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Abstract

Semantic watermarks have emerged as a promising technique for latent diffusion
models, embedding information by subtly modifying the initial latent noise. While
robust to common perturbations, recent studies indicate that semantic watermarks
remain vulnerable to black-box forgery attacks. In this paper, we provide a theoret-
ical analysis of such attacks through the lens of rate-distortion theory. Meanwhile,
we propose the CrossRobust metric to evaluate the watermark robustness against
black-box forgery attacks across proxy models. This metric is grounded in the
concept of model specificity, the tolerance of the watermark against the forgery
attacks while being detectable by the original model. Additionally, we also show
that model mismatch inevitably introduces an irreducible distortion error when
proxy models are used. Extensive experiments demonstrate that the proposed
metric can effectively estimate the robustness of existing approaches and offer
new insights into the design of improved semantic watermarks and verification
mechanisms.

1 Introduction

The increasing proliferation of AI-generated content (AIGC) [1] has attracted widespread interest
across various fields and contributed to substantial commercial value [2]. In visual content generation,
diffusion models allow individuals from diverse backgrounds to produce high-quality images with
minimal effort. However, this advancement has raised concerns regarding the erosion of trust in
digital media and the dissemination of misinformation [3]. For instance, deepfakes [4], highly
realistic AI-generated media, have been used to perpetrate fraud, damage personal reputations, and
spread disinformation. In response, governments have begun mandating that companies implement
watermarks [5, 6], which offer a reliable means of embedding identifying information into AI-
generated content for copyright protection and authenticity verification.

Recent studies [7–10] have introduced semantic watermarks for latent diffusion models (LDMs),
which modify the initial latent noise to embed a predefined pattern that can be recovered through
inversion of the denoising process. Semantic watermarks enable straightforward deployment into
existing diffusion models and claim to achieve greater robustness against diverse image transforma-
tions and adversarial attacks. However, as demonstrated in [11], an adversary can easily leverage the
image-to-latent inversion process of diffusion models to perform a forgery attack using proxy models.
Fig. 1 illustrates this threat, in which the adversary transfers a service provider’s watermark to an
arbitrary image. Such an attack undermines trust in the watermarking system by falsely labeling real
images as AI-generated and wrongly accusing regular users of distributing harmful content. Despite
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Figure 1: Illustration of forgery attacks on the semantic watermark. The left side (green) shows a
user generating a watermarked image using the target model Θ of the service provider. The right side
(red) depicts an attacker producing forged images with a proxy model ΘA, which are subsequently
verified by the target model Θ for detection.

these empirical findings, there remains little theoretical understanding of why such attacks can be
carried out easily.

To bridge this gap, we provide a formal analysis grounded in rate–distortion theory. In this paper, we
revisit the feasibility of forgery attacks on semantic watermarks in a black-box setting. We formulate
the attack as a rate–distortion problem, where the adversary must optimize the attack by trading
off two competing objectives: the successful information transfer of the watermark (rate) and the
preservation of latent quality (distortion). Under this framework, we quantify the constraints faced by
an adversary without access to the target model to conduct our theoretical analysis. Our analysis also
reveals the key factor affecting the forgery effectiveness: fundamental mismatches between the proxy
and target models in aspects of backbone design and optimization objectives, which introduce an
irreducible distortion error. In addition, we define a novel property of semantic watermarks, termed
“model specificity”, which requires that a watermark remain reliably detectable on the original target
model while resisting forgery attempts by utilizing proxy models. To evaluate this property, we
introduce the CrossRobust metric, which measures the robustness of semantic watermarks across
heterogeneous proxy models.

In summary, the main contributions of this paper are summrized as follows:

• We analyze black-box forgery attacks through rate–distortion theory, showing that model
mismatch imposes an irreducible distortion floor that restricts an attacker’s ability to recover
the pristine latent representation.

• We introduce the concept of model specificity for semantic watermarks, which ensures that
a watermark remains reliably detectable on the original target model while resisting forgery
attacks from proxy models. This property exploits architectural differences to increase
posterior divergence and irreducible distortion.

• We propose CrossRobust, a metric that measures the robustness of semantic watermarks
against forgeries generated by heterogeneous architectures. Using this metric, we demon-
strate that existing methods lack sufficient robustness against forgery attacks and do not
satisfy model specificity.

