Triangle-Faithfulness Assumption is strictly weaker than the Strong Faithfulness As-
sumption in several respects: the Strong faithfulness Assumption does not allow edges to be weak
any where in a graph, while the k-Triangle-Faithfulness Assumption only excludes conditional
correlations ρ(X,Z|W) from being too small if X and Z are in some triangle structures ⟨X,Y, Z⟩
and X − Z is not a weak edge; for every ϵ used in the Strong Faithfulness Assumption as the
lower bound for any partial correlation, there is a k for the k-Triangle-Faithfulness Assumption
that gives a lower bound smaller than ϵ.

2.3. VCSGS Algorithm

The algorithm we use to infer the structure of the underlying true causal graph is Very Conservative
SGS (V CSGS) algorithm, which uses uniformly consistent tests of conditional independence.

VCSGS Algorithm

1. Form the complete undirected graph H on the given set of variables V.

2. For each pair of variables X and Y in V, search for a subset S of V \ {X,Y } such that X
and Y are independent conditional on S. Remove the edge between X and Y in H if and
only if such a set is found.

3. Let K be the graph resulting from Step 2. For each unshielded triple ⟨X,Y, Z⟩ (the only pair
of variables not adjacent are X and Z ),

(a) If X and Z are not independent conditional on any subset of V \X,Z that contains Y ,
then orient the triple as a collider: X → Y ← Z.

(b) If X and Z are not independent conditional on any subset of V \ X,Z that does not
contain Y, then mark the triple as a non-collider.

(c) Otherwise, mark the triple as ambiguous.

4. Execute the following orientation rules until none of them applies:

(a) If X → Y − Z, and the triple ⟨X,Y, Z⟩ is marked as a non-collider, then orient Y − Z
as Y → Z.

(b) If X → Y → Z and X − Z, then orient X − Z as X → Z.

(c) If X → Y ← Z, another triple ⟨X,W,Z⟩ is marked as a non-collider, and W −Y , then
orient W − Y as W → Y .

5. Let M be the graph resulting from step 4. For each consistent disambiguation of the ambigu-
ous triples in M (i.e., each disambiguation that leads to a pattern), test whether the resulting
pattern satisfies the Markov condition. If every pattern does, then mark all the ‘apparently
non-adjacent’ pairs as ‘definitely non-adjacent’.

It has been proved that under the k-Triangle-Faithfulness Assumption, V CSGS algorithm is
uniformly consistent in the inference of graph structure. Furthermore, a follow-up algorithm that
estimates edge strength given the output of V CSGS also reaches uniform consistency. We are
going to prove that the uniform consistency of the estimation of the causal influences under the k-
Triangle-Faithfulness Assumption can be extended to discrete and nonparametric cases as long as
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there are uniformly consistent tests of conditional independence (which in the general case requires
a smoothness assumption), by showing that missed edges in the inference of causal structure are so
weak that the estimations of the causal influences are still uniformly consistent.

Notice that V CSGS is not practically feasible, which can be seen by its computation complex-
ity of O(2n−2n2) where n is the number of vertices in the causal graph. We are presenting this
algorithm here mainly to use it to show that uniform consistency can be reached when estimating
causal effects without the need of bounding all nonzero conditional correlations away from zero by
a constant.

3. Nonparametric Case

For nonparametric case, we consider variables supported on [0, 1]. We first define the strength of
the edge X → Y as the maximum change in L1 norm of the probability of Y when we condition
on only parents of Y and only change the value of X:

If x ∈ Pa(Y ) :
e(X → Y ) := maxpa\{x}(Y )∈[Pa(Y )\{X}]maxx1,x2∈[X] ||pY |x1,pa\{x}(Y ) − pY |x2,pa\{x}(Y )||1

where [X] denotes the set of values that X takes, [Pa(Y )] ⊂ [0, 1]|Pa(Y )| the set of values
that parents of Y take, pY |x1,pa\{x}(Y ) the probability distribution of Y |X = x1, Pa(Y ) \ {X} =
pa\{x}(Y ) and py|x1,pa\{x}(Y ) the density of pY |x1,pa\{x}(Y ) for Y = y. Since we are conditioning
on the set of parents, the conditional probability is equal to the manipulated probability. Although
we choose the maximum change of the distribution of Y for defining the edge strength, it is not the
only way to define it. For instance, the average can also be chosen to define the edge strength in
which case the rest of the approach only need to be changed slightly. We choose the max because
we are particularly interested in weak edges, and if an edge is weak, the maximum of change on
effect when changing the state of cause is small.

