
Published as a conference paper at ICLR 2024

TIME-LLM: TIME SERIES FORECASTING
BY REPROGRAMMING LARGE LANGUAGE MODELS

Ming Jin1∗, Shiyu Wang2∗, Lintao Ma2, Zhixuan Chu2, James Y. Zhang2, Xiaoming Shi2,
Pin-Yu Chen3, Yuxuan Liang6, Yuan-Fang Li1, Shirui Pan4†, Qingsong Wen5†

1Monash University 2Ant Group 3IBM Research 4Griffith University 5Alibaba Group
6The Hong Kong University of Science and Technology (Guangzhou)
{ming.jin, yuanfang.li}@monash.edu, pin-yu.chen@ibm.com
yuxliang@outlook.com, s.pan@griffith.edu.au, qingsongedu@gmail.com
{weiming.wsy,lintao.mlt,chuzhixuan.czx,james.z,peter.sxm}@antgroup.com

ABSTRACT

Time series forecasting holds significant importance in many real-world dynamic
systems and has been extensively studied. Unlike natural language process (NLP)
and computer vision (CV), where a single large model can tackle multiple tasks,
models for time series forecasting are often specialized, necessitating distinct de-
signs for different tasks and applications. While pre-trained foundation models
have made impressive strides in NLP and CV, their development in time series
domains has been constrained by data sparsity. Recent studies have revealed that
large language models (LLMs) possess robust pattern recognition and reasoning
abilities over complex sequences of tokens. However, the challenge remains in
effectively aligning the modalities of time series data and natural language to
leverage these capabilities. In this work, we present TIME-LLM, a reprogram-
ming framework to repurpose LLMs for general time series forecasting with the
backbone language models kept intact. We begin by reprogramming the input
time series with text prototypes before feeding it into the frozen LLM to align the
two modalities. To augment the LLM’s ability to reason with time series data,
we propose Prompt-as-Prefix (PaP), which enriches the input context and directs
the transformation of reprogrammed input patches. The transformed time series
patches from the LLM are finally projected to obtain the forecasts. Our com-
prehensive evaluations demonstrate that TIME-LLM is a powerful time series
learner that outperforms state-of-the-art, specialized forecasting models. More-
over, TIME-LLM excels in both few-shot and zero-shot learning scenarios. The
code is made available at https://github.com/KimMeen/Time-LLM.

1 INTRODUCTION

Time series forecasting is a critical capability across many real-world dynamic systems (Jin et al.,
2023a; Hu et al., 2024), with applications ranging from demand planning (Leonard, 2001) and inven-
tory optimization (Li et al., 2022) to energy load forecasting (Liu et al., 2023a) and climate modeling
(Schneider & Dickinson, 1974). Each time series forecasting task typically requires extensive do-
main expertise and task-specific model designs. This stands in stark contrast to foundation language
models like GPT-3 (Brown et al., 2020), GPT-4 (OpenAI, 2023), Llama (Touvron et al., 2023), inter
alia, which can perform well on a diverse range of NLP tasks in a few-shot or even zero-shot setting.

Pre-trained foundation models, such as large language models (LLMs), have driven rapid progress
in computer vision (CV) and natural language processing (NLP). While time series modeling has not
benefited from the same significant breakthroughs, LLMs’ impressive capabilities have inspired their
application to time series forecasting (Jin et al., 2023b; 2024). Several desiderata exist for leveraging
LLMs to advance forecasting techniques: Generalizability. LLMs have demonstrated a remarkable
capability for few-shot and zero-shot transfer learning (Brown et al., 2020). This suggests their

∗Equal Contribution
†Corresponding Authors

1

https://github.com/KimMeen/Time-LLM

Published as a conference paper at ICLR 2024

potential for generalizable forecasting across domains without requiring per-task retraining from
scratch. In contrast, current forecasting methods are often rigidly specialized by domain. Data ef-
ficiency. By leveraging pre-trained knowledge, LLMs have shown the ability to perform new tasks
with only a few examples. This data efficiency could enable forecasting for settings where historical
data is limited. In contrast, current methods typically require abundant in-domain data. Reason-
ing. LLMs exhibit sophisticated reasoning and pattern recognition capabilities (Mirchandani et al.,
2023; Luo et al., 2023b;a). Harnessing these skills could allow making highly precise forecasts by
leveraging learned higher-level concepts. Existing non-LLM methods are largely statistical without
much innate reasoning. Multimodal knowledge. As LLM architectures and training techniques im-
prove, they gain more diverse knowledge across modalities like vision, speech, and text (Ma et al.,
2023). Tapping into this knowledge could enable synergistic forecasting that fuses different data
types. Conventional tools lack ways to jointly leverage multiple knowledge bases. Easy optimiza-
tion. LLMs are trained once on massive computing and then can be applied to forecasting tasks
without learning from scratch. Optimizing existing forecasting models often requires significant
architecture search and hyperparameter tuning (Zhou et al., 2023b). In summary, LLMs offer a
promising path to make time series forecasting more general, efficient, synergistic, and accessible
compared to current specialized modeling paradigms. Thus, adapting these powerful models for
time series data can unlock significant untapped potential.

The realization of the above benefits hinges on the effective alignment of the modalities of time
series data and natural language. However, this is a challenging task as LLMs operate on discrete
tokens, while time series data is inherently continuous. Furthermore, the knowledge and reasoning
capabilities to interpret time series patterns are not naturally present within LLMs’ pre-training.
Therefore, it remains an open challenge to unlock the knowledge within LLMs in activating their
ability for general time series forecasting in a way that is accurate, data-efficient, and task-agnostic.

In this work, we propose TIME-LLM, a reprogramming framework to adapt large language models
for time series forecasting while keeping the backbone model intact. The core idea is to reprogram
the input time series into text prototype representations that are more naturally suited to language
models’ capabilities. To further augment the model’s reasoning about time series concepts, we
introduce Prompt-as-Prefix (PaP), a novel idea in enriching the input time series with additional
context and providing task instructions in the modality of natural language. This provides declarative
guidance about desired transformations to apply to the reprogrammed input. The output of the
language model is then projected to generate time series forecasts. Our comprehensive evaluation
demonstrates that large language models can act as effective few-shot and zero-shot time series
learners when adopted through this reprogramming approach, outperforming specialized forecasting
models. By leveraging LLMs’ reasoning capability while keeping the models intact, our work points
the way toward multimodal foundation models that can excel on both language and sequential data
tasks. Our proposed reprogramming framework offers an extensible paradigm for imbuing large
models with new capabilities beyond their original pre-training. Our main contributions in this work
can be summarized as follows:

• We introduce a novel concept of reprogramming large language models for time series forecast-
ing without altering the pre-trained backbone model. In doing so, we show that forecasting can
be cast as yet another “language” task that can be effectively tackled by an off-the-shelf LLM.

• We propose a new framework, TIME-LLM, which encompasses reprogramming the input time
series into text prototype representations that are more natural for the LLM, and augmenting the
input context with declarative prompts (e.g., domain expert knowledge and task instructions) to
guide LLM reasoning. Our technique points towards multimodal foundation models excelling
in both language and time series.

• TIME-LLM consistently exceeds state-of-the-art performance in mainstream forecasting tasks,
especially in few-shot and zero-shot scenarios. Moreover, this superior performance is achieved
while maintaining excellent model reprogramming efficiency. Thus, our research is a concrete
step in unleashing LLMs’ untapped potential for time series and perhaps other sequential data.

2 RELATED WORK

Task-specific Learning. Most time series forecasting models are crafted for specific tasks and
domains (e.g., traffic prediction), and trained end-to-end on small-scale data. An illustration is in

2

Published as a conference paper at ICLR 2024

(a) Task-Specific
LearningSource Modality

Target Modality

[Summarization]
[Retrieval]
[Classification]…

[Forecasting]
[Classification]
[Imputation]…

(b)Model Fine-Tuning (c)Model Reprogramming

Source Data Sample Target Data Sample Source Task Target Task Frozen Fine-tune

Lightweight

Contextual Bootstrapping

Cross-Modality

High Effectiveness

Model

Head

Pre-training

Adaptation …
Model

Re
pr
og
ra
m.

Sp
ac
e

Language
Model

Prompts

Head

… Input
Reprogram

Pre-training

Figure 1: Schematic illustration of reprogramming large language models (LLMs) in comparison
of (a) task-specific learning and (b) model fine-tuning. Our proposal investigates and demonstrates
(c) how to effectively reprogram open-sourced LLMs as powerful time series learners where well-
developed time series pre-trained models are not readily available.

Fig. 1(a). For example, ARIMA models are designed for univariate time series forecasting (Box
et al., 2015), LSTM networks are tailored for sequence modeling (Hochreiter & Schmidhuber,
1997), and temporal convolutional networks (Bai et al., 2018) and transformers (Wen et al., 2023)
are developed for handling longer temporal dependencies. While achieving good performance on
narrow tasks, these models lack versatility and generalizability to diverse time series data.

In-modality Adaptation. Relevant research in CV and NLP has demonstrated the effectiveness of
pre-trained models that can be fine-tuned for various downstream tasks without the need for costly
training from scratch (Devlin et al., 2018; Brown et al., 2020; Touvron et al., 2023). Inspired by
these successes, recent studies have focused on the development of time series pre-trained models
(TSPTMs). The first step among them involves time series pre-training using different strategies like
supervised (Fawaz et al., 2018) or self-supervised learning (Zhang et al., 2022b; Deldari et al., 2022;
Zhang et al., 2023). This allows the model to learn representing various input time series. Once pre-
trained, it can be fine-tuned on similar domains to learn how to perform specific tasks (Tang et al.,
2022). An example is in Fig. 1(b). The development of TSPTMs leverages the success of pre-
training and fine-tuning in NLP and CV but remains limited on smaller scales due to data sparsity.

Cross-modality Adaptation. Building on in-modality adaptation, recent work has further explored
transferring knowledge from powerful pre-trained foundations models in NLP and CV to time se-
ries modeling, through techniques such as multimodal fine-tuning (Yin et al., 2023) and model
reprogramming (Chen, 2022). Our approach aligns with this category; however, there is limited
pertinent research available on time series. An example is Voice2Series (Yang et al., 2021), which
adapts an acoustic model (AM) from speech recognition to time series classification by editing a
time series into a format suitable for the AM. Recently, Chang et al. (2023) proposes LLM4TS
for time series forecasting using LLMs. It designs a two-stage fine-tuning process on the LLM -
first supervised pre-training on time series, then task-specific fine-tuning. Zhou et al. (2023a) lever-
ages pre-trained language models without altering their self-attention and feedforward layers. This
model is fine-tuned and evaluated on various time series analysis tasks and demonstrates comparable
or state-of-the-art performance by transferring knowledge from natural language pre-training. Dis-
tinct from these approach, we neither edit the input time series directly nor fine-tune the backbone
LLM. Instead, as illustrated in Fig. 1(c), we propose reprogramming time series with the source data
modality along with prompting to unleash the potential of LLMs as effective time series machines.

3 METHODOLOGY

Our model architecture is depicted in Fig. 2. We focus on reprogramming an embedding-visible
language foundation model, such as Llama (Touvron et al., 2023) and GPT-2 (Radford et al., 2019),
for general time series forecasting without requiring any fine-tuning of the backbone model. Specif-
ically, we consider the following problem: given a sequence of historical observations X ∈ RN×T

consisting of N different 1-dimensional variables across T time steps, we aim to reprogram a large
language model f(·) to understand the input time series and accurately forecast the readings at H
future time steps, denoted by Ŷ ∈ RN×H , with the overall objective to minimize the mean square
errors between the ground truths Y and predictions, i.e., 1

H

∑H
h=1 ||Ŷh −Yh||2F .

Our method encompasses three main components: (1) input transformation, (2) a pre-trained and
frozen LLM, and (3) output projection. Initially, a multivariate time series is partitioned into N

3

Published as a conference paper at ICLR 2024

Patch
Embedder

Instance Norm

Patch Reprogram

Pre-trained LLM
(Body)

Pre-trained LLM
(Embedder)

Patching

Output Projection

Multi-Head
Attention

Input Embeddings

Add & Layer Norm

Feed Forward

Add & Layer Norm

Output Embeddings

Tokenization

Input Text

Token Embedder

Output Token
Embeddings

Flatten & Linear

Output Patch
Embeddings

Forecasts

Time Series
Patches

Pre-trained
Word Embeddings

Linear

Multi-Head Attention

Text Prototypes

Reprogrammed
Patch Embeddings

Prompt Embeddings Patch EmbeddingsFrozen Training Forward Backward

Instruction:

<time series statistic 1>

<dataset description>

<task information>
Input statistics:

<time series statistic 2> …

Domain: <domain knowledge>

Latest(rebuttal)

Linear

Figure 2: The model framework of TIME-LLM. Given an input time series, we first tokenize and
embed it via 1 patching along with a 2 customized embedding layer. 3 These patch embeddings
are then reprogrammed with condensed text prototypes to align two modalities. To augment the
LLM’s reasoning ability, 4 additional prompt prefixes are added to the input to direct the transfor-
mation of input patches. 5 The output patches from the LLM are projected to generate the forecasts.

univariate time series, which are subsequently processed independently (Nie et al., 2023). The i-th
series is denoted as X(i) ∈ R1×T , which undergoes normalization, patching, and embedding prior
to being reprogrammed with learned text prototypes to align the source and target modalities. Then,
we augment the LLM’s time series reasoning ability by prompting it together with reprogrammed
patches to generate output representations, which are projected to the final forecasts Ŷ(i) ∈ R1×H .

We note that only the parameters of the lightweight input transformation and output projection are
updated, while the backbone language model is frozen. In contrast to vision-language and other
multimodal language models, which usually fine-tune with paired cross-modality data, TIME-LLM
is directly optimized and becomes readily available with only a small set of time series and a few
training epochs, maintaining high efficiency and imposing fewer resource constraints compared to
building large domain-specific models from scratch or fine-tuning them. To further reduce mem-
ory footprints, various off-the-shelf techniques (e.g., quantization) can be seamlessly integrated for
slimming TIME-LLM.

3.1 MODEL STRUCTURE

Input Embedding. Each input channel X(i) is first individually normalized to have zero mean and
unit standard deviation via reversible instance normalization (RevIN) in mitigating the time series
distribution shift (Kim et al., 2021). Then, we divide X(i) into several consecutive overlapped or
non-overlapped patches (Nie et al., 2023) with length Lp; thus the total number of input patches
is P = ⌊ (T−Lp)

S ⌋ + 2, where S denotes the horizontal sliding stride. The underlying motivations
are two-fold: (1) better preserving local semantic information by aggregating local information into
each patch and (2) serving as tokenization to form a compact sequence of input tokens, reducing
computational burdens. Given these patches X

(i)
P ∈ RP×Lp , we embed them as X̂

(i)
P ∈ RP×dm ,

adopting a simple linear layer as the patch embedder to create dimensions dm.

Patch Reprogramming. Here we reprogram patch embeddings into the source data representation
space to align the modalities of time series and natural language to activate the backbone’s time
series understanding and reasoning capabilities. A common practice is learning a form of “noise”
that, when applied to target input samples, allows the pre-trained source model to produce the desired
target outputs without requiring parameter updates. This is technically feasible for bridging data

4

Published as a conference paper at ICLR 2024

Patch
Reprogram

Pre-trained LLM
(Text Embedder)

the next value is 0 . 6

the next value is 0 . 6

Pre-trained LLM
(Body + LM Head)

Pre-trained LLM
(Text Embedder)

Patch
Reprogram

Pre-trained LLM
(Body)

<instruction><input context>

Projection

0.6

(a) Patch Reprogramming (b) Patch-as-Prefix and Prompt-as-Prefix

time
late
early

long
short

up
down

steady
…

Source Target

Patch 1

Patch 2
…

Patch 5

Prototypes

…! !′

Vocab. Reprogrammed
Patch Embeddings !