2 Background

2.1 Semantic Watermarking

Recently, several methods [7, 9, 12, 13] have been tailored to large-scale text-to-image diffusion
models. In contrast to traditional post-hoc approaches [12–14], which apply a watermark after image
generation, semantic watermarks are embedded within the generative process itself. They leverage
the inversion of the denoising process to modify only the initial latent zT to encode a specific,
recoverable structure. This approach is highly effective because it is easy to implement, requires no
additional training, and claims to offer significantly greater robustness against image perturbations and
targeted attacks. Tree-Ring (TR) [7] embeds circular patterns into the frequency domain of the latent
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representation of z(w)
T . For detection, it verifies the pattern by checking if the frequency representation

of ẑ(w)
T is sufficiently close to the original pattern. Gaussian Shading (GS) [9] uses a stream ciphertext

encryption combined with distribution-preserving sampling to ensure that watermarked images follow
the same distribution as non-watermarked ones. During verification, this process is inverted to recover
a bit string, which is then compared to a set of registered bit strings. Since most state-of-the-art
watermarking schemes[15, 16] are derived from these two methods, we adopt TR and GS in this
paper for simplicity.

2.2 Watermark Forgery Attacks

Previous works [11, 17, 18] reveal that semantic watermarks are vulnerable to forgery. Yang et
al. [18] exploit average multiple watermarked images, either in the pixel space or in their inverted
latent representations, to obtain a watermark pattern which is then added on clean cover images
(or removed from watermarked images). Müller et al. [11] propose two novel forgery approaches
in black-box settings. In these methods, the adversary first obtains the initial latent representation
through a proxy diffusion model and then manipulates it to either generate a new image with a
different prompt or embed adversarial noise into a target image to replicate the watermarked latent.
However, black-box forgery [11] provides only empirical results and offers little theoretical insight.

2.3 Rate-Distortion Theory

Shannon first explored the essential balance between the minimum amount of information (rate)
required to represent a source and the distortion that arises when the data is reconstructed [19, 20].
By establishing theoretical limits on compression performance, rate–distortion (RD) theory guides
the design of practical source coding schemes [21] and enables evaluation of their capabilities.
Recent studies [22–24] have extended this theory to include perceptual quality, revealing a three-way
trade-off among rate, distortion, and perception. In this work, we leverage RD theory to analyze
the distortions in latent representations produced by an attacker and how these distortions not only
degrade the quality of forged images by optimization-based forgery attacks, but also reduce the
success rate of watermark detection.

3 Preliminaries

3.1 Diffusion Models and Inversion

Denoising Diffusion Probabilistic Models (DDPM) [25] formulate the process of adding and removing
noise as a Markov chain. Denoising Diffusion Implicit Models (DDIM) [26] extend DDPM to gener-
ate high-quality images with fewer sampling steps. Unlike DDPM, DDIM follows a deterministic and
non-Markovian process, which enables reversible noising and denoising. To reduce memory usage
and computational cost, Latent Diffusion Models (LDM) [27] perform the diffusion process in a latent
space. Given an image x ∈ RH×W×3, LDM employs an encoder E(·) maps x to its latent representa-
tion z0 = E(x), and a decoder D(·) reconstructs the image as x′ = D(z0). Let βt denote the variance
schedule at timestep t, where t ∈ {0, 1, ..., T − 1}, and define ᾱt =

∏t
i=1 αi =

∏t
i=1(1 − βi).

At each denoising step, a learned noise predictor ϵθ(zt, t, C) estimates the noise added to z0. The
corresponding estimate of z0 at timestep t is given by:

ẑt0 =
zt −

√
1− ᾱt ϵθ(zt, t, C)√

ᾱt
, (1)

where C denotes the text condition. Using ẑt0, the latent at the previous timestep can be computed as:

zt−1 =
√
ᾱt−1 ẑ

t
0 +

√
1− ᾱt−1 ϵθ(zt, t, C). (2)

Diffusion inversion reverses the generative process by recovering the latent representation from
a given image. DDIM inversion accomplishes this by reversing the time steps and applying the
same update rule used in DDIM generation. Starting from the latent representation z0, noise is
incrementally added, with the t-th step defined as:

zt+1 =
√
ᾱt+1 ẑ

t
0 +

√
1− ᾱt+1 ϵθ(zt, t, C). (3)
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3.2 Rate-Distortion Theory

Rate-distortion theory [20, 28] characterizes the fundamental trade-off between the rate used to
represent samples from a data source X ∼ pX and the expected distortion incurred in decoding
those samples from their compressed representations. Formally, the relation between the input X and
output X̂ of an encoder-decoder pair is a (possibly stochastic) mapping defined by some conditional
distribution pX̂|X . The expected distortion is given by

E[∆(X, X̂)], (4)

where the expectation is over the joint distribution pX,X̂ = pX̂|XpX , and ∆ : X × X̂ → R+ is any

full-reference distortion measure such that ∆(X, X̂) = 0 if and only if X = X̂ .

A fundamental result states that for an i.i.d. source X , the minimum achievable rate under a distortion
constraint D is given by the rate-distortion function:

R(D) = min
pX̂|X

I(X, X̂) s.t. E[∆(X, X̂)] ≤ D, (5)

where I denotes mutual information [29]. Closed-form expressions for the rate-distortion function
R(D) exist only for a few source distributions and simple distortion measures (e.g., squared error or
Hamming distance), but in general, R(D) is known to be non-increasing, convex, and continuous.