Then we can make the k-Triangle-Faithfulness Assumption: given a set of variables V, where
the true causal model over V is M = ⟨P,G⟩, P is a distribution over V, and G is a DAG with
vertices V, for any variables X, Y, Z that form a triangle in G:

• if Z is a non-collider on the path ⟨X,Z, Y ⟩, given any subset W ⊂ V \ {X,Y, Z},
minw∈[W]minx1,x2∈[X] ||pY |w,x1

− pY |w,x2
||1 ≥ KY e(X → Y ) for some KY > 0

• if Z is a collider on the path ⟨X,Z, Y ⟩, then for every y ∈ [Y ], given any subset W ⊂ V \
{X,Y, Z},minw∈[W]minz∈[Z]minx1,x2∈[X] ||pY |w,x1,z − pY=y|w,x2,z||1 ≥ KY e(X → Y )
for some KY > 0

In order to have uniformly consistent tests of conditional independence, we make smoothness
assumption for continuous variables with the support on [0, 1]:
TV (Total Variation) Smoothness(L): Let P[0,1],TV (L) be the collection of distributions pY,A, such
that for all a,a′ ∈ [0, 1]|A|, we have: ||pY |A=a − pY |A=a′ ||1 ≤ L||a− a′||1

Given the TV smoothness(L), p is continuous: if a and a′ are arbitrarily close, |pY |A=a −
pY |A=a′ | is arbitrarily small. Furthermore, since [0, 1]d (d ∈ N) is compact, for any W,U ⊂ V
(the set of all variables in the true causal graph) , pU |W attains its max and min on its support. Since
|V| is finite, we can further assume conditional densities are non-zero (NZ(T)):
for any X ∈ V, U ⊂ V, pX|U ≥ T for some 1 > T > 0.
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Notice that by TV Smoothness(L) and that variables have support on [0, 1], we can derive an
upper bound for probability of any variable given its parents, so pY |Pa(Y ) cannot be infinitely large:

pY |Pa(Y )=pa(Y ) ≤ ||pY |Pa(Y )=pa(Y )||1 ≤ ||pY |Pa(Y )=pa′(Y )||1 +L||pa(Y )− pa′(Y )||1 ≤ (1 +
L|Pa(Y )|) (|Pa(Y )|) refers to the number of parents of Y )

Although the discrete probability case does not have support on [0, 1], and its probability is not
continuous, it still satisfies the TV smoothness(L) assumption: for instance, if the discrete variables
have support only on integers, we can set L = 1. By replacing the density pX|U with the probability
P (X|U) in NZ(T) assumption, we have a NZ(T) assumption for the discrete case. Therefore the
proof of uniform consistency for the nonparametric case in the rest of the paper also works for the
discrete case.

3.1. Uniform Consistency in the inference of structure

We use L1 norm to characterize dependence over all states of X ,Y and Z: ϵX,Y |A = ||pX,Y,A −
pX|ApY |ApA||1. We want a test ψ of H0 : ϵ = 0 versus H1 : ϵ > 0. ψ is a family of functions:
ψ0...ψn... one for each sample size, that takes an i.i.d sample Vn from the joint distribution over V.
Then the test is uniformly consistent w.r.t. a set of distributions Ω if :

• lim
n→∞

sup
P∈P[0,1],TV (L),ϵ(P )=0

Pn(ψn(Vn) = 1) = 0

• for every δ > 0, lim
n→∞

sup
ϵ(P )≥δ

Pn(ψn(Vn) = 0) = 0

With the TV Smoothness(L) assumption, there are uniformly consistent tests of conditional
independence, such as a minimax optimal conditional independence test proposed by Neykov et
al.(2020).