Latest (camera-ready)

Figure 3: Illustration of (a) patch reprogramming and (b) Patch-as-Prefix versus Prompt-as-Prefix.

modalities that are identical or similar. Examples include repurposing a vision model to work with
cross-domain images (Misra et al., 2023) or reprogramming an acoustic model to handle time series
data (Yang et al., 2021). In both cases, there are explicit, learnable transformations between the
source and target data, allowing for the direct editing of input samples. However, time series can
neither be directly edited nor described losslessly in natural language, posing significant challenges
to directly bootstrap the LLM for understanding time series without resource-intensive fine-tuning.

To close this gap, we propose reprogramming X̂
(i)
P using pre-trained word embeddings E ∈ RV×D

in the backbone, where V is the vocabulary size. Nevertheless, there is no prior knowledge indi-
cating which source tokens are directly relevant. Thus, simply leveraging E will result in large and
potentially dense reprogramming space. A simple solution is to maintain a small collection of text
prototypes by linearly probing E, denoted as E′ ∈ RV ′×D, where V ′ ≪ V . An illustration is in
Fig. 3(a). Text prototypes learn connecting language cues, e.g., “short up” (red lines) and “steady
down” (blue lines), which are then combined to represent the local patch information (e.g., “short up
then down steadily” for characterizing patch 5) without leaving the space where the language model
is pre-trained. This approach is efficient and allows for the adaptive selection of relevant source
information. To realize this, we employ a multi-head cross-attention layer. Specifically, for each
head k = {1, · · · ,K}, we define query matrices Q

(i)
k = X̂

(i)
P WQ

k , key matrices K
(i)
k = E′WK

k ,
and value matrices V(i)

k = E′WV
k , where WQ

k ∈ Rdm×d and WK
k ,WV

k ∈ RD×d. Specifically,
D is the hidden dimension of the backbone model, and d = ⌊dm

K ⌋. Then, we have the operation to
reprogram time series patches in each attention head defined as:

Z
(i)
k = ATTENTION(Q

(i)
k ,K

(i)
k ,V

(i)
k) = SOFTMAX(

Q
(i)
k K

(i)⊤
k√

dk
)V

(i)
k . (1)

By aggregating each Z
(i)
k ∈ RP×d in every head, we obtain Z(i) ∈ RP×dm . This is then linearly

projected to align the hidden dimensions with the backbone model, yielding O(i) ∈ RP×D.

<BOS> The Electricity Transformer Temperature (ETT)
indicates the electric power long-term deployment.
The dataset contains hourly sampled data from …

Task instruction: Predict the next <!> steps given
the previous <"> steps information attached
Input statistics: The input has a minimum of <min
value>, a maximum of <max value>, and a median of
<median value>. The overall trend is <upward or
downward>. The top five lags are <lag values>. <EOS>

<BOS> The Electricity Transformer Temperature (ETT)
indicates the electric power long-term deployment.
Each data point consists of the target oil temperature
and 6 power load features …

Task instruction: Predict the next <!> steps given
the previous <"> steps information attached

Input statistics: The input has a minimum of <min
value>, a maximum of <max value>, and a median of
<median value>. The overall trend is <upward or
downward>. The top five lags are <lag values>. <EOS>

Domain Knowledge: We usually observe that
electricity consumption usually peaks at noon, with a
significant increase in transformer load …

The Electricity Transformer Temperature (ETT) indicates the
electric power long-term deployment. Each data point consists
of the target oil temperature and 6 power load features …

Task instruction: Predict the next <!> steps given
the previous <"> steps information attached

Input statistics: The input has a minimum of <min
value>, a maximum of <max value>, and a median of
<median value>. The overall trend is <upward or
downward>. The top five lags are <lag values>.

Domain Knowledge: We usually observe that
electricity consumption usually peaks at noon, with a
significant increase in transformer load …

Below is the information about the input time series:

[Domain]: We usually observe that electricity consumption
peaks at noon, with a significant increase in transformer load

[Instruction]: Predict the next <!> steps given the previous
<"> steps information attached

[Statistics]: The input has a minimum of <min_val>, a maximum
of <max_val>, and a median of <median_val>. The overall trend
is <upward or downward>. The top five lags are <lag_val>.

[BEGIN DATA]

[END DATA]
Latest

Figure 4: Prompt example. <> and <>
are task-specific configurations and cal-
culated input statistics.

Prompt-as-Prefix. Prompting serves as a straightfor-
ward yet effective approach task-specific activation of
LLMs (Yin et al., 2023). However, the direct translation
of time series into natural language presents considerable
challenges, hindering both the creation of instruction-
following datasets and the effective utilization of on-the-
fly prompting without performance compromise (Xue &
Salim, 2022). Recent advancements indicate that other
data modalities, such as images, can be seamlessly in-
tegrated as the prefixes of prompts, thereby facilitating
effective reasoning based on these inputs (Tsimpoukelli
et al., 2021). Motivated by these findings, and to render
our approach directly applicable to real-world time series,
we pose an alternative question: can prompts act as pre-
fixes to enrich the input context and guide the transfor-
mation of reprogrammed time series patches? We term this concept as Prompt-as-Prefix (PaP) and
observe that it significantly enhances the LLM’s adaptability to downstream tasks while comple-
menting patch reprogramming (See Sec. 4.5 later).

5

Published as a conference paper at ICLR 2024

An illustration of the two prompting approaches is in Fig. 3(b). In Patch-as-Prefix, a language model
is prompted to predict subsequent values in a time series, articulated in natural language. This ap-
proach encounters certain constraints: (1) language models typically exhibit reduced sensitivity in
processing high-precision numerals without the aid of external tools, thereby presenting substantial
challenges in accurately addressing practical forecasting tasks over long horizons; (2) intricate, cus-
tomized post-processing is required for different language models, given that they are pre-trained
on diverse corpora and may employ different tokenization types in generating high-precision nu-
merals with precision and efficiency. This results in forecasts being represented in disparate natural
language formats, such as [‘0’, ‘.’, ‘6’, ‘1’] and [‘0’, ‘.’, ‘61’], to denote the decimal 0.61.

Prompt-as-Prefix, on the other hand, tactfully avoids these constraints. In practice, we identify three
pivotal components for constructing effective prompts: (1) dataset context, (2) task instruction, and
(3) input statistics. A prompt example is in Fig. 4. The dataset context furnishes the LLM with
essential background information concerning the input time series, which often exhibits distinct
characteristics across various domains. Task instruction serves as a crucial guide for the LLM in
the transformation of patch embeddings for specific tasks. We also enrich the input time series with
additional crucial statistics, such as trends and lags, to facilitate pattern recognition and reasoning.

Output Projection. Upon packing and feedforwarding the prompt and patch embeddings O(i)

through the frozen LLM as shown in Fig. 2, we discard the prefixal part and obtain the output
representations. Following this, we flatten and linear project them to derive the final forecasts Ŷ(i).

4 MAIN RESULTS

TIME-LLM consistently outperforms state-of-the-art forecasting methods by large margins across
multiple benchmarks and settings, especially in few-shot and zero-shot scenarios. We compared our
approach against a broad collection of up-to-date models, including a recent study that fine-tunes
language model for time series analysis (Zhou et al., 2023a). To ensure a fair comparison, we adhere
to the experimental configurations in (Wu et al., 2023) across all baselines with a unified evaluation
pipeline1. We use Llama-7B (Touvron et al., 2023) as the default backbone unless stated otherwise.

Baselines. We compare with the SOTA time series models, and we cite their performance from
(Zhou et al., 2023a) if applicable. Our baselines include a series of Transformer-based methods:
PatchTST (2023), ESTformer (2022), Non-Stationary Transformer (2022), FEDformer (2022), Aut-
oformer (2021), Informer (2021), and Reformer (2020). We also select a set of recent competi-
tive models, including GPT4TS (2023a), LLMTime (2023), DLinear (2023), TimesNet (2023), and
LightTS (2022a). In short-term forecasting, we further compare our model with N-HiTS (2023b)
and N-BEATS (2020). More details are in Appendix A.

4.1 LONG-TERM FORECASTING

Setups. We evaluate on ETTh1, ETTh2, ETTm1, ETTm2, Weather, Electricity (ECL), Traffic,
and ILI, which have been extensively adopted for benchmarking long-term forecasting models (Wu
et al., 2023). Details of the implementation and datasets can be found in Appendix B. The input time
series length T is set as 512, and we use four different prediction horizons H ∈ {96, 192, 336, 720}.
The evaluation metrics include mean square error (MSE) and mean absolute error (MAE).

Results. Our brief results are shown in Tab. 1, where TIME-LLM outperforms all baselines in most
cases and significantly so to the majority of them. The comparison with GPT4TS (Zhou et al.,
2023a) is particularly noteworthy. GPT4TS is a very recent work that involves fine-tuning on the
backbone language model. We note average performance gains of 12% and 20% over GPT4TS and
TimesNet, respectively. When compared with the SOTA task-specific Transformer model PatchTST,
by reprogramming the smallest Llama, TIME-LLM realizes an average MSE reduction of 1.4%.
Relative to the other models, e.g., DLinear, our improvements are also pronounced, exceeding 12%.

4.2 SHORT-TERM FORECASTING

Setups. We choose the M4 benchmark (Makridakis et al., 2018) as the testbed, which contains a
collection of marketing data in different sampling frequencies. More details are provided in Ap-
pendix B. The prediction horizons in this case are relatively small and in [6, 48]. The input lengths

1https://github.com/thuml/Time-Series-Library

6

Published as a conference paper at ICLR 2024

Table 1: Long-term forecasting results. All results are averaged from four different forecasting horizons: H ∈
{24, 36, 48, 60} for ILI and {96, 192, 336, 720} for the others. A lower value indicates better performance.
Red: the best, Blue: the second best. Our full results are in Appendix D.

Methods
TIME-LLM GPT4TS DLinear PatchTST TimesNet FEDformer Autoformer Stationary ETSformer LightTS Informer Reformer

(Ours) (2023a) (2023) (2023) (2023) (2022) (2021) (2022) (2022) (2022a) (2021) (2020)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.408 0.423 0.465 0.455 0.422 0.437 0.413 0.430 0.458 0.450 0.440 0.460 0.496 0.487 0.570 0.537 0.542 0.510 0.491 0.479 1.040 0.795 1.029 0.805

ETTh2 0.334 0.383 0.381 0.412 0.431 0.446 0.330 0.379 0.414 0.427 0.437 0.449 0.450 0.459 0.526 0.516 0.439 0.452 0.602 0.543 4.431 1.729 6.736 2.191

ETTm1 0.329 0.372 0.388 0.403 0.357 0.378 0.351 0.380 0.400 0.406 0.448 0.452 0.588 0.517 0.481 0.456 0.429 0.425 0.435 0.437 0.961 0.734 0.799 0.671

ETTm2 0.251 0.313 0.284 0.339 0.267 0.333 0.255 0.315 0.291 0.333 0.305 0.349 0.327 0.371 0.306 0.347 0.293 0.342 0.409 0.436 1.410 0.810 1.479 0.915

Weather 0.225 0.257 0.237 0.270 0.248 0.300 0.225 0.264 0.259 0.287 0.309 0.360 0.338 0.382 0.288 0.314 0.271 0.334 0.261 0.312 0.634 0.548 0.803 0.656

ECL 0.158 0.252 0.167 0.263 0.166 0.263 0.161 0.252 0.192 0.295 0.214 0.327 0.227 0.338 0.193 0.296 0.208 0.323 0.229 0.329 0.311 0.397 0.338 0.422

Traffic 0.388 0.264 0.414 0.294 0.433 0.295 0.390 0.263 0.620 0.336 0.610 0.376 0.628 0.379 0.624 0.340 0.621 0.396 0.622 0.392 0.764 0.416 0.741 0.422

ILI 1.435 0.801 1.925 0.903 2.169 1.041 1.443 0.797 2.139 0.931 2.847 1.144 3.006 1.161 2.077 0.914 2.497 1.004 7.382 2.003 5.137 1.544 4.724 1.445

1stCount 7 0 0 5 0 0 0 0 0 0 0 0

Table 2: Short-term time series forecasting results on M4. The forecasting horizons are in [6, 48] and the
three rows provided are weighted averaged from all datasets under different sampling intervals. A lower value
indicates better performance. Red: the best, Blue: the second best. More results are in Appendix D.

Methods
TIME-LLM GPT4TS TimesNet PatchTST N-HiTS N-BEATS ETSformer LightTS DLinear FEDformer Stationary Autoformer Informer Reformer

(Ours) (2023a) (2023) (2023) (2023b) (2020) (2022) (2022a) (2023) (2022) (2022) (2021) (2021) (2020)

A
ve

ra
ge SMAPE 11.983 12.69 12.88 12.059 12.035 12.25 14.718 13.525 13.639 13.16 12.780 12.909 14.086 18.200

MASE 1.595 1.808 1.836 1.623 1.625 1.698 2.408 2.111 2.095 1.775 1.756 1.771 2.718 4.223
OWA 0.859 0.94 0.955 0.869 0.869 0.896 1.172 1.051 1.051 0.949 0.930 0.939 1.230 1.775

are twice as prediction horizons. The evaluation metrics are symmetric mean absolute percentage
error (SMAPE), mean absolute scaled error (MSAE), and overall weighted average (OWA).

Results. Our brief results with unified seeds across all methods are in Tab. 2. TIME-LLM consis-
tently surpasses all baselines, outperforming GPT4TS by 8.7%. TIME-LLM remains competitive
even when compared with the SOTA model, N-HiTS (Challu et al., 2023b) , w.r.t. MASE and OWA.

4.3 FEW-SHOT FORECASTING

Setups. LLMs have recently demonstrated remarkable few-shot learning capabilities (Liu et al.,
2023b). In this section, we assess whether our reprogrammed LLM retains this ability in forecasting
tasks. We adhere to the setups in (Zhou et al., 2023a) for fair comparisons, and we evaluate on
scenarios with limited training data (i.e., ≤ first 10% training time steps).

Results. Our brief 10% and 5% few-shot learning results are in Tab. 3 and Tab. 4 respectively. TIME-
LLM remarkably excels over all baseline methods, and we attribute this to the successful knowledge
activation in our reprogrammed LLM. Interestingly, both our approach and GPT4TS consistently
surpass other competitive baselines, further underscoring the potential prowess of language models
as proficient time series machines.

In the realm of 10% few-shot learning, our methodology realizes a 5% MSE reduction in comparison
to GPT4TS, without necessitating any fine-tuning on the LLM. In relation to recent SOTA models

Table 3: Few-shot learning on 10% training data. We use the same protocol in Tab. 1. All results are averaged
from four different forecasting horizons: H ∈ {96, 192, 336, 720}. Our full results are in Appendix E.

