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ABSTRACT

Code Large Language Models (Code LLMs), such as StarCoder, have demonstrated
remarkable performance in various code-related tasks. However, different from
their counterparts in the general language modeling field, the technique of instruc-
tion fine-tuning remains relatively under-researched in this domain. In this paper,
we present Code Evol-Instruct, a novel approach that adapts the Evol-Instruct
method to the realm of code, enhancing Code LLMs to create novel models Wiz-
ardCoder. Through comprehensive experiments on five prominent code generation
benchmarks, namely HumanEval, HumanEval+, MBPP, DS-1000, and MultiPL-E,
our models showcase outstanding performance. They consistently outperform all
other open-source Code LLMs by a significant margin. Remarkably, WizardCoder
15B even surpasses the well-known closed-source LLMs, including Anthropic’s
Claude and Google’s Bard, on the HumanEval and HumanEval+ benchmarks.
Additionally, WizardCoder 34B not only achieves a HumanEval score compara-
ble to GPT3.5 (ChatGPT) but also surpasses it on the HumanEval+ benchmark.
Furthermore, our preliminary exploration highlights the pivotal role of instruction
complexity in achieving exceptional coding performance.

1 INTRODUCTION

Recently, Large Language Models (LLMs) (Brown et al., 2020; OpenAI, 2023; Chowdhery et al.,
2022; Anil et al., 2023; Hoffmann et al., 2022; Rae et al., 2021; Zeng et al., 2022; Zhang et al.,
2022; Touvron et al., 2023a) have garnered immense attention and demonstrated impressive success.
Notably, OpenAI’s GPT3.5 (ChatGPT) stands out as a prominent example. These models, through
extensive pre-training on vast internet data and fine-tuning with detailed instruction data (Ouyang
et al., 2022), have achieved state-of-the-art (SOTA) zero-shot performance across diverse NLP tasks.
This trend also extends to the realm of code understanding and generation, where a multitude of
Code LLMs have emerged (Chen et al., 2021a; Li et al., 2022; Fried et al., 2022; Nijkamp et al.,
2023b; Zheng et al., 2023; Wang et al., 2021; 2023; Li et al., 2023a; Nijkamp et al., 2023a; Rozière
et al., 2023). These models, pre-trained on substantial code data, excel in various code-related tasks,
consistently delivering impressive performance.

In contrast to most previous Code LLMs that primarily focus on the pre-training process, there has
been limited exploration of fine-grained instruction tuning in the code domain. The introduction of
instruction tuning was initially designed to enhance the generalization capabilities of LMs across
different tasks via multitask training (Raffel et al., 2020; Wei et al., 2022; Chung et al., 2022; Aribandi
et al., 2022; Sanh et al., 2022; Xu et al., 2022; Khashabi et al., 2020). OpenAI’s InstructGPT (Ouyang
et al., 2022), for instance, involved soliciting human annotators to provide explicit instructions to
ensure alignment with users’ intentions. Similarly, recent works such as Alpaca (Taori et al., 2023)
employed the self-instruct (Wang et al., 2022) method, where GPT3.5 (ChatGPT) generated the
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Develop a Python program that creates a random
password of length 8 characters.

Instruction

Here's an example program that generates a random
password of length 8 using Python's built-in `random`
module:
```python
import random
import string

def generate_password(length):
    chars = string.ascii_letters + string.digits +
string.punctuation
    password = ''.join(random.choice(chars) for i in
range(length))    
    return password

password = generate_password(8)
print(password)
```

Response

Easy
Task

Develop a Python program that creates a random password of
length 12 characters, including at least one uppercase letter, one
lowercase letter, one digit, and one special character from the
list (!@#$%^&*).

Here's an example code that does this:
```python
import random
import string

def generate_password(length):
    chars = string.ascii_uppercase + string.ascii_lowercase +
string.digits + '!@#$%^&*'
    password = ''
    password += random.choice(string.ascii_uppercase)
    password += random.choice(string.ascii_lowercase)
    password += random.choice(string.digits)
    password += random.choice('!@#$%^&*')
    for i in range(length - 4):
        password += random.choice(chars)
    password_list = list(password)
    random.shuffle(password_list)
    password = ''.join(password_list)
    return password

password = generate_password(12)
print(password)
```

Instruction

Response

Harder
Task

1. Add new constraints and requirements
to the original problem, adding
approximately 10 additional words.
2. Replace a commonly used
requirement in the programming task with
a less common and more specific one.
3. ...

Heuristic Methods

Code
Evol-Instruct

Figure 1: An illustration of our novel Code Evol-Instruct and the superior pass@1 performance of
our WizardCoder 34B, outperforming the open-source SOTA (CodeLlama-34B-Series as of the date
before August 24, 2023) by a large margin in 9 different programming languages. The Python score
is the mean between HumanEval and MBPP.

instruction data. Vicuna (Chiang et al., 2023) utilized user-shared conversations collected from
ShareGPT.com. WizardLM (Xu et al., 2023) introduces the Evol-Instruct method, which involves
evolving existing general instruction data to generate more complex and diverse datasets. Drawing
inspiration from these previous works in the general domain, our work, Code Evol-Instruct, is
specifically tailored to the coding domain’s distinctive characteristics.