Given any causal model M = ⟨P,G⟩ over V, let C(n,M) denote the (random) output of the
V CSGS algorithm given an i.i.d. sample of size n from the distribution PM , then there are three
types of errors that it can contain that will mislead the estimation of causal influences:

1. C(n,M) errs in kind I if it has an adjacency not in GM ;

2. C(n,M) errs in kind II if every adjacency it has is in GM , but it has a marked non-collider
not in GM ;

3. C(n,M) errs in kind III if every adjacency and marked non-collider it has is in GM , but it
has an orientation not in GM

If C(n,M) errs in either of these three way, there will be variable X and Y in C(n,M) such
that X is treated as a parent of Y but is not in the true graph GM ; if there is no undirected edge
connecting Y in this C(n,M), the algorithm will estimate the causal influence of “ parents” of Y
on Y , but such estimation does not bear useful information since intervening on X does not really
influence Y . Notice that missing an edge is not listed as an mistake here, and we are going to
prove later that the estimation of causal influence can still be used to correctly predict the effect of
intervention even if the algorithm misses edges. This is because an edge is only going to be missed
if it is a weak edge; and if such an edge is missed, we still can achieve uniform consistency when
estimating pY |Pa′(Y ) where here Pa′(Y ) is the parent of Y except those connected to Y through
the missed, weak edges.

Now we present the uniform consistency result of the inference of causal structure:
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Theorem 1 Let ϕk,L,T be the set of causal models over V under k-Triangle-Faithfulness Assump-
tion, TV smoothness(L) and the assumptions of NZ(T). Under the causal sufficiency of the measured
variables V, causal Markov assumption, k-Triangle-Faithfulness, TV smoothness(L) assumption
and NZ(T) assumption,

lim
n→∞

sup
M∈ϕk,L,C

Pn
M (C(n,M)errs) = 0

Since the error of the algorithm exists in the deciding the whether certain edge exists and it
direction, and the algorithm makes such decision based on the result conditional Independence test,
in order to find the limit of upper bound of the algorithm error, we need to first find the relation be-
tween the conditional dependence between two variables and the strength of the edge that connects
them. Lemma bounds ϵX,Y |A with strengths of the edge X → Y . All proofs not shown in the paper
will be found in the appendix.

Lemma 2
Given an ancestral set A ⊂ V that contains the parents of Y but not Y :
If X is a parent of Y :

T |A|e(X → Y ) ≤ ϵX,Y |A\{X} ≤ e(X → Y )

We are going to prove for each case that the probability for C(n,M) to make each of the three
kinds of mistakes uniformly converges to zero. Since the proofs for the kind I and kind III errors
are almost the same as the proof for the linear Gaussian case (Spirtes and Zhang, 2014), we are only
gong to prove kind II. We provide the proofs of kind I and kind III errors (Spirtes and Zhang, 2014)
in the appendix.

Lemma 3 Given causal sufficiency of the measured variables V, the Causal Markov, k-Triangle-
Faithfulness, TV smoothness(L) assumption and NZ(T) assumption:

lim
n→∞

sup
M∈ϕk,L,C

Pn
M (C(n,M) errs in kind II) = 0

Proof For any M ∈ ϕk,L,C , if it errs in kind II then it contains a marked non-collider ⟨X,Z, Y ⟩
that is not in GM . Since it’s been proved (Spirtes and Zhang, 2014):

lim
n→∞

sup
M∈ϕk,L,C

Pn
M (C(n,M) errs in kind I) = 0

the errors of kind II can be one of the two cases:
(I) ⟨X,Z, Y ⟩ is an unshielded collider in GM ;
(II) ⟨X,Z, Y ⟩ is a shielded collider in GM ;
the proof for case (I) is the same as the proof for the C(n,M) errs in kind I (Spirtes and Zhang,

2014), so we are going to prove here that the probability of case (II) uniformly converges to zero as
sample size increases.

We are going to prove by contradiction. Suppose that the probability that V CSGS making a
mistake of kind II does not uniformly converge to zero. Then there exists λ > 0, such that for
every sample size n, there is a model M(n) such that the probability of C(n,M(n)) containing an
unshielded non-collider that is a shielded collider in M(n) is greater than λ. Let that triangle be
⟨XM(n), ZM(n), YM(n)⟩ with XM(n) being the parent of YM(n) in M(n).