Methods
TIME-LLM GPT4TS DLinear PatchTST TimesNet FEDformer Autoformer Stationary ETSformer LightTS Informer Reformer

(Ours) (2023a) (2023) (2023) (2023) (2022) (2021) (2022) (2022) (2022a) (2021) (2020)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.556 0.522 0.590 0.525 0.691 0.600 0.633 0.542 0.869 0.628 0.639 0.561 0.702 0.596 0.915 0.639 1.180 0.834 1.375 0.877 1.199 0.809 1.249 0.833

ETTh2 0.370 0.394 0.397 0.421 0.605 0.538 0.415 0.431 0.479 0.465 0.466 0.475 0.488 0.499 0.462 0.455 0.894 0.713 2.655 1.160 3.872 1.513 3.485 1.486

ETTm1 0.404 0.427 0.464 0.441 0.411 0.429 0.501 0.466 0.677 0.537 0.722 0.605 0.802 0.628 0.797 0.578 0.980 0.714 0.971 0.705 1.192 0.821 1.426 0.856

ETTm2 0.277 0.323 0.293 0.335 0.316 0.368 0.296 0.343 0.320 0.353 0.463 0.488 1.342 0.930 0.332 0.366 0.447 0.487 0.987 0.756 3.370 1.440 3.978 1.587

Weather 0.234 0.273 0.238 0.275 0.241 0.283 0.242 0.279 0.279 0.301 0.284 0.324 0.300 0.342 0.318 0.323 0.318 0.360 0.289 0.322 0.597 0.495 0.546 0.469

ECL 0.175 0.270 0.176 0.269 0.180 0.280 0.180 0.273 0.323 0.392 0.346 0.427 0.431 0.478 0.444 0.480 0.660 0.617 0.441 0.489 1.195 0.891 0.965 0.768

Traffic 0.429 0.306 0.440 0.310 0.447 0.313 0.430 0.305 0.951 0.535 0.663 0.425 0.749 0.446 1.453 0.815 1.914 0.936 1.248 0.684 1.534 0.811 1.551 0.821

1stCount 7 1 0 1 0 0 0 0 0 0 0 0

7

Published as a conference paper at ICLR 2024

Table 4: Few-shot learning on 5% training data. We use the same protocol in Tab. 1. All results are averaged
from four different forecasting horizons: H ∈ {96, 192, 336, 720}. Our full results are in Appendix E.

Methods
TIME-LLM GPT4TS DLinear PatchTST TimesNet FEDformer Autoformer Stationary ETSformer LightTS Informer Reformer

(Ours) (2023a) (2023) (2023) (2023) (2022) (2021) (2022) (2022) (2022a) (2021) (2020)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.627 0.543 0.681 0.560 0.750 0.611 0.694 0.569 0.925 0.647 0.658 0.562 0.722 0.598 0.943 0.646 1.189 0.839 1.451 0.903 1.225 0.817 1.241 0.835

ETTh2 0.382 0.418 0.400 0.433 0.694 0.577 0.827 0.615 0.439 0.448 0.463 0.454 0.441 0.457 0.470 0.489 0.809 0.681 3.206 1.268 3.922 1.653 3.527 1.472

ETTm1 0.425 0.434 0.472 0.450 0.400 0.417 0.526 0.476 0.717 0.561 0.730 0.592 0.796 0.620 0.857 0.598 1.125 0.782 1.123 0.765 1.163 0.791 1.264 0.826

ETTm2 0.274 0.323 0.308 0.346 0.399 0.426 0.314 0.352 0.344 0.372 0.381 0.404 0.388 0.433 0.341 0.372 0.534 0.547 1.415 0.871 3.658 1.489 3.581 1.487

Weather 0.260 0.309 0.263 0.301 0.263 0.308 0.269 0.303 0.298 0.318 0.309 0.353 0.310 0.353 0.327 0.328 0.333 0.371 0.305 0.345 0.584 0.527 0.447 0.453

ECL 0.179 0.268 0.178 0.273 0.176 0.275 0.181 0.277 0.402 0.453 0.266 0.353 0.346 0.404 0.627 0.603 0.800 0.685 0.878 0.725 1.281 0.929 1.289 0.904

Traffic 0.423 0.298 0.434 0.305 0.450 0.317 0.418 0.296 0.867 0.493 0.676 0.423 0.833 0.502 1.526 0.839 1.859 0.927 1.557 0.795 1.591 0.832 1.618 0.851

1stCount 5 2 1 1 0 0 0 0 0 0 0 0

such as PatchTST, DLinear, and TimesNet, our average enhancements surpass 8%, 12%, and 33%
w.r.t. MSE. Analogous trends are discernible in the 5% few-shot learning scenarios, where our
average advancement over GPT4TS exceeds 5%. When compared with PatchTST, DLinear, and
TimesNet, TIME-LLM manifests a striking average improvement of over 20%.

4.4 ZERO-SHOT FORECASTING Table 5: Zero-shot learning results. Red: the best, Blue: the sec-
ond best. Appendix E shows our detailed results.

Methods
TIME-LLM GPT4TS LLMTime DLinear PatchTST TimesNet

(Ours) (2023a) (2023) (2023) (2023) (2023)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1→ ETTh2 0.353 0.387 0.406 0.422 0.992 0.708 0.493 0.488 0.380 0.405 0.421 0.431

ETTh1→ ETTm2 0.273 0.340 0.325 0.363 1.867 0.869 0.415 0.452 0.314 0.360 0.327 0.361

ETTh2→ ETTh1 0.479 0.474 0.757 0.578 1.961 0.981 0.703 0.574 0.565 0.513 0.865 0.621

ETTh2→ ETTm2 0.272 0.341 0.335 0.370 1.867 0.869 0.328 0.386 0.325 0.365 0.342 0.376

ETTm1→ ETTh2 0.381 0.412 0.433 0.439 0.992 0.708 0.464 0.475 0.439 0.438 0.457 0.454

ETTm1→ ETTm2 0.268 0.320 0.313 0.348 1.867 0.869 0.335 0.389 0.296 0.334 0.322 0.354

ETTm2→ ETTh2 0.354 0.400 0.435 0.443 0.992 0.708 0.455 0.471 0.409 0.425 0.435 0.443

ETTm2→ ETTm1 0.414 0.438 0.769 0.567 1.933 0.984 0.649 0.537 0.568 0.492 0.769 0.567

Setups. Beyond few-shot learning,
LLMs hold potential as effective
zero-shot reasoners (Kojima et al.,
2022). In this section, we evaluate
the zero-shot learning capabilities of
the reprogrammed LLM within the
framework of cross-domain adapta-
tion. Specifically, we examine how
well a model performs on a dataset
♣ when it is optimized on another
dataset ♠, where the model has not
encountered any data samples from the dataset ♣. Similar to few-shot learning, we use long-term
forecasting protocol and evaluate on various cross-domain scenarios utilizing the ETT datasets.

Results. Our brief results are in Tab. 5. TIME-LLM consistently outperforms the most competitive
baselines by a large margin, over 14.2% w.r.t. the second-best in MSE reduction. Considering the
few-shot results, we observe that reprogramming an LLM tends to yield significantly better results
in data scarcity scenarios. For example, our overall error reductions w.r.t. GPT4TS in 10% few-shot
forecasting, 5% few-shot forecasting, and zero-shot forecasting are increasing gradually: 7.7%,
8.4%, and 22%. Even when benchmarked against LLMTime, the most recent approach in this field,
with the backbone LLM of comparable size (7B), TIME-LLM shows a substantial improvement
exceeding 75%. We attribute this to our approach being better at activating the LLM’s knowledge
transfer and reasoning capabilities in a resource-efficient manner when performing time series tasks.

4.5 MODEL ANALYSIS

Language Model Variants. We compare two representative backbones with varying capacities
(A.1-4 in Tab. 6). Our results indicate that the scaling law retain after the LLM reprogramming. We
adopt Llama-7B by default in its full capacity, which manifestly outperforms its 1/4 capacity variant
(A.2; inclusive of the first 8 Transformer layers) by 14.5%. An average MSE reduction of 14.7% is
observed over GPT-2 (A.3), which slightly outperforms its variant GPT-2 (6) (A.4) by 2.7%.

Cross-modality Alignment. Our results in Tab. 6 indicate that ablating either patch reprogramming
or Prompt-as-Prefix hurts knowledge transfer in reprogramming the LLM for effective time series
forecasting. In the absence of representation alignment (B.1), we observe a notable average perfor-
mance degradation of 9.2%, which becomes more pronounced (exceeding 17%) in few-shot tasks.
In TIME-LLM, the act of prompting stands as a pivotal element in harnessing the LLM’s capacity
for understanding the inputs and tasks. Ablation of this component (B.2) results in over 8% and
19% degradation in standard and few-shot forecasting tasks, respectively. We find that removing
the input statistics (C.1) hurts the most, resulting in an average increase of 10.2% MSE. This is an-

8

Published as a conference paper at ICLR 2024

Table 6: Ablations on ETTh1 and ETTm1 in predicting 96 and 192 steps ahead (MSE reported). Red: the best.

Variant Long-term Forecasting Few-shot Forecasting

ETTh1-96 ETTh1-192 ETTm1-96 ETThm1-192 ETTh1-96 ETTh1-192 ETTm1-96 ETThm1-192

A.1 Llama (Default; 32) 0.362 0.398 0.272 0.310 0.448 0.484 0.346 0.373
A.2 Llama (8) 0.389 0.412 0.297 0.329 0.567 0.632 0.451 0.490
A.3 GPT-2 (12) 0.385 0.419 0.306 0.332 0.548 0.617 0.447 0.509
A.4 GPT-2 (6) 0.394 0.427 0.311 0.342 0.571 0.640 0.468 0.512

B.1 w/o Patch Reprogramming 0.410 0.412 0.310 0.342 0.498 0.570 0.445 0.487
B.2 w/o Prompt-as-Prefix 0.398 0.423 0.298 0.339 0.521 0.617 0.432 0.481

C.1 w/o Dataset Context 0.402 0.417 0.298 0.331 0.491 0.538 0.392 0.447
C.2 w/o Task Instruction 0.388 0.420 0.285 0.327 0.476 0.529 0.387 0.439
C.3 w/o Statistical Context 0.391 0.419 0.279 0.347 0.483 0.547 0.421 0.461

Table 7: Efficiency analysis of TIME-LLM on ETTh1 in forecasting different steps ahead.
Length ETTh1-96 ETTh1-192 ETTh1-336 ETTh1-512

Metric Param. (M) Mem. (MiB) Speed(s/iter) Param. (M) Mem. (MiB) Speed(s/iter) Param. (M) Mem. (MiB) Speed(s/iter) Param. (M) Mem.(MiB) Speed(s/iter)

D.1 LLama (32) 3404.53 32136 0.517 3404.57 33762 0.582 3404.62 37988 0.632 3404.69 39004 0.697
D.2 LLama (8) 975.83 11370 0.184 975.87 12392 0.192 975.92 13188 0.203 976.11 13616 0.217
D.3 w/o LLM 6.39 3678 0.046 6.42 3812 0.087 6.48 3960 0.093 6.55 4176 0.129

ticipated as external knowledge can be naturally incorporated via prompting to facilitate the learning
and inference. Additionally, providing the LLM with clear task instructions and input context (e.g.,
dataset captioning) is also beneficial (i.e., C.2 and C.1; eliciting over 7.7% and 9.6%, respectively).

(a) Epoch 0
Pa
tc
h

Text Prototype Text Prototype Text Prototype Text Prototype

(b) Epoch 1 (c) Epoch 5 (d) Epoch 10

…

(e) Illustration of a Well-optimized Reprogramming Space in (d)

(f) Visualization of 10 different
learned text prototypes

Pr
ot
ot
yp
e

Word Set 1

Pr
ot
ot
yp
e

Word Set 2

Pr
ot
ot
yp
e

Word Set 3

Word Set 1: {‘periodic’, ‘seasonal’, …}
Word Set 2: {‘quantile’, ‘average’, …}
Word Set 3: {‘outspoken’, ‘galiee’, …}

Figure 5: A showcase of patch reprogramming.

Reprogramming Interpretation. We pro-
vide a case study on ETTh1 of reprogram-
ming 48 time series patches with 100 text
prototypes in Fig. 5. The top 4 subplots
visualize the optimization of reprogramming
space from randomly-initialized (a) to well-
optimized (d). We find only a small set of pro-
totypes (columns) participated in reprogram-
ming the input patches (rows) in subplot (e).
Also, patches undergo different representations
through varying combinations of prototypes.
This indicates: (1) text prototypes learn to sum-
marize language cues, and a select few are
highly relevant for representing information in
local time series patches, which we visualize by
randomly selecting 10 in subplot (f). Our results suggest a high relevance to the words that describe
time series properties (i.e., word sets 1 and 2); (2) patches usually have different underlying seman-
tics, necessitating different prototypes to represent.

Reprogramming Efficiency. Tab. 7 provides an overall efficiency analysis of TIME-LLM with
and without the backbone LLM. Our proposed reprogramming network itself (D.3) is lightweight
in activating the LLM’s ability for time series forecasting (i.e., fewer than 6.6 million trainable
parameters; only around 0.2% of the total parameters in Llama-7B), and the overall efficiency of
TIME-LLM is actually capped by the leveraged backbones (e.g., D.1 and D.2). This is favorable
even compared to the parameter-efficient fine-tuning methods (e.g., QLoRA (Dettmers et al., 2023))
in balancing task performance and efficiency.

5 CONCLUSION AND FUTURE WORK

TIME-LLM shows promise in adapting frozen large language models for time series forecasting by
reprogramming time series data into text prototypes more natural for LLMs and providing natural
language guidance via Prompt-as-Prefix to augment reasoning. Evaluations demonstrate the adapted
LLMs can outperform specialized expert models, indicating their potential as effective time series
machines. Our results also provide a novel insight that time series forecasting can be cast as yet an-
other “language” task that can be tackled by an off-the-shelf LLM to achieve state-of-the-art perfor-
mance through our Time-LLM framework. Further research should explore optimal reprogramming
representations, enrich LLMs with explicit time series knowledge through continued pre-training,
and build towards multimodal models with joint reasoning across time series, natural language, and
other modalities. Furthermore, applying the reprogramming framework to equip LLMs with broader
time series analytical abilities or other new capabilities should also be considered.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS AND DISCLOSURE OF FUNDING

The authors extend their deep gratitude to the Intelligent Engine Technology Division of Ant Group
for their support in completing this research. We also express special thanks to the Language and
Machine Intelligence Department and the Optimization Intelligence Department for their support.
Our sincere appreciation is directed to Jun Zhou, Vice President of the Intelligent Engine Technology
Division, and Xingyu Lu, Senior Staff Engineer, for their expert guidance.

This material is based on research partially sponsored by the DARPA Assured Neuro Sym-
bolic Learning and Reasoning (ANSR) program under award number FA8750-23-2-1016 and the
DARPA Knowledge Management at Scale and Speed (KMASS) program under award number
HR00112220047. S. Pan was supported in part by the Australian Research Council (ARC) un-
der grants FT210100097 and DP240101547, and the CSIRO – National Science Foundation (US)
AI Research Collaboration Program. Y. Liang was supported by the Guangzhou-HKUST(GZ) Joint
Funding Program (No. 2024A03J0620).

REFERENCES

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time series analysis:
forecasting and control. John Wiley & Sons, 2015.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

Cristian Challu, Kin G Olivares, Boris N Oreshkin, Federico Garza, Max Mergenthaler, and Artur
Dubrawski. N-hits: Neural hierarchical interpolation for time series forecasting. Proceedings of
the AAAI Conference on Artificial Intelligence, 2023a.

Cristian Challu, Kin G Olivares, Boris N Oreshkin, Federico Garza Ramirez, Max Mergenthaler
Canseco, and Artur Dubrawski. Nhits: neural hierarchical interpolation for time series forecast-
ing. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 6989–6997,
2023b.

