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Abstract

The Bellman operator is a cornerstone of rein-
forcement learning (RL), widely used from tradi-
tional value-based methods to modern actor-critic
approaches. In problems with unknown models,
the Bellman operator is estimated via transition
samples that strongly determine its behavior, as
uninformative samples can result in negligible
updates or long detours before reaching the fixed
point. In this paper, we introduce the novel idea of
an operator that acts on the parameters of action-
value function approximators. Our novel operator
can obtain a sequence of action-value function pa-
rameters that progressively approaches the ones
of the optimal action-value function. This means
that we merge the traditional two-step procedure
consisting of applying the Bellman operator and
subsequently projecting onto the space of action-
value function. For this reason, we call our novel
operator projected Bellman operator (PBO). We
formulate an optimization problem to learn PBOs
for generic sequential decision-making problems,
and we analyze the PBO properties in two repre-
sentative classes of RL problems. Furthermore,
we study the use of PBO under the lens of the
approximate value iteration framework, devising
algorithmic implementations to learn PBOs in
both offline and online settings, resorting to neural
network regression. Eventually, we empirically
evince how PBO can overcome the limitations
of classical methods, opening up new research
directions as a novel paradigm in RL.
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1. Introduction

Value-based reinforcement learning (RL) is a popular class
of algorithms for solving sequential decision-making prob-
lems with unknown dynamics (Sutton & Barto, 2018). For
a given problem, value-based algorithms aim at obtaining
the most accurate estimate of the expected return from each
state, i.e., a value function. For instance, the well-known
value-iteration algorithm computes value functions by iter-
ated applications of the Bellman operator (Bellman, 1966),
of which the true value function is the fixed point. Although
the Bellman operator can be applied in an exact way in dy-
namic programming, it is typically estimated from samples
at each application when dealing with problems with un-
known models, i.e., empirical Bellman operator (Watkins,
1989; Bertsekas, 2019). Intuitively, the dependence of the
empirical version of value iteration on the samples has
an impact on the efficiency of the algorithms and on the
quality of the obtained estimated value function, which be-
comes accentuated when solving continuous problems that
require function approximation, e.g., approximate value it-
eration (AVI) (Munos, 2005; Munos & Szepesvari, 2008).
Moreover, in AVI approaches, costly function approxima-
tion steps are needed to project the output of the Bellman op-
erator back to the considered action-value functional space.

In this paper, we introduce the novel notion of projected
Bellman operator (PBO), which is a function A : Q —
defined on parameters w € () of the action-value func-
tion approximator. Contrarily to the standard (empirical)
Bellman operator, which uses action-value functions Q) to
compute targets that are then projected to obtain QQx1, our
PBO uses the parameters of the action-value function to
directly compute updated parameters wy+1 = A(wy) (Fig-
ure 1). We additionally provide a perspective on AVI where,
instead of exploiting samples to iterate over the application
of the empirical Bellman operator and its subsequent pro-
jection step, we leverage them to learn an approximation of
PBO, which we call parameterized PBO. The crucial ad-
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Figure 1: PBO operates on value function parameters.
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Figure 2: Behavior of our PBO and approximate value iteration (AVI) in the space of value functions. Q*, Q.+, and Qx~,
are respectively the optimal value function, its projection on the parametric space, and the fixed point of PBO.

vantages of our approach are twofold: (i) the output of PBO
always belongs to the considered action-value functional
space, avoiding, therefore, the costly projection step needed
when using the Bellman operator coupled with function
approximation, and (ii) PBO is applicable for an arbitrary
number of iterations without using further samples, as vi-
sualized in Figure 2. Starting from initial parameters wy,
AVI approaches obtain consecutive approximations of the
action-value function @), by applying the Bellman opera-
tor iteratively over samples (Figure 2b). Instead, we make
use of the samples to learn the PBO only. Then, starting
from initial parameters wgy, PBO can produce a chain of
action-value function parameters of arbitrary length (blue
lines in Figure 2a), without requiring further samples. This
means that an accurate approximation of PBO can compute
optimal action-value function parameters starting from any
initial parameters in the chosen space.

Contributions. In the following, we formally introduce
PBO, and formulate an optimization problem and algorith-
mic implementations to obtain it in offline and online RL
problems. Thus, our contribution is threefold: (i) we intro-
duce the notion of projected Bellman operator (PBO); (ii)
we derive an optimization problem to approximate PBOs
in generic Markov decision processes (MDPs); (iii) we in-
troduce two novel algorithms for offline and online RL to
solve this optimization problem, showing their advantages
over related baselines on heterogeneous RL problems.

2. Related works

Several works in the literature proposed variants of the stan-
dard Bellman operator to induce some desired behavior. We
revise these approaches, noting that all of them act on the
space of action-value functions, thus needing a costly projec-
tion step onto the considered functional space. Conversely,
our work is, to the best of our knowledge, the first attempt
to obtain an alternative Bellman operator that directly acts
on the parameters of action-value functions.