In this study, we aim to enhance the capabilities of the SOTA open-source Code LLMs (i.e., StarCoder
and CodeLlama), by introducing our novel Code Evol-Instruct. The motivation of this fine-grained
instruction-tuning method in the code domain is to automatically increase the complexity of code
instruction data, so as to make the best of the internal coding ability of the Code LLMs. Our Code
Evol-Instruct incorporates several novel methods, including heuristics tailored to coding task features,
adversarial sample heuristics, time/space complexity requirements, and evolving stop controls. The
whole process includes two steps: initially, we apply our Code Evol-Instruct to evolve basic code
instruction data, specifically Code Alpaca (Chaudhary, 2023). Subsequently, we fine-tune StarCoder
and CodeLlama using our newly generated code instruction-following training set, resulting in our
WizardCoder models.

Figure 1 and the experimental results obtained from five code generation benchmarks, namely
HumanEval (Chen et al., 2021b), HumanEval+ (Liu et al., 2023), MBPP (Austin et al., 2021), DS-
100 (Lai et al., 2022), and MultiPL-E (Cassano et al., 2022), demonstrate that our WizardCoder models
outperform all other open-source Code LLMs (before August 24, 2023), achieving state-of-the-art
(SOTA) performance. Remarkably, our WizardCoder 15B even surpasses well-known Anthropic’s
Claude and Google’s Bard in terms of pass rates on HumanEval and HumanEval+. Furthermore,
WizardCoder 34B not only achieves a HumanEval score comparable to GPT3.5 (ChatGPT) but also
surpasses it on the HumanEval+ benchmark. Beyond this, our preliminary studies indicate that the
complexity of instructions is the key to achieving exceptional coding performance.

The contributions of this work can be summarized as follows:
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• We introduce Code Evol-Instruct, a novel instruction fine-tuning approach for code, which
enhances the performance of the open-source Code LLMs by a large margin.

• We develop WizardCoder models, which surpass all other open-source Code LLMs by
a substantial margin in coding tasks. Notably, the 15B version even outperforms the
well-known closed-source LLMs, such as Claude, and Bard. The 34B version achieves a
HumanEval score comparable to GPT3.5 (ChatGPT) and surpasses it on the HumanEval+
benchmark.

• We conduct a preliminary study highlighting the pivotal role of instruction complexity in
achieving exceptional coding performance.

2 RELATED WORK

Large Language Models. Recently, LLMs have demonstrated remarkable achievements across a
broad spectrum of tasks. Prominent tech companies have made significant strides in developing highly
proficient LLMs. These include OpenAI’s GPT3&4 (Brown et al., 2020; OpenAI, 2023), Google’s
PaLM (Chowdhery et al., 2022; Anil et al., 2023), and Bard1, DeepMind’s Chinchilla (Hoffmann
et al., 2022), and Gopher (Rae et al., 2021), as well as Anthropic’s Claude2. However, it is important
to note that these models are closed-source and can only be accessed through specific APIs or may
not be accessible at all.

The AI community has witnessed the release of several open-source LLMs, where the model weights
are made publicly available. EleutherAI has contributed GPT-NeoX-20B (Black et al., 2022) and
GPT-J-6B (Wang & Komatsuzaki, 2021). Google has released UL2-20B (Tay et al., 2022). Tsinghua
University has introduced GLM-130B (Zeng et al., 2022). Meta has released OPT (Zhang et al.,
2022) and LLaMA1&2 (Touvron et al., 2023a;b). It is worth noting that while these open-source
models have made valuable contributions, they generally do not exhibit the same level of performance
as their closed-source counterparts.

Large Language Models for Code. Recent studies have introduced a significant number of LLMs
for code-related tasks to address the challenges of code understanding and generation. OpenAI has
unveiled Codex (Chen et al., 2021a) and Code-Davinci (Microsoft, 2023). Google has proposed
PaLM-Coder (Chowdhery et al., 2022). They perform outstandingly on the popular code completion
benchmarks, like HumanEval (Chen et al., 2021b) and MBPP (Austin et al., 2021). However, these
models are closed-source.

On the other hand, there are several open-source Code LLMs available. Salesforce has introduced
CodeGen1&2 (Nijkamp et al., 2023b;a), CodeT5 (Wang et al., 2021), and CodeT5+ (Wang et al.,
2023). Tsinghua University has contributed CodeGeeX (Zheng et al., 2023), and the BigCode Project
has developed StarCoder (Li et al., 2023a). Meta has released the CodeLlama-Series (Rozière et al.,
2023), which achieves open-source SOTA performance on several benchmarks. The closely related
model, CodeLlama-Instruct, refines its performance through the self-instruct method. These models
have demonstrated notable advancements in code-related tasks. However, when compared to the
SOTA closed-source models, they still lag behind significantly. In contrast to the aforementioned
models, our work demonstrates that further training Code LLMs with our Code Evol-Instruct can
substantially enhance performance.