Ching Chang, Wen-Chih Peng, and Tien-Fu Chen. Llm4ts: Two-stage fine-tuning for time-series
forecasting with pre-trained llms. arXiv preprint arXiv:2308.08469, 2023.

Pin-Yu Chen. Model reprogramming: Resource-efficient cross-domain machine learning. arXiv
preprint arXiv:2202.10629, 2022.

Shohreh Deldari, Hao Xue, Aaqib Saeed, Jiayuan He, Daniel V Smith, and Flora D Salim. Beyond
just vision: A review on self-supervised representation learning on multimodal and temporal data.
arXiv preprint arXiv:2206.02353, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, 2018.

Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain
Muller. Transfer learning for time series classification. In IEEE International Conference on Big
Data, pp. 1367–1376. IEEE, 2018.

Nate Gruver, Marc Anton Finzi, Shikai Qiu, and Andrew Gordon Wilson. Large language models
are zero-shot time series forecasters. Advances in Neural Information Processing Systems, 2023.

10

Published as a conference paper at ICLR 2024

Julien Herzen, Francesco Lassig, Samuele Giuliano Piazzetta, Thomas Neuer, Leo Tafti, Guillaume
Raille, Tomas Van Pottelbergh, Marek Pasieka, Andrzej Skrodzki, Nicolas Huguenin, et al. Darts:
User-friendly modern machine learning for time series. The Journal of Machine Learning Re-
search, 23(1):5442–5447, 2022.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Jiaxi Hu, Yuehong Hu, Wei Chen, Ming Jin, Shirui Pan, Qingsong Wen, and Yuxuan Liang. At-
tractor memory for long-term time series forecasting: A chaos perspective. arXiv preprint
arXiv:2402.11463, 2024.

Ming Jin, Huan Yee Koh, Qingsong Wen, Daniele Zambon, Cesare Alippi, Geoffrey I Webb, Irwin
King, and Shirui Pan. A survey on graph neural networks for time series: Forecasting, classifica-
tion, imputation, and anomaly detection. arXiv preprint arXiv:2307.03759, 2023a.

Ming Jin, Qingsong Wen, Yuxuan Liang, Chaoli Zhang, Siqiao Xue, Xue Wang, James Zhang,
Yi Wang, Haifeng Chen, Xiaoli Li, et al. Large models for time series and spatio-temporal data:
A survey and outlook. arXiv preprint arXiv:2310.10196, 2023b.

Ming Jin, Yifan Zhang, Wei Chen, Kexin Zhang, Yuxuan Liang, Bin Yang, Jindong Wang, Shirui
Pan, and Qingsong Wen. Position paper: What can large language models tell us about time series
analysis. arXiv preprint arXiv:2402.02713, 2024.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Re-
versible instance normalization for accurate time-series forecasting against distribution shift. In
International Conference on Learning Representations, 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 2015.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, 2020.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Michael Leonard. Promotional analysis and forecasting for demand planning: a practical time series
approach. with exhibits, 1, 2001.

Na Li, Donald M Arnold, Douglas G Down, Rebecca Barty, John Blake, Fei Chiang, Tom Courtney,
Marianne Waito, Rick Trifunov, and Nancy M Heddle. From demand forecasting to inventory
ordering decisions for red blood cells through integrating machine learning, statistical modeling,
and inventory optimization. Transfusion, 62(1):87–99, 2022.

Hengbo Liu, Ziqing Ma, Linxiao Yang, Tian Zhou, Rui Xia, Yi Wang, Qingsong Wen, and Liang
Sun. Sadi: A self-adaptive decomposed interpretable framework for electric load forecasting
under extreme events. In IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing, 2023a.

Xin Liu, Daniel McDuff, Geza Kovacs, Isaac Galatzer-Levy, Jacob Sunshine, Jiening Zhan, Ming-
Zher Poh, Shun Liao, Paolo Di Achille, and Shwetak Patel. Large language models are few-shot
health learners. arXiv preprint arXiv:2305.15525, 2023b.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
the stationarity in time series forecasting. Advances in Neural Information Processing Systems,
35:9881–9893, 2022.

Linhao Luo, Jiaxin Ju, Bo Xiong, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. Chatrule:
Mining logical rules with large language models for knowledge graph reasoning. arXiv preprint
arXiv:2309.01538, 2023a.

11

Published as a conference paper at ICLR 2024

Linhao Luo, Yuan-Fang Li, Reza Haf, and Shirui Pan. Reasoning on graphs: Faithful and inter-
pretable large language model reasoning. In The Twelfth International Conference on Learning
Representations, 2023b.

Ziyang Ma, Wen Wu, Zhisheng Zheng, Yiwei Guo, Qian Chen, Shiliang Zhang, and Xie Chen.
Leveraging speech ptm, text llm, and emotional tts for speech emotion recognition. arXiv preprint
arXiv:2309.10294, 2023.

Spyros Makridakis and Michele Hibon. The m3-competition: results, conclusions and implications.
International journal of forecasting, 16(4):451–476, 2000.

Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The m4 competition: Re-
sults, findings, conclusion and way forward. International Journal of Forecasting, 34(4):802–808,
2018.

Igor Melnyk, Vijil Chenthamarakshan, Pin-Yu Chen, Payel Das, Amit Dhurandhar, Inkit Padhi, and
Devleena Das. Reprogramming pretrained language models for antibody sequence infilling. In
International Conference on Machine Learning, 2023.

Suvir Mirchandani, Fei Xia, Pete Florence, Danny Driess, Montserrat Gonzalez Arenas, Kanishka
Rao, Dorsa Sadigh, Andy Zeng, et al. Large language models as general pattern machines. In
Proceedings of the 7th Annual Conference on Robot Learning, 2023.

Diganta Misra, Agam Goyal, Bharat Runwal, and Pin Yu Chen. Reprogramming under constraints:
Revisiting efficient and reliable transferability of lottery tickets. arXiv preprint arXiv:2308.14969,
2023.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In International Conference on Learning
Representations, 2023.

OpenAI. Gpt-4 technical report, 2023.

Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural ba-
sis expansion analysis for interpretable time series forecasting. In International Conference on
Learning Representations, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in Neural Information Processing Systems, 32,
2019.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Stephen H Schneider and Robert E Dickinson. Climate modeling. Reviews of Geophysics, 12(3):
447–493, 1974.

Yihong Tang, Ao Qu, Andy HF Chow, William HK Lam, SC Wong, and Wei Ma. Domain adver-
sarial spatial-temporal network: a transferable framework for short-term traffic forecasting across
cities. In Proceedings of the 31st ACM International Conference on Information & Knowledge
Management, pp. 1905–1915, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Maria Tsimpoukelli, Jacob L Menick, Serkan Cabi, SM Eslami, Oriol Vinyals, and Felix Hill. Mul-
timodal few-shot learning with frozen language models. Advances in Neural Information Pro-
cessing Systems, 34:200–212, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 30, 2017.

12

Published as a conference paper at ICLR 2024

Ria Vinod, Pin-Yu Chen, and Payel Das. Reprogramming language models for molecular represen-
tation learning. In Annual Conference on Neural Information Processing Systems, 2020.

Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun.
Transformers in time series: A survey. In International Joint Conference on Artificial Intelligence,
2023.

Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Etsformer: Exponential
smoothing transformers for time-series forecasting. arXiv preprint arXiv:2202.01381, 2022.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. Advances in Neural Information
Processing Systems, 34:22419–22430, 2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In International Conference on
Learning Representations, 2023.

Hao Xue and Flora D Salim. Prompt-based time series forecasting: A new task and dataset. arXiv
preprint arXiv:2210.08964, 2022.

Chao-Han Huck Yang, Yun-Yun Tsai, and Pin-Yu Chen. Voice2series: Reprogramming acoustic
models for time series classification. In International Conference on Machine Learning, pp.
11808–11819. PMLR, 2021.

Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on
multimodal large language models. arXiv preprint arXiv:2306.13549, 2023.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
11121–11128, 2023.

Kexin Zhang, Qingsong Wen, Chaoli Zhang, Rongyao Cai, Ming Jin, Yong Liu, James Zhang,
Yuxuan Liang, Guansong Pang, Dongjin Song, et al. Self-supervised learning for time series
analysis: Taxonomy, progress, and prospects. arXiv preprint arXiv:2306.10125, 2023.

Tianping Zhang, Yizhuo Zhang, Wei Cao, Jiang Bian, Xiaohan Yi, Shun Zheng, and Jian Li. Less is
more: Fast multivariate time series forecasting with light sampling-oriented mlp structures. arXiv
preprint arXiv:2207.01186, 2022a.

Xiang Zhang, Ziyuan Zhao, Theodoros Tsiligkaridis, and Marinka Zitnik. Self-supervised con-
trastive pre-training for time series via time-frequency consistency. Advances in Neural Informa-
tion Processing Systems, 35:3988–4003, 2022b.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pp. 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International Conference
on Machine Learning, pp. 27268–27286. PMLR, 2022.

Tian Zhou, Peisong Niu, Xue Wang, Liang Sun, and Rong Jin. One fits all: Power general time
series analysis by pretrained lm. Advances in Neural Information Processing Systems, 36, 2023a.

Yunyi Zhou, Zhixuan Chu, Yijia Ruan, Ge Jin, Yuchen Huang, and Sheng Li. ptse: A multi-
model ensemble method for probabilistic time series forecasting. In The 32nd International Joint
Conference on Artificial Intelligence, 2023b.

13

Published as a conference paper at ICLR 2024

A MORE RELATED WORK

Task-specific Learning. We furnish an extension of the related work on task-specific learning,
focusing particularly on the most related models to which we made comparisons. Recent works
improve Transformer (Vaswani et al., 2017) for time series forecasting by incorporating signal pro-
cessing principles like patching, exponential smoothing, decomposition, and frequency analysis.
For example, PatchTST (Nie et al., 2023) segments time series into patches as input tokens to Trans-
former. This retains local semantics, reduces computation/memory for attention, and allows longer
history. It improves long-term forecast accuracy over other Transformer models. It also achieves
excellent performance on self-supervised pretraining and transfer learning. ETSformer (Woo et al.,
2022) incorporates exponential smoothing principles into Transformer attention to improve accuracy
and efficiency. It uses exponential smoothing attention and frequency attention to replace standard
self-attention. FEDformer (Zhou et al., 2022) combines Transformer with seasonal-trend decompo-
sition. The decomposition captures the global profile while Transformer captures detailed structures.
It also uses frequency enhancement for long-term prediction. This provides better performance and
efficiency than the standard Transformer. Autoformer (Wu et al., 2021) uses a decomposition ar-
chitecture with auto-correlation to enable progressive decomposition capacities for complex series.
Auto-correlation is designed based on series periodicity to conduct dependency discovery and rep-
resentation aggregation. It outperforms self-attention in efficiency and accuracy.

Although these methods enhance efficiency and accuracy compared to vanilla Transformer, they are
mostly designed and optimized for narrow prediction tasks within specific domains. These models
are typically trained end-to-end on small, domain-specific datasets. While achieving strong perfor-
mance on their target tasks, such specialized models sacrifice versatility and generalizability across
the diverse range of time series data encountered in the real world. The narrow focus limits their
applicability to new datasets and tasks. To advance time series forecasting, there is a need for more
flexible, widely applicable models that can adapt to new data distributions and tasks without exten-
sive retraining. Ideal models would learn robust time series representations that transfer knowledge
across domains. Developing such broadly capable forecasting models remains an open challenge.
According to our discussions of related previous work, recent studies have begun to explore model
versatility through pre-training and architectural innovations. However, further efforts are needed to
realize the truly general-purpose forecasting systems that we are advancing in this research.

Cross-modality Adaptation. We provide an extended overview of related work in cross-modality
adaptation, with a particular focus on recent advancements in model reprogramming for time se-
ries and other data modalities. Model reprogramming is a resource-efficient cross-domain learning
approach that involves adapting a well-developed, pre-trained model from one domain (source) to
address tasks in a different domain (target) without the need for model fine-tuning, even when these
domains are significantly distinct, as noted by Chen (2022). In the context of time series data,
Voice2Series (Yang et al., 2021) adapts an acoustic model from speech recognition for time series
classification by transforming the time series to fit the model and remapping outputs to new labels.
Similarly, LLMTime (Gruver et al., 2023) adapts LLMs for zero-shot time series forecasting, focus-
ing on the effective tokenization of input time series for the backbone LLM, which then generates
forecasts autoregressively. Diverging from these methods, TIME-LLM does not edit the input time
series directly. Instead, it proposes reprogramming time series with the source data modality along
with prompting to unleash the full potential of LLMs as versatile forecasters in standard, few-shot,
and zero-shot scenarios. Other notable works in this field, mostly in biology, include R2DL (Vinod
et al., 2020) and ReproBert (Melnyk et al., 2023), which reprogram amino acids using word em-
beddings. A key distinction with our patch reprogramming approach is that, unlike the complete
set of amino acids, time series patches do not form a complete set. Thus, we propose optimizing a
small set of text prototypes and their mapping to time series patches, rather than directly optimizing
a large transformation matrix between two complete sets, such as vocabulary and amino acids.

B EXPERIMENTAL DETAILS

B.1 IMPLEMENTATION

We mainly follow the experimental configurations in (Wu et al., 2023) across all baselines within a
unified evaluation pipeline in https://github.com/thuml/Time-Series-Library for

14

https://github.com/thuml/Time-Series-Library

Published as a conference paper at ICLR 2024

fair comparisons. We use Llama-7B (Touvron et al., 2023) as the default backbone model unless
stated otherwise. All our experiments are repeated three times and we report the averaged results.
Our model implementation is on PyTorch (Paszke et al., 2019) with all experiments conducted on
NVIDIA A100-80G GPUs. Our detailed model configurations are in Appendix B.4, and our code is
made available at https://github.com/KimMeen/Time-LLM.

Technical Details. We provide additional technical details of TIME-LLM in three aspects: (1) the
learning of text prototypes, (2) the calculation of trends and lags in time series for use in prompts,
and (3) the implementation of the output projection. To identify a small set of text prototypes
E′ ∈ RV ′×D from E ∈ RV×D, we learn a matrix W ∈ RV ′×V as the intermediary. To describe
the overall time series trend in natural language, we calculate the sum of differences between con-
secutive time steps. A sum greater than 0 indicates an upward trend, while a lesser sum denotes a
downward trend. In addition, we calculate the top-5 lags of the time series, identified by comput-
ing the autocorrelation using fast Fourier transformation and selecting the five lags with the highest
correlation values. After we pack and feedforward the prompt and patch embeddings O(i) ∈ RP×D

through the frozen LLM, we discard the prefixal part and obtain the output representations, denoted
as Õi ∈ RP×D. Subsequently, we follow PatchTST (Nie et al., 2023) and flatten Õi into a 1D
tensor with the length P ×D, which is then linear projected as Ŷi ∈ RH .

B.2 DATASET DETAILS

Dataset statistics are summarized in Tab. 8. We evaluate the long-term forecasting performance on
the well-established eight different benchmarks, including four ETT datasets (Zhou et al., 2021) (i.e.,
ETTh1, ETTh2, ETTm1, and ETTm2), Weather, Electricity, Traffic, and ILI from (Wu et al., 2023).
Furthermore, we evaluate the performance of short-term forecasting on the M4 benchmark (Makri-
dakis et al., 2018) and the quarterly dataset in the M3 benchmark (Makridakis & Hibon, 2000).