Bellman operator variations. Variants of the Bell-

man operator are widely studied for entropy-regularized
MDPs (Neu et al., 2017; Geist et al., 2019; Belousov &
Peters, 2019). The softmax (Haarnoja et al., 2017; Song
et al., 2019), mellowmax (Asadi & Littman, 2017), and
optimistic (Tosatto et al., 2019) operators are all examples
of variants of the Bellman operator to obtain maximum-
entropy exploratory policies. Besides favoring exploration,
other approaches address the limitations of the standard
Bellman operator. For instance, the consistent Bellman op-
erator (Bellemare et al., 2016) is a modified operator that
addresses the problem of inconsistency of the optimal action-
value functions for suboptimal actions. The distributional
Bellman operator (Bellemare et al., 2017) enables operating
on the whole return distribution, instead of its expectation,
i.e., the value function (Bellemare et al., 2023). Further-
more, the logistic Bellman operator uses a logistic loss to
solve a convex linear programming problem to find opti-
mal value functions (Bas-Serrano et al., 2021). Finally, the
Bayesian Bellman operator is employed to infer a posterior
over Bellman operators centered on the true one (Fellows
et al., 2021). Note that our PBO can be seamlessly applied
to any of these variants of the standard Bellman operator.
Finally, we recognize that learning an approximation of the
Bellman operator shares some similarities with learning a
reward-transition model in reinforcement learning. How-
ever, we point out that our approach is profoundly different,
as we map action-value parameters to other action-value pa-
rameters, conversely to model-based reinforcement learning
which maps states and actions to rewards and next states.

Operator learning. Literature in operator learning is
mostly focused on supervised learning, with methods for
learning operators over vector spaces (Micchelli & Pontil,
2005) and parametric approaches for learning non-linear
operators (Chen & Chen, 1995), with a resurgence of recent
contributions in deep learning. For example, Kovachki et al.
(2021) learn mappings between infinite function spaces with
deep neural networks, or Kissas et al. (2022) apply an atten-
tion mechanism to learn correlations in the target function
for efficient operator learning. We note that our work on the
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learning of the Bellman operator in reinforcement learning
is orthogonal to methods for operator learning in supervised
learning, and could potentially benefit from advanced tech-
niques in the literature.

3. Preliminaries

We consider discounted Markov decision processes (MDPs)
defined as M = (S, A, P, R, ), where S is a measur-
able state space, A is a finite measurable action space,
P :SxA — A(S)! is the transition kernel of the
dynamics of the system, R : S x A — R is a reward
function, and v € [0,1) is a discount factor (Puter-
man, 1990). A deterministic policy 7 : S — Ais a
function mapping a state to an action, inducing a value

function V7(s) = E[Z:;Og 'th(St,W(St)MSo:s}
representing the expected cumulative discounted re-

ward starting in state s and following policy 7 there-
after. Similarly, the action-value function Q™(s,a) =
E[S555 7 R(S1, A)ISo = 5, Ao = a, Ay = m(S))| s
the expected discounted cumulative reward executing action
a in state s, following policy 7 thereafter. RL aims to find
an optimal policy 7* yielding the optimal value function
V*(s) & maxy.s_,4 V7 (s) for every s € S (Puterman,
1990). The (optimal) Bellman operator I'* is a fundamental
tool in RL for obtaining optimal policies, and it is defined
as:

C°Q)(s.0) £ Ris.a) +7 [ Plas]s.0) max Q). (1)

forall (s,a) € S x A. Tt is well-known that Bellman oper-
ators are contraction mappings in L,-norm, such that their
iterative application leads to the fixed point I'*Q* = Q*
in the limit (Bertsekas, 2015). We consider the use of
function approximation to represent value functions and
denote €2 the space of their parameters. Thus, we define
Qq ={Qu : S x A — R|w € N} as the set of value func-
tions representable by parameters of (2.

4. Projected Bellman operator

The application of the Bellman operator in RL requires tran-
sition samples (Equation 1) (Munos, 2003; 2005; Munos
& Szepesvari, 2008). The impact of this requirement is
twofold: (i) the behavior of the Bellman operator strictly
depends on the quality of the samples, thus, a poor sample
selection can result in negligible updates and long detours
before convergence; (ii) the direction of the update is deter-
mined exclusively by the current samples, meaning that the
empirical Bellman operator has no memory of previously
observed samples (Bellemare et al., 2016; Agarwal et al.,
2019; Fellows et al., 2021). Ideally, we want to obtain an

"A(X) denotes the set of probability measures over the set X'.

operator that mirrors the behavior of the true Bellman op-
erator while being independent of the transition samples
and extrapolating from previous experience. Thus, we intro-
duce the novel projected Bellman operator (PBO), which
we define as follows.

Definition4.1. Let O = {Q, : S X A = Rlw € Q} bea
function approximation space for the action-value function,
induced by the parameter space ). A projected Bellman
operator (PBO) is a function A : 2 — €2, such that

. N 2
Ae arg mlnE(s,a)Np,wwu (F Qw(s7 LL) - QA(w)(57 a)) ) (2)
A:Q—Q

for state-action and parameter distributions p and v.

Note that I'* is the regular optimal Bellman operator on
Qgq. Conversely, PBO is an operator A acting on action-
value function parameters w € (). In other words, this
definition states that a PBO is the mapping 2 — (2 that
most closely emulates the behavior of the regular optimal
Bellman operator I'*.