The algorithm will identify the triple as an unshielded non-collider only if:
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(i) there is a set UM(n) ⊂ VM(n) containing ZM(n), such that the test of ϵXM(n),Y M(n)|UM(n) =
0 returns 0, call this test ψn0;

(ii) there is an ancestral set WM(n) that contains XM(n) and YM(n) but not ZM(n), such that
for set AM(n) = WM(n) \ {XM(n), YM(n)}, the test ϵXM(n),Y M(n)|AM(n) = 0 returns 1, call this
test ψn1.

If what we want to proof does not hold for the algorithm, for all n there is a model M(n):
(1)Pn

M(n)(ψn0 = 0) > λ

(2)Pn
M(n)(ψn1 = 1) > λ

(1) tells us that there is some δn such that |ϵXM(n),Y M(n)|UM(n) | < δn and δn → 0 as n → ∞
since the test is uniformly consistent. So we have:

δn > ϵXM(n),Y M(n)|UM(n) (1)

= EUM(n) ∼ pUM(n) [

∫
XM(n)

pxM(n)|UM(n) ||pY M(n)|xM(n),UM(n) − pY M(n)|UM(n) ||1dxM(n)]

(2)

≥ min
x
M(n)
1 ,x

M(n)
2 ∈[XM(n)]

||p
Y M(n)|xM(n)

1 ,UM(n) − pY M(n)|xM(n)
2 ,UM(n) ||1 (3)

≥ KY M(n)eM (XM(n) → YM(n)) (4)

The last step is by k-Triangle-Faithfulness

So eM (XM(n) → YM(n)) <
δn

KY M(n)

.

By Lemma 2, ϵXM(n),Y M(n)|AM(n) < eM (XM(n) → YM(n)).

Therefore, ϵXM(n),Y M(n)|AM(n) <
δn

KY M(n)

→ 0 as n → ∞, which violates the condition (ii),

which says that the uniformly consistency test will reject that ϵXM(n),Y M(n)|AM(n) = 0. Contradic-
tion.

Theorem 4 Given causal sufficiency of the measured variables V, the Causal Markov, k-Triangle-
Faithfulness, TV smoothness(L) and NZ(T) assumptions:

lim
n→∞

sup
M∈ϕk,L,C

Pn
M (C(n,M) errs ) = 0

Proof Since we have proved that the probability for C(n,M) to make any of the three kinds of
mistakes uniformly converges to 0, the theorem directly follows.

3.2. Uniform consistency in the inference of causal effects

Edge Estimation Algorithm (Sprites and Zhang, 2014):

1. Run the VCSGS algorithm on an i.i.d sample of size n from PM .

2. Let the output from step 1 be C(n,M).
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3. If some non-adjacencies in C(n,M) are not marked as ‘definitely non-adjacent’, return ‘Un-
known’ for every pair of variables.

4. If all non-adjacencies in C(n,M) are marked as ‘definitely non-adjacent’, then:

(a) For a vertex Y such that all of the edges containing Y are oriented inC(n,M), if Pa(Y )
is the parent set of Y in C(n,M), use histogram to estimate p(yi|Pa(Y ) = pa(Y ))1for
yi ∈ [Y ] and pa(Y ) ∈ [Pa(Y )];

(b) for any of the remaining edges, return ‘Unknown’;

Defining the distance between M1 and M2

The method for estimation for p(y|Pa(Y ) = pa(Y )) is: we first get p̂(Y = y, Pa(Y ) = pa(Y ))
and p̂(Pa(Y ) = pa(Y )) by histogram, then we get:

p̂(y|Pa(Y ) = pa(Y )) =
p̂(Y = y, Pa(Y ) = pa(Y ))

p̂(Pa(Y ) = pa(Y ))

Let M1 be the output of the Edge Estimation Algorithm, and M2 be a causal model, we define
the conditional probability distance, d[M1,M2], between M1 and M2 to be:

d[M1,M2] = max
Y ∈V,
yi∈[Y ],
paM1

(Y )