Table 8: Dataset statistics are from (Wu et al., 2023). The dimension indicates the number of time
series (i.e., channels), and the dataset size is organized in (training, validation, testing).

Tasks Dataset Dim. Series Length Dataset Size Frequency Domain

ETTm1 7 {96, 192, 336, 720} (34465, 11521, 11521) 15 min Temperature

Long-term ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15 min Temperature

Forecasting ETTh1 7 {96, 192, 336, 720} (8545, 2881, 2881) 1 hour Temperature

ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) 1 hour Temperature

Electricity 321 {96, 192, 336, 720} (18317, 2633, 5261) 1 hour Electricity

Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) 1 hour Transportation

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10 min Weather

ILI 7 {24, 36, 48, 60} (617, 74, 170) 1 week Illness

M3-Quarterly 1 8 (756, 0, 756) Quarterly Multiple

M4-Yearly 1 6 (23000, 0, 23000) Yearly Demographic

M4-Quarterly 1 8 (24000, 0, 24000) Quarterly Finance

Short-term M4-Monthly 1 18 (48000, 0, 48000) Monthly Industry

Forecasting M4-Weakly 1 13 (359, 0, 359) Weakly Macro

M4-Daily 1 14 (4227, 0, 4227) Daily Micro

M4-Hourly 1 48 (414, 0, 414) Hourly Other

The Electricity Transformer Temperature (ETT; An indicator reflective of long-term electric power
deployment) benchmark is comprised of two years of data, sourced from two counties in China,
and is subdivided into four distinct datasets, each with varying sampling rates: ETTh1 and ETTh2,
which are sampled at a 1-hour level, and ETTm1 and ETTm2, which are sampled at a 15-minute
level. Each entry within the ETT datasets includes six power load features and a target variable,
termed “oil temperature”. The Electricity dataset comprises records of electricity consumption from
321 customers, measured at a 1-hour sampling rate. The Weather dataset includes one-year records

15

https://github.com/KimMeen/Time-LLM

Published as a conference paper at ICLR 2024

from 21 meteorological stations located in Germany, with a sampling rate of 10 minutes. The Traffic
dataset includes data on the occupancy rates of the freeway system, recorded from 862 sensors
across the State of California, with a sampling rate of 1 hour. The influenza-like illness (ILI) dataset
contains records of patients experiencing severe influenza with complications.

The M4 benchmark comprises 100K time series, amassed from various domains commonly present
in business, financial, and economic forecasting. These time series have been partitioned into six
distinctive datasets, each with varying sampling frequencies that range from yearly to hourly. The
M3-Quarterly dataset comprises 756 quarterly sampled time series in the M3 benchmark. These
series are categorized into five different domains: demographic, micro, macro, industry, and finance.

B.3 EVALUATION METRICS

For evaluation metrics, we utilize the mean square error (MSE) and mean absolute error (MAE) for
long-term forecasting. In terms of the short-term forecasting on M4 benchmark, we adopt the sym-
metric mean absolute percentage error (SMAPE), mean absolute scaled error (MASE), and overall
weighted average (OWA) as in N-BEATS (Oreshkin et al., 2020). Note that OWA is a specific metric
utilized in the M4 competition. The calculations of these metrics are as follows:

MSE =
1

H

T∑
h=1

(Yh − Ŷh)
2, MAE =

1

H

H∑
h=1

|Yh − Ŷh|,

SMAPE =
200

H

H∑
h=1

|Yh − Ŷh|
|Yh|+ |Ŷh|

, MAPE =
100

H

H∑
h=1

|Yh − Ŷh|
|Yh|

,

MASE =
1

H

H∑
h=1

|Yh − Ŷh|
1

H−s

∑H
j=s+1 |Yj −Yj−s|

, OWA =
1

2

[
SMAPE

SMAPENaı̈ve2
+

MASE
MASENaı̈ve2

]
,

where s is the periodicity of the time series data. H denotes the number of data points (i.e., prediction
horizon in our cases). Yh and Ŷh are the h-th ground truth and prediction where h ∈ {1, · · · , H}.

B.4 MODEL CONFIGURATIONS

The configurations of our models, relative to varied tasks and datasets, are consolidated in Tab. 9.
By default, the Adam optimizer (Kingma & Ba, 2015) is employed throughout all experiments.
Specifically, the quantity of text prototypes V ′ is held constant at 100 and 1000 for short-term and
long-term forecasting tasks, respectively. We utilize the Llama-7B model at full capacity, maintain-
ing the backbone model layers at 32 across all tasks as a standard. The term input length T signifies
the number of time steps present in the original input time series data. Patch dimensions dm rep-
resent the hidden dimensions of the embedded time series patches prior to reprogramming. Lastly,
heads K correlate to the multi-head cross-attention utilized for patch reprogramming. In the four
rightmost columns of Tab. 9, we detail the configurations related to model training.

Table 9: An overview of the experimental configurations for TIME-LLM. “LTF” and “STF” denote
long-term and short-term forecasting, respectively.

Task-Dataset / Configuration Model Hyperparameter Training Process

Text Prototype V ′ Backbone Layers Input Length T Patch Dim. dm Heads K LR∗ Loss Batch Size Epochs

LTF - ETTh1 1000 32 512 16 8 10−3 MSE 16 50

LTF - ETTh2 1000 32 512 16 8 10−3 MSE 16 50

LTF - ETTm1 1000 32 512 16 8 10−3 MSE 16 100

LTF - ETTm2 1000 32 512 16 8 10−3 MSE 16 100

LTF - Weather 1000 32 512 16 8 10−2 MSE 8 100

LTF - Electricity 1000 32 512 16 8 10−2 MSE 8 100

LTF - Traffic 1000 32 512 16 8 10−2 MSE 8 100

LTF - ILI 100 32 96 16 8 10−2 MSE 16 50

STF - M3-Quarterly 100 32 2×H † 32 8 10−4 SMAPE 32 50

STF - M4 100 32 2×H † 32 8 10−4 SMAPE 32 50

†H represents the forecasting horizon of the M4 and M3 datasets.
∗ LR means the initial learning rate.

16

Published as a conference paper at ICLR 2024

C HYPERPARAMETER SENSITIVITY

We conduct a hyperparameter sensitivity analysis focusing on the four important hyperparameters
within TIME-LLM: namely, the number of backbone model layers, the number of text prototypes
V ′, the time series input length T , and the number of patch reprogramming cross-attention heads
K. The correlated results can be found in Fig. 6. From our analysis, we derive the following
observations: (1) There is a positive correlation between the number of Transformer layers in the
backbone LLM and the performance of TIME-LLM, affirming that the scaling law is preserved post-
LLM reprogramming.; (2) Generally, acquiring more text prototypes enhances performance. We
hypothesize that a limited number of prototypes V ′ might induce noise when aggregating language
cues, consequently obstructing the efficient learning of highly representative prototypes essential for
characterizing the input time series patches; (3) The input time length T exhibits a direct relation
with forecasting accuracy, particularly evident when predicting extended horizons. This observation
is logical and is in congruence with conventional time series models; (4) Increasing the number of
attention heads during the reprogramming of input patches proves to be advantageous.

Figure 6: Analysis of hyperparameter sensitivity on ETTh1 dataset.

D LONG-TERM AND SHORT-TERM FORECASTING

D.1 LONG-TERM FORECASTING

By solely reprogramming the smallest Llama model while keeping it intact, TIME-LLM attains
SOTA performance in 36 out of 40 instances across eight time series benchmarks. This underscores
the considerable potential of LLMs as robust and reliable time series forecasters. Furthermore, we
benchmark the proposed method against other well-established baselines in Tab. 11. This compar-
ison includes three notable statistical methods (AutoARIMA, AutoTheta, and AutoETS) (Herzen
et al., 2022) and two recent time series models, N-HiTS (Challu et al., 2023b) and N-BEATS (Ore-
shkin et al., 2020). Remarkably, TIME-LLM secures SOTA performance across all cases, surpassing
the second-best results by significant margins of over 22% and 16% in terms of MSE and MAE.

17

Published as a conference paper at ICLR 2024

Table 10: Full long-term forecasting results. We set the forecasting horizons H ∈ {24, 36, 48, 60} for ILI
and {96, 192, 336, 720} for the others. A lower value indicates better performance. Red: the best, Blue: the
second best.

Methods TIME-LLM GPT4TS DLinear PatchTST TimesNet FEDformer Autoformer Stationary ETSformer LightTS Informer Reformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
h
1

96 0.362 0.392 0.376 0.397 0.375 0.399 0.370 0.399 0.384 0.402 0.376 0.419 0.449 0.459 0.513 0.491 0.494 0.479 0.424 0.432 0.865 0.713 0.837 0.728
192 0.398 0.418 0.416 0.418 0.405 0.416 0.413 0.421 0.436 0.429 0.420 0.448 0.500 0.482 0.534 0.504 0.538 0.504 0.475 0.462 1.008 0.792 0.923 0.766
336 0.430 0.427 0.442 0.433 0.439 0.443 0.422 0.436 0.491 0.469 0.459 0.465 0.521 0.496 0.588 0.535 0.574 0.521 0.518 0.488 1.107 0.809 1.097 0.835
720 0.442 0.457 0.477 0.456 0.472 0.490 0.447 0.466 0.521 0.500 0.506 0.507 0.514 0.512 0.643 0.616 0.562 0.535 0.547 0.533 1.181 0.865 1.257 0.889
Avg 0.408 0.423 0.465 0.455 0.422 0.437 0.413 0.430 0.458 0.450 0.440 0.460 0.496 0.487 0.570 0.537 0.542 0.510 0.491 0.479 1.040 0.795 1.029 0.805

E
T
T
h
2

96 0.268 0.328 0.285 0.342 0.289 0.353 0.274 0.336 0.340 0.374 0.358 0.397 0.346 0.388 0.476 0.458 0.340 0.391 0.397 0.437 3.755 1.525 2.626 1.317
192 0.329 0.375 0.354 0.389 0.383 0.418 0.339 0.379 0.402 0.414 0.429 0.439 0.456 0.452 0.512 0.493 0.430 0.439 0.520 0.504 5.602 1.931 11.12 2.979
336 0.368 0.409 0.373 0.407 0.448 0.465 0.329 0.380 0.452 0.452 0.496 0.487 0.482 0.486 0.552 0.551 0.485 0.479 0.626 0.559 4.721 1.835 9.323 2.769
720 0.372 0.420 0.406 0.441 0.605 0.551 0.379 0.422 0.462 0.468 0.463 0.474 0.515 0.511 0.562 0.560 0.500 0.497 0.863 0.672 3.647 1.625 3.874 1.697
Avg 0.334 0.383 0.381 0.412 0.431 0.446 0.330 0.379 0.414 0.427 0.437 0.449 0.450 0.459 0.526 0.516 0.439 0.452 0.602 0.543 4.431 1.729 6.736 2.191

E
T
T
m
1 96 0.272 0.334 0.292 0.346 0.299 0.343 0.290 0.342 0.338 0.375 0.379 0.419 0.505 0.475 0.386 0.398 0.375 0.398 0.374 0.400 0.672 0.571 0.538 0.528

192 0.310 0.358 0.332 0.372 0.335 0.365 0.332 0.369 0.374 0.387 0.426 0.441 0.553 0.496 0.459 0.444 0.408 0.410 0.400 0.407 0.795 0.669 0.658 0.592
336 0.352 0.384 0.366 0.394 0.369 0.386 0.366 0.392 0.410 0.411 0.445 0.459 0.621 0.537 0.495 0.464 0.435 0.428 0.438 0.438 1.212 0.871 0.898 0.721
720 0.383 0.411 0.417 0.421 0.425 0.421 0.416 0.420 0.478 0.450 0.543 0.490 0.671 0.561 0.585 0.516 0.499 0.462 0.527 0.502 1.166 0.823 1.102 0.841
Avg 0.329 0.372 0.388 0.403 0.357 0.378 0.351 0.380 0.400 0.406 0.448 0.452 0.588 0.517 0.481 0.456 0.429 0.425 0.435 0.437 0.961 0.734 0.799 0.671

E
T
T
m
2 96 0.161 0.253 0.173 0.262 0.167 0.269 0.165 0.255 0.187 0.267 0.203 0.287 0.255 0.339 0.192 0.274 0.189 0.280 0.209 0.308 0.365 0.453 0.658 0.619

192 0.219 0.293 0.229 0.301 0.224 0.303 0.220 0.292 0.249 0.309 0.269 0.328 0.281 0.340 0.280 0.339 0.253 0.319 0.311 0.382 0.533 0.563 1.078 0.827
336 0.271 0.329 0.286 0.341 0.281 0.342 0.274 0.329 0.321 0.351 0.325 0.366 0.339 0.372 0.334 0.361 0.314 0.357 0.442 0.466 1.363 0.887 1.549 0.972
720 0.352 0.379 0.378 0.401 0.397 0.421 0.362 0.385 0.408 0.403 0.421 0.415 0.433 0.432 0.417 0.413 0.414 0.413 0.675 0.587 3.379 1.338 2.631 1.242
Avg 0.251 0.313 0.284 0.339 0.267 0.333 0.255 0.315 0.291 0.333 0.305 0.349 0.327 0.371 0.306 0.347 0.293 0.342 0.409 0.436 1.410 0.810 1.479 0.915

W
ea

th
er

96 0.147 0.201 0.162 0.212 0.176 0.237 0.149 0.198 0.172 0.220 0.217 0.296 0.266 0.336 0.173 0.223 0.197 0.281 0.182 0.242 0.300 0.384 0.689 0.596
192 0.189 0.234 0.204 0.248 0.220 0.282 0.194 0.241 0.219 0.261 0.276 0.336 0.307 0.367 0.245 0.285 0.237 0.312 0.227 0.287 0.598 0.544 0.752 0.638
336 0.262 0.279 0.254 0.286 0.265 0.319 0.245 0.282 0.280 0.306 0.339 0.380 0.359 0.395 0.321 0.338 0.298 0.353 0.282 0.334 0.578 0.523 0.639 0.596
720 0.304 0.316 0.326 0.337 0.333 0.362 0.314 0.334 0.365 0.359 0.403 0.428 0.419 0.428 0.414 0.410 0.352 0.288 0.352 0.386 1.059 0.741 1.130 0.792
Avg 0.225 0.257 0.237 0.270 0.248 0.300 0.225 0.264 0.259 0.287 0.309 0.360 0.338 0.382 0.288 0.314 0.271 0.334 0.261 0.312 0.634 0.548 0.803 0.656

E
le
ct
ri
ci
ty 96 0.131 0.224 0.139 0.238 0.140 0.237 0.129 0.222 0.168 0.272 0.193 0.308 0.201 0.317 0.169 0.273 0.187 0.304 0.207 0.307 0.274 0.368 0.312 0.402

192 0.152 0.241 0.153 0.251 0.153 0.249 0.157 0.240 0.184 0.289 0.201 0.315 0.222 0.334 0.182 0.286 0.199 0.315 0.213 0.316 0.296 0.386 0.348 0.433
336 0.160 0.248 0.169 0.266 0.169 0.267 0.163 0.259 0.198 0.300 0.214 0.329 0.231 0.338 0.200 0.304 0.212 0.329 0.230 0.333 0.300 0.394 0.350 0.433
720 0.192 0.298 0.206 0.297 0.203 0.301 0.197 0.290 0.220 0.320 0.246 0.355 0.254 0.361 0.222 0.321 0.233 0.345 0.265 0.360 0.373 0.439 0.340 0.420
Avg 0.158 0.252 0.167 0.263 0.166 0.263 0.161 0.252 0.192 0.295 0.214 0.327 0.227 0.338 0.193 0.296 0.208 0.323 0.229 0.329 0.311 0.397 0.338 0.422