Instruction Fine-Tuning. The primary objective of instruction fine-tuning in its early stages was
to enhance the cross-task generalization capabilities of LMs. This was achieved by fine-tuning
LMs with a substantial corpus of public NLP tasks. T5 (Raffel et al., 2020) was among the first
models to explore this approach, training on a multitude of supervised text-to-text tasks. Subsequent
works such as FLAN (Wei et al., 2022), ExT5 (Aribandi et al., 2022), T0 (Sanh et al., 2022),
and UnifiedQA (Khashabi et al., 2020) further expanded the range of tasks to bolster the overall
generalization ability of LMs. Notably, ZeroPrompt (Xu et al., 2022) and FLAN-T5 (Chung et al.,
2022) pushed the envelope by incorporating thousands of tasks in their training pipelines. Across
these studies, a consistent finding emerges: fine-tuning LMs with diverse NLP task instructions yields
significant performance improvements when applied to new tasks.

1https://bard.google.com/
2https://www.anthropic.com/index/introducing-claude
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While fine-tuning LMs with diverse NLP tasks has shown promising results, it often falls short
in aligning with the intentions of real-world users. OpenAI has pursued a different approach by
soliciting human annotators to provide a large corpus of human instructions, encompassing diverse
forms and a wide range of task types. Building upon this dataset, OpenAI trained its GPT3 (Brown
et al., 2020) model to create InstructGPT (Ouyang et al., 2022), which better aligns with users’ inputs.
This line of development has even led to the impressive work known as GPT3.5 (ChatGPT). However,
it is important to note that the dataset and model weights associated with these advancements are
not publicly available. Alpaca (Taori et al., 2023) takes a different route by adopting the self-
instruct method (Wang et al., 2022), leveraging GPT3.5 (ChatGPT) to generate data for training.
Vicuna (Chiang et al., 2023) utilizes user-shared conversations collected from ShareGPT.com to train
its models. WizardLM (Xu et al., 2023) introduces the Evol-Instruct method, which involves evolving
existing general instruction data to generate more complex and diverse datasets. Drawing inspiration
from this idea, our work, Code Evol-Instruct, aligning with the distinctive characteristics of coding
domains, is the first instruction fine-tuning method explicitly designed to enhance Code LLMs.

3 WIZARDCODER: SOTA OPEN-SOURCE CODE LLM

In this section, we elaborate on the methodological details of WizardCoder. As illustrated in Figure 1,
we first adopt our Code Evol-Instruct to iteratively evolve the Code Alpaca dataset. Subsequently, we
fine-tune the pre-trained Code LLMs with the evolved data.

3.1 CODE EVOL-INSTRUCT

Inspired by the Evol-Instruct method proposed by WizardLM Xu et al. (2023), this work attempts
to automatically enhance the complexity of code instructions, thereby improving the fine-tuning
effectiveness of Code LLMs. Diverging from the general domain, our methods are meticulously
designed to align with the specific characteristics of coding domains. The evolutionary process
introduces the following features:

1. Heuristics aligned with coding task features on platforms like LeetCode, strategically
increasing the complexity of coding tasks to enhance the model’s capabilities.

2. Introduction of erroneous code as an adversarial sample, inspired by prior research on
attacking pre-trained code models Yang et al. (2022); Jha & Reddy (2022), adds a novel and
effective method to escalate task complexity.

3. Introduction of a heuristic emphasizing time and space complexity leverages insights from
previous studies Madaan et al. (2023), providing a valuable avenue for improving task
complexity.

So, the code evolutionary prompt template is as follows:

Prompt for Code Evol-Instruct

Please increase the difficulty of the given programming test question a bit.

You can increase the difficulty using, but not limited to, the following methods:
{method}

{question}

Here, {question} represents the current code instruction awaiting evolution, and {method} is the type
of evolution. The five types we used are listed as follows:
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Code Evolution Heuristic Methods

Add new constraints and requirements to the original problem, adding approximately 10
additional words.

Replace a commonly used requirement in the programming task with a less com-
mon and more specific one.

If the original problem can be solved with only a few logical steps, please add
more reasoning steps.

Provide a piece of erroneous code as a reference to increase misdirection.

Propose higher time or space complexity requirements, but please refrain from do-
ing so frequently.

3.2 TRAINING WizardCoder

We employ the following procedure to train WizardCoder. Initially, we utilize StarCoder 15B (Li
et al., 2023a) and CodeLlama-34B-Python (Rozière et al., 2023) as the foundations and proceed to
fine-tune them using the code instruction-following training set, which was evolved through Code
Evol-Instruct. The prompt format for fine-tuning is outlined as follows:

Prompt for Fine-Tuning Format

Below is an instruction that describes a task, paired with an input that provides further
context. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Response:

To construct the training dataset, we initialized it with the instruction-following dataset called Code
Alpaca3. We iteratively employ the Code Evol-Instruct technique on this dataset consisting of around
20k samples to produce evolved data. After each round of data evolution, we merge the evolved data
from all previous rounds with the original dataset to finetune Code LLMs. An external dev set serves
as the controlled Evol Stop. If the performance drops, we halt the evolution. In Appendix C, we
outline the approach employed to prevent data leakage. Additionally, Appendix D showcases some
evolved examples for reference.

4 EXPERIMENT

This section begins by providing a comprehensive overview of the baseline models in our experiments.
Subsequently, we present the performance of our models on five code generation benchmarks:
HumanEval (Chen et al., 2021b), HumanEval+ (Liu et al., 2023), MBPP (Austin et al., 2021),
DS-1000 (Lai et al., 2022) and MultiPL-E (Cassano et al., 2022).