∈[PaM1
(Y )],

paM2
(Y )

∈[PaM2
(Y )],

paM1
⊂paM2

|p̂M1(yi|paM1(Y ))− pM2(yi|paM2(Y ))|

where PaM (Y ) denotes the parent set of Y in causal model M . The intuition behind this
definition of conditional probability distance is that among all variables Y in M1 that satisfy step
4(a) in the Edge Estimation Algorithm, each of them will have an estimated conditional probability
given each different state of their parents in M1; the conditional probability distance captures the
maximum difference between the estimated conditional probability of a variable p̂M1(yi|paM1(Y ))
and its true conditional probability in M2, pM2(yi|paM2(Y )), where all the parents that are also in
PaM1(Y ) are in the same state as paM1(Y ). By convention |P̂M1(yi|paM1(Y ))−PM2(yi|paM2(Y ))| =
0 if P̂M1(yi|paM1(Y )) is “Unknown”.

Now we want to show, the edge estimation algorithm is uniformly consistent.

Theorem 5 for every δ > 0,

lim
n→∞

sup
M∈ϕk,L,C

Pn
M (d[Ô(M),M ] > δ) = 0

Here M is any causal model satisfying causal sufficiency of the measured variables V, the Causal
Markov, k-Triangle-Faithfulness, TV smoothness(L) and NZ(T) assumptions and Ô(M) is the output
of the algorithm given an iid sample from PM .

Proof Let O be the set of possible graphs of V CSGS. Since given V, there are only finitely many
outputs in O, it suffices to prove that for each output O ∈ O,

1. we denote the density of pY |Pa(Y )=pa(Y ) at Y = y as p(y|Pa(Y ) = pa(Y )) in this section to match with the result
of estimation.

9
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lim
n→∞

sup
M∈ϕk,L,C

Pn
M (d[Ô(M),M ] > δ|C(n,M) = O)Pn

M (C(n,M) = O) = 0

Now partition all the M into three sets given O :

• Ψ1 = {M | all adjacencies, non-adjacencies and orientations in O are true in M};

• Ψ2 = {M | only some adjacencies, or orientations in O are not true in M};

• Ψ3 = {M | only some non-adjacencies in O are not true in M}.

It suffices to show that for each Ψi,

lim
n→∞

sup
M∈Ψi

Pn
M (d[Ô(M),M ] > δ|C(n,M) = O)Pn

M (C(n,M) = O) = 0

Ψ1:
For any M ∈ Ψ1, if the conditional probabilities of a vertex Y in O can be estimated (so not

“Unknown”), it means that PaO(Y ) = PaM (Y ). Recall that the histogram estimator is close to the
true density with high probability:

for any λ < 1, supP∈PTV (L)
Pn(||p̂h(x)− p(x)||∞ ≤ f(n, λ) ≤ O((

log n

n
)

1
2+d )) ≥ 1− λ

where f(n, λ) is continuous and monotonically decreasing wrt n and ϵ and h ∝ n2/(2+d) where
d is the dimentionality of the x and h is the size of bins or sub-cubes values of variables are divided
into to estimate probability. For instance, d = |Pa(Y )|+ 1 when estimating P (Y, Pa(Y )).

Given a δ > 0, f(n, ϵ) = δ entails that supP∈P[0,1],TV (L)
Pn(||p̂h(x)− p(x)||∞ > δ) < λ.

By monotonicity of f(n, λ), when n > nf s.t. f(nf , λ) = δ, supP∈P[0,1],TV (L)
Pn(||p̂h(x) −

p(x)||∞ > δ) < λ.
Therefore the histogram estimators of pM (y, PaM (Y ) = paM (Y )) and pM (PaM (Y ) = paM (Y ))

are uniformly consistent.