T
ra

f
f
ic

96 0.362 0.248 0.388 0.282 0.410 0.282 0.360 0.249 0.593 0.321 0.587 0.366 0.613 0.388 0.612 0.338 0.607 0.392 0.615 0.391 0.719 0.391 0.732 0.423
192 0.374 0.247 0.407 0.290 0.423 0.287 0.379 0.256 0.617 0.336 0.604 0.373 0.616 0.382 0.613 0.340 0.621 0.399 0.601 0.382 0.696 0.379 0.733 0.420
336 0.385 0.271 0.412 0.294 0.436 0.296 0.392 0.264 0.629 0.336 0.621 0.383 0.622 0.337 0.618 0.328 0.622 0.396 0.613 0.386 0.777 0.420 0.742 0.420
720 0.430 0.288 0.450 0.312 0.466 0.315 0.432 0.286 0.640 0.350 0.626 0.382 0.660 0.408 0.653 0.355 0.632 0.396 0.658 0.407 0.864 0.472 0.755 0.423
Avg 0.388 0.264 0.414 0.294 0.433 0.295 0.390 0.263 0.620 0.336 0.610 0.376 0.628 0.379 0.624 0.340 0.621 0.396 0.622 0.392 0.764 0.416 0.741 0.422

I
L
I

24 1.285 0.727 2.063 0.881 2.215 1.081 1.319 0.754 2.317 0.934 3.228 1.260 3.483 1.287 2.294 0.945 2.527 1.020 8.313 2.144 5.764 1.677 4.400 1.382
36 1.404 0.814 1.868 0.892 1.963 0.963 1.430 0.834 1.972 0.920 2.679 1.080 3.103 1.148 1.825 0.848 2.615 1.007 6.631 1.902 4.755 1.467 4.783 1.448
48 1.523 0.807 1.790 0.884 2.130 1.024 1.553 0.815 2.238 0.940 2.622 1.078 2.669 1.085 2.010 0.900 2.359 0.972 7.299 1.982 4.763 1.469 4.832 1.465
60 1.531 0.854 1.979 0.957 2.368 1.096 1.470 0.788 2.027 0.928 2.857 1.157 2.770 1.125 2.178 0.963 2.487 1.016 7.283 1.985 5.264 1.564 4.882 1.483

Avg 1.435 0.801 1.925 0.903 2.169 1.041 1.443 0.797 2.139 0.931 2.847 1.144 3.006 1.161 2.077 0.914 2.497 1.004 7.382 2.003 5.137 1.544 4.724 1.445

1stCount 36 0 1 17 0 0 0 0 0 0 0 0

D.2 SHORT-TERM FORECASTING

Our complete results on short-term forecasting are presented in Tab. 12. TIME-LLM consistently
outperforms the majority of baseline models in most cases. Notably, we surpass GPT4TS by a
large margin (e.g., 8.7% overall, 13.4% on M4-Yearly, and an average of 21.5% on M4-Hourly,
M4-Daily, and M4-Weekly), as well as TimesNet (e.g., 10% overall, 14.1% on M4-Yearly, and
an average of 30.1% on M4-Hourly, M4-Daily, and M4-Weekly). Compared to the recent state-
of-the-art forecasting models, N-HiTS and PatchTST, TIME-LLM exhibits comparable or superior
performances without any parameter updates on the backbone LLM.

In addition, we conduct a comparative analysis between TIME-LLM and the top-performing models
on the M3-Quarterly dataset, with the findings presented in Tab. 13. We provide additional metrics,
namely MRAE and MAPE, alongside the default SMAPE used in the M3 competition. On this
dataset, TIME-LLM attains on-par performance compared to TimesNet and PatchTST, outperform-
ing GPT4TS by substantial margins, achieving reductions of over 23%, 35%, and 26% in SMAPE,
MRAE, and MAPE, respectively.

E FEW-SHOT AND ZERO-SHOT FORECASTING

E.1 FEW-SHOT FORECASTING

Our full results in few-shot forecasting tasks are detailed in Tab. 14 and Tab. 15. Within the scope
of 10% few-shot learning, TIME-LLM secures SOTA performance in 32 out of 35 cases, spanning
seven different time series benchmarks. Our approach’s advantage becomes even more pronounced
in the context of 5% few-shot scenarios, achieving SOTA results in 21 out of 32 cases. We attribute
this to the successful knowledge activation in our reprogrammed LLM.

18

Published as a conference paper at ICLR 2024

Table 11: Additional comparison with other baselines in long-term forecasting tasks. We set the forecasting
horizons H ∈ {24, 36, 48, 60} for ILI and {96, 192, 336, 720} for the others. A lower value indicates better
performance. Red: the best, Blue: the second best.

Methods TIME-LLM N-BEATS N-HiTS AutoARIMA AutoTheta AutoETS

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
h
1

96 0.362 0.392 0.496 0.475 0.392 0.407 0.933 0.635 1.266 0.758 1.264 0.756
192 0.398 0.418 0.544 0.504 0.442 0.438 0.868 0.621 1.188 0.749 1.181 0.745
336 0.430 0.427 0.592 0.533 0.497 0.471 0.964 0.663 1.310 0.799 1.292 0.792
720 0.442 0.457 0.639 0.588 0.559 0.533 1.043 0.705 1.510 0.882 1.405 0.842
Avg 0.408 0.423 0.568 0.525 0.473 0.462 0.952 0.656 1.319 0.797 1.286 0.784

E
T
T
h
2

96 0.268 0.328 0.384 0.431 0.321 0.368 0.390 0.417 0.461 0.430 0.444 0.403
192 0.329 0.375 0.496 0.493 0.398 0.421 0.545 0.492 0.754 0.537 0.771 0.461
336 0.368 0.409 0.585 0.542 0.453 0.459 0.697 0.562 1.355 0.683 1.526 0.522
720 0.372 0.420 0.792 0.651 0.775 0.609 0.907 0.658 3.971 1.061 5.183 0.633
Avg 0.334 0.383 0.564 0.529 0.487 0.464 0.635 0.532 1.635 0.678 1.981 0.505

E
T
T
m
1 96 0.272 0.334 0.393 0.412 0.327 0.368 1.091 0.661 1.211 0.704 1.519 0.768

192 0.310 0.358 0.425 0.427 0.376 0.400 1.119 0.682 1.237 0.724 1.535 0.784
336 0.352 0.384 0.464 0.454 0.407 0.423 1.125 0.698 1.231 0.735 1.472 0.782
720 0.383 0.411 0.521 0.488 0.471 0.456 1.243 0.745 1.394 0.801 1.591 0.825
Avg 0.329 0.372 0.451 0.445 0.395 0.412 1.145 0.697 1.268 0.741 1.529 0.790

E
T
T
m
2 96 0.161 0.253 0.204 0.302 0.188 0.273 0.435 0.375 0.245 0.316 0.359 0.333

192 0.219 0.293 0.282 0.358 0.274 0.338 0.995 0.494 0.413 0.401 0.756 0.396
336 0.271 0.329 0.378 0.425 0.384 0.406 2.324 0.648 0.790 0.528 1.747 0.467
720 0.352 0.379 0.555 0.523 0.501 0.488 9.064 1.020 2.451 0.847 6.856 0.639
Avg 0.251 0.313 0.355 0.402 0.337 0.376 3.205 0.634 0.975 0.523 2.430 0.459

W
ea

th
er

96 0.147 0.201 0.185 0.244 0.160 0.222 0.255 0.273 0.279 0.266 0.331 0.277
192 0.189 0.234 0.225 0.282 0.202 0.265 0.390 0.353 0.337 0.316 0.498 0.345
336 0.262 0.279 0.274 0.323 0.253 0.303 0.775 0.457 0.472 0.385 0.898 0.423
720 0.304 0.316 0.340 0.373 0.323 0.354 2.898 0.707 0.818 0.526 2.820 0.580
Avg 0.225 0.257 0.256 0.306 0.235 0.286 1.080 0.448 0.477 0.373 1.137 0.406

E
le
ct
ri
ci
ty 96 0.131 0.224 0.233 0.327 0.184 0.275 0.520 0.466 0.653 0.532 0.650 0.526

192 0.152 0.241 0.246 0.340 0.190 0.282 0.581 0.499 0.713 0.561 0.704 0.549
336 0.160 0.248 0.262 0.355 0.205 0.298 0.602 0.515 0.797 0.603 0.766 0.577
720 0.192 0.298 0.296 0.383 0.239 0.330 0.685 0.558 1.023 0.688 0.901 0.628
Avg 0.158 0.252 0.259 0.351 0.205 0.296 0.597 0.510 0.797 0.596 0.755 0.570

T
ra

f
f
ic

96 0.362 0.248 0.608 0.447 0.410 0.329 1.068 0.694 3.207 1.219 3.254 1.221
192 0.374 0.247 0.605 0.448 0.414 0.330 1.380 0.775 3.407 1.262 3.569 1.264
336 0.385 0.271 0.618 0.454 0.428 0.337 1.448 0.790 3.473 1.274 3.971 1.275
720 0.430 0.288 0.650 0.467 0.456 0.354 1.481 0.799 3.952 1.382 6.784 1.379
Avg 0.388 0.264 0.620 0.454 0.427 0.338 1.344 0.765 3.510 1.284 4.395 1.285

I
L
I

24 1.285 0.727 6.809 1.870 2.675 1.080 4.909 1.329 5.991 1.510 4.869 1.315
36 1.404 0.814 6.850 1.890 3.081 1.194 5.079 1.440 5.922 1.539 4.917 1.422
48 1.523 0.807 6.788 1.876 2.973 1.176 4.276 1.339 4.637 1.329 3.966 1.301
60 1.531 0.854 6.908 1.893 3.259 1.232 3.855 1.276 4.378 1.345 3.540 1.229

Avg 1.435 0.801 6.839 1.882 2.997 1.171 4.530 1.346 5.232 1.431 4.323 1.317

1stCount 40 0 1 0 0 0

Table 12: Full short-term time series forecasting results. The forecasting horizons are in [6, 48] and the last
three rows are weighted averaged from all datasets under different sampling intervals. A lower value indicates
better performance. Red: the best, Blue: the second best.

Methods TIME-LLM GPT4TS TimesNet PatchTST N-HiTS N-BEATS ETSformer LightTS DLinear FEDformer Stationary Autoformer Informer Reformer

Y
ea

rl
y SMAPE 13.419 15.11 15.378 13.477 13.422 13.487 18.009 14.247 16.965 14.021 13.717 13.974 14.727 16.169

MASE 3.005 3.565 3.554 3.019 3.056 3.036 4.487 3.109 4.283 3.036 3.078 3.134 3.418 3.800
OWA 0.789 0.911 0.918 0.792 0.795 0.795 1.115 0.827 1.058 0.811 0.807 0.822 0.881 0.973

Q
ua

rt
er

ly SMAPE 10.110 10.597 10.465 10.38 10.185 10.564 13.376 11.364 12.145 11.1 10.958 11.338 11.360 13.313
MASE 1.178 1.253 1.227 1.233 1.18 1.252 1.906 1.328 1.520 1.35 1.325 1.365 1.401 1.775
OWA 0.889 0.938 0.923 0.921 0.893 0.936 1.302 1.000 1.106 0.996 0.981 1.012 1.027 1.252

M
on

th
ly SMAPE 12.980 13.258 13.513 12.959 13.059 13.089 14.588 14.014 13.514 14.403 13.917 13.958 14.062 20.128

MASE 0.963 1.003 1.039 0.97 1.013 0.996 1.368 1.053 1.037 1.147 1.097 1.103 1.141 2.614
OWA 0.903 0.931 0.957 0.905 0.929 0.922 1.149 0.981 0.956 1.038 0.998 1.002 1.024 1.927

O
th

er
s SMAPE 4.795 6.124 6.913 4.952 4.711 6.599 7.267 15.880 6.709 7.148 6.302 5.485 24.460 32.491

MASE 3.178 4.116 4.507 3.347 3.054 4.43 5.240 11.434 4.953 4.041 4.064 3.865 20.960 33.355
OWA 1.006 1.259 1.438 1.049 0.977 1.393 1.591 3.474 1.487 1.389 1.304 1.187 5.879 8.679

A
ve

ra
ge SMAPE 11.983 12.69 12.88 12.059 12.035 12.25 14.718 13.525 13.639 13.16 12.780 12.909 14.086 18.200

MASE 1.595 1.808 1.836 1.623 1.625 1.698 2.408 2.111 2.095 1.775 1.756 1.771 2.718 4.223
OWA 0.859 0.94 0.955 0.869 0.869 0.896 1.172 1.051 1.051 0.949 0.930 0.939 1.230 1.775

E.2 ZERO-SHOT FORECASTING

The full results of zero-shot forecasting are summarized in Tab. 16. TIME-LLM remarkably sur-
passes the six most competitive time series models in zero-shot adaptation. Overall, we observe
over 23.5% and 12.4% MSE and MAE reductions across all baselines on average. Our improve-
ments are consistently significant on those typical cross-domain scenarios (e.g., ETTh2 → ETTh1
and ETTm2 → ETTm1), over 20.8% and 11.3% on average w.r.t. MSE and MAE. Significantly,
TIME-LLM exhibits superior performance gains in comparison to LLMTime (Gruver et al., 2023),
which employs a similarly sized backbone LLM (7B) and is the latest effort in leveraging LLMs for

19

Published as a conference paper at ICLR 2024

Table 13: Additional short-term time series forecasting results on M3 (Quarterly). The forecasting horizon is
8. A lower value indicates better performance. Red: the best, Blue: the second best.

Methods TIME-LLM GPT4TS TimesNet PatchTST N-HiTS N-BEATS DLinear FEDformer

SMAPE 11.171 14.453 10.410 12.380 12.616 18.640 15.028 12.927
MRAE 3.282 5.035 3.310 2.401 4.271 4.612 2.793 3.653
MAPE 0.151 0.203 0.140 0.154 0.168 0.247 0.196 0.174

zero-shot time series forecasting. We attribute this success to our reprogramming framework being
better at activating the LLM’s knowledge transfer and reasoning capabilities in a resource-efficient
manner when performing time series tasks.

F ABLATION STUDY

The full ablation results are in Tab. 17. We additionally compare the model performance under
reprogramming and fine-tuning (with QLoRA Dettmers et al. (2023)) protocols. Our results indicate
a clear performance gain of our approach compared to the QLoRA variant (A.5) by 19% in average.

G EFFICIENCY COMPARISON WITH MODEL FINE-TUNING

Setups. We compare the efficiency of model fine-tuning (with QLoRA Dettmers et al. (2023))
and our proposed model reprogramming in this section with two different backbones, that is, Llama
in 1/4 capacity (first 8 Transformer layers) and full capacity. Here, we adhere to the long-term
forecasting protocol on ETTh1 to forecast two different steps (that is, 96 and 336 in this case)
ahead. For the evaluation metrics, we report the total number of trainable parameters (in million),
GPU memory (in mebibyte), and running time (seconds per iteration).

Results. Our results are given in Tab. 18. We see that model reprogramming remarkably results
in better efficiency compared to parameter-efficient fine-tuning (PEFT) with QLoRA on long-range

Table 14: Full few-shot learning results on 10% training data. We use the same protocol as in Tab. 1.