Among these, the Gaussian source is a well-studied case due to its analytical tractability. In particular,
if X ∼ N (0, σ2) and the distortion measure is mean-square error (MSE), the rate-distortion function
takes the form shown in Definition 3.1. Since the latent variable XT in diffusion models follows
an isotropic Gaussian distribution N (0, Id), we adopt this form to characterize the rate-distortion
trade-off in our analysis.
Definition 3.1 (Rate-Distortion Function of a Gaussian Source). Let X ∼ N (0, σ2) be a Gaussian
source. The rate-distortion function under mean squared error distortion D is defined as:

R(D) =


1

2
log

(
σ2

D

)
0 < D < σ2,

0 D > σ2.
(6)

4 On the Feasibility of Forgery Semantic Watermarks

4.1 Threat Model

Adversary’s capability: Let z(w)
T denote the original semantic watermark latent and ẑ

(w)
T the forged

watermarked latent representation. The adversary’s objective is to produce forged images that
successfully deceive both the watermark detector and extractor by minimizing the difference between
z
(w)
T and ẑ

(w)
T . To achieve this, a proxy model ΘA is employed to recover ẑ(w)

T from a watermarked
image x(w), which is then decoded by ΘA to produce the forged image x̂0. At the same time, the
adversary aims to preserve the visual fidelity of x̂0, ensuring the forgery remains indistinguishable
from genuine images.

Adversary’s knowledge: We assume a black-box setting in which the adversary has limited knowl-
edge of the semantic watermarking methods and the service provider’s model. Specifically, in practice,
the adversary does not know the model architecture or parameters, nor does it have access to the
prompts used by legitimate users. However, the adversary can obtain watermarked images that are
publicly shared or uploaded by users and are known to originate from a generative model.

4.2 Theoretical Analysis

4.2.1 Assumptions

We aim to analyze the theoretical limits of semantic watermark forgery from the perspective of
rate-distortion theory. In generative models, the forward and reverse processes correspond to the
encoding and decoding stages of lossy compression. We model the attacker’s reconstruction as a
lossy decoder that approximates the watermarked latent representations. For RD analysis, we abstract
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Figure 2: Illustration of latent reconstruction distortion in black-box watermark forgery attacks.
Differences between the target model (Θ) and the proxy model (ΘA) induce distortions in the
reconstructed latent.

the target latent variable as X (the source) and its reconstruction as X̂ (the lossy approximation),
with the watermarked image Yw corresponding to the decoded observation in the data space.

This framework relies on two assumptions: the statistical properties of the latent space and the choice
of distortion metric. We assume Gaussian latent distributions with shared covariance (Assumption 1),
and adopt mean squared error (MSE) as the distortion metric (Assumption 2) in this work. The
Gaussian approximation is supported by empirical evidence in diffusion models, where latents
become approximately normal after several denoising steps. Further details of these assumptions are
provided in the supplementary material.

4.2.2 Rate-Distortion Bounds under Model Mismatch

As shown in Fig. 2, an attacker must rely on a proxy model ΘA that inevitably differs from the target
model Θ. This difference imposes two limitations on the attacker’s performance, which we formulate
as an irreducible distortion and an information penalty in Definition 4.1. We further incorporate these
concepts to derive a stricter lower bound on the minimum achievable distortion.

Definition 4.1 (Irreducible Distortion and Information Penalty). Let PΘ(X̂ | Yw) and PΘA(X̂ | Yw)
denote the true and proxy posterior distributions, respectively. The irreducible distortion due to model
mismatch is defined as:

Dirr := EYw
[DKL (PΘ(· | Yw) ∥PΘA(· | Yw))] .

The corresponding information penalty is given by:

Ipen := 1
2 log

(
1 + Dirr

σ2

)
,

where σ2 is the noise variance from the Gaussian approximation in Assumption 1.
Theorem 4.1 (Rate-Distortion Bound under Model Mismatch). Under Assumptions 1 and 2, the
minimal achievable distortion for an attacker with information rate R, denoted Dmin(R), is lower-
bounded by:

Dmin(R) ≥ Dirr + σ2 · 2−2(R−Ipen). (7)

Theorem 4.1 indicates that model mismatch imposes two limits: (i) an irreducible distortion floor
Dirr independent of rate, caused by posterior divergence; and (ii) a rate-dependent term reduced by
an information penalty Ipen. Accordingly, Equation (7) reveals a key security implication of model
mismatch: any attempt to approximate a target model with an imperfect proxy incurs both a baseline
error floor and a penalty on the effective information rate. The full derivation and technical details
are provided in the Supplementary Material (see Sec. C).