4.1 BASELINES

Closed-Source Models. Multiple technology companies have successfully developed highly profi-
cient LLMs while choosing not to publicly release them. These models are referred to as closed-source
models. For our research, we incorporate a substantial number of these models as our baselines.
Specifically, our baselines encompass the following: (i) OpenAI’s GPT3.5(ChatGPT)&GPT4 (Ope-
nAI, 2023), Code-Davinci-002 (Microsoft, 2023), Code-Cushman-001 (Microsoft, 2023), and

3https://github.com/sahil280114/codealpaca
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Figure 2: The percentage of pass rates on the HumanEval and HumanEval+ with a single attempt
(greedy decoding), following the EvalPlus leaderboard (Liu et al., 2023).

Codex (Chen et al., 2021a); (ii) Google’s Bard, PaLM 2 (Anil et al., 2023), PaLM (Chowdh-
ery et al., 2022), and LaMDA (Thoppilan et al., 2022); (iii) Google DeepMind’s AlphaCode (Li
et al., 2022);(iv) Anthropic’s Claude; (v) Huawei’s PanguCoder2 (Shen et al., 2023); and (vi) Meta’s
Unnatural-CodeLlama-34B (Rozière et al., 2023).

Open-Source Models. Several open-source LLMs (OSS) have been made available to the AI
community, although their performance generally lags behind the closed-source models a lot. As part
of our research, we incorporate a significant number of these open-source models as our baselines.
Our baselines encompass the following models: InCoderFried et al. (2022), StarCoder and StarCoder-
Plus (Li et al., 2023a), LLaMa1&2 (Touvron et al., 2023a;b), CodeGen (Nijkamp et al., 2023b),
CodeGeeX (Zheng et al., 2023), CodeT5+(Wang et al., 2023), and CodeLlama (Rozière et al., 2023).
In addition, we also include several models with instructions fine-tuning, including CodeLlama-
Instruct (Rozière et al., 2023), OctoCoder (Muennighoff et al., 2023), InstructCodeT5+ (Wang et al.,
2023), Instruct-Codegen-16B,4 Guanaco-65B (Dettmers et al., 2023), Falcon-40B-Instruct (Penedo
et al., 2023) and Vicuna-13B (Chiang et al., 2023). More details can be found in the Appendix B.

4.2 IMPLEMENTATION DETAILS

The StarCoder and CodeLlama-34B-Python serve as our basic foundation models. OpenAI’s gpt3.5-
turbo is used to evolve the dataset and generate responses. The evolved dataset consists of approxi-
mately 78k samples. To fine-tune the basic models, we employ specific configurations, including a
batch size of 512, a sequence length of 2048, 200 fine-tuning steps, 30 warmup steps, a learning rate
of 2e-5, a Cosine learning rate scheduler, and fp16 mixed precision.

4.3 EVALUATION ON HUMANEVAL, HUMANEVAL+, AND MBPP

HumanEval (Chen et al., 2021b), HumanEval+ (Liu et al., 2023), and MBPP (Austin et al., 2021) are
key benchmarks in the Code LLM field, featuring diverse Python programming problems validated
using test cases. HumanEval comprises 164 problems with an average of 9.6 test cases per problem.
HumanEval+ expands the test cases significantly to an average of 774.8 per problem. In contrast,
MBPP provides 500 test programming problems with three automated test cases each.5

Comparing with the Closed-Source Models. Following the same setting of the EvalPlus leader-
board (Liu et al., 2023). In Figure 2, we compare our WizardCoder models with the closed-source
models, such as GPT4, Claude, and Bard on this leaderboard. Notably, all models generate code

4https://huggingface.co/sahil2801/instruct-codegen-16B
5For a fair comparison, we present results for GPT3.5(ChatGPT)&GPT4 using Eval-Plus with the latest

OpenAI’s APIs (Liu et al., 2023) (Figure 2) and OpenAI’s report (OpenAI, 2023) (Table 1). Prompt format
details are in Appendix A.
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Table 1: Results of pass@1(%) on HumanEval and MBPP. We follow the previous works (Chen et al.,
2021b) to generate n=200 samples to estimate the pass@1 score of our WizardCoder models with the
same set of hyper-parameters: temperate=0.2, and top p=0.95. *: our reproduced results.

Model Params HumanEval MBPP

Closed-source models

LaMDA (Thoppilan et al., 2022) 137B 14.0 -
AlphaCode (Li et al., 2022) 1.1B 17.1 -
PaLM (Chowdhery et al., 2022) 540B 26.2 36.8
PaLM-Coder (Chowdhery et al., 2022) 540B 36.0 47.0
PaLM 2-S (Anil et al., 2023) Unknown 37.6 50.0
Codex (Chen et al., 2021a) 2.5B 21.4 -
Codex (Chen et al., 2021a) 12B 28.8 -
Code-Cushman-001 (Microsoft, 2023) Unknown 33.5 45.9
Code-Davinci-002 (Microsoft, 2023) Unknown 47.0 58.1
GPT-3.5 (ChatGPT) (OpenAI, 2023) Unknown 48.1 52.2
PanguCoder2 (Shen et al., 2023) 15B 61.6 -
Unnatural-CodeLlama (Rozière et al., 2023) 34B 62.2 61.2
GPT-4 (OpenAI, 2023) Unknown 67.0 -