4.1. Learning projected Bellman operators

The PBO is unknown and has to be estimated from sam-
ples. We propose to approximate the unknown PBO with
a parameterized PBO A4 differentiable w.r.t. its parame-
ters ¢ € ®, enabling the use of gradient descent on a loss
function?. A first straightforward idea would be to learn an
operator that minimizes an empirical version of the loss in
the definition of PBO (Equation 2), for given datasets of pa-
rameters w € W and transitions (s, a,r, s’) € D. However,
this approach would disregard the crucial opportunity of per-
forming multiple applications of the operator. This means
that we can apply PBO on the parameters w € W for an
arbitrary number of iterations, thus augmenting the dataset
of parameters with sequences of parameters generated by
PBO. We leverage this key insight to formulate the loss

K
Lay = Z Z (F*QA";*(QJ)(& a) — QAg(w)(S:a)>27 3)

k=1 (s,a)eD
weWw
where K is an arbitrary number of optimal Bellman op-
erator iterations. An additional idea is to add a term that
corresponds to an infinite number of iterations, i.e., the fixed
point, when possible

Ly = Lagt Y (MQupls0) = Qap(s.0) s @)

(s,a)€D

Fixed point term

where Agc is the fixed point of the parameterized PBO. Note
that the addition of the fixed point term is only possible for

2For ease of presentation, we use PBO and parameterized PBO
interchangeably whenever clear from the context.
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Figure 3: Behavior of ProFQI and FQI in the function space Qg for one iteration. The dashed lines are projections in Qgq.

classes of parameterized PBOs where the fixed point can be
computed and the result is differentiable in the parameters
@, as discussed in Section 5.

4.2. An approximate value iteration perspective

We devise two approximate value iteration (AVI) (Farah-
mand, 2011) algorithms to learn PBOs in offline and online
RL, by minimizing the loss (3) or (4). Our algorithms can
be seen as variants of fitted Q-iteration (FQI) (Ernst et al.,
2005) and of deep Q-network (DQN) (Mnih et al., 2015);
thus, we call them projected fitted Q-iteration (ProFQI) and
projected deep QQ-network (ProDQN). Figure 3 illustrates
the differences between our approaches and the baseline,
by taking ProFQI and FQI as examples and comparing how
they behave in the space of all possible action-value func-
tions Qq. The main difference is that ProFQI generates a
sequence of action-value parameters, while FQI generates a
sequence of action-value functions that need to be projected
onto the functional space. Moreover, ProFQI incorporates
the sequence of parameters, generated by multiple applica-
tions of PBO, in the loss function (see also Equation 3). This
results in a richer loss than FQI, which can only consider
one application of the Bellman operator at a time, resulting
in better approximation (see red lines in Figure 3a and 3b).
This ability of PBO to iterate for an arbitrary number of
times also enables us to theoretically prove the advantages
of ProFQI by leveraging established results in AVI.

Theorem 4.2. (See Theorem 3.4 of Farahmand (2011)) Let
K € N* p,v two distribution probabilities over S x A.
For any sequence (Q)X_, C B(S x A, R,) where R,
depends on reward function and discount factor, we have

1Q" = Q™ |I1,p < Ck .y, (5)
ProFQI

2

K
+ inf F(T7Ka Ps ’V) (Zair ||P*Qk71 - Qk@,l/) )
k=1

ref0,1]

FQI

Algorithm 1 Projected FQI &
1: Inputs:
- samples D = {(s;, a;, 75, 8;)}/_1;
- parameters W = {w; }- ;;
- #Bellman iterations K;
- initial parameters ¢ of parameterized PBO Ay;

- #Epochs E.
2: foree {1,...,E} do
3 ¢p=¢9
4:  for some training steps do
7: Gradient descent over parameters ¢ minimizing
loss (3) or (4) using D and W.
8: end for
9: end for

10: Return: Parameters ¢ of parameterized PBO Ay

where ay, and Ck R, do not depend on the sequence
(Qr)E.,. F(r;K,p,v) relies on the concentrability co-
efficients of the greedy policies w.r.t. the value functions.

This theorem shows that the distance between the value
function and the optimal value function depends on the
approximation errors for all the iterations. The loss of FQI
contains only one term of the sum, while the loss of ProFQI
contains the entire sum. In ProFQI, the terms are summed
up with equal weights, which is not the case for Equation
(5). Additionally, Algorithm 1 describes the steps of our
algorithms for learning PBO, highlighting the additional
steps required for the online setting (i.e., ProDQN). Both
ProFQI and ProDQN are given initial randomly sampled
datasets of transitions and parameters of PBO. As an online
algorithm, ProDQN periodically adds new transitions to the
dataset by executing a policy derived from the action-value
function obtained by applying the current approximation of
PBO for K times. For stability reasons, we perform gradient
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descent steps only on the parameters ¢ of Q) Ak in the losses

(Equations 3 and 4), excluding the ones corresponding to
the target I'* Q) , »—1 of the loss, as commonly done in semi-
[

gradient methods (Sutton & Barto, 2018). Similar to Mnih
et al. (2015), the target parameters are updated periodically
after an arbitrary number of iterations. Soft updates, e.g.,
Polyak averaging (Lillicrap et al., 2015), can also be used.

5. Analysis of projected Bellman operator

We analyze the properties of PBO for two representative
classes of RL problems, namely (i) finite MDPs and (ii)
linear quadratic regulation (Bradtke, 1992; Pang & Jiang,
2021)3. Proofs of the following results are in Appendix B.

5.1. Finite Markov decision processes

Let us consider finite state and action spaces of cardinality
N and M, respectively, and a tabular setting with ) =
RNM Given the use of tabular approximation, it is intuitive
that each entry of the table can be modeled with a different
single parameter, i.e., there is a bijection between Qg and (2,
which allows us to write, for ease of notation, the parameters
of the action-value function as @ instead of w.