4.3 Model-Specific Watermarks and Black-Box Forgery Attacks

Building on the rate-distortion analysis of model mismatch, we examine the feasibility of watermark
forgery. In particular, the similarity between the target model and proxy models substantially affects
the success of forgery. An attacker can leverage proxy models ΘA to estimate latent representations
ẑ
(w)
T of watermarked samples x(w), taking advantage of the approximate reversibility of the diffusion
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denoising process. The closer ẑ(w)
T is to z

(w)
T , the higher the probability of a successful forgery. In

fact, many generative models share a similar architecture, such as those built on Stable Diffusion 2.1,
which facilitates such proxy-based attacks and underscores the vulnerability of semantic watermarks.

To mitigate this issue, we introduce model-specific, an important property of semantic watermarks
that ensures verification is reliable on the original model but does not generalize to heterogeneous
proxy models. We define the notion of a model-specific watermark as follows.
Definition 4.2 (Model-Specific Watermark). Let Θ denote the target model, and ΘA ̸= Θ any het-
erogeneous proxy model, with GΘ and GΘA the sets of samples generated by Θ and ΘA, respectively.
A semantic watermark is model-specific if

Px∼GΘ
[DetΘ(x) = True] ≥ 1− ϵ,

Px̂∼GΘA
[DetΘ(x̂) = True] ≤ δ,

for small ϵ, δ > 0, where DetΘ(·) is the watermark detection function for the target model.

Intuitively, structural differences between architectures increase the posterior divergence, effectively
enlarging the irreducible distortion Dirr and limiting the success of proxy-based forgery. For instance,
watermarks embedded in a UNet-based model [30] do not transfer to DiT-based models [31], and
those embedded in denoising diffusion models [25] fail to transfer to rectified flow models [32].
Consequently, a robust semantic watermark should satisfy the model-specific property, ensuring it
resists forgery attempts by heterogeneous proxy models.

4.4 Cross-Model Robustness Metric (CrossRobust)

To evaluate the robustness of semantic watermarks under black-box forgery attacks, we introduce
CrossRobust, a metric that quantifies a watermark’s model-specific robustness and its resistance to
cross-model forgery. For a given watermarking method w, CrossRobust is defined as:

CrossRobustw =
Detsame − 1

n

∑n
i=1 Detcross,i

Detsame
, (8)

where Detsame denotes the detection success rate on samples from the homogeneous (same) model,
and Detcross,i denotes the detection success rate from the i-th heterogeneous model pair (i.e., forged
by one model and verified by another of a different architecture). These values can also be computed
using bit accuracy instead of detection rate. A higher CrossRobust value indicates that the watermark
is more model-specific and robust against black-box forgery. We further provide experimental results
for existing watermarking methods and analyze their corresponding CrossRobust values in Sec. 5.

5 Experiments

5.1 Experimental Setup

Models and Datasets. We consider two adversarial scenarios: guidance-based and optimization-
based. In the guidance-based scenario, we use Stable Diffusion 2.1 (SD2.1) [27] and Stable Dif-
fusion 3 (SD3) [33] as proxy models and four commonly used target models: SD1.5, SDXL [34],
FLUX.1 [35], SD3 [33]. We test on 1,000 samples and report the averaged results. In the optimization-
based scenario, we randomly select 100 cover images from the MS-COCO dataset [36] and use
SD2.1 as the proxy model with the same set of target models. All experiments generate images at a
size of 512× 512 using prompts from Stable-Diffusion-Prompt2. Further details are provided in the
Appendix.

Watermarking Methods. We consider two representative semantic watermarking approaches:
Tree-Ring [7], and Gaussian Shading [9]. We do not include RingID [8], a multi-key extension of
Tree-Ring, as our study focuses exclusively on single-key schemes.

Evaluation Metrics. To ensure consistency with the original experimental setups, we adopt the
same scenarios and metrics. Since Tree-Ring operates only in the detection scenario, we measure the
watermark detection rate using TPR@1%FPR, where the detection threshold is determined by the

2https://huggingface.co/datasets/Gustavosta/Stable-Diffusion-Prompts
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Table 1: Performance of two semantic watermarking methods under optimization-based forgery
attacks. SD2.1 is used as a proxy model, and PSNR, SSIM are measured between the forged image
and its original version.