Open-source models

Llama (Touvron et al., 2023a) 65B 23.7 37.7
Llama2 (Touvron et al., 2023b) 70B 29.9 45.0
CodeGen-Mono (Nijkamp et al., 2023b) 16B 29.3 35.3
CodeGeeX (Zheng et al., 2023) 13B 22.9 24.4
StarCoder (Li et al., 2023a) 15B 33.6 43.6∗

CodeT5+ (Wang et al., 2023) 16B 30.9 -
InstructCodeT5+ (Wang et al., 2023) 16B 35.0 -
OctoCoder (Muennighoff et al., 2023) 15B 46.2 -
CodeLlama (Rozière et al., 2023) 34B 48.8 55.0
CodeLlama-Python (Rozière et al., 2023) 34B 53.7 56.2
CodeLlama-Instruct (Rozière et al., 2023) 34B 41.5 57.0

WizardCoder 15B 57.3 51.8
WizardCoder 34B 71.5 61.2

solutions for each problem utilizing a single attempt, and the resulting pass rate percentage is reported.
To maintain consistency, we employ the same experimental setup by generating answers using greedy
decoding and evaluate our WizardCoder models using the provided evaluation codes.

As depicted in Figure 2, our WizardCoder 34B attains the second position in this benchmark,
surpassing GPT3.5 (ChatGPT, 64.6 vs. 63.4) on HumanEval+. Our 15B version outperforms Claude-
Plus (59.8 vs. 53.0) and Bard (59.8 vs. 44.5). Furthermore, our WizardCoder models demonstrate a
remarkable superiority over other open-source LLMs that undergo instruction fine-tuning.

Comparing with the Open-Source Models. In Table 1, we conduct a comprehensive comparison
of our WizardCoder with other open-source models on the HumanEval and MBPP benchmarks.
In contrast to the results presented in Figure 2, we adhere to the approach outlined in previous
studies Chen et al. (2021b) by generating n samples for each problem to estimate the pass@1 score.
The findings presented in Table 1 clearly demonstrate that our WizardCoder exhibits a substantial
performance advantage over all the open-source models.

4.4 EVALUATION ON MULTI-LANGUAGE CODING

We included comprehensive assessment results across 8 distinct programming languages on the
MultiPL-E benchmarks. These languages encompass Java, JavaScript, C++, PHP, R, Julia, Swift, and
Rust. The empirical results, as presented in Table 2, distinctly demonstrate the superior performance
of our WizardCoder models across all evaluated programming languages, surpassing the SOTA
open-source Code LLMs. This underscores the efficacy of our Code Evol-Instruct method.

4.5 EVALUATION ON DS-1000

The DS-1000 benchmark Lai et al. (2022) comprises 1k distinct data science workflows spanning
7 libraries. It assesses the performance of code generations against test cases and supports two
evaluation modes: completion and insertion. In our experiments, we only report insertion scores for
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models that support. In Table 3, we present pass@1 (n=40) results for each library, along with an
overall score.6 Based on these results, our conclusion is that WizardCoder demonstrates a significant
superiority over all other models when tackling data science problems on the DS-1000 benchmark.

Table 2: Results of pass@1(%) on 8 different programming languages on the MultiPL-E (Cassano
et al., 2022) benchmarks. All models are evaluated with the same set of hyper-parameters: tempera-
ture=0.2, top p=0.95, max length=512, and n=50.

Model Params Java Js CPP PHP R Julia Swift Rust

CodeGen-Multi 16B 22.2 19.2 21.0 8.4 6.5 0 1.3 4.2
CodeGeeX 13B 19.1 16.9 16.9 13.5 3.9 0.3 7.3 7.9
Code-Cushman-001 - 31.9 31.3 30.6 29.0 11.0 1.5 22.1 25.2
StarCoderBase 15B 28.5 31.7 30.6 26.8 10.2 21.1 16.7 24.5
StarCoder 15B 30.2 30.8 31.6 26.1 15.5 23.0 22.7 21.8
CodeLlama 34B 40.2 41.7 41.4 40.4 22.7 31.4 35.3 38.7
CodeLlama-Python 34B 39.5 44.7 39.1 39.8 22.4 31.4 34.3 39.7
CodeLlama-Instruct 34B 41.5 45.9 41.5 37.0 24.3 32.7 37.6 39.3

WizardCoder 15B 35.8 41.9 39.0 39.3 33.5 34.0 33.7 27.1
WizardCoder 34B 44.9 55.3 47.2 47.2 39.8 41.5 44.3 46.2

Table 3: Performance of WizardCoder 15B and baseline models on DS-1000. All models are evaluated
with the same set of hyper-parameters: temperature=0.2, top p=0.5, max length=1024. Scores are
average pass@1 accuracy over 40 samples. Matplotlib (plt) task does not have the right context, so
insertion and completion scores are identical.