Proposition 5.1. The PBO exists and it is equal to the
optimal Bellman operator

A*(Q) = R+ yPmaxQ(-,a). (6)

Note that PBO for finite MDPs is a y-contraction mapping
for the L,,-norm, like an optimal Bellman operator. As an
example of finite MDP, we consider the chain-walk envi-
ronment in Figure 5, with a chain of length N = 20. We
parameterize value functions as tables to leverage our the-
oretical results on finite MDPs. In Figure 4, we show the
£5-norm of the difference between the optimal action-value
function and the action-value function computed with FQI
and ProFQI. We consider three different values of Bellman
iterations, namely K = {2,5,15}. For FQI, the K itera-
tions are the regular iterations where the empirical Bellman
operator is applied once on the current approximation of the
action-value function. For ProFQI, K is the number of itera-
tions included in the PBO loss. This ensures a fair compari-
son given that both methods have access to the same number
of Bellman iterations. Once PBO is trained, we apply it for
different numbers of iterations £ > K, on given action-
value function parameters. In Figure 4, ProFQI uses a linear
approximation of PBO trained with the loss (3), ProFQI,
uses a linear approximation of PBO trained with the loss (4),
ProFQI p,in uses the closed-form PBO in Equation (6) con-
sidering R and P as unknown parameters to learn, and PBO

3 An additional analysis of PBO in low-rank MDPs (Agarwal
et al., 2020; Sekhari et al., 2021) can be found in Appendix A.

indicates the use of the same closed-form solution assuming
known R and P. First, note that in this basic setting FQI
and PBO minimize the same objective function. Obviously,
the difference is that we can always apply the closed-form
solution for more iterations than FQI, achieving a better ap-
proximation of the optimal action-value function, as shown
in Figure 4. For the three variants of ProFQI, we observe
that the approximation error decreases as the number of
PBO iterations increases, evincing that PBO accurately em-
ulates the true Bellman operator. In the case of K = 2
and K = 5, we see that ProFQI, and ProFQI.p,;, obtain a
better approximation of the action-value function compared
to ProFQI, thanks to, respectively, the inclusion of fixed
point in the loss and the use of the closed-form solution.
Interestingly, in the case of K = 15, ProFQI, obtains a
slightly worse approximation than ProFQI. We impute this
behavior to the fact that when the linear approximation is
inadequate for modeling PBO, adding the fixed point in the
loss could harm the estimate.

5.2. Linear quadratic regulation

Now, we consider the continuous MDPs class of linear
quadratic regulator (LQR) with S = A = R. The transition
model P(s,a) = As + Ba is deterministic and the reward
function R(s,a) = Qs? + 2Ssa + Ra? is quadratic, where
A, B, ), S and R, are constants inherent to the MDP. We
choose to parameterize the action-value functions with a
2-dimensional parameter vector Qg = {(s,a) — Gs% +
2Isa + Ma?|(G,I) € R?} where M is a chosen constant,
for visualization purposes.

Proposition 5.2. PBO exists and for any w € R? its closed
form* is given by:

A*;w:ﬂH

I
; Q+A2(G—@)

. )
S+ AB(G — L)

2
I

M
We leverage our theoretical analysis for LQR (Bradtke,
1992; Pang & Jiang, 2021) by parameterizing value func-
tions accordingly, and we conduct a similar analysis to
the one for chain-walk. This time, we evaluate the dis-
tance between the optimal action-value function parameters,
which can be computed analytically, and the estimated ones.
We use the closed-form solution obtained in Equation 7
assuming the parameters (A4, B, @, S) known (PBO), and
unknown (ProFQI; gr). Figure 6 confirms the pattern ob-
served on chain-walk. ProFQI and ProFQI, obtain a better
approximation than FQI, which is reasonably worse than
ProFQIpqor and PBO. We also observe that ProFQIy or ob-
tains a significantly better approximation than the other
variants for a large number of iterations (blue bars), con-
firming the advantages of exploiting the closed-form solu-

“Under an assumption over the sample distribution, see in
Appendix B
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Figure 4: /5-norm of the difference between the optimal action-value function and the approximated action-value function

on chain-walk. Results are averaged over 20 seeds.

Figure 5: The chain-walk from Munos (2003). Reward is
always 0, but 1 in green states.

tion of PBO for finite MDPs. We additionally show the
sequence of parameters corresponding to the iterations of
FQI, ProFQI; gr, and ProFQI, in Figure 7. The training is
done with K = 2. The sequence starts from the chosen
initial parameters (G, I) = (0,0) for all algorithms, and
proceeds towards the optimal parameters, which are com-
puted analytically. Both ProFQI and ProFQI; gr apply the
PBO learned after the K = 2 iterations, for 8 iterations;
thus, the sequence of parameters for both algorithms is com-
posed of 8 points each, while FQI has 2. It is clear that
the parameters found by FQI are considerably further to the
target parameters, than the ones found by both ProFQI and
ProFQI; gr. In particular, the latter gets the closest to the
target, in line with the results in Figure 6, again evincing the
accuracy of the learned PBO and the benefit of performing
multiple applications of it.

6. Experiments

We challenge our PBO capabilities of dealing with prob-
lems of high dimensionality. We consider both ProFQI and
ProDQN (Section 4.2), comparing their performance with
their regular counterparts. To handle the complexity of the
input space of the considered problem, we leverage neu-
ral network regression to model our PBO. We consider an
offline setting, where we use ProFQI on car-on-hill (Ernst
et al., 2005) and bicycle balancing Randlov & Alstrgm

(1998), and an online setting, where we use ProDQN on
bicycle balancing, and lunar lander (Brockman et al., 2016).
We conduct this analysis to answer the following research
question: does PBO enable moving toward the fixed point
more effectively than the empirical Bellman operator? We
provide a positive answer to this question, by focusing our
analysis on the evaluation of performance w.r.t. Bellman it-
erations. Additional experimental details are in Appendix C.