Tree-Ring Gaussian Shading
(FPR=10−2) (FPR=10−6)

Target Model Step Det. PSNR SSIM Bit Acc. Det. Attr. PSNR SSIM

SD1.5
20 0.83 25.73 0.752 0.936 0.99 0.99 24.68 0.718
50 0.99 23.79 0.682 0.996 1.00 1.00 22.81 0.641
100 1.00 22.45 0.629 0.999 1.00 1.00 21.55 0.585

SDXL
20 0.26 24.65 0.717 0.713 0.54 0.54 24.67 0.717
50 0.67 22.73 0.639 0.851 0.99 0.99 22.76 0.640
100 0.83 21.46 0.583 0.898 1.00 1.00 21.49 0.584

FLUX.1
20 0.04 25.01 0.738 0.605 0.00 0.00 25.66 0.751
50 0.13 23.07 0.663 0.699 0.43 0.43 23.66 0.679
100 0.14 21.75 0.607 0.754 0.88 0.88 22.30 0.625

SD3
20 0.15 24.64 0.717 0.598 0.00 0.00 24.65 0.717
50 0.47 22.71 0.639 0.688 0.26 0.26 22.73 0.639
100 0.70 21.42 0.582 0.738 0.71 0.71 21.44 0.582

p-value, reflecting the probability of observing the watermark pattern by chance. Gaussian Shading is
evaluated for both detection and attribution. For this method, we compute bit accuracy, defined as
the proportion of matching bits between the recovered message bit string s′ from an image being
examined and the target watermark bit string s. We refer the reader to Sec. D of the Supplementary
Material for more details.

5.2 Experimental Results

Optimization-based forgery attack. Following the settings in [11], the attacker imprints watermarks
onto a given one-cover image with optimized perturbations. We record the forgery success rate at
20, 50, and 100 steps during optimization, along with PSNR and SSIM values between the forged
image and its original version. From Table 1, we observe that Gaussian Shading achieves high
detection success rates, exceeding 70% across all four target models. Tree-Ring follows a similar
pattern, remains ineffective against FLUX. Interestingly, when SD3 is used as the target model, even
though the model structure is different from the proxy model SD2.1, the detection success rate is
still high (i.e., over 70%). This can be attributed to the unmodified Tree-Ring detection threshold in
SD3. However, we find that the quality of optimization-based forged images decreases as the number
of optimization steps increases. Although the attacker can successfully replicate the watermarked
pattern within the cover image, this replication process inevitably introduces perceptible distortions,
leading to a degradation in visual quality. This observation also aligns with our proposed approach.

(a) Tree-Ring (TR) (b) Gaussian Shading (GS)

Figure 3: Performance of two semantic watermarking methods under guidance-based forgery attacks.
The x-axis indicates the target models, while proxy models SD2.1 (left) and SD3 (right) are used for
each sub-figure. Bars in blue indicate homogeneous settings where the proxy and target models share
a similar architecture, whereas bars in green correspond to heterogeneous settings.

Guidance-based forgery attack. Fig. 3 illustrates the performance of two watermarking methods
under guidance-based forgery attacks. For Gaussian Shading, we observe consistent results with
SD2.1 and SD3 as proxies. Proxy models with similar architectures to the target model, which we
refer to homogeneous setting, achieve the highest success rates, indicating that structural similarity
makes watermark forgery easier. For example, Fig.3b (left) reports a 99.9% success rate when the
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target is SD1.5 and the proxy is SD2.1. Tree-Ring shows a similar trend in Fig.3a (left). However,
Fig. 3a (right) reveals that heterogeneous settings can outperform the homogeneous settings: when
both target and proxy are SD3, the success rate is only 84.9%, much lower than SD1.5 (i.e., 97.2%)
and SDXL (i.e., 95.7%), despite the latter two using different denoising modules. We attribute this to
the limited capacity of Tree-Ring in high-dimensional latent spaces. Since SD3 and FLUX adopt 16
latent channels, while Tree-Ring only embeds the watermark in one channel, the watermark signal
becomes diluted, resulting in weaker forgery performance compared to models with fewer channels.
See Fig. 4 in Sec. E for examples of forged images.

Table 2: Comparison of CrossRobust
for two watermarking methods. Higher
values mean better robustness against
guidance-based forgery attacks.

Proxy Model Tree-Ring Gaussian Shading

SD2.1 0.3966 0.1972

SD3 0.0024 0.0034

Limited Robustness against Forgery Attacks. Table 2
reports the CrossRobust scores of Tree-Ring and Gaus-
sian Shading across various proxy models under guidance-
based forgery attacks. The results show that both methods
exhibit limited robustness against forgery attacks, with
scores below 40% in all cases. Tree-Ring achieves higher
robustness than Gaussian Shading on SD2.1 (i.e., 0.3966),
likely because it is implanted in only a specific channel,
leading to a lower watermark signal. In contrast, Gaussian
Shading repeats the watermark signal to diffuse all the
latent space, making it easier to forge. However, for SD3,
which has a higher latent information capacity (i.e., 16 channels), the robustness of both methods
drops sharply (i.e., drops to 0.002 on Tree-Ring and 0.0034 on Gaussian Shading). This indicates that
both methods are highly susceptible to forgery attacks, as attackers can easily leverage a proxy model
to generate successful forgeries. We also show that both methods fail to satisfy the model-specificity
property. These results suggest that future semantic watermark designs should prioritize robustness
across different proxy models and varying latent capacities.