Format Model plt np pd py scp sk tf All

# of problems: 155 220 291 68 106 115 45 1,000

Completion InCoder-6B 28.3 4.4 3.1 4.4 2.8 2.8 3.8 7.4
Completion CodeGen-mono 31.7 10.9 3.4 7.0 9.0 10.8 15.2 11.7
Completion Code-Cushman-001 40.7 21.8 7.9 12.4 11.3 18.0 12.2 18.1
Completion StarCoder 51.7 29.7 11.4 21.4 20.2 29.5 24.5 26.0
Completion WizardCoder 55.2 33.6 16.7 26.2 24.2 24.9 26.7 29.2

Insertion InCoder-6B 28.3 4.6 2.9 4.4 2.8 3.1 7.8 7.5
Insertion StarCoder 51.7 30.8 10.3 21.0 20.2 27.4 20.0 25.4
Insertion WizardCoder 55.2 35.1 20.4 30.4 28.9 32.3 37.8 32.8

5 ANALYSIS

Table 4: Different evolution execution models.

Base Model Evol Model Pass@1

StarCoder-15B GPT-4 62.2
StarCoder-15B GPT-3.5 59.8
StarCoder-15B CodeLlama 55.5
CodeLlama-34B GPT-4 73.8
CodeLlama-34B GPT-3.5 73.2
CodeLlama-34B CodeLlama-34B 70.1

Evolution Models and Rounds. In Table 4, GPT-
4 replaces GPT-3.5 for evolved rounds, boosting
HumanEval Pass@1 scores to 73.8 (34B) and 62.2
(15B). Using OSS CodeLlama-Instruct-34B also
proves effective, yielding scores of 70.1 (34B) and
55.5 (15B). Despite GPT-4’s superior coding perfor-
mance (88.4 vs. 73.2), the gain in evolved rounds
is not proportional (73.8 vs. 73.2). Conversely,
CodeLlama’s weaker performance narrows when
using Code Evol-Instruct (73.2 vs. 70.1), highlight-
ing its crucial role. More experiments details are
listed in Appendix E. Additionally, Figure 3 presents results for different data evolution rounds. All
models are fine-tuned with 200 steps. Due to the limited size of the dev set of MBPP, we merged
the training set and dev set, forming the MBPP-400 dev set. The experiments reveal that the highest
pass@1 scores on both the MBPP-400 dev set and the HumanEval are achieved subsequent to three
rounds of evolution.

6Given that this benchmark and its evaluation codes are not designed for the instruction fine-tuned models, we
encounter significant challenges in aligning our 34B model with this framework. Moreover, the Codellama-34B
base model does not support code insertion. Thus, we only include our 15B model results.
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(a) Pass@1 performance on MBPP-400 dev set. (b) Pass@1 performance on HumanEval.

Figure 3: The impact of the number of data evolution rounds.

Complexity and Quantity. While the enhanced performance attributed to our Code Evol-Instruct
method has been evident in prior experiments, it remains an open question whether this performance
gain is a result of an increase in the number of samples or tokens. During the evolution, each round
includes more samples, and the introduction of more complex instructions inevitably leads to an
increase in tokens within the training data. To address this question, we fine-tune the models using
only the specific round data separately from scratch with a similar number of samples (upper part) or
tokens (lower part) in Table 5.

Table 5: Analysis of whether the perfor-
mance gain comes from more tokens.

Evol #Samples Pass@1

Round 0 20.0k 45.7
Round 1 18.8k 56.1
Round 2 19.7k 53.0
Round 3 19.3k 54.3
Round 4 19.0k 51.2

Evol #Tokens Pass@1

Round 0 2.3M 44.5
Round 1 2.3M 51.8
Round 2 2.3M 52.4
Round 3 2.3M 50.0
Round 4 2.3M 49.4

When each round contains the same number of samples
or tokens, the models trained with the seed data still lag
behind the evolved rounds. Furthermore, combining data
from different rounds leads to the best performance. These
results suggest that the primary source of the gain is indeed
attributable to our Code Evol-Instruct method, rather than
merely an increase in samples or tokens.

Complexity and Similarity. Apart from the quantity
analysis, we also investigate whether evolution leads to
the inclusion of data more similar to the test set. To address
this, we perform an analysis of the HumanEval test set.
We employ test samples as queries to retrieve the top-1
sample from each evolved round’s training data, utilizing
the SOTA embeddings model, gte-large (Li et al., 2023b).
Additionally, we employ GPT4, to provide average sim-
ilarity scores between the test set and the retrieved top-1
samples. The details are shown in Appendix C.

Figure 4: Average similarity scores be-
tween HumanEval samples and the top-
1 retrieved data, ranging from 1 (com-
pletely different) to 10 (identical).

Figure 4 illustrates that the evolution process does not yield
higher similarity scores. Furthermore, similarity scores
across all rounds remain relatively low. These findings
indicate that the primary source of performance gain is the
introduction of more complex data.

6 CONCLUSION AND FUTURE WORK

This paper introduces WizardCoder models, the Code Evol-
Instruct fine-tuned Code LLMs. The experimental results
demonstrate that WizardCoder models achieve SOTA per-
formance surpassing all existing open-source Code LLMs
on five widely recognized code generation benchmarks:
HumanEval, HumanEval+, MBPP, DS-1000 and MultiPL-
E. Notably, WizardCoder 15B model surpasses some of
the well-known closed LLMs, such as Claude and Bard. Additionally, WizardCoder 34B achieves a
HumanEval score comparable to GPT3.5 (ChatGPT) and surpasses it on the HumanEval+ bench-
mark. Furthermore, our analysis underscores the pivotal role of instruction complexity in enhancing
performance. For future work, as depicted in Figure 2, our model still falls significantly behind the
SOTA LLM, GPT4. Therefore, future work will further augment the performance of our model.
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A PROMPT FORMATS

In this section, we include the prompt for evaluation on different tasks.