Methods TIME-LLM GPT4TS DLinear PatchTST TimesNet FEDformer Autoformer Stationary ETSformer LightTS Informer Reformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
h
1

96 0.448 0.460 0.458 0.456 0.492 0.495 0.516 0.485 0.861 0.628 0.512 0.499 0.613 0.552 0.918 0.639 1.112 0.806 1.298 0.838 1.179 0.792 1.184 0.790
192 0.484 0.483 0.570 0.516 0.565 0.538 0.598 0.524 0.797 0.593 0.624 0.555 0.722 0.598 0.915 0.629 1.155 0.823 1.322 0.854 1.199 0.806 1.295 0.850
336 0.589 0.540 0.608 0.535 0.721 0.622 0.657 0.550 0.941 0.648 0.691 0.574 0.750 0.619 0.939 0.644 1.179 0.832 1.347 0.870 1.202 0.811 1.294 0.854
720 0.700 0.604 0.725 0.591 0.986 0.743 0.762 0.610 0.877 0.641 0.728 0.614 0.721 0.616 0.887 0.645 1.273 0.874 1.534 0.947 1.217 0.825 1.223 0.838
Avg 0.556 0.522 0.590 0.525 0.691 0.600 0.633 0.542 0.869 0.628 0.639 0.561 0.702 0.596 0.915 0.639 1.180 0.834 1.375 0.877 1.199 0.809 1.249 0.833

E
T
T
h
2

96 0.275 0.326 0.331 0.374 0.357 0.411 0.353 0.389 0.378 0.409 0.382 0.416 0.413 0.451 0.389 0.411 0.678 0.619 2.022 1.006 3.837 1.508 3.788 1.533
192 0.374 0.373 0.402 0.411 0.569 0.519 0.403 0.414 0.490 0.467 0.478 0.474 0.474 0.477 0.473 0.455 0.785 0.666 2.329 1.104 3.856 1.513 3.552 1.483
336 0.406 0.429 0.406 0.433 0.671 0.572 0.426 0.441 0.537 0.494 0.504 0.501 0.547 0.543 0.507 0.480 0.839 0.694 2.453 1.122 3.952 1.526 3.395 1.526
720 0.427 0.449 0.449 0.464 0.824 0.648 0.477 0.480 0.510 0.491 0.499 0.509 0.516 0.523 0.477 0.472 1.273 0.874 3.816 1.407 3.842 1.503 3.205 1.401
Avg 0.370 0.394 0.397 0.421 0.605 0.538 0.415 0.431 0.479 0.465 0.466 0.475 0.488 0.499 0.462 0.455 0.894 0.713 2.655 1.160 3.872 1.513 3.485 1.486

E
T
T
m
1 96 0.346 0.388 0.390 0.404 0.352 0.392 0.410 0.419 0.583 0.501 0.578 0.518 0.774 0.614 0.761 0.568 0.911 0.688 0.921 0.682 1.162 0.785 1.442 0.847

192 0.373 0.416 0.429 0.423 0.382 0.412 0.437 0.434 0.630 0.528 0.617 0.546 0.754 0.592 0.781 0.574 0.955 0.703 0.957 0.701 1.172 0.793 1.444 0.862
336 0.413 0.426 0.469 0.439 0.419 0.434 0.476 0.454 0.725 0.568 0.998 0.775 0.869 0.677 0.803 0.587 0.991 0.719 0.998 0.716 1.227 0.908 1.450 0.866
720 0.485 0.476 0.569 0.498 0.490 0.477 0.681 0.556 0.769 0.549 0.693 0.579 0.810 0.630 0.844 0.581 1.062 0.747 1.007 0.719 1.207 0.797 1.366 0.850
Avg 0.404 0.427 0.464 0.441 0.411 0.429 0.501 0.466 0.677 0.537 0.722 0.605 0.802 0.628 0.797 0.578 0.980 0.714 0.971 0.705 1.192 0.821 1.426 0.856

E
T
T
m
2 96 0.177 0.261 0.188 0.269 0.213 0.303 0.191 0.274 0.212 0.285 0.291 0.399 0.352 0.454 0.229 0.308 0.331 0.430 0.813 0.688 3.203 1.407 4.195 1.628

192 0.241 0.314 0.251 0.309 0.278 0.345 0.252 0.317 0.270 0.323 0.307 0.379 0.694 0.691 0.291 0.343 0.400 0.464 1.008 0.768 3.112 1.387 4.042 1.601
336 0.274 0.327 0.307 0.346 0.338 0.385 0.306 0.353 0.323 0.353 0.543 0.559 2.408 1.407 0.348 0.376 0.469 0.498 1.031 0.775 3.255 1.421 3.963 1.585
720 0.417 0.390 0.426 0.417 0.436 0.440 0.433 0.427 0.474 0.449 0.712 0.614 1.913 1.166 0.461 0.438 0.589 0.557 1.096 0.791 3.909 1.543 3.711 1.532
Avg 0.277 0.323 0.293 0.335 0.316 0.368 0.296 0.343 0.320 0.353 0.463 0.488 1.342 0.930 0.332 0.366 0.447 0.487 0.987 0.756 3.370 1.440 3.978 1.587

W
ea

th
er

96 0.161 0.210 0.163 0.215 0.171 0.224 0.165 0.215 0.184 0.230 0.188 0.253 0.221 0.297 0.192 0.234 0.199 0.272 0.217 0.269 0.374 0.401 0.335 0.380
192 0.204 0.248 0.210 0.254 0.215 0.263 0.210 0.257 0.245 0.283 0.250 0.304 0.270 0.322 0.269 0.295 0.279 0.332 0.259 0.304 0.552 0.478 0.522 0.462
336 0.261 0.302 0.256 0.292 0.258 0.299 0.259 0.297 0.305 0.321 0.312 0.346 0.320 0.351 0.370 0.357 0.356 0.386 0.303 0.334 724 0.541 0.715 0.535
720 0.309 0.332 0.321 0.339 0.320 0.346 0.332 0.346 0.381 0.371 0.387 0.393 0.390 0.396 0.441 0.405 0.437 0.448 0.377 0.382 0.739 0.558 0.611 0.500
Avg 0.234 0.273 0.238 0.275 0.241 0.283 0.242 0.279 0.279 0.301 0.284 0.324 0.300 0.342 0.318 0.323 0.318 0.360 0.289 0.322 0.597 0.495 0.546 0.469

E
le
ct
ri
ci
ty 96 0.139 0.241 0.139 0.237 0.150 0.253 0.140 0.238 0.299 0.373 0.231 0.323 0.261 0.348 0.420 0.466 0.599 0.587 0.350 0.425 1.259 0.919 0.993 0.784

192 0.151 0.248 0.156 0.252 0.164 0.264 0.160 0.255 0.305 0.379 0.261 0.356 0.338 0.406 0.411 0.459 0.620 0.598 0.376 0.448 1.160 0.873 0.938 0.753
336 0.169 0.270 0.175 0.270 0.181 0.282 0.180 0.276 0.319 0.391 0.360 0.445 0.410 0.474 0.434 0.473 0.662 0.619 0.428 0.485 1.157 0.872 0.925 0.745
720 0.240 0.322 0.233 0.317 0.223 0.321 0.241 0.323 0.369 0.426 0.530 0.585 0.715 0.685 0.510 0.521 0.757 0.664 0.611 0.597 1.203 0.898 1.004 0.790
Avg 0.175 0.270 0.176 0.269 0.180 0.280 0.180 0.273 0.323 0.392 0.346 0.427 0.431 0.478 0.444 0.480 0.660 0.617 0.441 0.489 1.195 0.891 0.965 0.768

T
ra

f
f
ic

96 0.418 0.291 0.414 0.297 0.419 0.298 0.403 0.289 0.719 0.416 0.639 0.400 0.672 0.405 1.412 0.802 1.643 0.855 1.157 0.636 1.557 0.821 1.527 0.815
192 0.414 0.296 0.426 0.301 0.434 0.305 0.415 0.296 0.748 0.428 0.637 0.416 0.727 0.424 1.419 0.806 1.641 0.854 1.207 0.661 1.454 0.765 1.538 0.817
336 0.421 0.311 0.434 0.303 0.449 0.313 0.426 0.304 0.853 0.471 0.655 0.427 0.749 0.454 1.443 0.815 1.711 0.878 1.334 0.713 1.521 0.812 1.550 0.819
720 0.462 0.327 0.487 0.337 0.484 0.336 0.474 0.331 1.485 0.825 0.722 0.456 0.847 0.499 1.539 0.837 2.660 1.157 1.292 0.726 1.605 0.846 1.588 0.833
Avg 0.429 0.306 0.440 0.310 0.447 0.313 0.430 0.305 0.951 0.535 0.663 0.425 0.749 0.446 1.453 0.815 1.914 0.936 1.248 0.684 1.534 0.811 1.551 0.821

1stCount 32 9 3 3 0 0 0 0 0 0 0 0

20

Published as a conference paper at ICLR 2024

Table 15: Full few-shot learning results on 5% training data. We use the same protocol as in Tab. 1. ’-’ means
that 5% time series is not sufficient to constitute a training set.

Methods TIME-LLM GPT4TS DLinear PatchTST TimesNet FEDformer Autoformer Stationary ETSformer LightTS Informer Reformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
h
1

96 0.483 0.464 0.543 0.506 0.547 0.503 0.557 0.519 0.892 0.625 0.593 0.529 0.681 0.570 0.952 0.650 1.169 0.832 1.483 0.91 1.225 0.812 1.198 0.795
192 0.629 0.540 0.748 0.580 0.720 0.604 0.711 0.570 0.940 0.665 0.652 0.563 0.725 0.602 0.943 0.645 1.221 0.853 1.525 0.93 1.249 0.828 1.273 0.853
336 0.768 0.626 0.754 0.595 0.984 0.727 0.816 0.619 0.945 0.653 0.731 0.594 0.761 0.624 0.935 0.644 1.179 0.832 1.347 0.87 1.202 0.811 1.254 0.857
720 -
Avg 0.627 0.543 0.681 0.560 0.750 0.611 0.694 0.569 0.925 0.647 0.658 0.562 0.722 0.598 0.943 0.646 1.189 0.839 1.451 0.903 1.225 0.817 1.241 0.835

E
T
T
h
2

96 0.336 0.397 0.376 0.421 0.442 0.456 0.401 0.421 0.409 0.420 0.390 0.424 0.428 0.468 0.408 0.423 0.678 0.619 2.022 1.006 3.837 1.508 3.753 1.518
192 0.406 0.425 0.418 0.441 0.617 0.542 0.452 0.455 0.483 0.464 0.457 0.465 0.496 0.504 0.497 0.468 0.845 0.697 3.534 1.348 3.975 1.933 3.516 1.473
336 0.405 0.432 0.408 0.439 1.424 0.849 0.464 0.469 0.499 0.479 0.477 0.483 0.486 0.496 0.507 0.481 0.905 0.727 4.063 1.451 3.956 1.520 3.312 1.427
720 -
Avg 0.382 0.418 0.400 0.433 0.694 0.577 0.827 0.615 0.439 0.448 0.463 0.454 0.441 0.457 0.470 0.489 0.809 0.681 3.206 1.268 3.922 1.653 3.527 1.472

E
T
T
m
1 96 0.316 0.377 0.386 0.405 0.332 0.374 0.399 0.414 0.606 0.518 0.628 0.544 0.726 0.578 0.823 0.587 1.031 0.747 1.048 0.733 1.130 0.775 1.234 0.798

192 0.450 0.464 0.440 0.438 0.358 0.390 0.441 0.436 0.681 0.539 0.666 0.566 0.750 0.591 0.844 0.591 1.087 0.766 1.097 0.756 1.150 0.788 1.287 0.839
336 0.450 0.424 0.485 0.459 0.402 0.416 0.499 0.467 0.786 0.597 0.807 0.628 0.851 0.659 0.870 0.603 1.138 0.787 1.147 0.775 1.198 0.809 1.288 0.842
720 0.483 0.471 0.577 0.499 0.511 0.489 0.767 0.587 0.796 0.593 0.822 0.633 0.857 0.655 0.893 0.611 1.245 0.831 1.200 0.799 1.175 0.794 1.247 0.828
Avg 0.425 0.434 0.472 0.450 0.400 0.417 0.526 0.476 0.717 0.561 0.730 0.592 0.796 0.620 0.857 0.598 1.125 0.782 1.123 0.765 1.163 0.791 1.264 0.826

E
T
T
m
2 96 0.174 0.261 0.199 0.280 0.236 0.326 0.206 0.288 0.220 0.299 0.229 0.320 0.232 0.322 0.238 0.316 0.404 0.485 1.108 0.772 3.599 1.478 3.883 1.545

192 0.215 0.287 0.256 0.316 0.306 0.373 0.264 0.324 0.311 0.361 0.394 0.361 0.291 0.357 0.298 0.349 0.479 0.521 1.317 0.850 3.578 1.475 3.553 1.484
336 0.273 0.330 0.318 0.353 0.380 0.423 0.334 0.367 0.338 0.366 0.378 0.427 0.478 0.517 0.353 0.380 0.552 0.555 1.415 0.879 3.561 1.473 3.446 1.460
720 0.433 0.412 0.460 0.436 0.674 0.583 0.454 0.432 0.509 0.465 0.523 0.510 0.553 0.538 0.475 0.445 0.701 0.627 1.822 0.984 3.896 1.533 3.445 1.460
Avg 0.274 0.323 0.308 0.346 0.399 0.426 0.314 0.352 0.344 0.372 0.381 0.404 0.388 0.433 0.341 0.372 0.534 0.547 1.415 0.871 3.658 1.489 3.581 1.487

W
ea

th
er

96 0.172 0.263 0.175 0.230 0.184 0.242 0.171 0.224 0.207 0.253 0.229 0.309 0.227 0.299 0.215 0.252 0.218 0.295 0.230 0.285 0.497 0.497 0.406 0.435
192 0.224 0.271 0.227 0.276 0.228 0.283 0.230 0.277 0.272 0.307 0.265 0.317 0.278 0.333 0.290 0.307 0.294 0.331 0.274 0.323 0.620 0.545 0.446 0.450
336 0.282 0.321 0.286 0.322 0.279 0.322 0.294 0.326 0.313 0.328 0.353 0.392 0.351 0.393 0.353 0.348 0.359 0.398 0.318 0.355 0.649 0.547 0.465 0.459
720 0.366 0.381 0.366 0.379 0.364 0.388 0.384 0.387 0.400 0.385 0.391 0.394 0.387 0.389 0.452 0.407 0.461 0.461 0.401 0.418 0.570 0.522 0.471 0.468
Avg 0.260 0.309 0.263 0.301 0.263 0.308 0.269 0.303 0.298 0.318 0.309 0.353 0.310 0.353 0.327 0.328 0.333 0.371 0.305 0.345 0.584 0.527 0.447 0.453

E
le
ct
ri
ci
ty 96 0.147 0.242 0.143 0.241 0.150 0.251 0.145 0.244 0.315 0.389 0.235 0.322 0.297 0.367 0.484 0.518 0.697 0.638 0.639 0.609 1.265 0.919 1.414 0.855

192 0.158 0.241 0.159 0.255 0.163 0.263 0.163 0.260 0.318 0.396 0.247 0.341 0.308 0.375 0.501 0.531 0.718 0.648 0.772 0.678 1.298 0.939 1.240 0.919
336 0.178 0.277 0.179 0.274 0.175 0.278 0.183 0.281 0.340 0.415 0.267 0.356 0.354 0.411 0.574 0.578 0.758 0.667 0.901 0.745 1.302 0.942 1.253 0.921
720 0.224 0.312 0.233 0.323 0.219 0.311 0.233 0.323 0.635 0.613 0.318 0.394 0.426 0.466 0.952 0.786 1.028 0.788 1.200 0.871 1.259 0.919 1.249 0.921
Avg 0.179 0.268 0.178 0.273 0.176 0.275 0.181 0.277 0.402 0.453 0.266 0.353 0.346 0.404 0.627 0.603 0.800 0.685 0.878 0.725 1.281 0.929 1.289 0.904

T
ra

f
f
ic

96 0.414 0.291 0.419 0.298 0.427 0.304 0.404 0.286 0.854 0.492 0.670 0.421 0.795 0.481 1.468 0.821 1.643 0.855 1.157 0.636 1.557 0.821 1.586 0.841
192 0.419 0.291 0.434 0.305 0.447 0.315 0.412 0.294 0.894 0.517 0.653 0.405 0.837 0.503 1.509 0.838 1.856 0.928 1.688 0.848 1.596 0.834 1.602 0.844
336 0.437 0.314 0.449 0.313 0.478 0.333 0.439 0.310 0.853 0.471 0.707 0.445 0.867 0.523 1.602 0.860 2.080 0.999 1.826 0.903 1.621 0.841 1.668 0.868
720 -
Avg 0.423 0.298 0.434 0.305 0.450 0.317 0.418 0.296 0.867 0.493 0.676 0.423 0.833 0.502 1.526 0.839 1.859 0.927 1.557 0.795 1.591 0.832 1.618 0.851

1stCount 21 6 7 6 0 1 0 0 0 0 0 0

forecasting tasks in terms of the total number of trainable parameters, GPU memory overhead, and
training speed. Quantitatively, there is an 71.2% trainable parameter reduction on average over four
scenarios, leading to 23.1% smaller memory consumption and 25.3% faster training speed.