Lemma 6 If p̂(Y = y, Pa(Y ) = pa(Y )) and p̂(Pa(Y ) = pa(Y )) are uniformly consistent esti-
mators of p(Y = y, Pa(Y ) = pa(Y ))and p(Pa(Y ) = pa(Y )), then

p̂(y|Pa(Y ) = pa(Y )) =
p̂(Y = y, Pa(Y ) = pa(Y ))

p̂(Pa(Y ) = pa(Y ))

is a uniformly consistent estimator for p(y|Pa(Y ) = pa(Y ))

By lemma 6, we conclude that the p̂M (y|PaM (Y ) = paM (Y )) is a uniformly consistent esti-
mator for

pM (y|PaM (Y ) = paM (Y )) =
pM (y, PaM (Y ) = paM (Y ))

pM (PaM (Y ) = paM (Y ))
,

So:

lim
n→∞

sup
M∈Ψ1

Pn
M (d[Ô(M),M ] > δ|C(n,M) = O)Pn

M (C(n,M) = O)

≤ lim
n→∞

sup
M∈Ψ1

Pn
M (d[Ô(M),M ] > δ|C(n,M) = O) = 0

10
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Ψ2 : the proof is exactly the same as for the discrete case.
Ψ3 :

Let O(M) be the population version of Ô(M). Since the histogram estimator is uniformly
consistent over ||p̂h − p||∞ and there are finitely many parent-child combinations, for every λ > 0
there is a sample size N1, such that for n > N1, and all M ∈ Ψ3,

Pn
M (d[Ô(M), O(M)] > δ/2|C(n,M) = O) < λ

Since only some non-adjacencies in O are not true in M , we know that for any vertex Y that
have some estimated conditional probabilities given its parents in O, PaO(M)(Y ) ⊂ PaM (Y )
where PaO(M)(Y ) denotes the parent set of Y in the O when the underlying probability is PM (i.e.,
M is the true causal model). Since PaM (Y ) ̸⊂ PaO(M)(Y ), for any yi ∈ [Y ] and paO(M)(Y ) ∈
[PaO(M)(Y )], PO(yi|PaO(M)(Y ) = paO(M)(Y )) is a marginalization of pM (yi|PaM (Y ) = paM (Y )).
Therefore, the distance between O(M) and M is:

d[O(M),M ] = max
Y ∈V,
yi∈[Y ],

paO(M)(Y )∈
[PaO(M)(Y )],

paM (Y )∈
[PaM (Y )],

paO(M)⊂paM

|pO(M)(yi|paO(M)(Y ))− pM (yi|paM (Y ))|

Given the Y corresponding to the equation above, letPaM (Y ) = {A1...Ag..Ag+h} andPaO(M)(Y ) =
{A1...Ag}. Since PO(M)(yi|paO(M)(Y )) is the marginalization of all PM (yi|paM (Y )), we have:

|pO(M)(yi|paO(M)(Y ))− pM (yi|paM (Y ))| ≤ max
paM (Y )1,
paM (Y )2

∈[PaM (Y )],
s.t.paO(M)⊂

paM (Y )1∩paM (Y )2

|pM (yi|paM (Y )1)− pM (yi|paM (Y )2)|

<

j=h∑
j=1

eM (Ag+j → Y )

If
∑j=h

j=1 eM (Ag+j → Y ) < δ/2, then we have:

d[O(M),M ] < δ/2

For all such M , there is a N1, such that for any n > N1:

Pn
M (d[Ô(M),M ] > δ|C(n,M) = O)

≤ Pn
M (d[Ô(M), O(M)] + d[O(M),M ] > δ|C(n,M) = O)

≤ Pn
M (d[Ô(M), O(M)] > δ/2|C(n,M) = O) < ϵ

If
∑j=h

j=1 eM (Ag+j → Y ) ≥ δ/2, then there is at least an w ∈ {1, 2...h}, s, t. eM (Ag+w →

Y ) >
δ

2h
. By Lemma 2:

11
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ϵAg+w,Y |U ≥ T |U|+1eM (Ag+w → Y ) > T |U|+1 δ

2h
.