6.1. Projected fitted Q-iteration

We initially evaluate ProFQI on the car-on-hill problem.
As done in Ernst et al. (2005), we measure performance
by generating roll-outs starting from different states on a
grid of size 17 x 17, and accounting for the fact that the
dataset D does not contain every starting state of the grid,
by weighting the obtained performance from each starting
state by the number of times it occurs in the dataset (see
Appendix C.1.3). In Figure 8, we report the performance
obtained with FQI and ProFQI for three different values of
Bellman iterations K (black dashed vertical line). Again,
for FQI, K is the number of regular iterations consisting of
an application of the empirical Bellman operator and the
projection step; for ProFQI, K is the number of applications
of PBO that are used in the training loss (Equation 3). The
iterations on the x-axis in Figure 8§ are the regular iterations
for FQI, and the applications of the trained PBO for ProFQI.
Thus, the iterations on the right side of the line can only
be reached with ProFQI. The purpose of this analysis is to
evaluate the different quality of trajectories toward the fixed
point obtained by the empirical Bellman operator in FQI,
and the trained PBO in ProFQI, for the same amount of
transition samples. We observe that ProFQI obtains better
performance than FQI consistently. This evinces that PBO
learns an accurate estimate of the true Bellman operator,
which allows obtaining a satisfactory action-value function
faster than the standard empirical Bellman operator used by
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FQL. It is interesting to note that the performance of ProFQI
does not grow for subsequent applications of PBO after the
end of the training, showing that PBO is not able to get
closer to the optimal action-value function due to limited
training iterations, but conveniently remains stable. The
benefit of PBO is further observable in the quality of the
policy computed by FQI and ProFQI (Figure 10). After only
9 training iterations, ProFQI obtains a policy that is very
close to the optimal one of car-on-hill (see the well-known
shape of the optimal car-on-hill policy in Figure 10a (Ernst
et al., 2005)), while FQI is significantly more inaccurate.

We perform another experiment on the more complex bicy-
cle balancing problem (Randlov & Alstrgm, 1998). We set
K = 8 and compute the discounted cumulative performance
as done for car-on-hill. We observe that ProFQI achieves a
significantly better performance than FQI in early iterations.
In subsequent iterations, the performance has a small drop
indicating that the learned PBO is not accurate enough to
model further iterations. This could be due to a suboptimal
choice of the architecture of the neural network of PBO, or
a limited number of training iterations. Nevertheless, the
performance remains higher than the one obtained by FQI.

6.2. Projected deep (Q-network

We also evaluate PBO in an online setting, using our
ProDQN algorithm and comparing against DQN (Mnih

et al., 2015). Again, we consider the bicycle balancing
problem to draw a comparison with the results obtained
in the offline setting, and the more complex lunar lander
environment (Brockman et al., 2016). We set the number
of Bellman iterations K = 8 for bicycle balancing and
K = 10 for lunar lander. Similar to the offline setting, K
is the number of updates of the target network for DQN,
and the number of applications of PBO in the training loss
(Equation 3) for ProDQN. Due to the need to collect new
samples while learning a policy, training PBO in an online
setting needs a slightly different treatment than the offline
case. Recalling Algorithm 1, we point out that new sam-
ples are collected after each gradient descent step, by using
the action-value function obtained after K applications of
the current PBO. We find this choice to work well in prac-
tice; however, we can envision multiple other possibilities
for effective exploration strategies based on PBO, that we
postpone to future works. Figure 9 shows the discounted
cumulative reward collected by DQN and ProDQN on both
bicycle balancing and lunar lander, for different numbers
of iterations. For DQN, each iteration corresponds to an
update of the target network, while for ProDQN it indicates
an application of the trained PBO. Regarding the bicycle
balancing problem, we observe a substantially different be-
havior than the one of ProFQI in Figure 11. While ProFQI
is able to outperform FQI in early iterations, ProDQN lags
behind DQN. Moreover, while ProFQI exhibits a drop in
performance for further iterations, ProDQN shows an in-
crease in performance that eventually outperforms DQN.
This behavior is interesting since it shows that, although
slower, in this case PBO moves toward the fixed point more
robustly than the empirical Bellman operator.

We conduct a similar evaluation on lunar lander. ProDQN
outperforms DQN since early iterations and maintains stable
performance, with a slight increase after K iterations. The
achieved performance is far from optimal, but lunar lander
is arguably a complex problem, where high-dimensionality
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Figure 8: Discounted cumulative reward on car-on-hill averaged over 20 seeds with 95% confidence intervals.
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Figure 9: Discounted cumulative reward on bicycle and lunar lander averaged over 40 seeds with 95% confidence intervals.

and exploration pose significant challenges. These results,
achieved with a limited number of action-value parameters

to make PBO feasible, provide evidence of the effectiveness
of PBO in deep RL problems. Further extensions, that we
consider beyond the scope of this work, could leverage deep
learning techniques to scale PBO to problems needing many
Tezsggges action-value function parameters, e.g., Atari (Bellemare
et al., 2013) or MuJoCo (Todorov et al., 2012).

(a) ProFQI (ours). (b) FQI.