Zero-Shot Prompt for Evaluation on HumanEval and HumanEval+

Below is an instruction that describes a task, paired with an input that provides further
context. Write a response that appropriately completes the request.

### Instruction:
Create a Python script for this problem:
{Question}

### Response:

Three-Shot Prompt for Evaluation on MBPP

Below is an instruction that describes a task, paired with an input that provides further
context. Write a response that appropriately completes the request.

### Instruction:
Create a Python script for this problem:
{Question}
{Test Example 1}
{Test Example 2}
{Test Example 3}

### Response:

Zero-Shot Prompt for Evaluation on DS-1000 (Completion)

Below is an instruction that describes a task, paired with an input that provides further
context. Write a response that appropriately completes the request.

### Instruction:
{Question}
Complete the Python code in ”...”.

### Response:

In the case of DS-1000 (Insertion), adherence to the benchmark’s specifications necessitates the
utilization of StarCoder’s specialized insertion symbol. Consequently, we have found it imperative to
align with the same prompt format employed by StarCoder for this particular benchmark.

For the MultiPL-E benchmark, we recognized the need to align with the evaluation codes provided
by bigcode-evaluation-harness.7 Consequently, we opted to adopt the same prompt format utilized by
StarCoder.

B BASELINES DETAILS

We include a large amount of models as our baselines. For GPT3.5 (ChatGPT)&GPT4. their results
are obtained from GPT4’s report and EvalPlus. The results of Code-Davinci-002, Code-Cushman-001,
Codex, PaLM, PaLM 2, LaMDA, AlpahaCode, Incoder, StarCoder, LLaMa, CodeGen, CodeGeeX,
CodeT5+, and InstructCodeT5+ are from StarCoder or CodeT5+’s paper. The results of Bard are
evaluated with Google’s API. The results of Claude are evaluated with Anthropic’s API. The results

7https://github.com/bigcode-project/bigcode-evaluation-harness
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of Instruct-Codegen-16B, Guanaco-65B, Falcon-40B-Instruct, and Vicuna-13B are evaluated with
the open-sourced checkpoints. The results of CodeLlama-Series are from CodeLlama’s paper. The
results of OctoCoder are from its paper. The results of PanguCoder2 are also from its paper.

The MBPP score of StarCoder differs from that in its original paper. Through a personal contact, we
were informed that StarCoder was evaluated using a cleaned and smaller version of MBPP, comprising
only 397 problems, significantly fewer than the original MBPP benchmarks (500). Consequently, we
conducted a re-evaluation of StarCoder using the original MBPP.

C SIMILARITY CHECKING AND DATA FILTERING

The prompt formats to compute the similarity score are as follow:

System Prompt for Similarity Checking

Your task is to evaluate the similarity of the two given coding tasks. Please review the two
coding tasks carefully, paying close attention to the overlap in function names, code structures,
topics, and contents. Once you have carefully reviewed both coding tasks, provide a similarity
score between these two coding tasks. The score should range from 1 to 10 (1: completely
different coding tasks; 10: identical coding tasks). You only need to provide your score. The
response format is:
Score: ’...’

User Input for Similarity Checking

# Task1
{task1}

# Task2
{task2}

To thoroughly prevent data leakage from the test datasets to the training dataset, we implemented an
additional data filtering step. Utilizing the SOTA embeddings model, gte-large, we treated all test
samples as queries to extract the top 5 samples from the training data. Following this, GPT-4 was
employed to evaluate the similarity between the retrieved samples and the test sample. The task for
GPT-4 is simplified to a binary decision—either a “yes” or “no” indicating a match. In case of a
positive match, the sample is excluded from the training data.

D EVOL EXAMPLES

In this section, we present some evolved examples to elucidate the influence exerted by our Code
Evol-Instruct.

Example 1:

• Round 0: Write a MongoDB query to select all documents in a collection where the field
’category’ is ’clothes’.

• Round 1: Write a MongoDB query to select all documents in a collection where the field
’category’ is ’clothes’ and the ’brand’ field is not equal to ’Nike’.

• Round 2: Write a MongoDB query to select all documents in a collection where the field
’category’ is ’clothes’ and the ’brand’ field is not equal to ’Nike’, and the ’price’ field is
greater than or equal to 100 and less than or equal to 500.

• Round 3: Write a MongoDB query to select all documents in a collection where the field
’category’ is ’clothes’ and the ’brand’ field is not equal to ’Nike’, and the ’price’ field is
greater than or equal to 100 and less than or equal to 500, and the ’color’ field is either ’red’
or ’blue’. Additionally, sort the documents in descending order by the ’date added’ field and
limit the result to the first 10 documents.
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Example 2:

• Round 0: Using Tensorflow, set up a model to predict the classification of a handwritten
digit.

• Round 1: Using Tensorflow, set up a model to predict the classification of a handwritten
digit with the constraint that the model must be trained using only 1000 samples from the
MNIST dataset.