where the U ∪ {Ag+w, Y } is some ancestral set not containing any descendant of Y .
Since the density estimation does not turn “unknown”, we know that in step 5 of V CSGS

the test of ϵAg+w,Y |U = 0 returns 0 while ϵAg+w,Y |U ≥ T |U|+1 δ

2h
. Since the test is uniformly

consistent, it follows that there is a sample size N2 such that

PN2
M (ϵAg+w,Y |U = 0) < λ

for any n > N2 and therefore for all such M,

Pn
M (d[Ô(M),M ] > δ|C(n,M) = O) < λ

Let N = max(N1, N2), for n > N ,

lim
n→∞

sup
M∈Ψ3

Pn
M (d[Ô(M),M ] > δ|C(n,M) = O)Pn

M (C(n,M) = O)

≤ lim
n→∞

sup
M∈Ψ3

Pn
M (d[Ô(M),M ] > δ|C(n,M) = O) = 0

4. Discussion

We have shown that there is a uniformly consistent estimator of causal structure and some causal
effects for nonparametric distributions under the k-Triangle-Faithfulness Assumption, which is
sometimes stronger than the Faithfulness Assumption and weaker than the Strong Faithfulness As-
sumption. There are a number of open questions, such as whether the causal sufficiency assumption
can be relaxed, so we allow the existence of latent variables and whether there are similar results
under assumptions weaker than the Causal Faithfulness Assumption, such as the Sparsest Markov
Representation Assumption (Solus et al.,2016).
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Appendix
The appendix contains

• Proof of Lemma 2;

• Proof of Lemma 6;

• Proof of making error in kind I uniformly converges to zero;

• Proof of making error in kind III uniformly converges to zero;

Lemma 2
Given an ancestral set A ⊂ V that contains the parents of Y but not Y :
If X is a parent of Y :

T |A|e(X → Y ) ≤ ϵX,Y |A\{X} ≤ e(X → Y )

Proof Upper bound:

ϵX,Y |A\{X} =

∫
A\{X}

∫
X

∫
Y
|px,y,a\{x} − py|a\{x}px|a\{x}pa\{x}|dydxda \ {x} (5)

=

∫
A
pa||py|x,A\{X} − py|A\{X}||1da (6)

≤ EA∼pA [e(X → Y )] (7)

= e(X → Y ) (8)

Lower bound:

ϵX,Y |A\{X} =

∫
A\{X}

∫
X

∫
Y
|px,y|a\{x} − py|a\{x}px|a\{x}|dydxda \ {x} (9)

=

∫
A\{X}

pa\{x}

∫
x
px|a\{x}||pY |x,a\{x} − pY |a\{x}||1dxda \ {x} (10)

≥ T |A|e(X → Y ) (11)

The step (11) is derived using a direct conclusion from NZ(T):
for any V ⊃W = {W1,W2...Wn}, by the Chain Rule: pW =

∏n
i=1 pWi|Wi+1...Wn

≥ Tn

lemma 6 If p̂(Y = y, Pa(Y ) = pa(Y )) and p̂(Pa(Y ) = pa(Y )) are uniformly consistent
estimators of p(Y = y, Pa(Y ) = pa(Y ))and p(Pa(Y ) = pa(Y )), then

p̂(y|Pa(Y ) = pa(Y )) =
p̂(Y = y, Pa(Y ) = pa(Y ))

p̂(Pa(Y ) = pa(Y ))

is a uniformly consistent estimator for p(y|Pa(Y ) = pa(Y ))

Proof Recall that:
for any λ < 1, supP∈PTV (L)

Pn(||p̂h(x)− p(x)||∞ ≤ f(n, λ) = O((
log n

n
)

1
2+d )) ≥ 1− λ (∗)

14
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where f(n, λ) is continuous and monotonically decreasing wrt n and λ and h ∝ n2/(2+d) (the
number of bins) where d is the dimentionality of the x. For instance, d = |Pa(Y )| + 1 when
estimating P (Y, Pa(Y )).