Table 3: Distortion between watermarked and
reconstructed latent representations.

Proxy Target Tree-Ring Gaussian Shading

SD2.1

SD1.5 0.621 0.534
SDXL 1.222 1.239
FLUX 1.528 1.552
SD3 1.496 1.512

SD3

SD1.5 1.285 1.262
SDXL 1.229 1.251
FLUX 1.322 1.333
SD3 1.005 1.004

Distortion Analysis. To quantify the distortion under
model mismatch, we compute the MSE between the
watermarked latent z(w)

T and reconstructed latent ẑ(w)
T

obtained from forged images, as shown in Table 3.
This metric captures both the irreducible distortion
and information penalty in Sec. 4.2. When the target
and proxy models share the same architecture (homo-
geneous setting), the MSE remains consistently low,
which aligns with the higher forgery success rates
observed in Fig. 3. For example, with SD1.5 as the
target and SD2.1 as the proxy, or when SD3 is used
as both target and proxy, the distortion is the lowest
among their respective settings. For Tree-Ring, we
note the cases where the target model employs 16
latent channels. As discussed in Sec 5.2, we did not modify its parameters to accommodate larger
channel counts. As a result, even though the MSE remains relatively low in homogeneous settings, the
watermark signal is weakened and forgery becomes less effectively. By contrast, in cross-architecture
settings such as FLUX as the target with SD2.1 as the proxy, the distortion values increase substan-
tially (e.g., 1.528 for Tree-Ring and 1.552 for Gaussian Shading), indicating that mismatched model
structures introduce larger reconstruction errors, which in turn reduce forgery success.

6 Discussion
6.1 Pseudo-randomness Property in semantic watermarks

PRC watermark [10] leverages pseudo-random error-correcting codes (PRC) [37] to generate pseudo-
random bitstreams, which are then mapped to latent representations that follow a standard normal
distribution. This approach is designed to ensure that an adversary cannot distinguish between
watermarked and unwatermarked images, even after making many adaptive queries. This pseudo-
randomness property enhances the PRC watermark’s resilience against forgery attacks by making it
extremely difficult for adversaries to estimate or replicate the watermark signal. Nevertheless, this
increased robustness introduces a trade-off, as the detection performance is generally lower than that
of Tree-Ring and Gaussian Shading.
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6.2 Proactive Defenses

We hypothesize that during the diffusion model’s sampling process, the steps closer to the final
generated image contain richer semantic information. Similarly, when reversing the process to
recover the latent representation for watermark verification, the early steps also preserve semantic
content. By comparing these two features, any forged watermarked image can be effectively identified,
as forged and genuine watermarked images differ semantically and structurally. We plan to leverage
this property in future work to enhance the robustness of the current watermarking methods against
forgery attacks.

7 Conclusions
In this work, we demonstrate that the challenge of black-box forgery attacks arises when an adversary
utilizes a different structure as a proxy model, as interpreted through the lens of RD theory. We
find that such model mismatch introduces additional distortions in the reconstructed latent for both
Tree-Ring and Gaussian Shading. Moreover, we introduce the concept of model specificity and
the CrossRobust metric for semantic watermarks, and our evaluation with this metric shows that
existing methods lack sufficient robustness against forgery. We believe these insights can provide a
new perspective for the community in designing more robust watermarking schemes.
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Supplementary Material for On Forging Semantic Watermarks in Diffusion
Models: A Theoretical Perspective

The content of Supplementary Material is summarized as follows: 1) In Sec. A, we provide the details
of semantic watermarks used in our work; 2) In Sec. B, we state the implementation and training
details we used in the experiment in terms of datasets, hyper-parameters, and model architectures
to ensure that our method can be reproduced; 3) In Sec. C, we provide the assumption and details
proof of Theorem 4.1; 4) In Sec. D, we state the implementation details we used in the experiment in
terms of parameters of watermark, and model architectures; 5) Last, we show the examples of forged
images from text-guided forgery.

A Semantic Watermarking

For Tree-Ring [7], we use a ring pattern with a radius of 10 and apply zero-bit watermarking. For
models in prior work [11] (SDXL and FLUX.1), we adopt the same detection thresholds derived
from statistics on 5K watermarked and 5K clean images to achieve the target false positive rate. For
Gaussian Shading [9], we follow the settings in [11], using an encoding window of l = 1, with a
unique random key and message per image. The message length k is 256, resulting in 1024 bits. The
repetition factor ρ is 64 for SD2.1, and 256 for FLUX.1 and SD3, which uses 16-channel latents
compared to four channels in the other models. In the detection scenario, we count a true positive
if r(s, s′) exceeds a threshold calibrated to achieve a specified FPR (i.e., 10−6). For attribution, we
compute r(s, s′) between the recovered bit string s′ and each bit string s in a pool of 100k users. The
threshold is 0.70703 for both scenarios.