Figure 10: Policies on car-on-hill using K = 9 and 9 appli- /- Discussion and conclusion

cation of PBO. We introduced the novel idea of an operator that directly

J maps parameters of action-value functions to others, as op-
_________ posed to the regular Bellman operator that requires costly
projections steps onto the space of action-value functions.
This operator, which we call projected Bellman opera-
tor (PBO), generates a sequence of parameters that can
progressively approach the ones of the optimal action-value
function. One limitation of our method in its current form
== Optimal . . . .
—— ProFQI (ours) is that, given that the size of input and output spaces of
— Fa PBO depends on the number of parameters of the action-
0 3 e S B8 value function, it is challenging to scale to problems that
learn action-value functions with deep neural networks with
Figure 11: Discounted cumulative reward on bicycle balanc- millions of parameters (Mnih et al., 2015).
ing. Results are averaged over 20 seeds and 95% confidence
intervals are shown.
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A. Projected Bellman operator in low-rank Markov decision processes

Low-rank MDPs is a class of problems with two feature maps o : S x A — R? and p1 : S — R, such that P(s'|s,a) =
(o(s,a), pu(s")) and R(s, a) = (o (s,a), 8), forall (s,a,s’) € Sx.AxS and for € RY (Agarwal et al., 2020; Sekhari et al.,
2021). We assume, without loss of generality, that for all (s,a) € S x A, ||o(s,a)||; < 1 and max{||u(s)|1,]0]:} < Vd.
The space of action-value functions is set as the space of linear functions in the parameters, i.e., Qq = {{o(-,-),w)|w € R?}.

Proposition A.1. In case of continuous state and action spaces and for w € R?, the PBO is

AN(w) =0+~ | max(a(s',a)|w)u(s")ds'. (8)
sa’€A

The closed-form is again a y-contraction mapping assuming that the MDP has a latent variable representation.

B. Proofs
B.1. Closed-form of PBO for a finite MDP

Proof. We compute the optimal Bellman iteration over a table ) € RV-M

F*Q(S7 a) = T(57 a) + VES’NpHsA,a) |:£I/1€a§[Q(SI, al)]:l

=1(s,0) +7 ;p(s% @) [51215[@(3/’ a/)]}

= (R+7P513§Q(-,a’)> (s,a) 9)

where P € RN-M*N g the transition probability matrix of the environment. From these equations, the operator () +
R+ yPmax, 4 Q(+,a’), evaluated on the objective function from the definition of PBO 2, yields zero error. This means
that we have found the PBO in closed-form. O

B.2. Closed-form of PBO for LQR MDP

Proof. We assume that the distribution over the samples is a discrete uniform distribution over S x 4 centered on zero in
both directions. With this assumption, the optimization problem 2 is equivalent to:

. X 2
argmin K, § (F Qw(saa) - QA(w)(Sva))
A:Q—Q <
(s,a)eSxA
where S x A is the set of all possible state-action pairs that can be drawn by the distribution of samples.

Let A be an operator on Q = R%, w = (G, I) € Qand (s,a) € S x A. We note the first and second component of A(w),
Ag(w) and Af(w), we have:

IQu(s,a) — Q) (s,a) = [-s*  —2sa] {ﬁfégﬂ +T*Qu(s,a) — Ma?.

We note Z(s,a) = [—s*> —2sa, X = [Ag(w) AI(w)]T and b(s,a) = I'*Q(s,a) — Ma?. By summing over the
samples we get:

Y (MQu(s,0) — Qaw(s.a) = Y (Z(s,0)X +b(s,a))” = | ZX + b3

A (s,a)eSx A

(s,a)€Sx
where Z = | Z(s, a)] andb=[... b(s,a) ]T.

Minimizing ||ZX + b||3 over X € Q will bring us to the minimizer of the optimization problem for any parameter
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distribution v. To minimize this quantity, we need to investigate the matrix

ZTZ _ Zs 84 2 Zs,a S3a _ Zs 54 0
12X s%a 230, 5% |0 dsa s2a®

The last equality comes from the fact that the sample distribution is symmetric along S and A. ZT Z is positive definite so
minxeq || ZX + b||3 has a unique minimizer: A*(w) = —(Z72)~*Z7b.

Let us now rewrite b. The optimal Bellman iteration over Q, is I'*Q.,(s,a) = 7(s, a) + max, Q. (s',a’). M is chosen
negative so that the function @’ — Q,,(s’,a’) = G - s'> + 2I - s'a’ + M - a'? has a unique maximizer of equation —1/n - 5’.
This makes

I? I? I?
‘S/):G'5/2727‘$/2+7'5/2:(Gfi)'slz.

HZE}X Qw(sla a/) = Qw(5/7 - M M M

M
By inserting it into the Bellman equation, we get

b(s,a) = T*Qu(s,a) — Ma®
12
=r(s,a)+ (G — M)-S’Q—Ma2
12
:Q-82—|—2S-é>‘a—|—R-CL2—|—(G—M)-SQ—MCL2

2

- (Q+A2(G—Z)> -52+2<S+AB(G—§4)> - sa+ <R+BQ(G—]I\/[)—M> -a?

Q+ANG-H)-a
=[5 2sa a®] | S+AB(G-L)—1

R+B*(G-4)-M

This means that
Q+A4%(G — i)
AN(w)=—(ZT2)" 1z ) S+AMG;%)
R+B*(G-L)-M

2

where J = |s2 2sa a?|.