For any δ > 0, f(n, λ) = δ entails that supP∈P[0,1],TV (L)
Pn(||p̂h(x) − p(x)||∞ > δ) < λ. By

monotonicity of f(n, λ), when n > nf s.t. f(nf , λ) ≤ δ, supP∈P[0,1],TV (L)
Pn(||p̂h(x)−p(x)||∞ >

δ) < λ.
Let d = |Pa(Y )|, notice that for any λ, with probability at least 1− λ,23

| p̂(Y = y, Pa(Y ) = pa(Y ))

p̂(Pa(Y ) = pa(Y ))
− p(y|Pa(Y ) = pa(Y ))| (12)

=
1

p̂(Pa(Y ) = pa(Y ))
|p̂(Y = y, Pa(Y ) = pa(Y ))− p(y|Pa(Y ) = pa(Y ))p̂(Pa(Y ) = pa(Y ))|

(13)

≤
|p(Y = y, Pa(Y ) = pa(Y )) +O(( lognn )

1
3+d )− p(y|Pa(Y ) = pa(Y ))(p(Pa(Y ) = pa(Y ))−O(( lognn )

1
2+d ))|

T d

(14)

≤ 1

T d
|O

(
(
log n

n
)

1
3+d

)
+O

(
(
log n

n
)

1
2+d

)
| (15)

= O
(
(
log n

n
)

1
3+d

)
(16)

Step (14) is derived by (∗) and the fact that the estimation result can only be valid if it satisfies
TV smoothness(L)); step (15) is derived because p(y|Pa(Y ) = pa(Y ))is upper bounded by (1 +
L|Pa(Y )|) by TV smoothness.

We have:

supP∈PTV (L)
Pn

| p̂(Y = y, Pa(Y ) = pa(Y ))

p̂(Pa(Y ) = pa(Y ))
− p(y|Pa(Y ) = pa(Y ))| ≤ O

(
log n

n
)

1

3 + d


≥ 1− λ

So p̂(y|Pa(Y ) = pa(Y )) =
p̂(Y = y, Pa(Y ) = pa(Y ))

p̂(Pa(Y ) = pa(Y ))
is a uniform consistent estimator for

p(y|Pa(Y ) = pa(Y ))

Lemma 7 (Spirtes and Zhang, 2014) Given causal sufficiency of the measured variables V, the
Causal Markov, k-Triangle-Faithfulness, TV smoothness(L) assumption and NZ(T) assumption:4

lim
n→∞

sup
M∈ϕk,L,C

Pn
M (C(n,M) errs in kind I) = 0

Proof C(n,M) has an adjacency not in GM only if some test of zero conditional dependence
rejects its null hypothesis. Since uniformly consistent tests are used in VCSGS, for every λ > 0 ,

2. here we use p̂(x) instead of p̂h(x) because h is dependent on the dimension of x
3. Recall that V denotes the set of variables in the true graph
4. We’ve changed the notations of the original proof to match with the notations used in this paper.
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for every test of zero conditional dependence ti, there is a sample size Ni such that for all n > Ni

the supremum (over ϕk,L,C) of the probability of the test falsely rejecting its null hypothesis is less
than λ. Given V, there are only finitely many possible tests of zero conditional dependences. Thus,
for every λ > 0, there is a sample size N such that for all n > N , the supremum (over ϕk,L,C) of
the probability of any of the tests falsely rejecting its null hypothesis is less than λ. The lemma then
follows.

Lemma 8 (Spirtes and Zhang, 2014) Given causal sufficiency of the measured variables V, the
Causal Markov, k-Triangle-Faithfulness, TV smoothness(L) assumption and NZ(T) assumption:

lim
n→∞

sup
M∈ϕk,L,C

Pn
M (C(n,M) errs in kind III) = 0

Proof Given that all the adjacencies and marked noncolliders in C(n,M) are correct, there is
a mistaken orientation if and only if there is an unshielded collider in C(n,M) which is not a
collider in GM , for the other orientation rules in step 4 in V CSGS would not lead to any mistaken
orientation if all the unshielded colliders were correct. Thus, C(n,M) errs in kind III only if there
is a noncollider X,Y, Z in GM that is marked as an unshielded collider in C(n,M).

There are then two cases to consider:
(III.1) C(n,M) contains an unshielded collider that is an unshielded noncollider in GM ,

and (III.2) C(n,M) contains an unshielded collider that is a shielded noncollider in GM . The
argument for case (III.1) is extremely similar to that for (I) in the proof of kind II (Lemma 3), and
the argument for case (III.2) is extremely similar to that for (II) in the proof of kind II.
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