B Existing Forgery Attacks

B.1 Guidance-Based Forgery

An adversary performs guidance-based forgery [11, 38] by first applying DDIM inversion with their
proxy model ΘA to estimate a latent noise vector ẑ(w)

T from the public watermarked image x(w).
This vector serves as the seed for a new guided reverse diffusion process. Guidance is applied either
through a text prompt t or by using a controllable model, such as ControlNet [39], to condition on a
cover image x(c). In the latter case, a trainable control module FA extracts structural information from
x(c) (e.g., edges or depth maps), and an encoder EA maps this information into a visual condition
embedding [38]. This embedding guides the generation process alongside a textual embedding
TA(t(c)), which is derived from a descriptive prompt t(c) associated with x(c) and is conditioned on
a pre-trained, frozen U-Net UA. We denote the entire guided sampling procedure by the operator G,
parameterized by the U-Net and control module:

ẑ′0 = GA,T→0(ẑ
(w)
T | EA(x(c)), TA(t(c));UA,FA),

where EA(x(c)) and TA(t(c)) provide the visual and textual conditions, respectively. Finally, the
decoder D maps the refined latent vector ẑ′0 back to the pixel space, producing the forged image x̂(w).

B.2 Optimization-Based Forgery

In contrast to guidance-based methods that manipulate the reverse diffusion process, optimization-
based forgery operates by directly solving for an optimal latent variable. The core objective is to find
a minimal perturbation to a clean image’s latent state which, upon forward diffusion to timestep T ,
aligns with the known latent representation of a target watermarked image. As demonstrated in [11],
performing this optimization in the near-noiseless latent space at t = 0 is an effective strategy.

The process begins by encoding the cover image x(c) to obtain its latent representation ẑ
(c)
0 =

EA(x(c)). The optimization objective is then formulated as minimizing the squared L2 distance
between the diffused perturbed latent and the target, as defined by the loss function:

Lforgery(δ) =
∥∥∥I0→T (ẑ

(c)
0 + δ;uA)− ẑ

(w)
T

∥∥∥
2
,
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where I0→T denotes the deterministic forward diffusion process that applies noise according to the
predefined schedule up to timestep T . The adversary applies gradient descent for up to N steps to
minimize this loss w.r.t. δ. Once the optimal perturbation δ∗ is found, the forged latent ẑ(c)0 + δ∗ is
decoded using the proxy model to generate the final forged image x̂(c).

While this approach offers precise control over the latent modification, its primary limitation is the
computational cost of iterative optimization for each image. Furthermore, its effectiveness depends
on the proxy model’s ability to encode images into a latent space where such perturbations yield
semantically consistent outputs.

C Proofs in Section 4

C.1 Assumption

Assumption 1 (Gaussian Approximation). We assume the attacker’s reconstruction task can be
modeled by conditional probability distributions that are approximately multivariate Gaussian.
Specifically, the true posterior distribution (from the target model, Θ) and the attacker’s assumed
posterior (from the proxy model, ΘA) are given by:

PΘ(X0|Yw) ≈ N (µΘ(Yw), σ
2Id), PΘA(X0|Yw) ≈ N (µA(Yw), σ

2Id),

where Yw is the observed watermarked output, and σ2 is a shared noise variance. The means µΘ

and µA differ due to the model mismatch.

This shared variance in Assumption 1 reflects a simplified scenario where the attacker has access to a
generative model with similar uncertainty behavior. While in practice the variance may differ, this
abstraction allows isolating the impact of posterior mean deviation due to model mismatch.

Second, we define a distortion metric to quantify reconstruction quality. In rate-distortion theory, the
choice of distortion measure is critical for determining the theoretical limits of compression. Under
the Gaussian assumption, mean squared error (MSE) is both standard and analytically tractable. We
thus adopt MSE to assess the fidelity of latent reconstructions.
Assumption 2 (Mean Squared Error Distortion). The reconstruction quality is measured by the
normalized mean squared error (MSE) between the original latent variable X0 and the attacker’s
reconstruction X̂0:

D(X̂0, X0) = E
[
1

d
||X0 − X̂0||22

]
,

where the expectation is over the joint distribution of (X0, X̂0).

C.2 Proofs of Theorem 4.1

Proof of Theorem 4.1. We prove the lower bound on the minimal achievable distortion, Dmis
min(R), by

decomposing it into two components caused by the attacker’s use of an imperfect proxy model: a
rate-independent distortion floor and a rate-dependent distortion term.