From the fact that Z7J = {_ z(:)ss D Oszaz 8 , we have —(ZT2)712TJ = [
Q+A%G—EW

S+AB(G-1)|

Remarks With the assumption on the distribution of sample, the PBO can also be understood in a geometrical way. It

. . L T . T . .

projects the parameters along a line of direction vector [A2 AB] with an offset [Q S ] . The iterations correspond to a
non-linear transformation of the coefficient (G — 7*/am) in front of the direction vector. This also means that the fixed-point,
i.e. the optimal parameters are also on this line.

B.3. Closed-form of PBO for a low-rank MDP

Proof. The proof considers continuous unbounded state action spaces. For Q,, € Qgq, w the vector representing Q).,,
maXqe 4 Qu (8, a) is well defined (here max might not be attained, it should be interpreted as a supremum). We have
|Quw(s,a)] = [{o(s,a)|lw)| < |lo(s,a)ll - ||w|] < ||w]|, thus max,e 4 Qu (s, a) < oo. Then, we write the optimal Bellman
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iteration on the function @), as

I"Qu(s,a) = r(s,a) + YEgop(|s,a) krllgﬁ Qw(slva/):|
=r(s,a)+ 'y/ max (o (s',a’)|w)p(s']s, a)ds’

= (0(s,a)|0) + fy/ max(o (s, a’)|w) (o (s,a)|u(s"))ds’ from the definition of the transition
probabilities.

= (o (s,a)|0 + 7/ max(a(s’, a’)|w)u(s")ds’) from the linear of the scalar product.
s’ a’

This derivation shows that the operator w — 6 + ~ [, max, (o (s’,a’)|w)pu(s’)ds’ minimizes the objective function
presented in the definition of PBO 2 since its yields zero error. This operator is the PBO for a low-rank MDP. O

B.4. PBO is a y-contraction mapping for a low-rank MDP

Proof. We now assume that the MDP has a latent variable representation. This proof was inspired by the proof of the
contraction property of the Bellman Operator in Bertsekas (2015). Considering w, w’ € R?, we have

T3 (w) = T3 ()] loo =l / max( (s’ a')|(w — ') p(s)ds"||oo

[ (o) - )l

=5 ma
7i6{17--)-(,d}
<5 max max (o (s, a")|(w — w’))| p(s");ds’ since p(-) is positive.
iellnd} Jy a
<5 max max Z o(s',a)j|(w—w');|p(s")ds since o (-, -) are positive.
ie{l,d} Jg o
Jje{1,....d}
<~ max max Z o(s'ya)jpu(s)ids - ||w — w'l|eo
i€y Sy
GE{L s

<~ %naxd}/ w(s')ids’ - ||w — w'||o since o (-, -) are probability distributions.
ie{l,..., s/

< 9]|w — w'||o since p(+); is a probability distribution for all i.

C. Details of the empirical analysis

We provide details of the experimental setting. Table 1 and 2 summarize the values of all parameters appearing in the
experiments. FQI, DQN, ProFQI and ProDQN use Adam optimizer (Kingma & Ba, 2015) with a linear annealing learning
rate. For FQI, the optimizer is reset at each iteration. The set of parameters WV is generated by sampling from a truncated
normal distribution. When we use action-value functions with a neural network that has more than one hidden layer, the last
one is initialized with zeros. This way, the output of a neural network parameterized by any element of W is zero which
makes the reward easier to learn. Among the parameters in }V, one is chosen to be the initial parameters used by FQI or
DQN. For all the methods, the metrics have been constructed starting from the initial parameters, this is why, all the plots
showing the performances share the same .Jy. As Table 1 and 2 show, the initial parameters of PBOs are always taken small
enough so that applying PBO multiple times do not lead to diverging outputs.
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Table 1: Summary of all parameters used in the offline experiments.

[ | Chain-walk | LQR | Car-on-hill [ Bicycle ||

horizon +00 +00 100 50.000
0% 0.9 1 0.95 0.99
#D 400 121 5.500 70.000
batch size on D 20 121 500 1.000
#fitting steps 400 800 1.200 1.200
FQI #patience steps 100 100 30 7
starting learning rate 1072 1072 1073 5 x 1073
ending learning rate 1073 1073 5x 1077 1071
#W 100 ) 30 50
batch size on W 100 5 30 25
#epochs 1.000 1.000 1.000 500
#training steps 5 4 10 20
ProFQI starting learning rate 1072 1072 1073 1071
ending learning rate 107 107° 5x 1077 107
initial PBO’s parameters std || 5 x 107 [ 5 x107% [ 5x 10~7 [ 5 x 10~

C.1. Offline experiments
C.1.1. CHAIN-WALK

We consider all the possible state-action pairs 10 times as the initial dataset of samples D. These 10 repetitions help the
algorithms to grasp the randomness of the environment. The optimal action-value function Q* is computed with dynamic
programming. The #2-norm is computed by taking the norm of the vector representing the action-value function. In Figure
4, we only report the mean value, since the standard deviations over the seeds are negligible.

C.1.2. LINEAR QUADRATIC REGULATOR

The dynamics of the system is P(s,a) = —0.46s + 0.54a and the reward function is R (s, a) = —0.73s% — 0.63sa — 0.93a>.
M 1is chosen to be equal to —1.20 The set D is collected on a mesh of size 11 by 11 on the state-action space going from —4
to 4 in both directions, which means that samples belong to [—4, 4] x [—4,4] C S x A. We choose to parameterize the
value functions in a quadratic way, thus allowing us to compute the maximum in closed-form. However, we assume that the
algorithms do not have this knowledge since it is not the case in more general settings. For this reason, we discretize the
action space in a set of 200 actions going from —8 to 8. The architecture of the parameterized PBO trained with ProFQI is a
fully connected network composed of one hidden layer having 8 neurons. Rectified linear unit (ReLU) is used as activation
functions. In Figure 6, we only report the mean value, since the standard deviations over the seeds are negligible.