H ERROR BARS

All experiments have been conducted three times, and we present the standard deviations of our
model and the runner-up model here. The comparisons between our method and the second-best
method, PatchTST (Nie et al., 2023), on long-term forecasting tasks, are delineated in Tab. 19.
In this table, the average MSE and MAE have been reported across four ETT datasets, complete
with standard deviations. Furthermore, Tab. 20 contrasts the effectiveness of our method with that
of the second-best method, N-HiTS (Challu et al., 2023a), employing varying M4 datasets for the
comparison.

I VISUALIZATION

In this part, we visualize the forecasting results of TIME-LLM compared with the state-of-the-
art and representative methods (e.g., GPT4TS (Zhou et al., 2023a), PatchTST (Nie et al., 2023),
and Autoformer (Wu et al., 2021)) in various scenarios to demonstrate the superior performance of
TIME-LLM.

In Fig. 7 and Fig. 8, the long-term (input-96-predict-96) and short-term (input-36-predict-36) fore-
casts of various approaches are compared with the ground truth. Here, TIME-LLM showcases
forecasting accuracy that is notably superior compared to GPT4TS, PatchTST, and a classical
Transformer-based method, Autoformer.

We also offer visual comparisons of the forecasting results in both few-shot and zero-shot scenarios,
as depicted in Fig. 9 and Fig. 10. We adhere to the long-term (input-96-predict-96) forecasting setup

21

Published as a conference paper at ICLR 2024

Table 16: Full zero-shot learning results on ETT datasets. A lower value indicates better performance. Red:
the best, Blue: the second best.

Methods TIME-LLM LLMTime GPT4TS DLinear PatchTST TimesNet Autoformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1→ ETTh2

96 0.279 0.337 0.510 0.576 0.335 0.374 0.347 0.400 0.304 0.350 0.358 0.387 0.469 0.486
192 0.351 0.374 0.523 0.586 0.412 0.417 0.447 0.460 0.386 0.400 0.427 0.429 0.634 0.567
336 0.388 0.415 0.640 0.637 0.441 0.444 0.515 0.505 0.414 0.428 0.449 0.451 0.655 0.588
720 0.391 0.420 2.296 1.034 0.438 0.452 0.665 0.589 0.419 0.443 0.448 0.458 0.570 0.549
Avg 0.353 0.387 0.992 0.708 0.406 0.422 0.493 0.488 0.380 0.405 0.421 0.431 0.582 0.548

ETTh1→ ETTm2

96 0.189 0.293 0.646 0.563 0.236 0.315 0.255 0.357 0.215 0.304 0.239 0.313 0.352 0.432
192 0.237 0.312 0.934 0.654 0.287 0.342 0.338 0.413 0.275 0.339 0.291 0.342 0.413 0.460
336 0.291 0.365 1.157 0.728 0.341 0.374 0.425 0.465 0.334 0.373 0.342 0.371 0.465 0.489
720 0.372 0.390 4.730 1.531 0.435 0.422 0.640 0.573 0.431 0.424 0.434 0.419 0.599 0.551
Avg 0.273 0.340 1.867 0.869 0.325 0.363 0.415 0.452 0.314 0.360 0.327 0.361 0.457 0.483

ETTh2→ ETTh1

96 0.450 0.452 1.130 0.777 0.732 0.577 0.689 0.555 0.485 0.465 0.848 0.601 0.693 0.569
192 0.465 0.461 1.242 0.820 0.758 0.559 0.707 0.568 0.565 0.509 0.860 0.610 0.760 0.601
336 0.501 0.482 1.328 0.864 0.759 0.578 0.710 0.577 0.581 0.515 0.867 0.626 0.781 0.619
720 0.501 0.502 4.145 1.461 0.781 0.597 0.704 0.596 0.628 0.561 0.887 0.648 0.796 0.644
Avg 0.479 0.474 1.961 0.981 0.757 0.578 0.703 0.574 0.565 0.513 0.865 0.621 0.757 0.608

ETTh2→ ETTm2

96 0.174 0.276 0.646 0.563 0.253 0.329 0.240 0.336 0.226 0.309 0.248 0.324 0.263 0.352
192 0.233 0.315 0.934 0.654 0.293 0.346 0.295 0.369 0.289 0.345 0.296 0.352 0.326 0.389
336 0.291 0.337 1.157 0.728 0.347 0.376 0.345 0.397 0.348 0.379 0.353 0.383 0.387 0.426
720 0.392 0.417 4.730 1.531 0.446 0.429 0.432 0.442 0.439 0.427 0.471 0.446 0.487 0.478
Avg 0.272 0.341 1.867 0.869 0.335 0.370 0.328 0.386 0.325 0.365 0.342 0.376 0.366 0.411

ETTm1 → ETTh2

96 0.321 0.369 0.510 0.576 0.353 0.392 0.365 0.415 0.354 0.385 0.377 0.407 0.435 0.470
192 0.389 0.410 0.523 0.586 0.443 0.437 0.454 0.462 0.447 0.434 0.471 0.453 0.495 0.489
336 0.408 0.433 0.640 0.637 0.469 0.461 0.496 0.494 0.481 0.463 0.472 0.484 0.470 0.472
720 0.406 0.436 2.296 1.034 0.466 0.468 0.541 0.529 0.474 0.471 0.495 0.482 0.480 0.485
Avg 0.381 0.412 0.992 0.708 0.433 0.439 0.464 0.475 0.439 0.438 0.457 0.454 0.470 0.479

ETTm1→ ETTm2

96 0.169 0.257 0.646 0.563 0.217 0.294 0.221 0.314 0.195 0.271 0.222 0.295 0.385 0.457
192 0.227 0.318 0.934 0.654 0.277 0.327 0.286 0.359 0.258 0.311 0.288 0.337 0.433 0.469
336 0.290 0.338 1.157 0.728 0.331 0.360 0.357 0.406 0.317 0.348 0.341 0.367 0.476 0.477
720 0.375 0.367 4.730 1.531 0.429 0.413 0.476 0.476 0.416 0.404 0.436 0.418 0.582 0.535
Avg 0.268 0.320 1.867 0.869 0.313 0.348 0.335 0.389 0.296 0.334 0.322 0.354 0.469 0.484

ETTm2 → ETTh2

96 0.298 0.356 0.510 0.576 0.360 0.401 0.333 0.391 0.327 0.367 0.360 0.401 0.353 0.393
192 0.359 0.397 0.523 0.586 0.434 0.437 0.441 0.456 0.411 0.418 0.434 0.437 0.432 0.437
336 0.367 0.412 0.640 0.637 0.460 0.459 0.505 0.503 0.439 0.447 0.460 0.459 0.452 0.459
720 0.393 0.434 2.296 1.034 0.485 0.477 0.543 0.534 0.459 0.470 0.485 0.477 0.453 0.467
Avg 0.354 0.400 0.992 0.708 0.435 0.443 0.455 0.471 0.409 0.425 0.435 0.443 0.423 0.439

ETTm2→ ETTm1

96 0.359 0.397 1.179 0.781 0.747 0.558 0.570 0.490 0.491 0.437 0.747 0.558 0.735 0.576
192 0.390 0.420 1.327 0.846 0.781 0.560 0.590 0.506 0.530 0.470 0.781 0.560 0.753 0.586
336 0.421 0.445 1.478 0.902 0.778 0.578 0.706 0.567 0.565 0.497 0.778 0.578 0.750 0.593
720 0.487 0.488 3.749 1.408 0.769 0.573 0.731 0.584 0.686 0.565 0.769 0.573 0.782 0.609
Avg 0.414 0.438 1.933 0.984 0.769 0.567 0.649 0.537 0.568 0.492 0.769 0.567 0.755 0.591

Table 17: Full ablations on ETTh1 and ETTm1 in predicting 96 and 192 steps ahead (MSE reported).

Variant Long-term Forecasting Few-shot Forecasting

ETTh1-96 ETTh1-192 ETTm1-96 ETThm1-192 ETTh1-96 ETTh1-192 ETTm1-96 ETThm1-192

A.1 Llama (Default; 32) 0.362 0.398 0.272 0.310 0.448 0.484 0.346 0.373
A.2 Llama (8) 0.389 0.412 0.297 0.329 0.567 0.632 0.451 0.490
A.3 GPT-2 (12) 0.385 0.419 0.306 0.332 0.548 0.617 0.447 0.509
A.4 GPT-2 (6) 0.394 0.427 0.311 0.342 0.571 0.640 0.468 0.512
A.5 Llama (QLoRA; 32) 0.391 0.420 0.310 0.338 0.543 0.611 0.578 0.618

B.1 w/o Patch Reprogramming 0.410 0.412 0.310 0.342 0.498 0.570 0.445 0.487
B.2 w/o Prompt-as-Prefix 0.398 0.423 0.298 0.339 0.521 0.617 0.432 0.481

C.1 w/o Dataset Context 0.402 0.417 0.298 0.331 0.491 0.538 0.392 0.447
C.2 w/o Task Instruction 0.388 0.420 0.285 0.327 0.476 0.529 0.387 0.439
C.3 w/o Statistical Context 0.391 0.419 0.279 0.347 0.483 0.547 0.421 0.461

in both cases. TIME-LLM exhibits remarkable superiority in forecasting with limited data—a fact
that becomes particularly salient when compared to GPT4TS.

22

Published as a conference paper at ICLR 2024

Table 18: Efficiency comparison between model reprogramming and parameter-efficient fine-tuning (PEFT)
with QLoRA (Dettmers et al., 2023) on ETTh1 dataset in forecasting two different steps ahead.

Length ETTh1-96 ETTh1-336

Metric Trainable Param. (M) Mem. (MiB) Speed(s/iter) Trainable Param. (M) Mem. (MiB) Speed(s/iter)

Llama (8) QLoRA 12.60 14767 0.237 12.69 15982 0.335
Reprogram 5.62 11370 0.184 5.71 13188 0.203

Llama (32) QLoRA 50.29 45226 0.697 50.37 49374 0.732
Reprogram 6.39 32136 0.517 6.48 37988 0.632

Table 19: Standard deviations of our approach and the second-best method (PatchTST) on all time series
datasets for long-term forecasting.

Model TIME-LLM PatchTST (2023)

Dataset MSE MAE MSE MAE

ETTh1 0.408± 0.011 0.423± 0.012 0.413± 0.001 0.430± 0.002
ETTh2 0.334± 0.005 0.383± 0.009 0.330± 0.002 0.379± 0.007
ETTm1 0.329± 0.006 0.372± 0.007 0.351± 0.006 0.380± 0.002
ETTm2 0.251± 0.002 0.313± 0.003 0.255± 0.003 0.315± 0.002
Weather 0.225± 0.009 0.257± 0.008 0.225± 0.001 0.264± 0.001
Electricity 0.158± 0.004 0.252± 0.007 0.161± 0.001 0.252± 0.001
Traffic 0.388± 0.001 0.264± 0.006 0.390± 0.003 0.263± 0.003
ILI 1.435± 0.011 0.801± 0.008 1.443± 0.012 0.797± 0.002

Table 20: Standard deviations of our TIME-LLM and the second-best method (N-HiTS) on M4 datasets for
short-term forecasting.

Model TIME-LLM N-HiTS (2023a)

Dataset SMAPE MAPE OWA SMAPE MAPE OWA

Yearly 13.419± 0.117 3.005± 0.011 0.789± 0.003 13.422± 0.009 3.056± 0.017 0.795± 0.010
Quarterly 10.110± 0.107 1.178± 0.009 0.889± 0.007 10.185± 0.107 1.180± 0.007 0.893± 0.001
Monthly 12.980± 0.102 0.963± 0.005 0.903± 0.001 13.059± 0.101 1.013± 0.007 0.929± 0.005
Others 4.795± 0.117 3.178± 0.012 1.006± 0.009 4.711± 0.117 3.054± 0.011 0.997± 0.012
Averaged 11.983± 0.011 1.595± 0.021 0.859± 0.002 12.035± 0.111 1.625± 0.012 0.869± 0.005

23

Published as a conference paper at ICLR 2024

(a)Time-LLM (b)GPT4TS (c)PatchTST (d) Autoformer

Figure 7: Long-term forecasting cases from ETTh1 by different models under the input-96-predict-
96 settings. Blue lines are the ground truths and orange lines are the model predictions.

(a)Time-LLM (b)GPT4TS (c) TimesNet (d) Autoformer

Figure 8: Short-term forecasting from the M4 dataset by different models under the input-36-predict-
18 settings.

(a)Time-LLM (b)GPT4TS (c)PatchTST (d) Autoformer

Figure 9: Few-shot forecasting cases from ETTm1 by different models under the input-96-predict-
96 settings. Blue lines are the ground truths and orange lines are the model predictions.

(a)Time-LLM (b)GPT4TS (c)PatchTST (d) Autoformer

Figure 10: Zero-shot forecasting cases from ETTh1→ETTh2 by different models under the input-
96-predict-96 settings. Blue lines are the ground truths and orange lines are the model predictions.

24

	Introduction
	Related Work
	Methodology
	Model Structure

	Main Results
	Long-term Forecasting
	Short-term Forecasting
	Few-shot Forecasting
	Zero-shot Forecasting
	Model Analysis

	Conclusion and Future Work
	More Related Work
	Experimental Details
	Implementation
	Dataset Details
	Evaluation Metrics
	Model Configurations

	Hyperparameter Sensitivity
	Long-term and Short-term Forecasting
	Long-term Forecasting
	Short-term Forecasting

	Few-shot and Zero-shot Forecasting
	Few-shot Forecasting
	Zero-shot Forecasting

	Ablation Study
	Efficiency Comparison with Model Fine-Tuning
	Error bars
	Visualization