The first component arises from the fundamental mismatch between the true posterior distribution,
PΘ(· | Yw), and the attacker’s proxy, PΘA(· | Yw). This mismatch is formally captured by the
irreducible distortion, Dirr, defined as the expected Kullback-Leibler (KL) divergence between
these two distributions. The KL divergence quantifies the inescapable penalty for encoding data
with a model that does not match the true data-generating source. This penalty imposes a constant
distortion floor that cannot be mitigated by increasing the information rate R. Consequently, any
achievable distortion must, at a minimum, overcome this value, leading to the first part of our bound:
Dmis

min(R) ≥ Dirr.

In addition to this distortion floor, a second source of distortion arises from the lossy compression
inherent in any communication channel with a finite rate R. For a Gaussian source with variance σ2,
as given by Assumption 1, the classical rate-distortion theorem dictates that the minimal distortion
achievable with rate R is D(R) = σ2 · 2−2R. However, the attacker cannot leverage the full rate
R for reconstruction. The model mismatch imposes an information penalty, Ipen, as defined in
Definition 4.1, which quantifies the information penalty. This penalty reduces the effective rate
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available to the attacker to Reff = R− Ipen. The rate-dependent portion of the distortion is therefore
determined by this effective rate, yielding a contribution of σ2 · 2−2(R−Ipen).

Combining these two effects, the total minimal achievable distortion is lower-bounded by the sum
of the irreducible distortion floor and the rate-dependent distortion. This establishes the desired
inequality:

Dmis
min(R) ≥ Dirr + σ2 · 2−2(R−Ipen).

This concludes the proof of the lower bound.

D Experimental Details

All models, except FLUX.1 [35] and SD3 [33], both target and proxy, are configured with a DDIM
scheduler using 50 inference steps and a guidance scale of 7.5. FLUX.1 and SD3, which are based
on rectified-flow matching, employ fewer inference steps (i.e., 20 for FLUX.1) and a lower guidance
scale (i.e., 7.0 for SD3). For the guidance-based forgery experiments, we generate 1,000 watermarked
images per target model using the first 1,000 prompts from the Stable Diffusion Prompts test set.
The experiments described in Sec. 5.2 are conducted on a single A6000 GPU, and all methods are
evaluated in the same batch under identical system conditions.

Table 4: Settings of diffusion pipelines used in the experiments.

Model Hugging Face ID Type L. Ch. Scheduler Steps G. Scale

SD1.5 runwayml/stable-diffusion-v1-5 UNet 4 DDIM 50 7.5
SD2.1 stabilityai/stable-diffusion-2-1-base UNet 4 DDIM 50 7.5
SDXL stabilityai/stable-diffusion-xl-base-1.0 UNet 4 DDIM 50 7.5
FLUX.1 black-forest-labs/FLUX.1-dev DiT 16 FlowMatchEuler 20 3.5
SD3 stabilityai/stable-diffusion-3-medium DiT 16 FlowMatchEuler 30 7.0

E Example of Forged Images

In this section, we present additional example images generated by text-guided forgery. Fig. 4 shows
watermarked images alongside forged images produced from different target models using Gaussian
Shading and Tree-Ring.
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Guidance-based Forgery Attack - Successful Examples
SD1.5 SDXL

Tree-Ring G.Shading

FLUX.1 SD3

margot robbie, d & d, fantasy, portrait, highly detailed, digital painting, trending on artstation, 
concept art, sharp focus, illustration, art by artgerm and greg rutkowski and magali villeneuve

girl facing a giant white wolf, manga cover, intricate, elegant, highly detailed, digital painting, artstation, concept art, smooth, sharp focus, 
illustration, sharp focus, illustration, highly detailed, concept art, matte, trending on artstation, anime, art by wlop and artgerm and greg rutkowski, h 6 4 0

infantry girl, anime style, symmetrical facial features long hair, hair down, under heavy fire, explosions, hyper realistic, pale skin, rule of thirds, extreme detail, 
4 k, detailed drawing, trending artstation, realistic shading, visual novel cg, by alphonse mucha, greg rutkowski, sharp focus, backlit, fast helmet

artgerm digital art

film still of Monica Bellucci as snow white and red veil, in a forest by a pond with frogs, 
by artgerm, makoto sinkai, magali villeneuve, Gil Elvgren, Earl Moran,Enoch Bolles, symmetrical,

mothman, ultra detailed fantasy, dndbeyond, bright, colourful, realistic, dnd character portrait, full body, pathfinder, pinterest, 
art by ralph horsley, dnd, rpg, lotr game design fanart by concept art, behance hd, artstation, deviantart, hdr render in unreal engine 5
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Figure 4: Examples of forged images for both watermarking methods across different target models
and proxy models under guidance-based forgery attacks. Within each block, the dashed line divides
into two parts: the top row shows watermarked images generated using the corresponding water-
marking method with the indicated target model, while the bottom part presents successfully forged
images obtained from these watermarked references through guidance-based attacks. All prompts are
sourced from the Stable-Diffusion-Prompts dataset.
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