C.1.3. CAR-ON-HILL

The agent chooses between 2 actions: 1eft or right. The state space is 2-dimensional: position in [—1, 1] and velocity
[—3, 3]. If the agent succeeds to bring the car up the hill — at position greater than 1 and velocity in between —3 and 3 — then
the reward is 1, if the agent exceeds the state space, the reward is —1; otherwise, the reward is 0.

As our ProFQI is an offline algorithm, we need to make sure that all the necessary exploration has been done in the dataset
of samples. For that reason, we first consider a uniform sampling policy to collect episodes starting from the lowest point
in the map ([—0.5, 0]) with an horizon of 100. This sampling process is stopped when 4.500 samples are gathered. To get
more samples with positive reward, we sample new episodes starting from a state located randomly between [0.1, 1.3] and
[0.5,0.38] with a uniform policy as well. In total, 5.500 samples are collected. The sample and reward distributions over the
state space is shown in Figure 12. The action-value functions are parameterized with one hidden layer of 30 neurons with
ReLU as activation functions. The architecture of the parameterized PBO has 4 hidden layers of 302 (2 times the number of
parameters of the action-value functions) neurons each with ReLLU as activation functions. To help the training, the value
functions are taking actions in {—1, 1} instead of the usual {0, 1}. Given that the policies, the reward, and the dynamics, are
deterministic, we perform only one simulation to generate Figure 8.
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(a) Sample distribution. (b) Reward distribution.

Figure 12: Composition of the dataset of samples D on car-on-hill.

C.1.4. BICYCLE

We consider the bicycle problem, as described in Randlov & Alstrgm (1998). The state space is composed of 4 dimensions:
(w,w,0,0) where w is the angle between the floor and the bike, and 6 is the angle between the handle bar and the
perpendicular axis to the bike. The goal is to ride a bicycle for 500 seconds (50.000 steps). The agent can apply a
torque 7' € {—2,0,2} to the handle bar to make it rotate. The agent can also move its center of gravity in the direction
d € {—0.02,0,0.02} perpendicular to the bike. As in Lagoudakis & Parr (2003), the agent chooses between applying
a torque or moving its center of gravity, resulting in 5 actions instead of 9. Usually, a uniform noise in the interval
[—0.02,0.02] is added to d. For the purpose of this work, we reduce the number of samples by making the magnitude of the
noise 10 times smaller. A reward of —1 is given when the bike falls down, i.e., |w| > 12°. We use reward shaping to have
more informative samples, and we add a reward proportional to the change in w, i.e., 10*(Jw;| — |wi11]), as in Lagoudakis
& Parr (2003). The dataset of samples is composed of 3.500 episodes starting from a position close to (0, 0,0, 0) and cut
after 20 steps (Lagoudakis & Parr, 2003). The action-value functions are parameterized with one hidden layer of 30 neurons
with ReLU activations. The architecture of the parameterized PBO is composed of 3 hidden layers of 302 neurons (2 times
the number of parameters of the action-value functions) each with ReLLU functions as activation functions. 100 simulations
are done for each seed shown in Figure 11, all of them starting for the state (0,0, 0, 0), i.e., the bicycle standing straight.

C.2. Online experiments
C.2.1. BICYCLE

We also consider the bicycle problem in an online setting. The architecture of the action-value functions and the parameterized
PBO remain the same. During sampling, we only leave the algorithms 20 steps to explore before ending the episode like in
the offline setting. This is done to avoid exploring regions in the state space that are not useful for solving the environment.
100 simulations are done for each seed shown in Figure 9a.

C.2.2. LUNAR LANDER

Lunar lander, introduced in (Brockman et al., 2016), is an environment in which the goal is to make a lunar module land at
a specific location while behaving safely for the crew and the rocket. The state space is composed of 8 dimensions: the
position of the rocket, the linear velocities, the angle with the horizon, the angular velocity and two booleans for each leg
being activated when they touch the ground. The action space consists of 4 actions: fire the main engine, fire the left engine,
fire the right engine, do nothing. The action-value functions are parameterized with 2 hidden layers of 30 neurons each with
ReLU as activation functions. The architecture of the parameterized PBO is composed of 4 hidden layers of 2522 neurons
(2 times the number of parameters of the action-value functions) each with ReLU functions as activation functions. 100
simulations are done for each seed shown in Figure 9a each of them starting from a random initial position.
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Table 2: Summary of all parameters used in the online experiments.

H Bicycle \ Lunar Lander \

|

horizon 50.000 1.000
~ 0.99 0.99
#D 10.000 1.000
max #D 10.000 20.000
batch size on D 500 500
#steps per update 2 2
starting € 1 1
ending e 1072 1072
#fitting steps 6.000 6.000
DQN starting learning rate 1071 1073
ending learning rate 107° 107°
#W 30 30
batch size on W 30 15
#epochs 4.000 3.000
ProDQN #training steps 25 25
starting learning rate 107° 107°
ending learning rate 107 5x 1077
initial PBO’s parameters std || 5 x 107 5x 1077