• Round 2: Using TensorFlow, set up a model to predict the classification of a handwritten
digit with the constraint that the model must be trained using only 500 samples from the
MNIST dataset. Additionally, implement transfer learning to incorporate the features learned
from a pre-trained model.

• Round 3: Using TensorFlow and the MNIST dataset, develop a convolutional neural network
(CNN) to accurately classify handwritten digits. However, in this new version of the task,
you must limit your training to a maximum of 500 images. Furthermore, incorporate transfer
learning by using a pre-trained model to extract features from the data and improve your
model’s accuracy.

Example 3:

• Round 0: Create a class in Java that can store a list of students and the courses they are
enrolled in.

• Round 1: Create a Java program that manages a student database with courses, including
options to add, remove, and search for students, as well as courses for each student. The
program should also be able to display statistics on the number of students and courses.

• Round 2: Develop a Java program that manages a student database containing courses and
grades. Your program should allow users to add, remove, and search for students, as well as
add or drop courses for each student. Furthermore, it should display statistics on the number
of students and courses, and calculate the average grade for each student. Ensure that your
program implements appropriate error-handling mechanisms.

• Round 3: Develop a Java program to manage a library system where users can check-in,
check-out and search for books in the library. The system should allow users to add new
books and delete existing ones from the library. The program should also provide statistics
on the number of books checked-in and checked-out, and calculate the average reading time
for each book. Ensure that your program implements appropriate error-handling mechanisms
and enforces data integrity constraints such as not allowing users to check-out books that
have already been checked-out.

E USING DIFFERENT EVOLUTION EXECUTION MODELS

We explored using the open-source models (OSS) CodeLlama-Instruct-34B for generating evolved
instructions. However, it demonstrated relatively low coding performance in response generation.
To address this, we fine-tuned it using our code-alpaca dataset and utilized this model for response
generation.

F INTERACTION EXAMPLES

Table 6 7 8 showcases examples of interactions with our WizardCoder. The examples demonstrate
that our model consistently generates accurate responses accompanied by clear explanations.
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Table 6: Examples of interaction with our WizardCoder.

Instruction Response

Write a Python
function to tell me
what the date is to-
day.

Here’s a Python function that tells you what the date is today:

import datetime

def get_date():
now = datetime.datetime.now()
return now.strftime("%A, %B %d, %Y")

print(get_date())

This function uses the datetime module to get the current date and time. It
then uses the strftime() method to format the date as a string in the format
”Day, Month Date, Year”. Finally, it returns the formatted string.

You can call this function from your Python code to get the current date
and time.

I do not know
how to integrate
a Python function
numerically.
Please write a
code for me.

Sure, here’s an example code for integrating a Python function numerically
using the trapezoidal rule:

def integrate(f, a, b, n):
h = (b - a) / n
s = (f(a) + f(b)) / 2
for i in range(1, n):

s += f(a + i * h)
return h * s

This code takes in a function f, the lower bound a, the upper bound b,
and the number of subintervals n. It then calculates the width of each
subinterval h, and uses the trapezoidal rule to approximate the integral of
f between a and b. The result is returned as a float.
To use this function, you would call it with the function you want to inte-
grate, the lower bound, the upper bound, and the number of subintervals
you want to use. For example:

def f(x):
return x**2

result = integrate(f, 0, 1, 1000)
print(result)

This would integrate the function f(x) = x**2 between 0 and 1 using 1000
subintervals, and print the result.
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Table 7: Examples of interaction with our WizardCoder.

Instruction Response

List the prime
numbers between
20 and 30 with
Java.

Here’s the Java code to list the prime numbers between 20 and 30:

public class PrimeNumbers {
public static void main(String[] args) {

for (int i = 20; i <= 30; i++) {
boolean isPrime = true;
for (int j = 2; j < i; j++) {

if (i % j == 0) {
isPrime = false;
break;

}
}
if (isPrime) {

System.out.print(i + " ");
}

}
}

}

Output:

23 29

Explanation:
- We use a nested for loop to iterate through all the numbers between 20
and 30.
- For each number, we use another for loop to check if it is prime or not.
- If a number is divisible by any number other than 1 and itself, then it is
not prime.
- If a number is not divisible by any number other than 1 and itself, then it
is prime.
- We print the prime numbers to the console.
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Table 8: Examples of interaction with our WizardCoder.

Instruction Response

Write a simple
neural network
with pytorch

Here is a simple neural network with pytorch:

import torch
import torch.nn as nn

class Net(nn.Module):
def __init__(self):

super(Net, self).__init__()
self.fc1 = nn.Linear(2, 4)
self.fc2 = nn.Linear(4, 1)
self.sigmoid = nn.Sigmoid()

def forward(self, x):
x = self.fc1(x)
x = self.sigmoid(x)
x = self.fc2(x)
return x

net = Net()
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(net.parameters(), lr=0.01)

# Training
for epoch in range(1000):

inputs = torch.randn(10, 2)
targets = torch.randn(10, 1)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()

# Testing
inputs = torch.randn(10, 2)
outputs = net(inputs)
print(outputs)

In this example, we define a neural network with two fully connected
layers and a sigmoid activation function. We use the mean squared error
loss function and the stochastic gradient descent optimizer. We train the
network for 1000 epochs and then test it with some randomly generated
inputs. The output of the network is a tensor of predicted values.
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